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DIVERGENCE, THICK GROUPS, AND SHORT
CONJUGATORS

JASON BEHRSTOCK AND CORNELIA DRUŢU

Abstract. The notion of thickness, introduced in (Math. Ann.
344 (2009) 543–595), is one of the first tools developed to

study the quasi-isometric behavior of weakly relatively hyper-
bolic groups. In this paper, we further this exploration through

a relationship between thickness and the divergence of geodesics.

We construct examples, for every positive integer n, of CAT(0)

groups which are thick of order n and with polynomial diver-
gence of order n + 1. With respect to thickness, these exam-
ples show the non-triviality at each level of the thickness hierar-
chy defined in (Math. Ann. 344 (2009) 543–595). With respect

to divergence, our examples provide an answer to questions of

Gromov (In Geometric Group Theory (1993) 1–295 Cambridge

Univ. Press) and Gersten (Geom. Funct. Anal. 4 (1994) 633–647;

Geom. Funct. Anal. 4 (1994) 37–51). The divergence questions

were independently answered by Macura in (CAT(0) spaces with
polynomial divergence of geodesics (2011) Preprint).

We also provide tools for obtaining both lower and up-
per bounds on the divergence of geodesics and spaces, and

we prove an effective quadratic lower bound for Morse quasi-
geodesics in CAT(0) spaces, generalizing results of Kapovich–
Leeb and Bestvina–Fujiwara (Geom. Funct. Anal. 8 (1998) 841–
852; Geom. Funct. Anal. 19 (2009) 11–40).

In the final section, we obtain linear and quadratic bounds
on the length of the shortest conjugators for various families of
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groups. For general 3-manifold groups, sharp estimates are pro-
vided. We also consider mapping class groups, where we pro-
vide a new streamlined proof of the length of shortest conjuga-
tors which contains the corresponding results of Masur–Minsky

in the pseudo-Anosov case (Geom. Funct. Anal. 10 (2000) 902–
974) and Tao in the reducible case (Geom. Funct. Anal. 23 (2013)
415–466).

1. Introduction

One of the main purposes of this paper is to provide a connection between
two invariants: the divergence and the order of thickness. The divergence
arose in the study of non-positively curved manifolds and metric spaces and
roughly speaking it measures the spread of geodesics. More precisely, given
two geodesic rays r, r′ with r(0) = r′(0) their divergence is defined as a map
divr,r′ : R+ → R+, where divr,r′(t) is the infimum of the lengths of paths
joining r(t) to r′(t) outside the open ball centered at r(0) and of radius λt.
Here, λ is a fixed parameter in (0,1) whose choice turns out to be irrelevant
for the order of the divergence.

For the divergence and distance functions, we will often want to compare
how two such functions behave asymptotically. In particular, given two non-
decreasing functions R+ → R+, f and g, we write f � g if there exists a
constant C ≥ 1 for which f(x)≤ Cg(Cx+C) +Cx+C for all x ∈ R+; if we
want to emphasize the particular constant, we write f �C g. One obtains
an equivalence relation on the set of functions R+ → R+ by setting f � g if
and only if there exists constants so that f � g and g � f . We note that the
order of growth of any non-constant polynomial, or an upper bound for such
an order, is an invariant of the equivalence class.

In symmetric spaces of non-compact type, the order of the divergence of
geodesic rays is either exponential (when the rank is one) or linear (when the
rank is at least two). This inspired an initial thought that in the presence
of non-positive curvature the divergence must be either linear or exponential.
See [Gro93] for a discussion—an explicit statement of this conjecture appears
in 6.B2, subsection “Geometry of ∂T and Morse landscape at infinity,” Exam-
ple (h). In particular, Gromov stated an expectation that all pairs of geodesic
rays in the universal cover of a closed Riemannian manifold of non-positive
curvature diverge either linearly or exponentially [Gro93].

As an aside, we note that without the hypothesis of non-positive curvature
the situation is more complicated. For instance, in nilpotent groups with
left invariant metrics, while the maximal rate of divergence of geodesics is
linear [DMS10], there exist geodesic rays that diverge sublinearly [Pau01,
Lemma 7.1].
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Gersten provided the first examples of CAT(0) spaces whose divergence did
not satisfy the linear/exponential dichotomy and showed that such examples
are closely tied to other areas in mathematics. The first such example was a
CAT(0) space admitting a cocompact action of the group F2�ϕZ with ϕ(a) =
ab, ϕ(b) = b [Ger94b]; the space constructed by Gersten contains rays with
quadratic divergence and he proves that no two rays in this space diverge faster
than quadratically. Extending that work, Gersten then used divergence to
distinguish classes of closed 3-manifolds [Ger94a]. Modulo the geometrization
conjecture, he proved that the divergence of a 3-manifold is either linear,
quadratic, or exponential; where quadratic divergence occurs precisely for
graph manifolds and exponential divergence occurs precisely when at least
one geometric component is hyperbolic. Gersten asked explicitly in [Ger94a]
which orders of polynomial divergence were possible in a CAT(0) group.

In a different direction, the authors of the present paper together with
L. Mosher [BDM09] introduced a geometric property called thickness which
was proved to hold for many interesting spaces. The definition is an inductive
one and, roughly speaking, characterizes a space as thick of order n if it is a
network of subsets which are each thick of order n− 1, i.e. any two points in
the space can be connected by a chain of subsets thick of order n− 1 with
each intersecting the next in an infinite diameter set. The base level of the
induction, that is, spaces defined to be thick of order 0, are metric spaces with
linear divergence. The precise definition of thick is given in Section 4.

The very structure of a network turns out to be well adapted to estimates
on divergence. Indeed let X be a geodesic metric space which is a (τ, η)-tight
network with respect to a collection of subsets L, in the sense of Definition 4.1.
Let δ be a number in (0,1) and let γ ≥ 0. For every subset L ∈ L let DivLγ (n; δ)
be the divergence function for the tubular neighborhood of L of radius τ , with
the induced metric (see Definition 3.1 for the notion of divergence function of
a metric space); define the network divergence of X as

DivLγ (n; δ) = sup
L∈L

DivLγ (n; δ).

The following holds.

Theorem 4.9. The divergence function in X satisfies

DivXγ (n; δ)�C nDivLγ (n; δ),

where the constant C only depends on the constants τ, η, δ and γ.

Groups and spaces which are thick of order 0 or 1 both yield very rich classes
of examples, see e.g. [BDM09], [BC], [BM08], [DS05]. In the present paper, we
give the first constructions of groups which are thick of order greater than 1;
indeed, for every positive integer n we produce infinitely many quasi-isometry
classes of groups which are thick of order n, as explained in the following
theorem. Moreover, using a close connection between order of thickness and



942 J. BEHRSTOCK AND C. DRUŢU

order of divergence we establish that the very same classes of examples have
polynomial divergence of degree n+ 1. We note that the case n = 0 of this
theorem is trivial and the case n= 1 follows from the above mentioned results
in [Ger94a] combined with results from [BDM09] and [BN08]. The following
is established in Section 5.

Theorem 1.1. For every positive integer n there exists an infinite family
of pairwise non-quasi-isometric finitely generated groups which are each:

(1) CAT(0) groups;
(2) thick of order n;
(3) with divergence of order n+ 1.

Natasa Macura has given an independent construction of examples of
CAT(0) groups with divergence of order n for all positive integers [Mac].

The upper bound on divergence in Theorem 1.1 will follow from Theo-
rem 4.9. The lower bound both for divergence and for the order of thickness
is proved by exhibiting a bi-infinite geodesic with divergence precisely xn+1.

It would be interesting to know if either in general, or under some rea-
sonable hypotheses, the order of thickness and the divergence are directly
correlated, i.e. can the order of thickness be shown to provide a lower bound
in addition to the upper bound which in this paper we show holds in general.
A homogeneous version of this question is:

Question 1.2. If a group is thick of order n must its divergence be poly-
nomial of degree exactly n+ 1?

More specific questions on the possible orders of divergence include:

Question 1.3. Are there examples of CAT(0)-groups whose divergence is
strictly between xn and xn+1 for some n?

Question 1.4. What are the �-equivalence classes of divergence functions
of CAT(0)-groups?

Our inductive construction in Theorem 1.1 can be made to yield infinitely
many quasi-isometry classes because the quasi-isometry type of the base is
an invariant of the space, and this base is a CAT(0) 3-dimensional graph
manifold. According to the main result of [BN08], we have infinitely many
quasi-isometry classes of 3-dimensional graph manifolds to choose from.

Another geometric feature relevant for divergence is the presence of Morse
quasi-geodesics. These are quasi-geodesics which represent in some sense “hy-
perbolic directions” in that they satisfy the Morse lemma from hyperbolic
geometry. More precisely, we call a quasi-geodesics q a Morse quasi-geodesics
if any (K,C)-quasi-geodesic γ with endpoints on q is contained in a M -tubular
neighborhood of q, where M is a uniform bound depending only on K and C,
but otherwise not dependent on γ.
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We begin by observing in Proposition 3.9(b), that in CAT(0) spaces one can
associate Morse parameters to a Morse quasi-geodesic, measuring “how hy-
perbolic” that quasi-geodesic is (informally speaking: a Morse quasi-geodesic
may be contained in a flat strip: the larger such a strip, the larger the Morse
parameter; for a precise definition of these parameters see Definition 3.10).

Morse quasi-geodesics and their relationship to divergence are studied in
Section 6. One topic discussed there is the following natural refinement of
Question 1.3.

Question 1.5. If X is a CAT(0) space, can the divergence of a Morse
geodesic be greater than xn and less than xn+1?

The following theorem provides a negative answer for the case n = 1; its
statement is the most general version of previous known results which required
extra assumptions such as periodicity of the geodesic or properness of the
space X , see [KL98] or Proposition 3.12, and also [BF].

Theorem 6.6. Let q be a Morse quasi-geodesic in a CAT(0) metric space
(X,dist). Then the divergence Divq ≥ (κx − κ)2, where κ is a constant de-
pending only on the constants chosen in the definition of the divergence and
on the Morse parameters (see Definition 3.10).

Further results and questions on the relation between Morse (quasi-)
geodesics and divergence may be found in Section 6.

In Section 7, we study the question of finding shortest conjugators for Morse
elements, in CAT(0) groups and in groups with “(non-positive curvature)-like
behavior.” We generalize results from the CAT(0) setting to Morse geodesics
in other groups. In that section, we prove the following, which we then apply
to graph manifolds in Corollary 7.5. Recall that an action of a group G on a
graph X is called l-acylindrical for some l > 0 (or simply acylindrical) if the
stabilizers in G of pairs of points in X at distance ≥ l are finite of uniformly
bounded sizes. Recall also that in a finitely generated group G, for a finite
generating set S which we often do not explicitly mention, we denote by |g|S
or simply by |g| the distance from 1 to g ∈G in the word metric corresponding
to S.

Theorem 7.4. Let G be a group acting cocompactly and l-acylindrically on
a simplicial tree T . For every R> 0 and for a fixed word metric on G let f(R)
denote the supremum of all diameters of intersections stab(a)∩NR(g stab(b)),
where a and b are vertices in T at distance at least l, and g ∈G is at distance ≤
R from 1.

There exists a constant K such that if two loxodromic elements u, v are
conjugate in G then there exists g conjugating u, v such that

|g| ≤ f
(
|u|+ |v|+K

)
+ |u|+ |v|+ 2K.
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Note that in this theorem we cannot simply replace “loxodromic” by
“Morse,” since there might exist Morse elements of G in the stabilizer of
a vertex, for example, this is the case if G is free and T is the quotient by a
free factor.

Two natural questions related to the above result can be asked.

Question 1.6. Can Theorem 7.4 be extended to actions that are not co-
compact?

Question 1.7. What are the possible values of the function f(R) in The-
orem 7.4?

As a consequence of Theorem 7.4, we obtain the following.

Corollary 1.8. Let M be a 3-dimensional prime manifold, and let G be
its fundamental group. For every word metric on G there exists a constant K
such that the following holds:

(1) if u, v are two Morse elements conjugate in G then there exists g conju-
gating u, v such that

|g| ≤K
(
|u|+ |v|

)
.

(2) If u, v are two arbitrary elements conjugate in G, then there exists g con-
jugating u, v such that

|g| ≤K
(
|u|+ |v|

)2
.

The fact that 3-manifolds have solvable conjugacy problem was established
in [Pre06], but without a bound on the complexity.

We also give a new unified proof of the following theorem, first proved in
the pseudo-Anosov case by Masur–Minsky [MM00, Theorem 7.2] and later
extended to the reducible case by Tao [Tao11, Theorem B].

Theorem 7.8. Given a surface S and a finite generating set F of its map-
ping class group MCG(S) there exists a constant C depending only on S and
on F such that for every two conjugate pure elements of infinite order u and
v in MCG(S) there exists g ∈MCG(S) satisfying v = gug−1 and

|g| ≤C
(
|u|+ |v|

)
.

2. General preliminaries

We recall some standard definitions and establish our notation.
We use the notation NR(A) for the (open) R-neighborhood of a subset A

in a metric space (X,dist), i.e. NR(A) = {x ∈X : dist(x,A)<R}. If A= {a}
then NR(A) =B(a,R) is the open R-ball centered at a.

We use the notation NR(A) and B̄(a,R) to designate the corresponding
closed neighborhoods and closed balls defined by non-strict inequalities.
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We make the convention that B(a,R) and B̄(a,R) are the empty set for
R< 0 and any a ∈X . The terms “neighborhood” and “ball” will always mean
an open neighborhood, respectively, ball.

Notation 2.1. Let a > 1, b, x, y be positive real numbers. We write x≤a,b

y if

x≤ ay+ b.

We write x≈a,b y if x≤a,b y and y ≤a,b x.

Consider two constants L≥ 1 and C ≥ 0.
An (L,C)-coarse Lipschitz map is a map f :X → Y of a metric space X

to a metric space Y such that

dist
(
f(x), f

(
x′))≤L,C dist

(
x,x′), for all x,x′ ∈X.

An (L,C)-quasi-isometric embedding is a map f :X → Y that satisfies

dist
(
f(x), f

(
x′))≈L,C dist

(
x,x′), for all x,x′ ∈X.

If moreover Y ⊆NC(f(X)) the map f is called a quasi-isometry.
An (L,C)-quasi-geodesic is an (L,C)-quasi-isometric embedding p : I →X ,

where I is a connected subset of the real line. A sub-quasi-geodesic of p is a
restriction p|J , where J is a connected subset of I .

When I =R we call both p and its image bi-infinite (L,C)-quasi-geodesic.
We call (L,0)-quasi-isometries (quasi-geodesics) L-bi-Lipschitz maps

(paths).
When the constants L,C are irrelevant they are often not mentioned.
When considering divergence, it is often useful to consider a particular

type of metric spaces: tree-graded spaces, as these spaces, especially in their
appearance as ultralimits, are particularly relevant. Recall the following def-
inition from [DS05]: a complete geodesic metric space F is tree-graded with
respect to a collection P of closed geodesic subsets (called pieces) when the
following two properties are satisfied:

(T1) Every two different pieces have at most one common point.
(T2) Every simple geodesic triangle in F is contained in one piece.

Lemma 2.2 (Druţu–Sapir [DS05]). Let F be a space which is tree-graded
with respect to a collection of pieces P .

(1) For every point x ∈ F, the set Tx of topological arcs originating at x and
intersecting any piece in at most one point is a complete real tree (possibly
reduced to a point). Moreover if y ∈ Tx then Ty = Tx.

(2) Any topological arc joining two points in a piece is contained in the same
piece. Any topological arc joining two points in a tree Tx is contained in
the same tree Tx.
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Lemma 2.3 (Druţu–Sapir [DS05], Lemma 2.31). Let X be a complete geo-
desic metric space containing at least two points and let C be a non-empty set
of cut-points in X . There exists a uniquely defined (maximal in an appropriate
sense) collection P of subsets of X such that

• X is tree-graded with respect to P ;
• any piece in P is either a singleton or a set with no cut-point in C.
Moreover, the intersection of any two distinct pieces from P is either empty
or a point from C.

3. Divergence

Throughout this section (X,dist), or just X , will denote a geodesic metric
space.

3.1. Equivalent definitions for divergence. We recall the various defini-
tions of the divergence and the fact that under some mild conditions all these
functions are equivalent. The main reference for the first part of this section
is [DMS10, §3.1].

Consider two constants 0< δ < 1 and γ ≥ 0.
For an arbitrary triple of points a, b, c ∈X with dist(c,{a, b}) = r > 0, de-

fine divγ(a, b, c; δ) as the infimum of the lengths of paths connecting a, b and
avoiding the ball B(c, δr− γ).

If no such path exists, define divγ(a, b, c; δ) =∞.

Definition 3.1. The divergence function DivXγ (n, δ) of the space X is
defined as the supremum of all numbers divγ(a, b, c; δ) with dist(a, b) ≤ n.
When there is no danger of confusion, we drop the superscript X .

A particular type of divergence will be useful to obtain lower bounds for
the function Div defined as above. More precisely, let q be a bi-infinite quasi-
geodesic in the space X , seen as a map q : R→X satisfying the required two
inequalities. We define the divergence of this quasi-geodesic as the function

Divqγ : (0,+∞)→ (0,+∞), Divqγ(r) = divγ
(
q(r),q(−r),q(0); δ

)
.

Clearly for every bi-infinite quasi-geodesic q in a space X , Divqγ �DivXγ .
In what follows we call a metric space X proper if all its closed balls are

compact. We call it periodic if for fixed constants L≥ 1 and C ≥ 0 the orbit
of some ball under the set of (L,C)-quasi-isometries covers X .

A geodesic metric space is said to satisfy the hypothesis (Hypκ,L) for some
κ ≥ 0 and L ≥ 1 if it is one-ended, proper, periodic, and every point is at
distance less than κ from a bi-infinite L-bi-Lipschitz path.

Example 3.2. A Cayley graph of a finitely generated one-ended group
satisfies the hypothesis (Hyp 1

2 ,1
).
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Lemma 3.3 (Lemma 3.4 in [DMS10]). Assume that X satisfies (Hypκ,L)
for some κ≥ 0 and L≥ 1. Then for δ0 =

1
1+L2 and every γ ≥ 4κ the function

Divγ(n, δ0) takes only finite values.

A new divergence function, more restrictive as to the set of triples consid-
ered, is the following.

Definition 3.4. Let λ≥ 2. The small divergence function divγ(n;λ, δ) is
the supremum of all numbers divγ(a, b, c; δ) with 0≤ dist(a, b)≤ n and

(i) λdist
(
c,{a, b}

)
≥ dist(a, b).

We define two more versions of divergence functions, with a further restric-
tion on the choice of c. For every pair of points a, b ∈X , we choose and fix
a geodesic [a, b] joining them such that if x, y are points on a geodesic [a, b]
chosen to join a, b the subgeodesic [x, y]⊆ [a, b] is chosen for x, y.

We say that a point c is between a and b if c is on the fixed geodesic segment
[a, b].

We define Div′γ(n; δ) and div′γ(n;λ, δ) same as Divγ and divγ before, but

restricting c to the set of points between a and b. Clearly, Div′γ(n; δ) ≤
Divγ(n; δ) and div′γ(n;λ, δ)≤ divγ(n;λ, δ) for every λ, δ.

All these versions of divergence are now shown to be equivalent under
appropriate conditions.

Proposition 3.5 (Corollary 3.12 in [DMS10]). Let X be a space satisfying
the hypothesis (Hypκ,L) for some constants κ≥ 0 and L≥ 1, and let δ0 =

1
1+L2

and γ0 = 4κ.

(i) Up to the equivalence relation �, the functions div′γ(n;λ, δ) and

Div′γ(n; δ) with δ ≤ δ0 and γ ≥ γ0 are independent of the choice of
geodesics [a, b] for every pair of points a, b.

(ii) For every δ ≤ δ0, γ ≥ γ0, and λ≥ 2

Divγ(n; δ)�Div′γ(n; δ)� divγ(n;λ, δ)� div′γ(n;λ, δ).

Moreover, all the functions in this equation are independent of δ ≤ δ0
and γ ≥ γ0 (up to the equivalence relation �).

(iii) The function Divγ(n; δ) is equivalent to div′γ(n; 2, δ) as a function in n.
Thus in order to estimate Divγ(n, δ) for δ ≤ δ0 it is enough to consider
points a, b, c where c is the midpoint of a (fixed) geodesic segment con-
necting a and b.

Proposition 3.5 implies that the �-equivalence class of the divergence func-
tion(s) is a quasi-isometry invariant in the class of metric spaces satisfying the
hypothesis (Hypκ,L) for some constants κ≥ 0 and L≥ 1.

The equivalent notions of divergence introduced previously are closely re-
lated to the divergence as defined by S. Gersten in [Ger94b] and [Ger94a]. We
refer to [DMS10] for a detailed discussion.
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There exists a close connection between the linearity of divergence and the
existence of global cut-points in asymptotic cones; see [Beh06] for an early
example and [DMS10] for a general theory.

Definition 3.6. A metric space B is unconstricted if the following prop-
erties hold:

(1) for some constants c,λ,κ, every point in B is at distance at most c from
a bi-infinite (λ,κ)-quasi-geodesic in B;

(2) there exists an ultrafilter ω and a sequence d such that for every sequence
of observation points b, Coneω(B,b, d) does not have cut-points.

If (2) is replaced by the condition that every asymptotic cone is without
cut-points then the space B is called wide.

Proposition 3.7 (Proposition 1.1 in [DMS10]). Let X be a geodesic metric
space.

(i) If there exists δ ∈ (0,1) and γ ≥ 0 such that the function Divγ(n; δ) is
bounded by a linear function, then every asymptotic cone of X is without
cut-points.

(ii) If X is wide, then for every 0 < δ < 1
54 and every γ ≥ 0, the function

Divγ(n; δ) is bounded by a linear function.
(iii) Let g : R→X be a periodic geodesic. If g has superlinear divergence then

in any asymptotic cone, Coneω(X), for which the limit of g is nonempty
there exists a collection of proper subsets of Coneω(X) with respect to
which it is tree-graded and the limit of g is a transversal geodesic.

Remark 3.8. (1) In [DMS10, Proposition 1.1], “wide” means a geodesic
metric space satisfying condition (2) only. For this reason in statement (ii)
of Proposition 1.1 in [DMS10], it is assumed that X is periodic. However
that condition is only used to ensure that condition (1) in our definition
of wideness is satisfied.

(2) In Proposition 3.7(ii), the hypothesis that X is wide cannot be replaced
by the hypothesis that X is unconstricted. Indeed in [OOS05] can be
found examples of unconstricted groups with super-linear divergence.

3.2. Morse quasi-geodesics and divergence. Examples of groups with
linear divergence include groups satisfying a law, groups with a central el-
ement of infinite order, groups acting properly discontinuously and cocom-
pactly on products of spaces, uniform lattices in higher rank symmetric spaces
or Euclidean buildings and some non-uniform lattices too. Conjecturally, all
non-uniform lattices in higher rank have linear divergence [DMS10].

As shown by Proposition 3.7, super-linear divergence is equivalent to the
existence of cut-points in at least one asymptotic cone. Nothing more consis-
tent can be said on divergence in this very general setting. On the other hand,
as we will see in detail in Section 6 the existence of Morse quasi-geodesics—a
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stronger property than existence of cut-points—allows us to produce better
estimates on divergence many situations. The most commonly used definition
for such quasi-geodesics is, as recalled in the Introduction, that the Morse
lemma is satisfied. We will use an equivalent definition, as given by the follow-
ing proposition. For simplicity, we will henceforth assume that quasi-geodesics
are Lipschitz, and hence continuous paths (up to bounded perturbation this
can always be assumed in a geodesic metric space).

Given two points a, b in the image of a quasi-geodesic, q, we denote by qab

the restriction of q defined on a maximal interval such that its endpoints are
a and b.

Proposition 3.9. (a) A bi-infinite quasi-geodesic q in X is Morse if and
only if for every C ≥ 1 there exists D ≥ 0 such that every path of length
at most Cn connecting two points a, b on q at distance ≥ n contains qab

in its D-neighborhood.
(b) If, moreover, X is a CAT(0) space then it suffices to know that for

some C > 1 there exists D ≥ 0 such that every path of length at most
Cn connecting two points a, b on q at distance ≥ n contains qab in its
D-neighborhood.

Proof. Proposition 3.24 of [DMS10] provides a number of equivalent condi-
tions for Morse quasi-geodesics; statement (a) here is the equality of conditions
(2) and (5) of that proposition. It remains to prove statement (b).

By conditions (1) and (2) of Proposition 3.24 of [DMS10], q being Morse
is equivalent to the property that in every asymptotic cone the limit set of
q is either empty or contained in the transversal tree. We will proceed for a
contradiction, by assuming that q satisfies (b) and is not Morse, or, equiva-
lently, it satisfies (b) and has the property that for some cone the limit qω of
q is neither empty nor contained in the transversal tree. The latter assump-
tion implies that for some sequence of pairs of points an, bn on q with their
respective distances δn diverging to infinity, the limit points aω and bω , at
distance δ > 0, can be joined by a piecewise geodesic path pω of length K ≥ δ
intersecting qω only in its endpoints.

Note that the condition in (b) implies that every geodesic connecting two
points a, b on q contains qab in its D-neighborhood. Hence, in what follows
we may assume without loss of generality that the arc q′ω of qω of endpoints
aω, bω is a geodesic.

The asymptotic cone of a CAT(0) space is a CAT(0) space: hence the
nearest point projection onto q′ω is well defined and is a contraction. Pushing
the piecewise geodesic path pω along the geodesics joining each of its points
with its projection on q′ω we obtain a continuous path of arcs from p to q′ω with
they property that each arc in this family only intersects q′ω at its endpoints
aω , bω and also the lengths of the arcs vary continuously between K and δ.
By replacing p with another arc in the path, one may then assume that the



950 J. BEHRSTOCK AND C. DRUŢU

length of p is at most C/2 for the constant C given in (b). By again, replacing
p with a path that is piecewise geodesic, we may assume that p is a limit of
paths pn of length at most Cδn, such that the minimal tubular neighbourhood
of pn containing qanbn is εδn, for some ε > 0. This contradicts the hypothesis,
therefore our assumption, that the limit of q is neither empty nor transversal
in some asymptotic cone can not hold and it follows that q is Morse. �

Definition 3.10. (1) In a finitely generated group G, an element is called
Morse if it has infinite order and the cyclic subgroup generated by it is a
Morse quasi-geodesic.

(2) For a Morse quasi-geodesic or a Morse element in a CAT(0) space or
group, we consider the quasi-geodesic constants together with the con-
stants C and D as in Proposition 3.9(b) the Morse parameters.

Several important classes of groups contain Morse elements. Behrstock
proved in [Beh06] that every pseudo-Anosov element in a mapping class group
is Morse. Yael Algom-Kfir proved the same thing for fully irreducible elements
of the outer automorphism group Out(Fn) in [AK], see also [Ham09]. In a
relatively hyperbolic group, every non-parabolic element is Morse ([DS05],
[Osi06]).

In [DMS10], it is proved that in a finitely generated group acting acylindri-
cally on a simplicial tree or on a uniformly locally finite hyperbolic graph, any
loxodromic element is Morse. An action on a graph is called l-acylindrical for
some l > 0 if stabilizers of pairs of points at distance ≥ l are finite of uniformly
bounded sizes. At times the constant l need not be mentioned. Note that a
group acting by isometries on a simplicial tree with unbounded orbits always
contains loxodromic elements [Bow08].

Existence of Morse quasi-geodesics implies existence of cut-points in all
asymptotic cones. The converse is only known to be true for universal covers
of non-positively curved compact non-flat de Rham irreducible manifolds due
to the following two results combined with Proposition 3.7(iii).

Theorem 3.11 ([Bal85], [Bal95], [BS87]). Let M be a non-positively curved
de Rham irreducible manifold with a group of isometries acting co-compactly.
Then either M is a higher rank symmetric space or M contains a periodic
geodesic which does not bound a half-plane.

Proposition 3.12 ([KL98, Proposition 3.3]). Let X be a locally compact,
complete, simply connected geodesic metric space which is locally CAT(0).
A periodic geodesic g in X which does not bound a flat half-plane satisfies

Divg(r)� r2.

The lower estimate on divergence that enters as a main ingredient in this
converse is as important as the converse itself. In Section 6, we prove that
the estimate in Proposition 3.12 holds in a considerably more general CAT(0)
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setting, as well as for many of the examples of groups with Morse elements
quoted above.

4. Divergence and networks of spaces

4.1. Tight networks. We strengthen the definitions of networks of sub-
spaces and subgroups from [BDM09], with a view toward divergence estimate
problems.

A subset A in a metric space is called C-path connected if any two points in
A can be connected by a path in NC(A). We say that A is (C,L)-quasi-convex
if any two points in A can be connected in NC(A) by a (L,L)-quasi-geodesic.
When C = L, we simply say that A is C-quasi-convex.

Definition 4.1 (Tight network of subspaces). Given τ and η two non-
negative real numbers we say that a metric space X is a (τ, η)-tight network
with respect to a collection L of subsets or that L forms a (τ, η)-tight network
inside X if every subset L in L with the induced metric is (τ, η)-quasi-convex,
X is covered by τ -neighborhoods of the sets L ∈ L, and the following condition
is satisfied: for any two elements L,L′ ∈ L and any point x such that B(x,3τ)
intersects both L and L′, there exists a sequence of length n≤ η

L1 = L,L2, . . . ,Ln−1,Ln = L′, with Li ∈ L
such that for all 1≤ i < n, Nτ (Li) ∩Nτ (Li+1) is of infinite diameter, η-path
connected and it intersects B(x, η). We write (N) to refer to the above con-
dition about arbitrary pairs of elements in L.

When G is a finitely generated group and L is the collection of left cosets
of H, a collection of undistorted subgroups, the following strengthening of the
above definition is sometimes easier to verify.

Definition 4.2 (Tight algebraic network of subgroups). We say a finitely
generated group G is an M -tight algebraic network with respect to H or that H
forms an M -tight algebraic network inside G, if H is a collection of M -quasi-
convex subgroups whose union generates a finite-index subgroup of G and for
any two subgroups H,H ′ ∈H there exists a finite sequence H =H1, . . . ,Hn =
H ′ of subgroups in H such that for all 1≤ i < n, the intersection Hi ∩Hi+1 is
infinite and M -path connected. We write (AN) to refer to the above condition
about arbitrary pairs H,H ′ ∈H.

A modification of the proof of [BDM09, Proposition 5.3] yields the follow-
ing.

Proposition 4.3. Let H be a collection of subgroups that forms a tight
algebraic network inside a finitely generated group G and let G1 be the finite-
index subgroup of G generated by the subgroups in H. Then G is a tight
network with respect to the collection of left cosets

L= {gH | g ∈G1,H ∈H}.
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Proof. Since cosets cover the subgroup G1 and G⊂Nτ (G1) for some τ > 0,
it remains to prove (N). By left translation, we may assume that x= 1; also,
it clearly suffices to prove condition (N) for L = H , and L′ = gH ′, where
H,H ′ ∈H and g ∈G1 ∩B(1,3τ).

The argument in Proposition 5.3 in [BDM09] as written there yields that
for every such pair there exists a sequence L1 = H,L2, . . . ,Ln = gH ′ in L
composed of concatenations of left translations of sequences as in (AN). That
this sequence also satisfies the property that all Li intersect B(1,3τ) is by
construction, since each of element of this sequence is in H, or else is a left
translate of such a subgroup by an element of G which is represented by a
subword of the element g and hence this coset intersects B(1, |g|) =B(1,3τ),
as desired. In particular, every pair Li,Li+1 is a left translation of a pair
of subgroups as in (AN) of the form g′H1, g

′H2 with H1 ∩H2 infinite and
M -path connected and g′ ∈G1 closer to 1 than g.

By [MSW05, Lemma 2.2] the intersection Nτ (Li) ∩ Nτ (Li+1) is at finite
Hausdorff distance from g(H1∩H2), hence it is of infinite diameter and η-path
connected for η large enough. �

The following yields a large family of examples.

Proposition 4.4. Let G be a fundamental group of a graph of groups
where all the vertex groups are quasi-convex and the edge groups are infinite.
Then G is a tight network with respect to the family of all left cosets of vertex
groups. Moreover, if the graph of groups is simply connected, then G is a tight
algebraic network with respect to the family of vertex groups.

Proof. Since left cosets of a subgroup cover and the vertex sets are quasi-
convex by hypothesis, to show that G is a tight network it remains to verify
property (N). Fix two left cosets L,L′ of vertex subgroups of G and a point
x in N3τ (L)∩N3τ (L

′). By left translation we may assume that x= 1. In the
Bass–Serre tree, L and L′ correspond to vertices at distance at most n apart
with n≤ 6τ and letting L= L0,L1, . . . ,Ln = L′ be the sequence of left cosets
corresponding to the vertices in the shortest path in the tree from L to L′, it
satisfies all the properties of (N). In particular, all Li intersect B(1, η) for η
large enough, because there are finitely many possibilities for L,L′ (left cosets
of vertex groups intersecting B(1,3τ)) and therefore for Li.

If the graph of groups is simply connected, then the vertex groups gener-
ate G. The remaining properties of tight algebraic network follow immedi-
ately. �

Tight networks define natural decompositions of geodesics, as described
below.

Lemma 4.5. Let X be a geodesic metric space and L a collection of sub-
sets of X such that X =

⋃
L∈LNτ (L). Every geodesic [x, y] contains a finite

sequence of consecutive points x0 = x,x1, x2, . . . , xn−1, xn = y such that:
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(1) for every i ∈ {0,1, . . . , n − 1} there exists Li ∈ L such that xi, xi+1 ∈
N3τ (Li);

(2) for every i ∈ {0,1, . . . , n− 2}, dist(xi, xi+1)≥ τ .

Proof. We inductively construct a sequence of consecutive points x0 =
x,x1, x2, . . . , xn on [x, y] such that for every i ∈ {0,1, . . . , n− 1} there exists
Li ∈ L with the property that xi ∈Nτ (Li) and xi+1 is the farthest point from x
on [x, y] contained in N 2τ (Li). Assume that we found x0 = x,x1, . . . , xk. Since
xk ∈X =

⋃
L∈LNτ (L) there exists Lk+1 �= Lk such that xk ∈Nτ (Lk+1). Pick

xk+1 to be the farthest point from x on [x, y] contained in N 2τ (Lk+1). By our

choice of xk, it follows that this process will terminate with n≤ �dist(x,y)
τ �. �

Lemma 4.6. Let X be a geodesic metric space which is a (τ, η)-tight network
with respect to a collection of subsets L, let [x, y] be a geodesic in X and
let L,L′ ∈ L be such that x ∈ Nτ (L) and y ∈ Nτ (L

′). There exists a finite
sequence of consecutive points x0 = x,x1, x2, . . . , xn−1, xn = y on [x, y] and
a finite sequence of subsets Lj ∈ L, satisfying L0 = L,L1, . . . ,Lq = L′ with
q ≤ nη such that

(1) for every i ∈ {0,1, . . . , n− 2}, dist(xi, xi+1)≥ τ ;
(2) for every j ∈ {0,1, . . . , q − 1} the intersection Nτ (Lj) ∩ Nτ (Lj+1) is of

infinite diameter and η-path connected;
(3) there exist j0 = 0< j1 < · · ·< jn−1 < jn = q such that if ji−1 ≤ j ≤ ji then

Nτ (Lj)∩Nτ (Lj+1) intersects B(xi, η).

Proof. For the geodesic [x, y] consider a sequence x0 = x,x1, x2, . . . , xn−1,
xn = y as in Lemma 4.5, and the sequence L0,L1, . . . ,Ln−1 determined by the
condition Lemma 4.5(1), which can be taken with L0 = L.

Property (N) applied to each of the pairs Li,Li+1 with i ∈ {0,1, . . . , n−2},
and to Ln−1,L

′ provides a sequence L= J0, J1, . . . , Jq = L′ with q ≤ nη, such
that for all j ∈ {0,1, . . . , q−1} the intersection Nτ (Jj)∩Nτ (Jj+1) is of infinite
diameter, η-path connected and it intersects B(xi, η) for some 0≤ i≤ n. �

The following shows that tight networks are a uniform version of the net-
works in [BDM09, Definition 5.1].

Corollary 4.7. Let X be a geodesic metric space which is a (τ, η)-tight
network with respect to a collection of subsets L.

For every M ≥ 0 there exists R=R(M) such that for every L,L′ ∈ L with
NM (L) ∩NM (L′) �= ∅ and any point a ∈ NM (L) ∩NM (L′) there exists a se-
quence, L1 = L,L2, . . . ,Ln−1,Ln = L′, with Li ∈ L and n≤R such that for all
1 ≤ i < n, Nτ (Li) ∩ Nτ (Li+1) is of infinite diameter, η-path connected, and
intersects B(a,R).

Proof. Let L,L′ ∈ L be such that NM (L) ∩ NM (L′) �= ∅ and let a be a
point in the intersection. Take x ∈ L and y ∈ L′ such that dist(x,a)<M and
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dist(y, a)<M . Lemma 4.6 applied to the geodesic [x, y] yields a sequence of Li

for which Nτ (Li)∩Nτ (Li+1)∩Nη([x, y]) �= ∅ and hence Nτ (Li)∩Nτ (Li+1)∩
B(a, η+ 2M) �= ∅, yielding the desired conclusion with R(M) = η+ 2M . �
4.2. Network divergence. We defined divergence functions in Defini-
tion 3.1; for a network of spaces, we now define an auxiliary function in order
to bound the divergence of X .

Definition 4.8. LetX be a (τ, η)-tight network with respect to a collection
L of subsets, let δ be a number in (0,1) and let γ ≥ 0. For every subset L ∈ L,
we denote by DivLγ (n; δ) the divergence function for Nτ (L) with the induced
metric.

The network divergence of X is defined as

DivLγ (n; δ) = sup
L∈L

DivLγ (n; δ).

Theorem 4.9. Let X be a geodesic metric space, let L be a collection of
subsets which forms a (τ, η)-tight network inside X , let δ be a number in (0,1)
and let γ ≥ 0. The divergence in X satisfies

(ii) DivXγ (n; δ)�C nDivLγ (n; δ),

where the constant C only depends on the constants τ, η, δ and γ.

Proof. Let a, b, c be three points such that dist(a, b) = n and dist(c,{a, b}) =
r > γ

δ . If the ball B(c, δr − γ) does not intersect a geodesic [a, b], then

divγ(a, b, c; δ) = n. Assume therefore that B(c, δr − γ) intersects [a, b]. This
in particular implies that r ≤ δr− γ + n

2 , whence r ≤ n
2(1−δ) .

Lemma 4.6 applied to the geodesic [a, b] implies the existence of a finite
sequence of points x0 = a,x1, . . . , xk = b with k ≤ n

τ + 2, consecutive on the
geodesic, and of a finite sequence of subsets in L, L0 = L,L1, . . . ,Lq = L′ with
q ≤ kη ≤ η(nτ + 2) such that:

(1) for every j ∈ {0,1, . . . , q − 1} the intersection Nτ (Lj) ∩ Nτ (Lj+1) is of
infinite diameter and η-path connected;

(2) there exist j0 = 0< j1 < · · ·< jn−1 < jn = q such that if ji−1 ≤ j ≤ ji then
Nτ (Lj)∩Nτ (Lj+1) intersects B(xi, η).

Let σ > 0 be large enough. Conditions on it will be added later on. Consider
an arbitrary j ∈ {0,1, . . . , q − 1}. There exists i ∈ {1,2, . . . , k − 1} such that
ji−1 ≤ j ≤ ji. This implies that there exists a point zj+1 in Nτ (Lj)∩Nτ (Lj+1)
at distance at most η from xi.

Since we are in a network, Nτ (Lj) ∩Nτ (Lj+1) is of infinite diameter and
thus contains an element z′j+1 at distance ≥ σr from c. Since the intersection
is η-path connected there exists a path joining zj+1 and z′j+1 in the η neigh-
borhood of the intersection, and one can find on it a point at distance σr
from c. Thus, there exists yj+1 in Nτ (Lj) ∩Nτ (Lj+1) at distance σr+O(1)
from c.
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If x0 = a is in B(c, σr), then we may find a point y0 in Nτ (L0) at distance
σr+O(1) from c. Likewise we may have to replace b by another point yq+1.

We thus obtain a new sequence of points y0, y1, . . . , yq+1 all at distance
σr + O(1) from c. For every j ∈ {0,1, . . . , q} the pair yj , yj+1 is inside
Nτ (Lj). If B(c, δr − γ) does not intersect Nτ (Lj) then simply join yj , yj+1

by short geodesics to points in Lj and join those points by a (η, η)-quasi-
geodesic in Nτ (Lj). Otherwise, the intersection of B(c, δr − γ) with Nτ (Lj)
contains a point, which we denote cj . The ball B(cj ,2δr − γ) contains
B(c, δr − γ). We choose σ large enough so that 2r ≤ dist(cj ,{yj , yj+1}).
Thus, dist(cj ,{yj , yj+1}) ≥ σr + O(1) allows us to join yj and yj+1 outside

the ball B(cj ,2δr − γ) by a path of length at most DivLj
γ (2σr + O(1); δ) ≤

DivLj
γ ( σ

1−δn+O(1); δ).
The concatenation of all these curves gives a curve joining a and b outside

B(c, δr − γ) and of length at most 2αn+ (q + 1)DivLγ (αn+ O(1); δ), where
α= σ

1−δ and q ≤ η
τ n+ 2η. Note that the first term stands for the lengths of

the geodesics joining a and y0, respectively, yq and b. �

Corollary 4.10. Let G be a tight algebraic network with respect to the
collection of subgroups H. For every δ ∈ (0,1) and γ ≥ 0,

DivGγ (n; δ)� n sup
H∈H

DivHγ (n; δ).

4.3. Thick spaces and groups. In some sense, the subsets forming a
network are building blocks and the ambient space is constructed out of them.
By iterating this construction, we obtain thick spaces, a notion introduced in
[BDM09]. The initial step in [BDM09] (thick spaces of order zero) were taken
to be unconstricted spaces. In this paper, we adapt the notion with a view to
relate the order of thickness to the order of the divergence function. To this
purpose, we introduce below strongly thick spaces by taking as initial step a
subclass of unconstricted spaces, namely, wide spaces.

Definition 4.11. A collection of metric spaces, B, is uniformly wide if:

(1) for some positive real constants λ,κ, every point in every space B ∈ B is
at distance at most κ from a bi-infinite (λ,λ)-quasi-geodesic in B;

(2) for every sequence of spaces (Bi,disti) in B, every ultrafilter ω, sequence
of scaling constants d = (di) and sequence of basepoints b = (bi) with
bi ∈Bi, the ultralimit limω(Bi, bi,

1
di
disti) does not have cut-points.

All the examples of unconstricted spaces listed in [BDM09, p. 555] are
in fact examples of uniformly wide collections of metric spaces (with “wide”
replacing “unconstricted” in Example 5).

The following uniform version of Proposition 3.7(ii) can be easily obtained
by adapting the proof of [DMS10, Lemma 3.17(ii)] and considering ultralimits
of rescaled spaces in B instead of asymptotic cones.
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Proposition 4.12. Let B be a collection of uniformly wide metric spaces.
For every 0 < δ < 1

54 and every γ ≥ 0, the function supB∈BDivBγ (n; δ) is
bounded by a linear function.

Definition 4.13 (Metric thickness and uniform thickness).

(M0) A metric space is called strongly thick of order zero if it is wide.
A family of metric spaces is uniformly strongly thick of order zero
if it is uniformly wide.

(Mn+1) Given τ ≥ 0 and n ∈ N we say that a metric space X is (τ, η)-
strongly thick of order at most n+ 1 with respect to a collection
of subsets L if X is a (τ, η)-tight network with respect to L, and
moreover:

(θ) the subsets in L endowed with the restriction of the metric on
X compose a family uniformly strongly thick of order at most
n.

Further, X is said to be (τ, η)-strongly thick of order n (with
respect to L) if it is (τ, η)-strongly thick of order at most n (with
respect to L) and for no choices of τ, η and L is it strongly thick
of order at most n− 1.

When L, τ , η are irrelevant, we say that X is strongly thick of
order (at most) n or simply that X is strongly thick.

(Muniform) A family {Xi | i ∈ I} of metric spaces is uniformly strongly thick
of order at most n+ 1 if the following hold.
(υθ1) There exist τ > 0 and η > 0 such that every Xi is a (τ, η)-

tight network with respect to a collection Li of subsets;
(υθ2)

⋃
i∈I Li is uniformly strongly thick of order at most n, where

each L ∈ Li is endowed with the induced metric.

The order of strong thickness is a quasi-isometry invariant, cf. [BDM09,
Remark 7.2].

For finitely generated groups and subgroups with word metrics a stronger
version of thickness can be defined.

Definition 4.14 (Strong algebraic thickness). Consider a finitely gener-
ated group G.

(A0) G is called strongly algebraically thick of order zero if it is wide.
(An) Given M > 0, a group G is called M -strongly algebraically thick of order

at most n+ 1 with respect to a finite collection of subgroups H, if:
– G is an M -tight algebraic network with respect to H;
– all subgroups in H are strongly algebraically thick of order at most n.

G is said to be strongly algebraically thick of order n+1 with respect to H,
when n is the smallest value for which this statement holds.
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Remark 4.15. The property of strong algebraic thickness does not depend
on the choice of the word metric on the group G. This raised the question,
asked in [BDM09, Question 7.5], whether strong algebraic thickness is invari-
ant by quasi-isometry. The following example, due to Alessandro Sisto, an-
swers this question by showing that algebraic thickness is not a quasi-isometry
invariant. Let G be the fundamental group of a closed graph manifold whose
associated graph of groups consists of one vertex and one edge. Since any ele-
ment acting hyperbolically on the Bass-Serre tree is a Morse element [DMS10],
it follows that any subgroup that contains such an element has cut-points in all
its asymptotic cones. Hence, any subgroup of G which is both quasi-convex
and wide (or even unconstricted) is contained in a conjugate of the vertex
group. As any finite set of subgroups which are each contained in a particular
conjugate of a vertex group generate an infinite index subgroup, it follows
that no collection of unconstricted subgroups can constitute a tight algebraic
network in G. Hence, G is not algebraically thick. On the other hand, all
fundamental groups of closed graph manifold are quasi-isometric [BN08] and
some of them are algebraically thick, for example, the graph manifold built by
gluing together two Seifert fibered spaces each with one boundary component.

Examples 4.16. The following are some known examples of thick and
algebraically thick spaces and groups:

(1) Mapping class groups of surfaces S with complexity ξ(S) = 3× genus +
#(boundary components) − 3 > 1 are strongly algebraically thick of or-
der 1 [BDM09], [Beh06];

(2) Aut(Fn) and Out(Fn), for n≥ 3, are strongly algebraically thick of order
at most 1 with respect to a family of quasi-flats of dimension 2 [BDM09];
Out(Fn) is strongly algebraically thick of order exactly 1 due to the exis-
tence of Morse elements proved in [AK];

(3) various Artin groups are strongly algebraically thick of order at most one
[BDM09, §10], right-angled Artin groups which are thick of order 1 are
classified in [BC];

(4) graphs of groups with infinite edge groups and whose vertex groups are
thick of order n, are thick of order at most n+ 1, by Proposition 4.4. In
particular, the fundamental group G= π1(M) of a non-geometric graph
manifold is strongly thick of order 1;

(5) for every surface S of finite type with complexity ξ(S)≥ 6, the Teichmüller
space with the Weil–Petersson metric is strongly thick of order one with
respect to a family of quasi-flats of dimension two [BDM09, §12], [Beh06].

A connection between order of thickness and order of the divergence func-
tion can be easily established using Theorem 4.9.
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Corollary 4.17. If a family B of metric spaces is uniformly strongly thick
of order at most n, then for every 0< δ < 1

54 and every γ ≥ 0,

sup
B∈B

DivBγ (x; δ)� xn+1.

In particular, if a metric space X is strongly thick of order at most n, then
for every δ and γ as above:

Divγ(x; δ)� xn+1.

Proof. The statement follows by induction on n. For n = 0, since wide
spaces have linear divergence the result holds, see Proposition 4.12. If the
result holds for order n, then it follows immediately from Theorem 4.9 that
the result holds for order n+ 1. �

Corollary 4.17 yields upper estimates for divergence functions of several
spaces and groups. In the two corollaries below, we record these estimates in
two cases that are not in the literature. The estimates are sharp (for the upper
bounds see Section 6), with one exception when the exact order of divergence
is unknown.

Corollary 4.18. If S is a compact oriented surface of genus g and with p
boundary components such that 3g+p−3≥ 4 and (g, p) �= (2,1) then the Weil–
Petersson metric on the Teichmüller space has at most quadratic divergence.
When (g, p) = (2,1) the divergence is at most cubic.

Proof. It is an immediate consequence of Corollary 4.17 combined with
[BDM09, Theorem 12.3] and [BM08, Theorem 18]. �

Quadratic lower bounds on the divergence of the Weil–Petersson metric
is implicit in the results of [Beh06], see also Section 6. The following ques-
tion remains open, which if answered negatively would provide an interesting
quasi-isometry invariant differentiating the Weil–Petersson metric on the Te-
ichmüller space of a surface of genus two with one boundary component from
the other two Teichmüller spaces of surfaces of the same complexity (i.e., the
four-punctured torus and the seven-punctured sphere).

Question 4.19. Does the Weil–Petersson metric on the Teichmüller space
of a surface of genus two with one boundary component have quadratic diver-
gence?

Corollary 4.20. For n ≥ 3 both Aut(Fn) and Out(Fn) have divergence
at most quadratic.

This bound is believed to be sharp, see Question 6.8.
A natural question raised by Theorem 4.9 and supported by all known

examples, including the two above, is the following:

Question 4.21. Is a group G strongly algebraically thick of order n if and
only if it has polynomial divergence of degree n+ 1?
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5. Higher order thickness and polynomial divergence

In this section, we construct CAT(0) groups that are strongly algebraically
thick of order n and with polynomial divergence of degree n+ 1. This illus-
trates the richness of the thickness hierarchy introduced in [BDM09] and pro-
vides another construction answering Gersten’s question [Ger94a] of whether
a CAT(0) group can have polynomial divergence of degree 3 or greater, for an
alternate construction illustrating polynomial divergence see Macura [Mac].

We construct, by induction on n, a compact locally CAT(0) space, Mn,
whose fundamental group Gn = π1(Mn) is torsion-free. In Proposition 5.1,
we show that Gn is strongly algebraically thick of order at most n. In Propo-
sition 5.2, we show that Mn contains a closed geodesic gn such that in the

universal cover M̃n the lift g̃n is Morse and has divergence � xn+1. Corol-
lary 4.17 then implies that Gn is strongly thick of order exactly n. Also,
by [BN08, Theorem 3.2], our construction of M1 can be chosen with funda-
mental group of any one of an infinite family of pairwise non-quasi-isometric
classes. In our construction, the quasi-isometry type of Mn is an invariant
of the quasi-isometry type of Mn+1: hence our construction yields infinitely
many quasi-isometry types of groups. Thus, this family of groups will yield
Theorem 1.1.

For n= 1 take M1 to be a CAT(0), non-geometric graph manifold; these
are easily constructed by taking a pair of hyperbolic surfaces each with at
least one boundary component, crossing each with a circle, and then gluing
these two 3-manifolds together along a boundary torus by flipping the base
and fiber directions. It was proven by Gersten that these manifolds have
quadratic divergence [Ger94a]. These groups are all thick of order 1 [BDM09],
algebraically thick examples are easy to produce by using Example 4.16(4) and
asking that the corresponding graph of groups is simply connected (as in the
explicit example above). The remaining properties are easily verified.

Construction. Assume now that for a fixed integer n≥ 1 we have con-
structed a compact locally CAT(0) space Mn with a closed geodesic gn,
such that the lifts g̃n in the universal cover have divergence � xn+1 (and
thus, in particular, are Morse); moreover such that the fundamental group,
Gn = π1(Mn), is thick of order at most n. We obtain Mn+1 by gluing two
isometric copies of Mn (denoted Mn and M ′

n) by identifying the two copies
of the closed geodesic gn.

To check that Mn+1 is locally CAT(0), we note that this clearly holds in
the neighborhood of each point y not on gn. If y ∈ gn, then any geodesic
triangle with endpoints in B(y, ε) is either contained in one of the two copies
of Mn or two of its edges cross gn. In either of the cases, it is easily checked
that the triangle satisfies the CAT(0) condition.
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It follows that M̃n+1 is a CAT(0) space on which the fundamental group
Gn+1 acts cocompactly. The group Gn+1 is an amalgamated product of two
copies of Gn along the cyclic group Cn generated by the element corresponding
to gn. We write this as Gn+1 =Gn ∗Cn G

′
n (where Gn and G′

n are isomorphic).
The inductive hypothesis that Gn is torsion-free implies that Gn+1 is torsion-
free. Let Tn be the simplicial tree corresponding to this splitting.

Proposition 5.1. Gn+1 is strongly algebraically thick of order at most
n+ 1.

Proof. Since each of Gn and G′
n are thick of order at most n and intersect

in an infinite cyclic group, it only remains to prove that Gn and G′
n are both

quasi-convex in Gn+1. This is equivalent to proving that in M̃n+1 the lifts

M̃n and M̃ ′
n of Mn and M ′

n, respectively are quasi-convex. Note that M̃n+1 is

obtained by gluing all the translates GnM̃n and GnM̃
′
n along geodesics Gng̃n.

In particular, the geodesics in Gng̃n separate M̃n+1.
We first prove that g̃n is totally geodesic. We prove by induction on k that

an arbitrary geodesic [x, y] joining two points x, y ∈ g̃n and crossing at most k
geodesics in Gng̃n must be contained in g̃n. Here, and in what follows, when

we say that a subset A of M̃n+1 crosses a geodesic gn in Gng̃n we mean that

A intersects at least two connected components of M̃n+1 \ gn.
For k = 0, the statement follows from the fact that g̃n is totally geodesic

both in M̃n and in M̃ ′
n and that, since the metric on M̃n+1 locally coincides

with the metric on M̃n (respectively M̃ ′
n) the length of a path contained in M̃n

(respectively M̃ ′
n) is the same in that space as in M̃n+1. Now assume that the

statement is true for all integers less than k and consider an arbitrary geodesic
[x, y] with endpoints x, y ∈ g̃n and crossing at most k geodesics in Gng̃n. Let
g′n be a geodesic crossed by [x, y] such that the corresponding edge in Tn is
at maximal distance from the edge corresponding to g̃n. It follows that there
exists [a, b] subgeodesic of [x, y] with endpoints on the geodesic g′n and not
crossing any other geodesic in Gng̃n. Then it must be entirely contained in g′n
according to the initial step for k = 0. Hence, the geodesic g′n is not crossed
and we can use the inductive hypothesis.

We have thus proved that all geodesics in Gng̃n are totally geodesic in

M̃n+1, in particular they are geodesics in M̃n+1. From this, it immediately

follows that each of the subspaces in the orbits GnM̃n and GnM̃
′
n is totally

geodesic. �
Proposition 5.2. There exists a closed geodesic gn+1 in Mn+1 such that

in the universal cover M̃n+1 the lift g̃n+1 is Morse and has divergence � xn+2.

Proof. The group Gn+1 acts on the tree Tn with quotient an edge; there-
fore there exists a loxodromic element γ ∈Gn+1. The action is acylindrical,
moreover the stabilizers of two distinct edges have trivial intersection. Indeed
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consider two edges e and he, with h ∈Gn+1. Assume that their stabilizers Cn

and hCnh
−1 intersect non-trivially. Then they intersect in some finite index

cyclic subgroup C ′
n of Cn. In particular, there exist two integers r, s such that

if γn is the generator of Cn then γr
n = hγs

nh
−1. If r �=±s then it can be easily

proved that Cn must be distorted in Gn+1, contradicting the previous lemma.
It follows that r =±s, and up to replacing h by h2 we may assume that r = s.
It follows that h is an element of infinite order in the center of C ′

n, and this
contradicts the fact that Cn (and hence C ′

n) is a Morse quasi-geodesic.
By Theorem 4.1 in [DMS10], since the cyclic subgroup C = 〈γ〉 acts acylin-

drically by isometries on a simplicial tree it is a Morse quasi-geodesic. Con-

sider a point x ∈ M̃n+1. Since the map Gn+1 → M̃n+1 defined by g �→ gx
is a quasi-isometry, it follows that Cx is a Morse quasi-geodesic. The se-
quence of geodesics [γ−nx,γnx] is contained in Nd(Cx) for a fixed d, hence
it has a subsequence converging to a bi-infinite geodesic p entirely contained
in Nd(Cx). For every k ∈ Z, γkp is also inside Nd(Cx). It follows that the
two bi-infinite geodesics p and γkp are at finite Hausdorff distance. Since the
function t �→ dist(p(t), γkp(t)) is convex positive and bounded it follows that it
is constant, hence the two geodesics are parallel. According to [BH99], the set
of bi-infinite geodesics parallel to p compose a set isometric to p×K, where
K is a convex subset. Since C is a Morse quasi-geodesic, hence p is a Morse
geodesic, it follows that K must be bounded. By possibly replacing it with
a smaller set, we may assume that p×K is invariant with respect to C. If
b denotes the barycenter of K, then p× {b} is invariant with respect to C.
Take g̃n+1 = p× {b} and gn+1 = g̃n+1/C.

The only thing which remains to be proven is that the divergence of g̃n+1

is equivalent to xn+2. Consider a shortest path, which we call c, joining
g̃n+1(−x) and g̃n+1(x) outside the ball B(g̃n+1(0), δx− κ). In particular, the
path c is at distance at least δ

3x from the geodesic g̃n+1 restricted to [− δ
3x,

δ
3x];

also, c has to cross the same separating geodesics in Gn+1g̃n.
There exists a constant m, depending only on the space Mn+1, such that

two separating geodesics crossed consecutively by g̃n+1 are at distance at
most m and such that the pair of points realizing the distance between two
such consecutive geodesics is inside Nm(g̃n+1). It follows that the number
of separating geodesics in Gn+1g̃n crossed by g̃n+1 restricted to [− δ

3x,
δ
3x] is

�2δ
3 x. Let α and α′ be the two intersection points of c with two geodesics

in Gn+1g̃n crossed consecutively, g and g′, and let c′ be the subpath of c of
endpoints α and α′. Let [a, b] be a geodesic which is the shortest path joining
g and g′. For δ′ small enough, we may assume that c′ is outside Nδ′x([a, b]).
Let β be the nearest point projection of α′ onto g. Lemma 6.1 implies that
dist(α′, β)≥ λx for some constant λ > 0 independent of the point α′.

Both the geodesics [a, b] and [β,α′] make an angle of at least π
2 with g, since

one of the endpoints of each is the nearest point projection on g of the other
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endpoint. This and the CAT(0)-property implies that [α′, β] ∪ [β,a] ∪ [a, b]
is an (L,0)-quasi-geodesic, for large enough L (depending also on λ). It
follows that [α′, β]∪ [β,a]∪ [a, b] is contained in an m-neighborhood of g′. In
particular, there exists β′ on g′ with dist(β′, β)� λx and such that [α′, β′]⊆ g′

has nearest point projection on g at distance O(1) from β. Also β is at
distance O(1) from a, otherwise we would obtain again that some finite index
subgroup of C has a non-trivial element h /∈ C in its center. We choose a
point μ on g between α and β, at distance εx from β and a ball B(μ, ε

10x)⊂
Nδ′x([a, b]) with ε small enough. The ball B(μ, ε

10x) does not intersect the path

c′∪ [α′, β′]∪ [β′, β]. This and the fact that g has divergence � xn+1 implies that
the length of c′ � xn+1. Note, to see that the divergence of g (and g̃n) is still

� xn+1 in M̃n+1, one applies the same argument as above to the sequence of
geodesics from Gn+1g̃n which are crossed by c and which intersect B(g(0), δ2x).

We conclude that the length of the path c� xn+2. �

6. Morse quasi-geodesics and divergence

In this section, we improve the result in Proposition 3.12 and generalize
it to the utmost in the CAT(0) setting in Theorem 6.6. We also show that
the quadratic lower bound on divergence occurs for many concrete examples
of Morse elements in groups. This together with the estimate on divergence
coming from the structure of thick metric space yields a divergence precisely
quadratic for several groups and spaces.

We shall apply the following lemma.

Lemma 6.1. Let X be a compact metric space which is locally CAT(0).
Consider two periodic geodesics g and g′ in X that do not bound a flat strip,
and lifts g̃ and g̃′ of these two geodesics such that dist(g̃(0), g̃′(0))≤ κ. Then
there exists ε > 0 and x0 depending on κ such that

dist
(
g̃(x), g̃′(x)

)
≥ εx for every x≥ x0.

This result can be proved using an argument that is now standard; see, for
instance, the proof of [KL98, Proposition 3.3].

Lemma 6.2. Let q be a Morse quasi-geodesic in a metric space (X,dist).
Then for every λ ∈ (0,1) and for every M > 0 there exist D> 0 such that the
following holds. If c is a sub-quasi-geodesic of q, x and y are points in X ,
x′ and y′ are points on c minimizing the distance to x, respectively y, and
dist(x′, y′)≥D while dist(x,x′) + dist(y′, y)≤M dist(x′, y′) then dist(x, y)≥
λ[dist(x,x′) + dist(x′, y′) + dist(y′, y)].

Proof. We produce a constant D which given X , λ, and M , will work
for any other Morse quasi-geodesic with the same associated Morse constants
as q.

Assume for a contradiction that there exists λ ∈ (0,1) and M > 0 such
that for every Dn > 0 there exist cn sub-quasi-geodesic of q, xn, yn ∈ X
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and x′
n, y

′
n points on cn minimizing the distance to xn, respectively yn

such that dist(x′
n, y

′
n)≥Dn, dist(xn, x

′
n) + dist(y′n, yn)≤M dist(x′

n, y
′
n) while

dist(xn, yn)≤ λ[dist(xn, x
′
n) + dist(x′

n, y
′
n) + dist(y′n, yn)].

We denote dist(xn, x
′
n) + dist(x′

n, y
′
n) + dist(y′n, yn) by δn. Note that by

hypothesis

dist
(
x′
n, y

′
n

)
≤ δn ≤ (M + 1)dist

(
x′
n, y

′
n

)
.

Consider Coneω(X, (xn); (δn)). Since q is a Morse quasi-geodesic qω =
limω(q) is a bi-Lipschitz path in a transversal tree, cf. [DS05, Proposi-
tion 3.24]. Moreover, cω = limω(cn) is a subpath of qω . Denote x′

ω = limω(x
′
n),

y′ω = limω(y
′
n), xω = limω(xn), and yω = limω(yn) the ultralimits of the points

considered above. Any geodesics [xω, x
′
ω] and [yω, y

′
ω] intersects cω only in

an endpoint. Let [x′′
ω, x

′
ω] be the intersection of the geodesic [xω, x

′
ω] with

the transversal tree containing qω ; let [y
′′
ω, y

′
ω] be defined likewise. The union

[x′′
ω, x

′
ω] ∪ [x′

ω, y
′
ω] ∪ [y′ω, y

′′
ω] is a geodesic in a transversal tree, since it is a

concatenation of three arcs such that [x′
ω, y

′
ω] does not reduce to a point, and

it intersects its predecessor in x′
ω and its successor in y′ω .

This, the fact that transversal trees can always be added to the list of pieces
in a tree-graded space [DS05, Remark 2.27], and Lemma 2.28 in [DS05] imply
that [xω, x

′
ω] ∪ [x′

ω, y
′
ω] ∪ [y′ω, yω] is a geodesic. In particular, dist(xn, yn) =

δn + o(δn). This contradicts the fact that dist(xn, yn)≤ λδn. �

Lemma 6.3. Let q be a Morse quasi-geodesic in a CAT(0) metric space
(X,dist). Then for every λ ∈ (0,1) there exists D> 0 such that the following
holds. If c is a sub-quasi-geodesic of q, x and y are points in X , x′ and y′ are
points on c minimizing the distance to x, respectively y, and dist(x′, y′)≥D
then dist(x, y)≥ λ[dist(x,x′) + dist(x′, y′) + dist(y′, y)].

Proof. Again, we produce a constant D which given X , λ, will work for any
other Morse quasi-geodesic with the same associated Morse constants as q.

We argue by contradiction and assume that for some λ there exist sequences
of Morse quasi-geodesics qn, with the same Morse constants as q, as well as
sub-quasi-geodesics cn ⊂ qn and pairs of points xn, yn such that for some
points x′

n and y′n on cn minimizing the distance to xn, respectively yn we
have that dist(x′

n, y
′
n)≥ n while dist(xn, yn)≤ λ[dist(xn, x

′
n) + dist(x′

n, y
′
n) +

dist(y′n, yn)]. In what follows, we fix some geodesics [xn, x
′
n] and [yn, y

′
n], and

for every un ∈ [xn, x
′
n] and vn ∈ [yn, y

′
n] we introduce the notation

δ(un, vn) := dist
(
un, x

′
n

)
+dist

(
x′
n, y

′
n

)
+dist

(
y′n, vn

)
.

We will break the argument into two cases.

Case (i): Assume limω
δ(xn,yn)

dist(x′
n,y

′
n)

<∞.

Then in Coneω(X; (x′
n), (dist(x

′
n, y

′
n))), the limit cω = limω cn is a subarc in

the transversal line qω = limω qn containing the two points x′
ω and y′ω distance

1 apart, which points are the nearest points in cω to the points xω and yω .
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With an argument as in the proof of the previous lemma, we obtain
that [xω, x

′
ω] ∪ [x′

ω, y
′
ω] ∪ [y′ω, yω] is a geodesic, in particular dist(xn, yn) =

δ(xn, yn) + o(dist(x′
n, y

′
n)). This contradicts the fact that dist(xn, yn) ≤

λδ(xn, yn).

Case (ii): Assume limω
δ(xn,yn)

dist(x′
n,y

′
n)

=∞, or equivalently that

lim
ω

dist(xn, x
′
n) + dist(yn, y

′
n)

dist(x′
n, y

′
n)

=∞.

We consider the parametrization proportional to the arc-length gx : [0,1]→
[xn, x

′
n] sending 0 to x′

n and 1 to xn. Similarly, define gy : [0,1]→ [yn, y
′
n].

Fix λ′ ∈ (λ,1) and for every n consider the maximal tn ∈ [0,1] such that

dist
(
gx(tn),gy(tn)

)
≥ λ′δ

(
gx(tn),gy(tn)

)
.

Clearly, tn < 1 and from the continuity of the two sides of the inequality
above and the maximality of tn we deduce that

(iii) dist
(
gx(tn),gy(tn)

)
= λ′δ

(
gx(tn),gy(tn)

)
.

Using the convexity of the distance, we have:

λ′δ
(
gx(tn),gy(tn)

)
= dist

(
gx(tn),gy(tn)

)
≤ (1− tn)dist

(
x′
n, y

′
n

)
+ tn dist(xn, yn)

≤ (1− tn)dist
(
x′
n, y

′
n

)
+ tnλδ(xn, yn)

≤ dist
(
x′
n, y

′
n

)
+ λδ

(
gx(tn),gy(tn)

)
.

Whence it follows that(
λ′ − λ

)
δ
(
gx(tn),gy(tn)

)
≤ dist

(
x′
n, y

′
n

)
.

In particular limω
δ(gx(tn),gy(tn))

dist(x′
n,y

′
n)

≤ 1
λ′−λ <∞, whence

lim
ω

dist(gx(tn), x
′
n) + dist(y′n,gy(tn))

dist(x′
n, y

′
n)

<∞.

If the above limit is zero, then since

dist
(
x′
n, y

′
n

)
−
[
dist

(
gx(tn), x

′
n

)
+dist

(
y′n,gy(tn)

)]
≤ dist

(
gx(tn),gy(tn)

)
≤ δ

(
gx(tn),gy(tn)

)
it follows that limω

δ(gx(tn),gy(tn))
dist(x′

n,y
′
n)

= limω
dist(gx(tn),gy(tn))

dist(x′
n,y

′
n)

= 1.

Thus if in equation (iii), we divide by dist(x′
n, y

′
n) and take the ω-limits we

obtain 1 = λ′, a contradiction.
We conclude that

0< lim
ω

dist(gx(tn), x
′
n) + dist(y′n,gy(tn))

dist(x′
n, y

′
n)

<∞.

In Coneω(X; (x′
n), (dist(x

′
n, y

′
n))), we again have that cω = limω cn is a sub-

arc in the transversal line qω = limω qn containing the two points x′
ω and y′ω
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which are distance 1 apart. The limits limω[xn, x
′
n] and limω[yn, y

′
n] are ei-

ther two rays intersecting cω only in their origin or only one ray like this and
one geodesic segment (possibly trivial) intersecting cω only in one point. The
limits of the sequences of points gx(tn) and gy(tn) are respectively on each
of the two rays (or on the ray and the segment), in particular it follows that
dist(gx(tn),gy(tn)) = δ(gx(tn),gy(tn)) + o(dist(x′

n, y
′
n)).

This and equality (iii) yield a contradiction. �

Lemma 6.4. Let q be a Morse quasi-geodesic in a CAT(0) metric space
(X,dist). There exists a constant D0 such that if c is a sub-quasi-geodesic of
q and two points x, y ∈X are such that both dist(x, c) and dist(y, c) are strictly
larger than dist(x, y) and x′ and y′ are points on c minimizing the distance
to x, respectively y, then dist(x′, y′)≤D0.

Proof. According to Lemma 6.2 there exists D0 such that if c is a sub-quasi-
geodesic of q, x, y ∈X and x′ and y′ are points on c minimizing the distance
to x, respectively, y, dist(x, y)< 1

2 [dist(x,x
′)+dist(x′, y′)+dist(y′, y)] implies

dist(x′, y′)≤D0. �

Remark 6.5. When the space (X,dist) is a CAT(0) space, in Lemmas 6.2,
6.3 and 6.4, the output constants only depend on the input constants and on
the Morse parameters, as introduced in Definition 3.10.

Indeed, in the proofs of the three lemmas the argument is always by contra-
diction and the use of the geometry of asymptotic cones and their transversal
trees. If the given Morse quasi-geodesic is replaced by a sequence of Morse
quasi-geodesics with the same Morse parameters, then in the asymptotic cone
the limit is still a transversal arc, and the argument works.

Theorem 6.6. Let q be a Morse quasi-geodesic in a CAT(0) metric space
(X,dist). Then the divergence Divq ≥ (κx − κ)2, where κ is a constant de-
pending only on the constants δ and γ used to define the divergence and on
the Morse parameters.

Proof. Let a = q(−x) and b = q(x) and let p be a path joining a and b
outside B(q(0), δx− γ). Let c be the maximal subpath of q with endpoints
contained in B(q(0), δ2x−3γ). Then for γ large enough we may assume that c is

entirely contained in B(q(0), δ2x−2γ), as c is at finite Hausdorff distance from
the geodesic joining its endpoints. All the points in p are at distance at least
δ
2x+γ from c. Let y0 = a, y1, . . . , yn = b be consecutive points on p dividing it

into subarcs of length δ
2x (except the last who might be shorter). For each of

the points yi, let y
′
i ∈ c be a point minimizing the distance to yi. Lemma 6.4

implies that dist(y′i, y
′
i+1) ≤ D0 for every i. For some ε > 0 and for all x

sufficiently large, we have dist(y′0, y
′
n) ≥ εx. Indeed if we would assume the

contrary then there would exist a sequence of positive numbers xn diverging
to infinity such that q(−xn) and q(xn) have their respective nearest points
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un and vn on cn, maximal subpath of q with endpoints in B(q(0), δ2xn − 3γ),

at distance dist(un, vn) at most 1
nxn. Then in Coneω(X,q(0), (xn)) we obtain

two points on the transversal line qω separated by B(qω(0),
δ
2 ) but whose

nearest point projections onto qω ∩B(qω(0),
δ
2 ) coincide. This is impossible.

It follows that εx ≤ nD0, whence n ≥ ε
D0

x. It follows that the length of

p is larger than (n − 1) δ2x ≥ ( ε
D0

x − 1) δ2x. In other words, the length of

p≥ (κx− κ)2.
The fact that the constant κ depends, besides δ and γ, only on the Morse

parameters follows as in Remark 6.5. �

Corollary 6.7. Assume that a finitely generated group G acts on a
CAT(0)-space X such that one (every) orbit map G→X , g �→ gx, is a quasi-
isometric embedding and its image contains a Morse quasi-geodesic. Then the
divergence DivG � x2.

A phenomenon similar to that in Lemma 6.4 may occur in general in a
metric space with a D-contracting (or simply contracting) quasi-geodesic, that
is a quasi-geodesic q such that for every ball B disjoint from q the points in
q nearest to points in B compose a set of diameter D. It is easy to show that
such a quasi-geodesic is Morse and has divergence Divq � x2.

Known examples of contracting quasi-geodesics include periodic geodesics
in a graph manifold, which non-trivially intersect more than two Seifert-
fibered components [KL98]; orbits of pseudo-Anosovs in the Teichmüller
space endowed either with the Teichmüller metric [Min96] or with the Weil–
Petersson metric [Beh06]; cyclic subgroups generated by pseudo-Anosov ele-
ments in mapping class groups [Beh06].

The divergence is quadratic in all of the above examples (except for the
low complexity cases of the mapping class group and Teichmüller space where
the divergence is larger). The above cited papers proved the upper bounds
except in the case of the Weil–Petersson metric, which depends on [BDM09]
and [BM08] and is still open in the case of genus two with one boundary
component (see Question 4.19);1 and for the Teichmüller metric, where the
upper bound was established in [DR09].

We also note, that although the presence of Morse quasi-geodesics in
Aut(Fn) and Out(Fn) has been established [AK], the following remains open:

Question 6.8. In Out(Fn) for n≥ 3

• are the cyclic subgroups generated by fully irreducible elements contracting
quasi-geodesics?

• is the divergence quadratic in the groups Out(Fn) and Aut(Fn)?

1 Since this paper was first circulated there has been progress on the WP metric on
Teichmüller space of the genus two surface with one puncture in that it is now know to

have super-quadratic divergence [Sul].
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To sum up the relationship between divergence and existence of cut-points
in asymptotic cones, the following are known:

• if all asymptotic cones are without cut-points then the divergence is linear;
• if we assume that at least one asymptotic cone is without cut-points then
examples were constructed by Olshanskii–Osin–Sapir of groups G with di-
vergence satisfying DivG(n)≤ Cn for a constant C for all n in an infinite

subset of N and with DivG � f(n) for any f such that f(n)
n non-decreasing;

in particular DivG may be as close to linear as possible; but it is superlinear
if one asymptotic cone has cut-points;

• if the space is CAT(0) and all asymptotic cones have cut-points coming
from the limit set of a Morse quasi-geodesic then the divergence is at least
quadratic.

This raises the following natural question.

Question 6.9. If a CAT(0) (quasi-homogeneous) metric space has cut-
points in every asymptotic cone, must the divergence of that metric space be
at least quadratic?

An affirmative answer to this question would be an immediately corollary
of an affirmative answer to the following (which we expect would be more
difficult to establish):

Question 6.10. Does the existence of cut-points in every asymptotic cone
of a CAT(0) quasi-homogeneous metric space imply the existence of a Morse
quasi-geodesic?

7. Morse elements and length of the shortest conjugator

It is known that given a group G acting properly discontinuously and co-
compactly on a CAT(0)-space, and two elements u, v that are conjugate in
G there exists K > 0 depending on the choice of word metric in G such that
v = gug−1 for some g with |g| ≤ exp(K(|u|+ |v|)). As shown below, a simi-
lar estimate on the length of the shortest conjugator holds in a more general
context of groups with some non-positively curved or hyperbolic geometry
associated to them.

7.1. The CAT(0) set-up. Through this section X will be a locally compact
CAT(0) space. A standard CAT(0) argument yields a bound on the length
of the shortest conjugator of two axial Morse isometries u and v of a locally
compact CAT(0) space in terms of two parameters of the geometry of the
action of both u and v. We define these parameters below.

(1) Recall that given an axial isometry u of a CAT(0) space the set

Min(u) =
{
x ∈X | dist(x,ux) = inf

y∈X
dist(y,uy)

}
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is isometric to a set C ×R, where u acts as a translation with translation
length tu along each fiber {c}×R and C is a closed convex subset [BH99,
Theorem 6.8, p. 231]. When the axial isometry is Morse, the set C is
bounded, and we denote by Du the diameter of the set C × [0, tu].

(2) There exists θu > 0 such that if x is a point outside N1(Min(u)) and x′ is
its nearest point projection onto Min(u) then

(iv) dist(x,ux)≥ dist
(
x′, ux′)+ θudist

(
x,x′).

Indeed assume that on the contrary we have points xn outside
N1(Min(u)) with projections x′

n such that dist(xn, uxn)≤ dist(x′
n, ux

′
n)+

1
n dist(xn, x

′
n). By the convexity of the distance, we may assume that all

xn are at distance 1 from Min(u) and by eventually applying powers of u
we may assume that all x′

n are in the compact set C × [0, tu]. Since X is
locally compact the quadrangles of vertices xn, x

′
n, ux

′
n, uxn converge on

a subsequence in the Hausdorff distance to a flat quadrangle a, a′, ua′, ua
intersecting Min(u) in the edge [a′, ua′] and such that for every z ∈ [a, a′],
dist(z,uz) = tu. This contradicts the definition of Min(u).

Note that both constants Du and θu only depend on the conjugacy class
of u, therefore we occasionally denote them as D[u] and θ[u].

Proposition 7.1. Let X be a locally compact CAT(0) space, let G be a
group of isometries of X and let x0 be a point in X .

Let u be a Morse axial isometry of X . For every element v ∈G conjugate
to u, there exists an element g ∈G such that v = gug−1 and such that

dist(x0, gx0)≤
1

θ[u]

[
dist(x0, ux0) + dist(x0, vx0)

]
+D[u] + 2,

where θ[u] and D[u] are the constants dependent on the conjugacy class of u
previously defined.

In particular, if the map g �→ gx0 is a quasi-isometric embedding of G into
X then distG(1, g)≤A,B dist(1, u)+dist(1, v), where the constants A,B depend
on the Morse parameters of the above isometries, on θ[u] and on D[u].

Proof. Let y0 be the nearest point projection of x0 onto Min(u) and z0 the
nearest point projection of x0 onto Min(v).

Let g ∈G be such that v = gug−1. Then Min(v) = gMin(u), in particular
gy0 ∈Min(v). By eventually replacing g with vkg for an appropriate k ∈ Z one
may assume that both z0 and gy0 are in the same isometric copy of C× [0, tu],
which is a fundamental domain of the action of v on Min(v), hence within
distance at most Du, with the notation introduced previously.

The distance dist(x0, gx0) is at most dist(x0, z0)+Du+dist(y0, x0). On the
other hand either dist(x0, y0)≤ 1 or dist(x0, y0)≤ 1

θu
dist(x0, ux0). Similarly,
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either dist(x0, z0)≤ 1 or dist(x0, z0)≤ 1
θu

dist(x0, vx0). Hence,

dist(x0, gx0)≤
1

θu

[
dist(x0, ux0) + dist(x0, vx0)

]
+Du + 2. �

Corollary 7.2. Let X be the universal cover of a compact manifold of
non-positive curvature M , and let u, v be two conjugate rank-one elements in
G= π1(M). Then there exists g ∈G such that distG(1, g)≤A,B distG(1, u) +
distG(1, v), where the constants A is the smallest constant such that both u
and v are A-contractions and B depends on A and the translation length of u.

Proof. Rank one elements such as u, v are A-contractions for some A (see
[BF] and references therein). If in inequality (iv) the distance dist(x′, ux′)
(and hence the translation length of u, which is equal to that of v) is larger
than A, then by [BF, Lemma 3.5] we have that θu = 1 in (iv). By replacing u, v
with u, v raised to a sufficiently large power, which we call B, we can ensure
their translation lengths are larger than A and hence the required bound on
distG(1, g) is obtained. �

7.2. Conjugators in groups acting acylindrically on trees. In this
subsection, we first prove a general result on the shortest length of conjugators
of loxodromic elements in groups acting acylindrically on simplicial trees.
We then apply the result to obtain sharp estimates of shortest lengths of
conjugators in fundamental groups of 3-manifolds.

In what follows, we consider a finitely generated group G acting cocom-
pactly and l-acylindrically on a simplicial tree T .

Without loss of generality, by passing to a subtree if necessary, we may
assume that G acts without inversions of edges.

We fix an arbitrary left-invariant word metric dist on G corresponding to
a finite generating set S with S−1 = S and 1 /∈ S. We also fix a fundamental
domain for the action of G on T , in the shape of a finite sub-tree D of T
(possibly without some endpoints) [Ser80, §3.1].

Lemma 7.3. For every R≥ 0, there exists a finite number f(R) such that
the following holds. For every vertex o in the fundamental domain D with the
corresponding map πo : G→ T,πo(g) = g · o, and every pair of vertices a, b in
the orbit G · o with dist(a, b)≥ l, the set Va,b of elements g ∈ π−1

o (a) such that
dist(g,π−1

o (b))≤R is either empty or has diameter at most f(R).

Proof. Without loss of generality, we may assume that a = o, hence
π−1
o (a) = stab(o), and that there exists g in stab(o) at distance at most R

from π−1
o (b). Without loss of generality we may also assume that g = 1. The

set π−1
o (b) can then be written as h stab(o), where h ∈B(1,R), h · o= b.

Every g ∈ Vo,b is then in stab(o) and in NR(h stab(o)). On the other
hand, NR(h stab(o)) ⊆ N2R(h stab(o)h

−1) = N2R(stab(b)). By [MSW05,
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Lemma 2.2], the intersection stab(o)∩N2R(stab(b)) is at finite Hausdorff dis-
tance from stab(o) ∩ stab(b), hence it is of finite diameter, according to the
hypothesis of l-acylindricity. The vertex b is in the orbit of B(1,R), hence in
a finite set, therefore the diameter of stab(o)∩N2R(stab(b)) has a maximum,
f(R). �

Theorem 7.4. Let G be a group acting cocompactly and l-acylindrically
on a simplicial tree T . There exists a constant K such that if two loxodromic
elements u, v are conjugate in G then there exists g conjugating u, v such that

|g| ≤ f
(
l|u|+ l|v|+K

)
+ l|u|+ l|v|+ 2K,

where the function f is the one defined in Lemma 7.3.

Proof. Let S be the fixed finite generating set defining the word metric
on G. For every s ∈ S and every vertex o ∈ D consider a sequence g0 =
1, g1, g2, . . . , gm−1, gm = s in G such that o, g1 · o, g2 · o, . . . , gm−1 · o, s · o are the
consecutive intersections of [o, s · o] with G · o. We denote by V (s, o) the set
of elements {g1, . . . , gm}.

Let u, v be two loxodromic elements in G such that v = gug−1 for some
g ∈G. The element u has a translation axis Au in T . Likewise v has an axis
Av ⊂ T and gAu =Av . Our goal is to control |g|S in terms of |u|S + |v|S .

If D intersects Au, then take a vertex o in the intersection. If not, let p be
the nearest point to D on Au and consider the unique vertex o ∈D and an
element h ∈G such that p= ho.

For each g ∈G we write π(g) to denote g · o. Also for every geodesic [a, b]
in the Cayley graph of G, with consecutive vertices g1 = a, g2, . . . , gm = b we
denote by π[a, b] the path in the tree T composed by concatenation of the
consecutive geodesics [g1o, g2o], . . . , [gm−1o, gmo].

Consider the geodesic [1, um], for some fixed large enough power m. Its
image by π covers the geodesic [o,umo]. The latter geodesic contains the two
points ho and umho. Then [go, gumo] intersects Av in [gho, gumho], which
can also be written as [ko, vmko] for k = gh.

Likewise, the image under π of the geodesic [1, vm] contains the geodesic
[o, vmo] in T , and the latter geodesic contains a sub-geodesic of Av of the
form [ro, vmro], with r = viko for some i ∈ Z. By possibly post-composing g
with vi, we may assume that ko and ro coincide. If m ≥ l, then [ro, vmro]
is of length at least l. This implies that the geodesic [1, vm] in the Cayley
graph contains two pairs of consecutive vertices v1, v

′
1 and v2, v

′
2 such that

ro ∈ [v1o, v
′
1o] and vmro ∈ [v2o, v

′
2o].

Likewise [1, um] contains two pairs of consecutive vertices u1, u
′
1 and

u2, u
′
2 such that ho ∈ [u1o,u

′
1o] and umho ∈ [u2o,u

′
2o]. We thus have that

ro= v1x1o= gu1x
′
1o, where x1 ∈ V (v−1

1 v′1, o) and x′
1 ∈ V (u−1

1 u′
1, o); and that

vmro= v2x2o= gu2x
′
2o, where x2 ∈ V (v−1

2 v′2, o) and x′
2 ∈ V (u−1

2 u′
2, o).
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We denote by M the maximum of all the |x|S for all x in all sets of the
form V (o, s) for a vertex o ∈D and s ∈ S. The above implies that both v1x1

and gu1x
′
1 are in π−1(ro) and at distance at most m|u| + m|v| + M from

π−1(vmro). Lemma 7.3 implies that v1 and gu1 are within distance at most
f(m|u|+m|v|+M) + 2M . It follows that

|g| ≤m|v|+ f
(
m|u|+m|v|+M

)
+m|u|+ 2M.

Since the only requirement on m was that m≥ l, we may take m= l. �

It was established in [Pre06] that 3-manifolds have a solvable conjugacy
problem, but no bounds on the complexity were provided. The general results
we obtain above imply, in particular, a linear control of the shortest conjugator
for Morse geodesics in (non-geometric) 3-manifolds. This allows us to obtain
the following.

Corollary 7.5. Let M be a non-geometric prime 3-dimensional manifold
and let G be its fundamental group.

For every word metric on G there exists a constant K such that if two
Morse elements u, v are conjugate in G then there exist g conjugating u, v
such that

|g| ≤K
(
|u|+ |v|

)
.

Proof. Since M is non-geometric, it can be cut along tori and Klein bottles
into finitely many geometric components that are either Seifert or hyperbolic.
We will apply Theorem 7.4 by considering the Bass-Serre tree T associated to
the geometric splitting of M described before and recalling that two elements
in π1(M) are Morse if and only if they are either loxodromic elements for the
action on T or both contained in a hyperbolic component of M/π1(M).

The following proposition of Kapovich–Leeb, combined with the fact that
for every non-geometric prime 3-dimensional manifold M there exists a non-
positively curved such manifold N , and a bi-Lipschitz homeomorphism be-

tween the universal covers M̃ and Ñ preserving the components [KL98, The-
orem 1.1] implies that for l ≥ 3 the function f(R) given by Lemma 7.3 is at
most λR+ κ.

Proposition 7.6 ([KL97]). Let M be a non-geometric prime 3-dimensional
manifold admitting a non-positively curved Riemannian metric. There exists
a constant κ > 0 dependent only on M such that given two geometric com-

ponents C,C ′ of M̃ separated by two flats, the nearest point projection of C ′

onto C has diameter at most κ.

This and Theorem 7.4 settles the case when both u and v are loxodromic
elements.

Assume now that u and v both stabilize hyperbolic components. Assume

that we have fixed a basepoint x0 in the universal cover M̃ . The map g �→ gx0
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is a quasi-isometry with fixed constants depending only on the given word

metric on G. Assume that u stabilizes the hyperbolic component H ⊂ M̃
and that it acts on this component as a loxodromic element. We see H
as a subset of H3. Let Au be the geodesic axis in H3 on which u acts by
translation, denote the translation length by t. Note that every segment of
length t on Au intersects H . We denote by Sat(Au) the set obtained from Au

by replacing its intersections with the open horoballs that compose H3 \H ,
with the corresponding boundary horospheres.

The element v = gug−1 stabilizes a hyperbolic component H ′ = gH ⊂ M̃ ,
and there exists a geodesic axis Av = gAu in H3 ⊃H ′ such that v acts on this
axis by translation with translation length t. We define Sat(Av) similarly.

Let x′
0 be the nearest point projection of x0 on H , let y′0 be the nearest

point projection of x′
0 onto Au and let y0 ∈ Sat(Au) be either the intersection

point of [x′
0, y

′
0] with a boundary horosphere if y′0 is in H3 \H , or equal to

y′0 if this latter point is in H . Note that ux′
0 will be on a different boundary

horosphere than x′
0, and the same for uy0 and y0, if y0 is on a boundary

horosphere. According to [DS05, Lemma 4.26], the geodesic gy0,uy0 joining
y0 to uy0 is contained in a δ-neighborhood of Sat(Au), moreover due to the
fact that every segment of length t on Au intersects H , it follows that gy0,uy0

intersects the δ-neighborhood of Au.

Due to the fact that the metric space M̃ is hyperbolic relative to the

connected components of M̃ \ Interior(H), it follows that the concatena-
tion of the geodesics [x0, x

′
0], [x

′
0, y0],gy0,uy0 , [uy0, ux

′
0], [ux

′
0, ux0] composes an

(L,C)-quasi-geodesic, with L ≥ 1 and C ≥ 0 depending only on M [DS05,
Lemma 8.12]. We denote this quasi-geodesic qx0,ux0 . We construct in a similar
manner an (L,C)-quasi-geodesic qx0,vx0 joining x0 and vx0 and containing in
its δ-neighborhood a sub-segment of the axis Av . Note that the (L,C)-quasi-
geodesic gqx0,ux0 joining gx0, gux0 contains in its δ-neighborhood another
sub-segment of Av . By pre-composing g with a power of v and possibly re-
placing u, v by large enough powers, we may assume that the two sub-segments
of Av mentioned above are the same. In particular the δ-neighborhoods of
qx0,vx0 and of gqx0,ux0 intersect. It follows that

dist(x0, gx0)� dist(x0, vx0) + dist(x0, ux0). �
Corollary 7.7. Let M be a 3-dimensional prime manifold, and let G be

its fundamental group.
For every word metric on G there exists a constant K such that if two

elements u, v are conjugate in G then there exist g conjugating u, v such that

|g| ≤K
(
|u|+ |v|

)2
.

Proof. Assume first that M is non-geometric, hence decomposable by tori
and Klein bottles into hyperbolic and Seifert components. The only case not
covered by Corollary 7.5 is when both u and v stabilize a Seifert component,
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that is, are contained in two groups which are virtually Z× Fn. In this case
one can easily find a conjugator of quadratic length.

When M is a geometric nilmanifold, that is, when π1(M) is 2-step nilpo-
tent the quadratic upper bound for a conjugator length is proved in [JOR10,
Proposition 2.1.1].

When M is a geometric solmanifold, the linear upper bound for a conju-
gator length is proved in [Sal].

The other geometric cases are easy. �

7.3. Conjugators in mapping class groups. In what follows S denotes
a compact oriented surface of genus g and with p boundary components and
ξ(S) = 3g+ p− 3 denotes the complexity of the surface.

We prove linear control of the shortest conjugator of infinite order pure
elements in the mapping class group by providing a new proof of the following
result which was established by Masur–Minsky [MM00, Theorem 7.2] in the
pseudo-Anosov case and by J. Tao [Tao11, Theorem B] in the reducible case.

Theorem 7.8. There exists a constant C depending only on the surface
S and the fixed generating set of MCG(S) such that for every two conjugate
pure elements of infinite order u and v there exists g such that v = gug−1 and

|g| ≤C
[
|u|+ |v|

]
.

It is worth noting that the mapping class group is not CAT(0), cf. [KL96]
or [BH99]. Nevertheless, there exists a natural analogue of the inequality (iv)
from the CAT(0) setting which holds here; this will be explained further in
the proof below.

Background. We will use a quasi-isometric model of a mapping class group,
the marking complex, M(S), defined as follows. Its vertices, called markings,
consist of the following pair of data:

• base curves: a multicurve consisting of ξ(S) components, that is, a maximal
simplex in C(S). This collection is denoted base(μ).

• transversal curves: to each curve γ ∈ base(μ) is associated an essen-
tial curve. Letting T denote the complexity 1 component of S \⋃

α∈base(μ),α �=γ α, the transversal curve to γ is a curve t(γ) ∈ C(T ) with

distC(T )(γ, t(γ)) = 1.

Two vertices μ, ν in the marking complex M(S) are connected by an edge
if either of the two conditions hold:

(1) Twists: μ and ν differ by a Dehn twist along one of the base curves:
base(μ) = base(ν) and all their transversal curves agree except for tμ(γ),
obtained from tν(γ) by twisting once about the curve γ.

(2) Flips: The base curves and transversal curves of μ and ν agree except for
one pair (γ, t(γ)) ∈ μ for which the corresponding pair in ν consists of the
same pair but with the roles of base and transversal reversed.
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Note that after performing one flip the new base curve may now intersect
several other transversal curves. Nevertheless by [MM00, Lemma 2.4], there
is a finite set of natural ways to resolve this issue which, in turn, yields a uni-
formly bounded on the diameter of possible markings which can be obtained
by flipping the pair (γ, t(γ)) ∈ μ; an edge connects each of these possible flips
to μ.

Theorem 7.9 ([MM00]). The graph M(S) is locally finite and the mapping
class group acts cocompactly and properly discontinuously on it. In particular,
the orbit map yields a quasi-isometry from MCG(S) to M(S).

Given a simplex Δ in the curve complex C(S), we define Q(Δ) to be the
set of elements of M(S) whose bases contain Δ. We recall that there is a
coarsely defined closest point projection map from M(S) to Q(Δ) which is
coarsely Lipschitz.

Proof of Theorem 7.8. We assume that S is a surface with ξ(S) > 1, other-
wise the mapping class group is hyperbolic and the result is standard. We
make use of two cocompact actions of MCG(S): the above mentioned prop-
erly discontinuous action on the marking complex M(S) and an action far
from properly discontinuous on the curve complex C(S). Neither of the two
complexes C(S) nor M(S) are CAT(0).

We begin with the case of two conjugate pseudo-Anosov elements. Our
goal is to find a natural analogue of the inequality (iv) from the CAT(0)
setting. The difficulty is that a pseudo-Anosov element is loxodromic with a
translation axis in C(S), which makes it hard to find an appropriate definition
of a projection of an element in M(S) to it.

Let k be a pseudo-Anosov. According to [Bow08, Theorem 1.4], there exists
m=m(S) such that km preserves a bi-infinite geodesic gk in C(S). For every

curve γ, denote by γ′ a closest point to it on gk. Let k̂ = km. A standard
hyperbolic geometry argument implies that for every i≥ 1

(v) distC(S)

(
γ, k̂iγ

)
≥ distC(S)

(
γ′, k̂iγ′)+O(1)≥ i+O(1).

Let μ be an arbitrary element in M(S) and let γ be a closest point to

πC(S)(μ) on gk. A hierarchy path h joining μ and k̂μ contains two points ν, ν′

such that:

• the subpath with endpoints μ, ν is at C(S)-distance O(1) from any C(S)-
geodesic joining πC(S)(μ) and γ;

• the subpath with endpoints k̂μ, ν′ is at C(S)-distance O(1) from any C(S)-
geodesic joining πC(S)(k̂μ) and k̂γ;

• if the translation length of k̂ along gk is large enough then the subpath with
endpoints ν, ν′ is at C(S)-distance O(1) from gk;

• distC(S)(ν
′, k̂ν) is O(1).



DIVERGENCE, THICK GROUPS, AND SHORT CONJUGATORS 975

Note that by equation (v) there exists an integer N =N(S) such that for
every pseudo-Anosov k the power kN preserves a bi-infinite geodesic gk in
C(S), and every subpath with endpoints ν, ν′ defined as above is at C(S)-
distance O(1) from gk.

The group MCG(S) acts co-compactly on M(S), therefore there exists
a compact subset K of M(S) such that MCG(S)K = M(S). We pick a
basepoint μ0 in K. The map MCG(S)→M(S), g �→ gμ0 is a quasi-isometry,
by Theorem 7.9.

Let u and v be an arbitrary pair of pseudo-Anosovs for which there exists
g ∈MCG(S) such that v = gug−1. Our goal is to prove that for an appropriate
choice of g, dist(μ0, gμ0) is controlled by a linear function of dist(μ0, uμ0) +
dist(μ0, vμ0).

If gu and gv are axes in C(S) defined as above, then gv = ggu. Up to
replacing u and v by their N th powers, we may assume that both preserve
their respective axes gu and gv , and every subpath with endpoints ν, ν′ defined
as above is at C(S)-distance O(1) from gu, respectively gv .

Let h be a hierarchy path joining μ0 and uμ0 and let ν and ν′ be two
points on it defined as above. Then gh is a hierarchy path joining gμ0 and
guμ0 = vgμ0 and gν, gν′ satisfy similar properties for the path gh, the pseudo-
Anosov v and its axis gv = ggu.

Now let k be a hierarchy path joining μ0 and vμ0 and let ξ and ξ′ be the
two points on it defined as above.

By eventually replacing g with vkg, for an appropriate k ∈ Z, we may
assume that gν and ξ are at C(S) distance at most tv +O(1), where tv is the
translation length of v along gv . There are two cases to discuss. In order to
define the necessary parameters, recall the following result.

Theorem 7.10 (Masur–Minsky; [MM00]). If μ, ν ∈M(S), then there ex-
ists a constant K(S), depending only on S, such that for each K >K(S) there
exists a≥ 1 and b≥ 0 for which:

(vi) distM(S)(μ, ν)≈a,b

∑
Y⊆S

{{
distC(Y )

(
πY (μ), πY (ν)

)}}
K
.

In particular this implies that there exists κ > 0 and A,B depending only
on S such that if distM(S)(μ, ν)≥ κdistC(S)(μ, ν) then

(vii) distM(S)(μ, ν)≈A,B

∑
Y�S

{{
distC(Y )

(
πY (μ), πY (ν)

)}}
K
.

In the formulas above we use the following notation. For two numbers
d≥ 0 and K ≥ 0, {{d}}K is equal to d if d≥K, and it is zero otherwise.

The subsurfaces that appear in (vii) for a given pair μ, ν and a given con-
stant K >K(S) are called K-large domains of that pair. The proper subsur-
faces are called K-large proper domains. We omit K when irrelevant.

Case 1. Assume that distM(S)(μ0, gμ0)≤ κdistC(S)(μ0, gμ0).
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Note that distC(S)(μ0, gμ0)≤ distC(S)(μ0, ξ) + distC(S)(μ0, ν) + tv +O(1)≤
2distC(S)(μ0, vμ0) + distC(S)(μ0, uμ0) + O(1), which implies that we have
distM(S)(μ0, gμ0) ≤A′,B′ dist(μ0, uμ0) + (μ0, vμ0), where A′,B′ depend on
κ,a, b and K from Theorem 7.10.

Case 2. Assume that distM(S)(μ0, gμ0)≥ κdistC(S)(μ0, gμ0).
This together with equation (vii) then implies:

(viii) distM(S)(μ0, gμ0)≈A,B

∑
Y�S

{{
distC(Y )

(
πY (μ0), πY (gμ0)

)}}
K
.

Recall that the point nearest to πC(S)(μ0) on the axis gv is at C(S)-distance
O(1) from ξ (actually, this may not be a point, but since C(S) is hyperbolic
the set of closest points form a bounded diameter; hence we abuse nota-
tion slightly, as this set is coarsely a point). Likewise the point nearest to
πC(S)(gμ0) on gv is at C(S)-distance O(1) from gν and at distance tv +O(1)
from ξ. Every proper subsurface Y appearing in the sum (viii) has the prop-
erty that every hierarchy path joining μ0 to gμ0 intersects Q(∂Y ). Hence,
∂Y is at C(S)-distance O(1) from the union of two geodesics in C(S) join-
ing πC(S)(μ0) respectively, πC(S)(gμ0) to their nearest points on gv with the
arc of gv with endpoints these two nearest points. It follows that a near-
est point to πC(S)(∂Y ) on the axis gv is at C(S)-distance at most tv +O(1)
from ξ.

The analogue of equation (viii) is also satisfied by vμ0 and vgμ0 = guμ0. In
particular for every proper subsurface Y ′ appearing in that formula, a nearest
point to πC(S)(∂Y

′) on the axis gv is at C(S)-distance at most tv + O(1)
from vξ. Then by replacing both u and v with their Jth power, for some
J = J(S) and arguing with the corresponding hierarchy paths h joining μ0,
uJ(μ0), respectively μ0, v

J(μ0), we may assume that the pairs μ0, gμ0 and
respectively vμ0, vgμ0 have no large proper domain in common.

It follows that for every large proper domain Y of the pair μ0, gμ0,

distC(Y )

(
πY (μ0), πY (gμ0)

)
≤ distC(Y )

(
πY (μ0), πY (vμ0)

)
+distC(Y )

(
πY (gμ0), πY (vgμ0)

)
+K.

In particular forK >K(S), whereK(S) is the constant from Theorem 7.10,
if we consider Y a 3K-large proper domain for the pair μ0, gμ0, it must be a
K-large proper domain either for μ0, vμ0 or for gμ0, vgμ0 or for both pairs.
We may then write that∑

Y�S

{{
distC(Y )

(
πY (μ0), πY (gμ0)

)}}
3K

≤ 3
∑
Y�S

{{
distC(Y )

(
πY (μ0), πY (vμ0)

)}}
K

+ 3
∑
Y�S

{{
distC(Y )

(
πY (gμ0), πY (guμ0)

)}}
K
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whence

distM(S)(μ0, gμ0)�A′,B′ distM(S)(μ0, vμ0) + distM(S)(μ0, uμ0).

This completes the proof of Theorem 7.8 for pairs of pseudo-Anosov ele-
ments. We now proceed to the full proof of Theorem 7.8.

Let u, v ∈M.

Lemma 7.11. Let ν and ρ be two points in M(S), let Δ be a multicurve,
and let ν′, ρ′ be respective nearest point projections of ν, ρ on Q(Δ). As-
sume there exist U1, . . . ,Uk subsurfaces such that Δ = ∂U1 ∪ · · · ∪ ∂Uk, and
distC(Ui)(ν, ρ)>M for every i= 1, . . . , k, where M =M(S) is a large enough
constant.

Then for every h1, h2 and h3 hierarchy paths joining ν, ν′ respectively ν′, ρ′

and ρ′, ρ, the path h1�h2�h3 has length ≈a,b distM(S)(ν, ρ), where a, b depend
only on the topological type of Δ.

Proof. This follows by a limiting argument from [BDS, Lemma 4.27] and
[BDS, Theorem 4.16]. �

Let Δu be a multicurve such that if U1, . . . ,Um are the connected compo-
nents of S \Δu and the annuli with core curve in Δu then u is a pseudo-Anosov
on U1, . . . ,Uk (Dehn twists are assumed to be pseudo-Anosovs on annuli) and
the identity map on Uk+1, . . . ,Um, and Δu = ∂U1 ∪ · · · ∪ ∂Uk (the latter con-
dition may be achieved by deleting the boundary between two components on
which u acts as identity). Similarly, for v we consider the multicurve Δv and
V 1, . . . , V m.

Then gΔu =Δv and gUi = Vi, up to reordering V 1, . . . , V m.
Let ν and ξ be nearest point projections of μ0 onto Q(Δu) and respectively,

Q(Δv). By eventually replacing u, v with large enough powers, we may assume
that Lemma 7.11 applies to the pairs μ0, uμ0 and μ0, vμ0, respectively.

Like for pseudo-Anosovs, we have two cases.
Case 1. Assume that

distM(S)(μ0, gμ0)≈A,B

∑
Y⊆S,Y �Δv

{{
distC(Y )

(
πY (μ0), πY (gμ0)

)}}
K
.

Then the same relation is true for vμ0, vgμ0. By eventually replacing v by
a power of itself, we may assume that the set of proper domains appearing in
the sum above is disjoint from the corresponding set of proper domains for
vμ0, vgμ0. It follows that all the large proper domains for the pair μ0, gμ0 are
large proper domains either for μ0, vμ0 or for gμ0, vgμ0 = guμ0.

We discuss the case of the whole surface S separately. Consider a tight
geodesic gu in C(S) joining πC(S)(μ0) to Δu. We state that by replacing u
with a large enough power we may ensure that points on ugu at δ-distance
from gu are at distance at most D from Δu, for some D > 0, where δ > 0 is
the hyperbolicity constant of C(S). Indeed assume that there exists a point
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a on gu at distance at least D from Δu such that B(a, δ) intersects uigu for
i ∈ {1,2, . . . ,N}. This in particular implies that distC(S)(a,u

ia)≤ 2δ.

Let b be the point on gu at distance D
2 from Δu. By the above, every

uib is in B(b,2δ). On the other hand, by [Bow08, Theorems 1.1 and 1.2]
if D ≥D0(S, δ) then there exists m=m(S, δ) such that B(b,2δ) contains at

most m points from the union of tight geodesics gu ∪
⋃N

i=1 u
igu. It follows in

particular that if N =m+1 then there exist i < j with i, j ∈ {1,2, . . . ,N} such
that uib= ujb, hence uj−ib= b. But, for D large enough b together with any
curve from Δu fills the surface, hence it cannot be fixed by a power of u. We
obtained a contradiction. Thus we conclude that there exists k ≤N =N(S, δ)
such that the intersection of the δ-neighborhood of gu with the δ-neighborhood
of ukgu is contained in the D-neighborhood of Δu.

Likewise we argue that given a tight geodesic gv in C(S) joining πC(S)(μ0)
to Δv there exists r ≤ N such that the intersection of the δ-neighborhood
of gv with the δ-neighborhood of vrgv is contained in the D-neighborhood
of Δv . We deduce that distC(S)(μ0,Δu) ≤ distC(S)(μ0, u

kμ0) + O(1) ≤
k distC(S)(μ0, uμ0) + O(1) and that distC(S)(μ0,Δv) ≤ r distC(S)(μ0, vμ0) +
O(1). Then distC(S)(μ0, gμ0) ≤ distC(S)(μ0,Δv) + distC(S)(Δv, gμ0) ≤
N [distC(S)(μ0, vμ0) + distC(S)(μ0, uμ0)] +O(1).

Case 2. Assume that

distM(S)(μ0, gμ0)≈A,B

∑
Y⊆S,Y ��Δv

{{
distC(Y )

(
πY (μ0), πY (gμ0)

)}}
K
.

In other words distM(S)(μ0, gμ0)≈A′,B′ distM(S)(ξ, gν). Note that it suffices
to bound distM(S)(ξ, gν) by a multiple of distM(S)(ξ, vξ)+distM(S)(gν, vgν).
Since we are only considering pure elements, it follows that ξ and gν have
projections on M(U j), k + 1≤ j ≤m, at bounded distance. Thus, any large
domain Y for ξ, gν must satisfy Y ⊆ U j for some j in {1,2, . . . , k}.

For every j ∈ {1,2, . . . , k} recall that v restricted to V j coincides with a
pseudo-Anosov vj . We use the same notation vj to denote the mapping class
that acts as vj on V j and as identity on S \ V j . A hierarchy path joining
ξ to gν projects onto a quasi-geodesic qj in C(V j) containing in a tubular
neighborhood of radius O(1) all the multicurves ∂Y where Y � V j is a large
domain for ξ and gν. By eventually pre-composing g with a power of vj (hence
with an element in the centralizer of v), we may assume that the sub-arc of
qj contained in a O(1)-tubular neighborhood of the translation axis of vj has
length � tvj , where tvj is the translation length of vj . Then, by eventually
replacing v with a large enough power, we may assume that the set of large
domains for ξ, gν that are proper sub-surfaces of V j has nothing in common
with the set of large domains for vξ, vgν that are proper sub-surfaces of V j .
Hence they are all large domains either for ξ, vξ or for gν, vgν.

If U j is a large domain itself for ξ, gν, then by arguing as in the pseudo-
Anosov case (and noting that the copy of Zk generated by the pseudo-Anosov



DIVERGENCE, THICK GROUPS, AND SHORT CONJUGATORS 979

components vj is in the centralizer of v) we may prove that, by eventually
post-composing g with an element in the centralizer of v, we may ensure that
distC(Uj)(ξ, gν)� distC(Uj)(ξ, vξ) + distC(Uj)(gν, vgν).

Acknowledgments. We thank L. Mosher, P. Papasoglu, A. Sale, A. Sisto,
and J. Tao for useful conversations and corrections. The first author would
also like to thank the law firms of Orrick, Herrington & Sutcliffe and Disabil-
ity Rights Advocates, and in particular René Kathawala and Elina Druker for
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