
Illinois Journal of Mathematics
Volume 58, Number 4, Winter 2014, Pages 891–937
S 0019-2082

THE DIRICHLET PROBLEM FOR THE MINIMAL SURFACE
EQUATION IN Sol3, WITH POSSIBLE INFINITE

BOUNDARY DATA

MINH HOANG NGUYEN

Abstract. In this paper, we study the Dirichlet problem for the
minimal surface equation in Sol3 with possible infinite boundary

data, where Sol3 is the non-Abelian solvable 3-dimensional Lie

group equipped with its usual left-invariant metric that makes it

into a model space for one of the eight Thurston geometries. Our

main result is a Jenkins–Serrin type theorem which establishes

necessary and sufficient conditions for the existence and unique-
ness of certain minimal Killing graphs with a non-unitary Killing
vector field in Sol3.

1. Introduction

In [10], Jenkins and Serrin considered the Dirichlet problem for the minimal
surface equation in R3 = R2 ×R with possible infinite boundary data. They
considered a bounded domain Ω ⊂ R2 whose boundary contains two finite
sets of open straight segments {Ai}i and {Bi}i with the property that no
two segments Ai and no two segments Bi meet to form a convex corner. The
remaining portion of the boundary consists of endpoints of the segments Ai

and Bi and a finite number of open convex arcs {Ci}i. They found necessary
and sufficient conditions on the lengths of the sides of inscribed polygons,
which guarantee the existence of a minimal solution over Ω, taking the value
+∞ on each Ai, −∞ on each Bi and assigned continuous data on each of the
open arcs Ci (see [10, Theorems 2, 3 and 4]).

Some special cases are of interest. If Ω is a quadrilateral domain with sides
A1,C1,A2,C2 in that order, then the necessary and sufficient condition for a
solution to exist reduces simply to |A1|+ |A2|< |C1|+ |C2|, that is, the sum
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of the lengths of the sides Ai should be less than the sum of the lengths of the
sides Ci. If the sides of Ω are A1,B1,A2,B2 in that order, then the condition
becomes |A1|+ |A2|= |B1|+ |B2|. This solution was found by Scherk [20] in
1835.

In recent years, there has been much activity on this Dirichlet problem in
M2 × R where M2 is a two dimensional Riemannian manifold (see [3], [18],

[19]) and in the Heisenberg group Nil3 [1], in ˜PSL2(R) [26]. Moreover, there
are non-compact domains on which this problem has been solved (see [3], [6],
[12], [16]). In these cases, authors considered the Killing graphs where the
Killing vector field is unitary.

The purpose of this paper is to consider the problem of type Jenkins–Serrin
on bounded domains and some unbounded domains in Sol3 which is a three-
dimensional homogeneous Riemannian manifold can be viewed as R3 endowed
with the Riemannian metric

ds2 = e2x3dx2
1 + e−2x3dx2

2 + dx2
3,

where (x1, x2, x3) are canonical coordinates of R3. The change of coordinates

x := x2, y := ex3 , t := x1,

turns this model into Sol3 = {(x, y, t) ∈R3 : y > 0} with the Riemannian metric

ds2 =
dx2 + dy2

y2
+ y2dt2.

By using the Poincaré half-plane model H2, Sol3 has the form of a warped
product Sol3 =H2 ×y R.

For every function u of class C2 defined on the domain Ω⊂H2, we denote
by Gr(u) = {(p, t) ∈ Sol3 : p ∈ Ω, t = u(p)} a surface in Sol3 and is called ∂t-
graph of u. Gr(u) is a minimal surface if and only if u satisfies the equation
(see Proposition 2.5)

Mu := div

(
y2∇u√

1 + y2‖∇u‖2

)
= 0.

We will consider the case that the boundary ∂Ω is composed of the families
of “convex” arcs {Ai}, {Bj} and {Ck}. We give necessary and sufficient
conditions on the geometry of the domain Ω which assure the existence of a
minimal solution u defined in Ω and u assumes the value +∞ on each Ai,
−∞ on each Bj and prescribed continuous data on each Ck.

We see that the vector field ∂t is Killing and normal to the plane H2.
A special point of the problem is that the vector field ∂t is not unitary. The
important point to note here is that when γ is a curve in H2, if γ is a geodesic of
H2, the surface γ×R is no longer minimal in this warped product Riemannian
manifold Sol3. Instead of this, γ ×R is minimal in Sol3 if and only if γ is an
Euclidean geodesic (see Corollary 2.2). Hence, these Euclidean geodesics will
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play an important role in our problem. Moreover, because of the non-unitary
field ∂t, we don’t use the hyperbolic length to state our problem. In M2 ×R

the length of a compact curve γ ⊂M2 is just the area of γ × [0,1] in which
we are interested. However, for a curve γ ∈H2, the area calculated in Sol3 of
γ × [0,1] is the Euclidean length of γ (see Proposition 2.3).

The problem of type Jenkins–Serrin is also solved for some unbounded
domains. The main idea in [3] is to approximate an unbounded domain Ω by
a sequence bounded domain Ωn by cutting Ω with horocycles.

In our case, we use the Euclidean geodesics, Euclidean length instead of
the geodesics and the hyperbolic length, so we can’t use the horocycle of H2

to consider the problem of type Jenkins–Serrin on an unbounded domain.
However, we can generalize the previous result for some unbounded domains
by defining the flux for the non-compact arcs instead of using the horocycles.
Our main result (Jenkins–Serrin type Theorem 6.1) may be stated as follows.

Theorem. Let Ω be a Scherk domain in H2 with the families of Euclidean
geodesic arcs {Ai},{Bi} and of mean convex Euclidean arcs {Ci}.
(1) If the family {Ci} is nonempty, there exists a solution to the Dirichlet

problem on Ω (taking the value +∞ on each Ai, −∞ on each Bi and
prescribed continuous data on each of the open arcs Ci) if and only if

2aeuc(P)< �euc(P), 2beuc(P)< �euc(P)

for every Euclidean polygonal domain P inscribed in Ω. Moreover, such
a solution is unique if it exists.

(2) If the family {Ci} is empty, there exists a solution to the Dirichlet problem
on Ω (taking the value +∞ on each Ai, −∞ on each Bi) if and only if

aeuc(P) = beuc(P)

when P = Ω and the inequalities in Assertion (1) hold for all other Eu-
clidean polygonal domains P inscribed in Ω. Such a solution is unique up
to an additive constant, if it exists.

In this theorem, we denote by �euc(P) the Euclidean perimeter of ∂P , and
by aeuc(P) and beuc(P) the sum of the Euclidean lengths of the edges Ai and
Bi lying in ∂P , respectively.

We will have similar result for the Dirichlet problem for the minimal surface
equation in Sol3 with respect to ∂x-graph. In the case of ∂y-graph (∂y is not
a Killing vector field), Menezes solved on some “small” squares in the (x, t)-
plane with data +∞ on opposite two sides and −∞ on the other two sides
(see [17, Theorem 2]).

We have organized the contents as follows: In Section 2, we will review
some of the standard facts on Sol3 and establish minimal surface equations.
Section 3 will prove the maximum principle for the minimal surface equations,
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shown the existence of solutions. A local Scherk surface in Sol3 will be con-
structed in Section 4. Sections 5 will be devoted to proving the monotone
convergence theorem and describing the divergence set. Our main results are
stated and proved in Section 6.

2. Preliminaries

2.1. A model of Sol3. The three-dimensional homogeneous Riemannian
manifold Sol3 can be viewed as R3 endowed with the Riemannian metric

ds2 = e2x3dx2
1 + e−2x3dx2

2 + dx2
3,

where (x1, x2, x3) are canonical coordinates of R
3 (see for instance [22, §4] and

the references given there for more details). The space Sol3 has a Lie group
structure with respect to which the above metric is left-invariant. The group
structure is given by the multiplication

(x1, x2, x3) · (y1, y2, y3) =
(
x1 + e−x3y1, x2 + ex3y2, x3 + y3

)
.

In this paper, we don’t use the Lie group structure. The change of coordinates

x := x2, y := ex3 , t := x1,

turns this model into Sol3 = {(x, y, t) ∈R3 : y > 0} with the Riemannian metric

(2.1) ds2 =
dx2 + dy2

y2
+ y2dt2.

In the present paper, the model used for the hyperbolic plane is the Poincaré
half-plane, that is,

H2 =
{
(x, y) ∈R2 : y > 0

}
endowed with the Riemannian metric dx2+dy2

y2 . Hence, Sol3 has the form of a

warped product Sol3 =H2 ×y R. From (2.1), we have

‖∂x‖= ‖∂y‖=
1

y
, ‖∂t‖= y, 〈∂x, ∂y〉= 〈∂x, ∂t〉= 〈∂y, ∂t〉= 0.

Hence, {y∂x, y∂y, 1y∂t} is an orthonormal frame of Sol3. Translations along

the t-axis

τh : Sol3 → Sol3, (x, y, t) 
→ (x, y, t+ h)

are isometries. Therefore, the vertical vector field ∂t is a Killing vector field.
Note that ∂t is not unitary.

Let us denote by ∇ the Riemannian connection of Sol3 and by ∇ the one
in H2. By using Koszul’s formula,

2〈∇XY,Z〉=X〈Y,Z〉+ Y 〈Z,X〉 −Z〈X,Y 〉(2.2)

−
〈
Y, [X,Z]

〉
−
〈
Z, [Y,X]

〉
+
〈
X, [Z,Y ]

〉
for any vector field X,Y,Z of Sol3, we obtain Table 1.
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Table 1. Table of ∇XY for X,Y ∈ {∂x, ∂y, ∂t} in Sol3

Y

X ∂x ∂y ∂t

∂x
1
y∂y − 1

y∂x 0

∂y − 1
y∂x − 1

y∂y
1
y∂t

∂t 0 1
y∂t −y3∂y

Hence, the surfaces {t = const} and {x = const} are the totally geodesic
surfaces in Sol3 (Note that a totally geodesic submanifold Σ⊂M is charac-
terized by the fact that ∇XY is a tangent vector field of Σ for all tangent
vector fields X,Y of Σ, where ∇ is the Riemannian connection of M ). The
surfaces {y = const} are minimal, are not totally geodesic surfaces and are
isometric to R2.

2.2. Euclidean geodesic. First, we note that the vertical lines {p} ×R⊂
Sol3 with p = (x, y) ∈ H2 aren’t geodesics in Sol3. Indeed, let p = (x, y) be
a point of H2. A unit speed parametrization of {p} × R is γ : R→ Sol3, t 
→
(x, y, t

y ). One has γ′ = 1
y∂t. Thus, d

dtγ
′ =∇ 1

y ∂t
( 1y∂t) =−y∂y . Since d

dtγ
′ �= 0,

{p} ×R is not a geodesic in Sol3.

Proposition 2.1. Let γ be a curve in H2. Then the mean curvature vector
of γ ×R in Sol3 is

�Hγ×R = y2�κeuc,

where �κeuc is Euclidean mean curvature vector of γ in H2.

Proof. We first compute �Hγ×R. Without loss of generality, we can assume
that γ is a unit speed curve. So { 1

y∂t, γ
′} is an orthonormal frame of γ ×R.

The mean curvature vector of γ ×R is by definition

�Hγ×R =

(
∇ 1

y ∂t

(
1

y
∂t

)
+∇γ′γ′

)⊥
(2.3)

=
(
−y∂y +∇γ′γ′)⊥

=−y∂⊥
y + �κ,

where �κ is the mean curvature vector of γ in H2.
We now compute the Euclidean mean curvature vector �κeuc of γ in H2. By

Koszul’s formula (2.2), we have

(∇euc)XY =∇XY +
1

y

(
(Xy)Y + (Y y)X − 〈X,Y 〉∇y

)
,



896 M. H. NGUYEN

where ∇euc (resp. ∇) is the Riemannian connection of H2 with respect to the
Euclidean metric (resp. hyperbolic metric) and X,Y are tangent vector fields
of H2. Hence

(2.4)
(
(∇euc)XY

)⊥
= (∇XY )⊥ − 1

y
〈X,Y 〉(∇y)⊥,

where X,Y are tangent vector fields of γ. Since γ is a unit speed curvature,

‖γ′‖= 1 and ‖γ′

y ‖euc = 1. By (2.4) and ∇y = y2∂y , we have

�κeuc =

(
(∇euc) γ′

y

γ′

y

)⊥

=

(
∇ γ′

y

γ′

y

)⊥
− 1

y

〈
γ′

y
,
γ′

y

〉
(∇y)⊥

=
1

y2
�κ− 1

y
∂⊥
y .

Hence,

y2�κeuc = �κ− y∂⊥
y .

Combining this equality with (2.3), we complete the proof. �

Let us mention two important consequences of the proposition.

Corollary 2.2. Let γ be a curve in H2 and Ω be a domain in H2 with
∂Ω ∈C2. Then

(1) γ×R is a minimal surface in Sol3 if and only if γ is an Euclidean geodesic
in H2. However, these Euclidean geodesics need not have constant speed
parametrization.

(2) Ω × R is a mean convex set in Sol3 if and only if Ω is a mean convex
Euclidean in H2.

Proposition 2.3. Let γ be a curve in H2. Then the area calculated in Sol3
of γ × [0,1] is

A
(
γ × [0,1]

)
= �euc(γ),

where �euc(γ) is the Euclidean length of γ.

Proof. Let us first compute the area of γ × [0,1]. The surface γ × [0,1] in
Sol3 is defined by

γ × [0,1] : [0,1]× [0,1]→ Sol3, (t1, t2) 
→
(
γ(t1), t2

)
.

We have by definition

A
(
γ × [0,1]

)
=

∫
[0,1]×[0,1]

∥∥(γ × [0,1]
)
t1
×
(
γ × [0,1]

)
t2

∥∥dt1 dt2
=

∫ 1

0

∫ 1

0

∥∥γ′(t1)
∥∥y(γ(t1))dt1 dt2
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=

∫ 1

0

∥∥γ′(t1)
∥∥y(γ(t1))dt1

=

∫
γ

y ds.

The Euclidean length of γ is by definition

�euc(γ) =

∫
γ

dseuc =

∫
γ

y ds.

Combining these equalities, we conclude that

A
(
γ × [0,1]

)
=

∫
γ

y ds= �euc(γ).

This establishes the formula. �

The ideal boundary of H2 is by definition

∂∞H2 =
{
(x, y) ∈R2 : y = 0

}
∪ {∞}.

The point ∞ of ∂∞H2 is specified in our model of Sol3 and we make the
distinction with points in {y = 0}.

Definition 2.4. A point p ∈ ∂∞H2 is called removable (resp. essential) if
p ∈ {(x, y) ∈R2 : y = 0} (resp. p=∞).

2.3. The minimal surface equations. Let Ω be a domain in H2 and u be
a C2 function on Ω. Using the previous model for Sol3, we can consider the
surface Gr(u) in Sol3 parametrized by

(x, y) 
→
(
x, y,u(x, y)

)
, (x, y) ∈Ω.

Such a surface is called the vertical Killing graph of u, it is transverse to the
Killing vector field ∂t and any integral curve of ∂t intersect at most once the
surface. The upward unit normal to Gr(u) is given by

(2.5) N =Nu =
−y∇u+ 1

y∂t√
1 + y2‖∇u‖2

,

where ∇ is the hyperbolic gradient operator and ‖−‖ is the hyperbolic
norm. Indeed, Gr(u) = Φ−1(0), where the function Φ : Sol3 → R is defined
by Φ(x, y, t) = t− u(x, y). So, ∇Φ is a normal vector field to Gr(u). More-
over, since ∇t= 1

y2 ∂t and 〈∇u,∂t〉= 0, we have

∇Φ=∇t−∇u=
1

y2
∂t −∇u, ‖∇Φ‖2 = 1

y2
+ ‖∇u‖2.

This establishes the formula (2.5). Denote

W =Wu :=
√

1 + y2‖∇u‖2, Xu :=
y∇u

W
.
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It follows that

N =−Xu +
1

yW
∂t.

In the sequel, we will use this unit normal vector to compute the mean cur-
vature of a Killing graph.

Proposition 2.5. Let Ω be a domain in H2 and u be a C2 function on Ω.
The mean curvature H of the Killing graph of u satisfies:

(2.6) 2yH = div

(
y2∇u

W

)
,

with div the divergence operator in the hyperbolic metric, and after expanding
all terms:

2H =
y3

W 3

((
1 + y4u2

y

)
uxx − 2y4uxuyuxy +

(
1 + y4u2

x

)
uyy + 2

uy

y

)
.

Proof. We extend the vector field N to the whole Ω × R by using the
expression given in (2.5). The mean curvature of the Killing graph Gr(u) of
u is then given by 2H = divGr(u)(−N). Since ∂t is a Killing vector field, we
have

2H = divSol3(−N) = divSol3(Xu)− divSol3

(
1

yW
∂t

)
.

Let us compute

divSol3

(
1

yW
∂t

)
=

〈
∇ 1

yW
,∂t

〉
+

1

yW
divSol3(∂t) = 0,

divSol3(Xu) = div(Xu) +

〈
∇ 1

y ∂t
Xu,

1

y
∂t

〉
.

Moreover, since Xu and ∂t are orthogonal, we see that〈
∇ 1

y ∂t
Xu,

1

y
∂t

〉
=

1

y2
〈∇∂tXu, ∂t〉=− 1

y2
〈Xu,∇∂t∂t〉,

∇∂t∂t = −y3∂y =−y∇y.

Combining these equalities, we deduce that

2H = div(Xu) +
1

y
〈Xu,∇y〉.

It follows that

2yH = y div(Xu) + 〈Xu,∇y〉= div(yXu) = div

(
y2∇u

W

)
.

This is the formula (2.6). Expanding (2.6) yields

2H =
1

y
div

(
y2∇u

W

)
=

1

y
div

(
y4ux

W
∂x +

y4uy

W
∂y

)
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=
1

y
· y2

(
∂

∂x

(
1

y2
y4ux

W

)
+

∂

∂y

(
1

y2
y4uy

W

))
=

y3

W 3

((
1 + y4u2

y

)
uxx − 2y4uxuyuxy +

(
1 + y4u2

x

)
uyy + 2

uy

y

)
.

This completes the proof. �
By Proposition 2.5, the Killing graph of a C2 function u : Ω⊂H2 →R is a

minimal surface in Sol3 if and only if u satisfies the divergence form equation

(2.7) Mu := div(yXu) = 0,

whereXu = y∇u√
1+y2‖∇u‖2

. Equation (2.7) is the divergence form of theminimal

surface equation and can alternatively be written, by Proposition 2.5, as

(2.8)
(
1 + y4u2

y

)
uxx − 2y4uxuyuxy +

(
1 + y4u2

x

)
uyy + 2

uy

y
= 0.

Definition 2.6. A C2 function u : Ω ⊂ H2 → R is said to be a minimal
solution if u satisfies the minimal surface equation, i.e. Mu= 0.

Example 2.7. We give some simple examples of minimal solution u.

(1) If the function u is of the form u(x, y) = f(x), then (2.8) becomes f ′′ = 0.
Thus, u(x, y) = ax+ b for a, b ∈R.

(2) If the function u is of the form u(x, y) = f(y), then (2.8) becomes f ′′ +

2 f ′

y = 0. Thus u(x, y) = a
y + b for a, b ∈R.

(3) We look for minimal solutions of the form u(x, y) = f(xy ). It follows from

(2.8) that f ′′ = 0. Thus u(x, y) = ax
y + b for a, b ∈R.

3. Maximum principle, Gradient estimate and Existence theorem

3.1. Maximum principle. A basic tool for obtaining the results of this
work is the maximum principle for differences of minimal solutions. First, by
applying the proof of the comparison principle [7, Theorem 10.1], we have the
following theorem.

Theorem 3.1 (Maximum principle). Let u1, u2 be two C2 functions on a
domain Ω⊂H2. Suppose u1 and u2 satisfy Mu1 ≥Mu2. Then u2−u1 cannot
have an interior minimum unless u2 − u1 is a constant.

It follows from this theorem that:

Proposition 3.2. Let u1, u2 be two functions of class C2 on a bounded
domain Ω⊂H2 such that Mu1 ≥Mu2, and lim inf(u2 − u1)≥ 0 for any ap-
proach to the boundary ∂Ω of Ω, then we have u2 ≥ u1 in Ω.

Proof. Assume the contrary that {p ∈ Ω : u2(p) < u1(p)} is not empty.
Since lim inf(u2 − u1) ≥ 0 for any approach to the boundary ∂Ω and Ω is
bounded, u2 − u1 has an interior minimum in Ω. By Maximum principle
(Theorem 3.1), u2 − u1 is constant, a contradiction. �
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Figure 1. An example of admissible domain.

The following result (Theorem 3.4) is a remarkable strengthening of this
situation. In what follows, for a subset Ω of H2, we will denote by ∂∞Ω the
boundary of Ω in H2 ∪ ∂∞H2.

Definition 3.3. A domain Ω ⊂ H2 is called admissible if its boundary
∂∞Ω is composed of a finite number of open, mean convex Euclidean arcs
Ci (of class C2) in H2 together with their endpoints (see Figure 1). The
endpoints of the arcs Ci are called vertices of Ω and those in ∂∞H2 are called
ideal vertices of Ω. Assume in addition that, the ideal vertices of this domain
are removable points (see Definition 2.4).

Let p= (x(p), y(p)) ∈H2 and R> 0. Denote by DR(p) the open hyperbolic
disk with hyperbolic centre p and hyperbolic radius R

DR(p) =
{
q ∈H2 : dH2(q, p)<R

}
.

If R< y(p), denote by Deuc
R (p) the open Euclidean disk with Euclidean centre

p and Euclidean radius R

Deuc
R (p) =

{
q ∈H2 : deuc(q, p)<R

}
.

The closure of DR(p) (resp. D
euc
R (p)) will be denoted by DR(p) (resp. D

euc

R (p)).

Theorem 3.4 (General maximum principle). Let Ω⊂H2 be a admissible
domain. Let u1, u2 be two minimal solutions on Ω. Suppose that limsup(u1−
u2)≤ 0 for any approach to the boundary of Ω exception of its vertices. Then
u1 ≤ u2.

We should remark that this result is similar to the general maximum princi-
ple stated by Spruck [24, General Maximum Principle, p. 3] (resp. Hauswirth–
Rosenberg–Spruck [8, Theorem 2.2]) for constant mean curvature surfaces in
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R2 ×R (resp. in H2 × R and S2 ×R) in the case of the bounded domain Ω,
and by Collin–Rosenberg [3, Theorem 2] for minimal surfaces in H2 × R in
the case of the unbounded domain Ω.

Proof of Theorem 3.4. Assume the contrary, that the set {p ∈ Ω : u1(p)>
u2(p)} is nonempty. Let N and ε be positive constants, with N large and ε
small. Define

ϕ=

⎧⎪⎨⎪⎩
0 if u1 − u2 ≤ ε,

u1 − u2 − ε if ε < u1 − u2 <N,

N − ε if u1 − u2 ≥N.

Then ϕ is a continuous piecewise differentiable function in Ω satisfying
0 ≤ ϕ < N . Moreover, ∇ϕ =∇u1 −∇u2 in the set where ε < u1 − u2 < N ,
and ∇ϕ= 0 almost every where in the complement of this set.

Denote by E1 (resp. E2) the set of vertices in H2 (resp. vertices at ∂∞H2)
of Ω. For each p ∈E2, we consider a sequence of nested ideal geodesics Hp,n,
n≥ 1 converging to p. By nested, we mean that if Hp,n is the component of
H2 \Hp,n containing p on its ideal boundary, then Hp,n+1 ⊂Hp,n. Assume

Hp1,1∩Hp2,1 = ∅ for every different points p1, p2 ∈E2. For n sufficiently large

satisfying D
euc
1
n

(p1)∩D
euc
1
n

(p2) = ∅,∀p1, p2 ∈E1 and D
euc
1
n

(p1)∩Hp2,1 = ∅,∀p1 ∈
E1, p2 ∈E2, we define (see Figure 2)

Ωn = Ω
∖(( ⋃

p∈E1

D
euc
1
n

(p)

)
∪
( ⋃

p∈E2

Hp,n

))
,

Γ1 = ∂Ωn ∩ ∂Ω, Γ2 = ∂Ωn \ Γ1.

Figure 2. The domain Ωn.
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It follows from definition that

(3.1) ϕ= 0 on a neighborhood of Γ1, �euc(Γ2)→ 0 as n→∞.

Define

Jn =

∫
∂Ωn

ϕy〈Xu1 −Xu2 , ν〉ds,

where ν is the exterior normal to ∂Ωn, Wui =
√

1 + y2‖∇ui‖2 and Xui =
y∇ui

Wui
, i= 1,2.

Assertion 3.1. (1) Jn ≥ 0 with equality if and only if ∇u1 =∇u2 on the
set Ωn ∩ {ε < u1 − u2 <N}.

(2) Jn is an increasing function of n.

Proof. By Divergence theorem, we have

Jn =

∫
Ωn

div
(
ϕy(Xu1 −Xu2)

)
dA

=

∫
Ωn

〈y∇ϕ,Xu1 −Xu2〉dA+

∫
Ωn

ϕdiv(yXu1 − yXu2)dA

=

∫
Ωn∩{ε<u1−u2<N}

〈y∇ϕ,Xu1 −Xu2〉dA+

∫
Ωn

ϕdiv(yXu1 − yXu2)dA.

By our assumptions,

ϕdiv(yXu1 − yXu2) = ϕ(Mu1 −Mu2) = 0.

Moreover, on Ωn∩{ε < u1−u2 <N}, by formula (3.2) of Lemma 3.5, we have

〈y∇ϕ,Xu1 −Xu2〉=
〈
y∇u1 − y∇u2,

y∇u1

Wu1

− y∇u2

Wu2

〉
≥ 0

and equality if and only if y∇u1 = y∇u2. Then

Jn =

∫
Ωn∩{ε<u1−u2<N}

〈y∇ϕ,Xu1 −Xu2〉dA≥ 0

and Jn = 0 if and only if ∇u1 =∇u2 on Ωn ∩ {ε < u1 − u2 <N}. Since Ωn is
an increasing domain, i.e. Ωn ⊂Ωn+1, Jn is an increasing function of n. This
proves the assertion. �

Assertion 3.2. Jn = o(1) as n→∞.

Proof. We have

Jn =

∫
Γ1

ϕy〈Xu1 −Xu2 , ν〉ds+
∫
Γ2

ϕy〈Xu1 −Xu2 , ν〉ds.

By Property (3.1), ‖Xui‖ ≤ 1, i= 1,2 and 0≤ ϕ<N , we have∫
Γ1

ϕy〈Xu1 −Xu2 , ν〉ds= 0
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and ∣∣∣∣∫
Γ2

ϕy〈Xu1 −Xu2 , ν〉ds
∣∣∣∣= ∣∣∣∣∫

Γ2

ϕ〈Xu1 −Xu2 , ν〉dseuc
∣∣∣∣

≤ 2N�euc(Γ2) = o(1) as n→∞.

Assertion is then proved. �

It follows from the previous assertions that ∇u1 = ∇u2 on the set {ε <
u1−u2 <N}. Since ε and N are arbitrary, ∇u1 =∇u2 whenever u1 > u2. So
u1 = u2+c (c > 0) in any nontrivial component of the set {u1 > u2}. Then the
maximum principle (Theorem 3.1) ensures u1 = u2 + c in Ω and by assump-
tions of the theorem, the constant must be nonpositive, a contradiction. �

Lemma 3.5. Let v1, v2 be two vectors in a finite dimensional Euclidean
space. Then〈

v1 − v2,
v1
W1

− v2
W2

〉
=

W1 +W2

2

(∥∥∥∥ v1
W1

− v2
W2

∥∥∥∥2 +(
1

W1
− 1

W2

)2)
,

where Wi =
√

1 + ‖vi‖2. In particular,

(3.2)

〈
v1 − v2,

v1
W1

− v2
W2

〉
≥
∥∥∥∥ v1
W1

− v2
W2

∥∥∥∥2≥ 0

with equality at a point if and only if v1 = v2.

Proof. Let us compute〈
v1 − v2,

v1
W1

− v2
W2

〉
=

‖v1‖2
W1

+
‖v2‖2
W2

− 〈v1, v2〉
(

1

W1
+

1

W2

)
=W1 −

1

W1
+W2 −

1

W2
− 〈v1, v2〉

(
1

W1
+

1

W2

)
= (W1 +W2)

(
1− 〈v1, v2〉

W1W2
− 1

W1W2

)
= (W1 +W2)

(
1

2

∥∥∥∥ v1
W1

− v2
W2

∥∥∥∥2 + 1

2W 2
1

+
1

2W 2
2

− 1

W1W2

)
=

W1 +W2

2

(∥∥∥∥ v1
W1

− v2
W2

∥∥∥∥2 +(
1

W1
− 1

W2

)2)
.

This proves the lemma. �
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3.2. Gradient estimate. An important result concerning minimal solutions
is a gradient estimate.

Theorem 3.6 (Interior gradient estimate). Let u be a nonnegative minimal
solution on a disk DR(p)⊂H2. Then there exists a constant C =C(R,p) that
depends only on R and p (C doesn’t depend on the function u) such that∥∥∇u(p)

∥∥≤ f

(
u(p)

R

)
,

where f(t) = eC(1+t2). Moreover, if DR1(p1) ⊂ DR2(p2) then C(R1, p1) ≤
C(R2, p2).

The proof of this result is similar to the one of the gradient estimate proved
by Spruck [25, Theorem 1.1] and Mazet [13, Proposition 16]. Before beginning
the proof, let us make some preliminary computation.

In this subsection, let us denote by Σ the Killing graph of u. The subscript
Σ in ∇Σ,divΣ,ΔΣ signifies that we compute the object in the Riemannian
metric of the surface Σ. If f is a function on Ω, then we also denote by f the
composition Ω×R→Ω→R, (x, y, t) 
→ f(x, y).

Lemma 3.7. Let u be a minimal solution on a domain Ω⊂H2. Then

∇Σu=
1

y2
∂	
t , ‖∇Σu‖2 =

1

y2

(
1− 1

W 2

)
and ΔΣu=

2〈∂y,N〉
W

,

where W =
√
1 + y2‖∇u‖2.

Proof. Since u|Σ is the restriction of t to Σ, we have

(3.3) ∇Σu=∇Σt= (∇t)	 =
1

y2
∂	
t .

It follows that

‖∇Σu‖2 =
1

y4
(
‖∂t‖2 − 〈∂t,N〉2

)
=

1

y2

(
1− 1

W 2

)
.

We continue to compute ΔΣu. Since Σ is minimal and ∂t is a Killing vector
field, Equality (3.3) gives

ΔΣu= divΣ

(
1

y2
∂	
t

)
= divΣ

(
1

y2
∂t

)
=

〈
∇Σ

1

y2
, ∂t

〉
=− 2

y3
〈∇Σy, ∂t〉.

Furthermore, we have

∇Σy =∇y− 〈∇y,N〉N =∇y− y2〈∂y,N〉N.

Combining these equalities with Equality 〈N,∂t〉= y
W , we obtain

ΔΣu=− 2

y3
(
−y2

)
〈∂y,N〉〈N,∂t〉=

2〈∂y,N〉
W

.

This completes the proof of the lemma. �
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Since ∂t is a Killing vector field and y
W = 〈∂t,N〉, then by the formula [2,

(1.147) p. 41] (see also [23, Theorem 3.2.2]) we have

(3.4) ΔΣ
y

W
=−

(
‖A‖2 +RicSol3(N,N)

) y

W
,

where RicSol3 is the Ricci tensor of Sol3 and ‖A‖2 is the square of the norm
of the second fundamental form.

Lemma 3.8. Let u be a minimal solution on a domain Ω⊂H2. For each
C2 function ϕ : Ω→R, the Laplacian of ϕ on Σ is given by

ΔΣϕ=Δϕ− y2

W 2
〈∇∇u∇ϕ,∇u〉+ 1

y

(
1− 1

W 2

)
〈∇ϕ,∇y〉.

Proof. Since the surface Σ is minimal, we have

ΔΣϕ= divΣ∇Σϕ= divΣ∇ϕ= divSol3 ∇ϕ− 〈∇N∇ϕ,N〉.
Since 1

y∂t is a unit normal vector field to H2 in Sol3, we deduce that

divSol3 ∇ϕ= div∇ϕ+

〈
∇ 1

y ∂t
∇ϕ,

1

y
∂t

〉
=Δϕ+

1

y2
〈∇∂t∇ϕ,∂t〉

=Δϕ− 1

y2
〈∇∂t∂t,∇ϕ〉=Δϕ+

1

y
〈∇ϕ,∇y〉.

Equality N =−y∇u
W + ∂t

yW yields

〈∇N∇ϕ,N〉=
〈
∇− y∇u

W
∇ϕ,−y∇u

W

〉
+

〈
∇ ∂t

yW
∇ϕ,

∂t
yW

〉
=

y2

W 2
〈∇∇u∇ϕ,∇u〉+ 1

y2W 2
〈∇∂t∇ϕ,∂t〉

=
y2

W 2
〈∇∇u∇ϕ,∇u〉+ 1

yW 2
〈∇ϕ,∇y〉.

Combining these equalities, we conclude that

ΔΣϕ=Δϕ− y2

W 2
〈∇∇u∇ϕ,∇u〉+ 1

y

(
1− 1

W 2

)
〈∇ϕ,∇y〉,

which completes the proof. �
Let us mention an important consequence of the lemma.

Corollary 3.9. Let Ω⊂H2 be a bounded domain and p be a point of Ω.
Denote by d= dH2(−, p) the hyperbolic distance to p. There exists a constant
C =CΩ depending only on Ω such that

sup
Ω

∣∣ΔΣd
2
∣∣≤C,

where Σ is the graph of a minimal solution u on Ω. Moreover, if Ω1 ⊂Ω2 are
bounded domains then CΩ1 ≤CΩ2 .
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Proof. It follows from Lemma 3.8 and Equalities ∇y = y2∂y , W 2 = 1 +
y2‖∇u‖2 that∣∣ΔΣd

2
∣∣≤ ∣∣Δd2

∣∣+ y2

W 2

∣∣〈∇∇u∇d2,∇u
〉∣∣+ 1

y

∥∥∇d2
∥∥‖∇y‖

≤
∣∣Δd2

∣∣+ y2

1 + y2‖∇u‖2
∥∥∇∇u∇d2

∥∥‖∇u‖+
∥∥∇d2

∥∥.
Moreover, we have ‖∇∇u∇d2‖ ≤ ‖∇(∇d2)‖‖∇u‖ where ‖∇(∇d2)‖ is the op-
erator norm of (1,1)-tensor field ∇(∇d2). Combining these inequalities, we
obtain ∣∣ΔΣd

2
∣∣≤ ∣∣Δd2

∣∣+ ∥∥∇(
∇d2

)∥∥+ ∥∥∇d2
∥∥.

Define C = CΩ = supp∈Ω supΩ(|Δd2|+ ‖∇(∇d2)‖+ ‖∇d2‖) and the proof is
complete. �

Using Lemma 3.7, Formula (3.4) and Corollary 3.9, we are ready to write
the proof of Interior gradient estimate.

Proof of Theorem 3.6. We first consider the case u(p)> 0. Let us denote
υ := y

W = 〈∂t,N〉. By definition, ∂t = ∂	
t + υN . We define an operator L on

Σ by

Lf := ΔΣf − 2υ

〈
∇Σ

1

υ
,∇Σf

〉
.

We remark that the maximum principle is true for L. By Formula (3.4), we
have

ΔΣ
1

υ
=− 1

υ2
ΔΣυ+

2

υ3
‖∇Συ‖2

=− 1

υ2

(
−
(
RicSol3(N,N) + ‖A‖2

)
υ
)
+

2

υ3

∥∥∥∥−υ2∇Σ
1

υ

∥∥∥∥2
=
(
RicSol3(N,N) + ‖A‖2

) 1
υ
+ 2υ

∥∥∥∥∇Σ
1

υ

∥∥∥∥2.
From this and Inequality RicSol3 ≥−2 (see, for instance, [5]), we deduce that

L
1

υ
=ΔΣ

1

υ
− 2υ

〈
∇Σ

1

υ
,∇Σ

1

υ

〉
=
(
RicSol3(N,N) + ‖A‖2

) 1
υ
≥− 2

υ
.

Let us define h= η 1
υ where η is a nonnegative function. Let us compute

Lh= L

(
η
1

υ

)
=ΔΣ

(
η
1

υ

)
− 2υ

〈
∇Σ

1

υ
,∇Σ

(
η
1

υ

)〉
=

(
ηΔΣ

1

υ
+ 2

〈
∇Ση,∇Σ

1

υ

〉
+

1

υ
ΔΣη

)
− 2υ

〈
∇Σ

1

υ
, η∇Σ

1

υ
+

1

υ
∇Ση

〉
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= ηL
1

υ
+

1

υ
ΔΣη

≥ (ΔΣη− 2η)
1

υ
.

Fix ε ∈ (0, 12 ). We define on Σ the function

ϕ(q) =max

{
− u(q)

2u(p)
+ 1− ε− d(q)2

R2
,0

}
,

where d= dH2(−, p). By definition,

ϕ(p) =
1

2
− ε, 0≤ ϕ≤ 1− ε, supp(ϕ)⊂⊂Σ.

We define η = eKϕ − 1 with K a positive constant that will be chosen later.
We calculate η′(ϕ) =KeKϕ, η′′(ϕ) =K2eKϕ. We then have supΣ h > 0 and
it is reached at q inside the support of ϕ. At the point q, we have

ΔΣη− 2η =
(
η′(ϕ)ΔΣϕ+ η′′(ϕ)‖∇Σϕ‖2

)
− 2

(
eKϕ − 1

)
= eKϕ

(
K2‖∇Σϕ‖2 +KΔΣϕ− 2

)
+ 2

≥ eKϕ
(
K2‖∇Σϕ‖2 +KΔΣϕ− 2

)
.

The vector field ∂d is well defined in Sol3 outside {(p, t) : t ∈R} and has unit
length; d∂d is well defined everywhere. The definition of ϕ, Lemma 3.7 and
Inequality d(q)≤R yield

‖∇Σϕ‖2 =
∥∥∥∥− ∇Σu

2u(p)
− ∇Σd

2

R2

∥∥∥∥2 = ∥∥∥∥ ∂	
t

2u(p)y2
+

2d∂	
d

R2

∥∥∥∥2(3.5)

=
1

4u(p)2y2

(
1− 1

W 2

)
+

4d2

R4

∥∥∂	
d

∥∥2 + 2d

u(p)R2y2
〈
∂	
t , ∂	

d

〉
≥ 1

4u(p)2y2

(
1− 1

W 2

)
+ 0− 2d

u(p)R2y2
υ〈∂d,N〉

=
1

4u(p)2y2

(
1− 1

W 2
− 8yu(p)

R

d

R
〈∂d,N〉 1

W

)
≥ 1

4u(p)2y2

(
1− 1

W 2
− 8yu(p)

R

1

W

)
.

Hence, if 1
W ≤ min{1

2 ,
R

32yu(p)} at q, then ‖∇Σϕ‖2 ≥ 1
8u(p)2y2 . Define C1 =

M = supDR(p) y and C2 =M2CDR(p) where CDR(p) is the constant defined in
Corollary 3.9. Moreover, Corollary 3.9 gives

ΔΣϕ=− ΔΣu

2u(p)
− ΔΣd

2

R2
(3.6)

=− 1

2u(p)

(
2

Wy2
〈∇y,N〉

)
− ΔΣd

2

R2
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=− 1

y2u(p)2

(
〈∇y,N〉

W
u(p) +

y2ΔΣd
2

R2
u(p)2

)
≥− 1

y2u(p)2

(
C1u(p) +

C2

R2
u(p)2

)
.

Combining (3.5) with (3.6) yields

K2‖∇Σϕ‖2 +KΔΣϕ− 2

≥ 1

8u(p)2y2
K2 − 1

y2u(p)2

(
C1u(p) +

C2

R2
u(p)2

)
K − 2

≥ 1

8u(p)2y2

(
K2 − 8

(
C1u(p) +

C2

R2
u(p)2

)
K − 8C3u(p)

2

)
,

where C3 = 2M2. It follows that, if

K =

(
8C1 +

C3

C1

)
u(p) + 8

C2

R2
u(p)2 = 10Mu(p) + 8M2CDR(p)

(
u(p)

R

)2

we obtain K2‖∇Σϕ‖2+KΔΣϕ− 2> 0, then, Lh> 0. By Maximum principle
applied to L, it implies that the maximum of h can only be attained at a
point q where 1

W (q) ≥min{ 1
2 ,

R
32y(q)u(p)}. Thus,(

eK( 1
2−ε) − 1

) 1

υ(p)
= h(p)≤ h(q) =

(
eKϕ(q) − 1

) 1

υ(q)

≤ eK − 1

min{y(q)
2 , R

32u(p)}
.

Letting ε tending to 0 we get υ(p)≥min{y(q)
4 , R

64u(p)}e−
K
2 . Hence,∥∥∇u(p)

∥∥≤max

{
4

infDR(p) y
,64

u(p)

R

}
e

1
2 (10Mu(p)+8M2CDR(p)(

u(p)
R )2).

Combining this with Inequalities ln(t)≤ t and 2t≤ 1 + t2, we obtain

(3.7)
∥∥∇u(p)

∥∥≤ eC(1+(u(p)
R )2),

where C = C(R,p) = 32 + 5
2MR + max{ 4

infDR(p) y
,4M2CDR(p)}. In the case

u(p) = 0, Maximum principle (Theorem 3.1) yields u = 0 on DR(p). The
inequality (3.7) is still true. This completes the proof. �

3.3. Existence theorem. In this subsection, we give a result concerning
the existence of a solution of the Dirichlet problem for the minimal surface
equation. By using interior gradient estimate (Theorem 3.6), elliptic estimate,
and Arzelà–Ascoli theorem, we obtain the compactness theorem as follows.

Theorem 3.10 (Compactness theorem). Let {un}n be a sequence of mini-
mal solutions on a domain Ω⊂H2. Suppose that {un}n is uniformly bounded



DIRICHLET PROBLEM FOR THE MINIMAL SURFACE EQUATION IN Sol3 909

on compact subsets of Ω. Then there exists a subsequence of {un}n converging
on compact subsets of Ω to a minimal solution on Ω.

Theorem 3.11. Let Ω⊂H2 be a bounded mean convex Euclidean domain
with ∂Ω ∈C2. Let f ∈C0(∂Ω) be a continuous function. Then there exists a
unique minimal solution u on Ω such that u= f on ∂Ω.

Proof. The uniqueness is deduced by General maximum principle (Theo-
rem 3.4).

Existence: Let α,β be two real numbers such that α < f(x) < β for
all x ∈ ∂Ω. Since Ω ⊂ H2 is a bounded mean convex Euclidean domain, by
Corollary 2.2, M3 := Ω× [α,β] is a manifold of dimension 3, compact, and
mean convex. Define a Jordan curve σ ⊂ ∂M3 by

σ =
{(

x, f(x)
)
: x ∈ ∂Ω

}
.

By Geometric Dehn’s lemma (see [15, Theorem 1], [2, Theorem 6.28]), the
Jordan curve σ is the boundary of a least-area compact disk Σ in M3, and
Σ := Σ \ σ is embedded. By the maximum principle, Σ is a subset of Ω×R.

Then, it is sufficient to show that Σ is a graph. Since Σ⊂Ω× [α,β], for h
sufficiently large, τh(Σ) ∩ Σ = ∅ where τh is the translation along the t-axis.
So letting h decrease from +∞ to 0, since σ is a graph on ∂Ω, we get by
the maximum principle that τh(Σ) and Σ do not intersect until h= 0. This
implies that Σ is a minimal graph. �

In order to prove General existence theorem, Theorem 3.14, we shall make
use of Theorem 3.11, together with the classical Perron technique [4] (see also
[7, Section 2.8]).

A function u ∈ C0(Ω) will be called subsolution (resp. supersolution) in
Ω if for every hyperbolic disk D ⊂⊂ Ω and every minimal solution h in D
satisfying u≤ h (resp. u≥ h) on ∂D, we also have u≤ h (resp. u≥ h) in D.
We will have the following properties of C0(Ω) subsolution.

Remark 3.12. (1) A function u ∈ C2(Ω) is a subsolution if and only if
Mu≥ 0. Indeed, the sufficient condition follows from Proposition 3.2. To
prove the necessary condition, assume the contrary that there exists a
subsolution u in Ω satisfying Mu < 0 on some hyperbolic disk D ⊂⊂ Ω.
By Theorem 3.11, there exists a minimal solution h in D such that h= u
on ∂D. Then u ≥ h on D by Proposition 3.2. Since u is a subsolution,
u ≤ h. Thus, u = h in D. This implies that Mu = Mh = 0 in D, a
contradiction.

(2) If u is a subsolution and v is a supersolution in the same bounded domain
Ω and v ≥ u on ∂Ω, then v ≥ u on Ω. To prove this assertion, we suppose
the contrary. Then at some point p0 ∈Ω we have

(u− v)(p0) = sup
Ω

(u− v) =M > 0
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and we may assume there is a disk D =Dr(p0)⊂⊂Ω such that u−v �≡M
on ∂D. Denote by u, v the minimal solutions respectively equal to u, v on
∂D by Theorem 3.11, one sees that

M ≥ sup
∂D

(u− v)≥ (u− v)(p0)≥ (u− v)(p0) =M

and hence the equality holds throughout. By the maximum principle for
minimal solution (Theorem 3.1), it follows that u−v ≡M in D and hence
u− v =M on ∂D, which contradicts the choice of D.

(3) Let u be subsolution in Ω and D be a hyperbolic disk strictly contained
in Ω. Denote by u the minimal solution in D satisfying u= u on ∂D. We
define in Ω the minimal lifting of u (in D) by

U(p) =

{
u(p), p ∈D,

u(p), p ∈Ω \D.

Then the function U is also subsolution in Ω. Indeed, consider an ar-
bitrary hyperbolic disk D′ ⊂⊂ Ω and let h be a minimal solution in D′

satisfying h ≥ U on ∂D′. Since u ≤ U in D′ we have u ≤ h in D′ and
hence U ≤ h in D′ \D. Since U is minimal solution in D, we have by the
maximum principle U ≤ h in D∩D′. Consequently U ≤ h in D′ and U is
subsolution in Ω.

(4) Let u1, u2, . . . , uN be subsolution in Ω. Then the function u(p) =
max{u1(p), . . . , uN (p)} is also subsolution in Ω. This is a trivial con-
sequence of the definition of subsolution.

Corresponding results for supersolution functions are obtained by replacing
u by −u in properties (1), (2), (3) and (4).

Now let Ω be bounded domain and f be a bounded function on ∂Ω. A func-
tion u ∈ C0(Ω) will be called a subfunction (resp. superfunction) relative to
f if u is a subsolution (resp. supersolution) in Ω and u≤ f (resp. u≥ f ) on
∂Ω. By Remark 3.12(2), every subfunction is less than or equal to every su-
perfunction. In particular, constant functions ≤ infΩ f (resp. ≥ supΩ f) are
subfunctions (resp. superfunctions). Denote by Sf the set of subfunctions rel-
ative to f . The basic result of the Perron method is contained in the following
proposition.

Proposition 3.13. The function u(p) = supv∈Sf
v(p) is a minimal solution

in Ω. Furthermore, inf∂Ω f ≤ u≤ sup∂Ω f .

Proof. By Remark 3.12(2), any function v ∈ Sf satisfies v ≤ sup∂Ω f . Since
the constant function v = inf∂Ω f belongs to Sf , this set is nonempty, so that
u is well defined. Let q be an arbitrary fixed point of Ω. By the defini-
tion of u, there exists a sequence {vn}n ⊂ Sf such that vn(q) → u(q). By
replacing vn with max{vn, inf∂Ω f}, we may assume that the sequence {vn}n
is bounded. Now choose R so that the disk D = DR(q)⊂⊂ Ω and define Vn
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to be the minimal lifting of vn in D according to Remark 3.12(3). Then
Vn ∈ Sf , Vn(q)→ u(q) and by Compactness theorem (Theorem 3.10) the se-
quence {Vn}n contains a subsequence {Vnk

}k converging uniformly in any
disk Dρ(q) with ρ <R to a function v that is minimal solution in D. Clearly
v ≤ u in D and v(q) = u(q).

We claim now that in fact v = u in D. For suppose v(q) < u(q) at some
q ∈D. Then there exists a function u ∈ Sf such that v(q) < u(q). Defining
wk =max{u,Vnk

} and also the minimal liftings Wk as in Remark 3.12(3), we
obtain as before a subsequence of the sequence {Wk}k converging to a minimal
solution function w satisfying v ≤ w ≤ u in D and v(q) = w(q) = u(q). But
then by the maximum principle (Theorem 3.1) we must have v = w in D.
This contradicts the definition of u and hence u is minimal solution in Ω. �

We will show the solution that we obtained (called the Perron solution)
will be the solution of the Dirichlet problem as follows.

Theorem 3.14. Let Ω be a bounded admissible domain with {Ci}i the
open arcs of ∂Ω. Let fi ∈C0(Ci) be bounded functions. Assume Ci are mean
convex Euclidean to Ω then there exists a unique minimal solution u on Ω
such that u= fi on Ci for all i.

Proof. The uniqueness of the solution is deduced from General maximum
principle (Theorem 3.4). Let a function f defined on ∂Ω such that f(p) = fi(p)
if p ∈ Ci. Denote by u the Perron solution relative to M and f . We prove
that the minimal solution u satisfies the boundary conditions u = fi on Ci.
Fix ξ ∈Ci, for some i. We must prove that

(3.8) lim
p∈Ω,p→ξ

u(p) = f(ξ).

We construct the local barrier at ξ as follows. For r > 0 small enough,
consider the domain Ω∩Dr(ξ). We approximate Ω∩Dr(ξ) by C2 mean convex
Euclidean domain Ωξ ⊂Ω∩Dr(ξ) by rounding each corner point of Ω∩Dr(ξ).

By Theorem 3.11, there exist minimal solutions w± ∈C2(Ωξ)∩C0(Ωξ) on Ωξ

such that w±(ξ) = f(ξ) and{
w− ≤ f ≤w+ on ∂Ωξ ∩ ∂Ω,

w− ≤ inf∂Ω f ≤ sup∂Ω f ≤w+ on ∂Ωξ ∩Ω.

From the definition of u and the fact that every subfunction is dominated by
every superfunction, we have

w− ≤ u≤w+, on Ωξ,

we obtain (3.8). �
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4. A local Scherk surface in Sol3 and Flux formula

4.1. A local Scherk surface in Sol3.

Theorem 4.1. Let Ω ⊂ H2 be a convex Euclidean quadrilateral domain
whose boundary ∂Ω is composed of open Euclidean geodesic arcs A1,C1,A2

and C2 in that order together with their endpoints. Suppose that

(4.1) �euc(A1) + �euc(A2)< �euc(C1) + �euc(C2).

Let fi be a nonnegative continuous function on Ci, i= 1,2. Then there exists
a minimal solution u in Ω taking +∞ on Ai and fi on Ci for i= 1,2.

This result is an important case of Jenkins–Serrin type theorem. The graph
of the minimal solution in Theorem 4.1 is said to be a local Scherk surface in
Sol3. This construction was motivated by [18, Theorem 2].

Proof of Theorem 4.1. This proof is divided into two cases.

Case 4.1. Case f1 = 0 and f2 = 0.

Proof. Let n be a fixed natural number. By Theorem 3.14, there exists a
minimal solution un in Ω taking n on Ai and 0 on Ci for i= 1,2. By General
maximum principle (Theorem 3.4), 0 ≤ un ≤ un+1. We will prove that the
sequence {un}n is uniformly bounded on compact subsets K of Ω ∪C1 ∪C2.
We first construct minimal annulus.

Let h > 0 be fixed. Let Γi be the curves that are the boundary of Ci× [0, h]
and let Σi be a minimal disk with boundary Γi. Using the maximum principle,
Σi =Ci × [0, h]. By Proposition 2.3, the area calculated in Sol3 of Σi is

A(Σi) =A
(
Ci × [0, h]

)
= h · �euc(Ci).

Consider the annulus A with boundary Γ1 ∪ Γ2 (see Figure 3):

A=Ω∪ τh(Ω)∪
2⋃

i=1

(
Ai × [0, h]

)
,

where τh is the translation along the t-axis. By Proposition 2.3 and the fact
that the translations along the t-axis are isometries, the area calculated in
Sol3 of A is

A(A) = 2A(Ω) + h
(
�euc(A1) + �euc(A2)

)
.

Therefore,

A(A)−
(
A(Σ1) +A(Σ2)

)
= 2A(Ω) + h

(
�euc(A1) + �euc(A2)

− �euc(C1)− �euc(C2)
)
.

By the hypothesis (4.1), A(A)− (A(Σ1) +A(Σ2)) < 0 if h ≥ h0 where h0 is
sufficiently large. Hence, A(A) is strictly less than the sum of the areas of the
disks Σi, and by the Douglas criteria [11] (see also [14, Theorem 1]), there
exists a least area minimal annulus A(h) with boundary Γ1∪Γ2 for all h≥ h0.
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Figure 3. Annulus A.

Assertion 4.1. For all h≥ h0, the annulus A(h) is an upper barrier for the
Killing graphs of the minimal solution un. Moreover, the vertical projections
of the annulus A(h), h≥ h0 is an exhaustion for Ω∪C1 ∪C2.

Proof. For the proof, we refer the reader to [18, p. 271, 272] and [19, p. 126,
127]. �

By this assertion, we conclude that the sequence {un}n is uniformly
bounded on compact subsets of Ω∪C1 ∪C2. By Compactness theorem (The-
orem 3.10), the sequence {un}n converges on compact subsets of Ω to a mini-
mal solution u on Ω which assumes the above prescribed boundary values on
∂Ω. �

Case 4.2. General case.

Proof. For every natural number n, by applying Theorem 3.14, there exists
a minimal solution un on Ω with boundary values

un|Ai = n and un|Ci =min{n, fi} for i= 1,2.

By General maximum principle (Theorem 3.4), un ≤ un+1.

Assertion 4.2. The sequence un is uniformly bounded on every compact
subset K of Ω∪C1 ∪C2.

Proof. Denote by K a compact subset of Ω ∪ C1 ∪ C2. Let Ω′ ⊂ Ω be a
convex Euclidean quadrilateral domain whose boundary ∂Ω′ is composed of
open Euclidean geodesic arcs A′

1,C
′
1,A

′
2 and C ′

2 in that order together with
their endpoints, moreover, C ′

i is a relatively compact subset of Ci, i= 1,2. By
Condition (4.1) and the compactness of the set K, we can choose Ω′ large
enough such that K ⊂ Ω′ and �euc(A

′
1) + �euc(A

′
2)< �euc(C

′
1) + �euc(C

′
2) (see

Figure 4). There is, by the previous case, a minimal solution w on Ω′ which
obtain the values +∞ on A′

i and 0 on C ′
i, i= 1,2.



914 M. H. NGUYEN

Figure 4. The quadrilateral domain Ω′ ⊂Ω.

Since C ′
i is a relatively compact subset of Ci and fi is a continuous function

on Ci, fi is bounded on C ′
i for i = 1,2. By General maximum principle

(Theorem 3.4), we have 0≤ un ≤w+max{supC′
1
f1, supC′

2
f2} on Ω′∪C ′

1∪C ′
2.

Since K is a compact subset of Ω′ ∪ C ′
1 ∪ C ′

2, {un}n is uniformly bounded
on K. �

It follows from Assertion 4.2 and the compactness theorem (Theorem 3.10)
that, the sequence {un}n converges on each compact subset of Ω∪C1 ∪C2 to
a minimal solution u on Ω. Moreover, we have u|Ci = limn→∞ un|Ci = fi and
u|Ai = limn→∞ un|Ai =+∞. This completes the proof. �

�

Proposition 4.2. Let Ω ⊂ H2 be a bounded convex Euclidean domain
whose boundary ∂Ω is composed of an open Euclidean geodesic arc A and an
open mean convex Euclidean arc C with their endpoints. Let f be a bounded
continuous function on C. Then, there exists a minimal solution u in Ω taking
+∞ on A and f on C.

Proof. For every natural number n, by applying Theorem 3.14, there is a
minimal solution un on Ω taking n on A and f on C.

Assertion 4.3. There exists an Euclidean triangular domain T ′ ⊂ H2

whose boundary ∂T ′ is composed of open Euclidean geodesic arcs A′,B′,C ′

together with their endpoints, moreover A⊂A′ and Ω \A′ ⊂ T ′.

Proof. Let d be the intersection of H2 with the Euclidean line in R2 con-
taining A. Since the domain Ω is bounded, there exist two real numbers
x1, y1 with y1 > 0 such that Ω⊂ {(x, y) ∈H2 : x > x1, y > y1}. Let d′ be the
line {(x, y) ∈H2 : x= x1 − 1} if d is of the form {(x, y) ∈H2 : y = y0} and the
line {(x, y) ∈ H2 : y = y1

2 } otherwise. Let p be the point of intersection of d
and d′. For q ∈ d \ {p} and q′ ∈ d′ \ {p}, denote by �(p, q, q′) the Euclidean
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Figure 5. The Euclidean quadrilateral domain T ′ \ T ′′.

triangular domain in H2 with vertices p, q and q′. Since one of the lines d or
d′ is of the form {(x, y) ∈H2 : y = y0} for some y0 > 0, we see that

(4.2)
⋃
q,q′

�
(
p, q, q′

)
=H2 \

(
d∪ d′

)
.

Since the domain Ω is convex Euclidean, by the definitions of d and d′, the
domain Ω is contained in a component of H2 \ (d ∪ d′). It follows from the
boundedness of Ω and Formula (4.2) that there exists an Euclidean triangle
T ′ of a form �(p, q, q′) satisfying the assertion. �

We define δ to be �euc(B
′)+ �euc(C

′)− �euc(A
′), δ > 0. Taking an Euclidean

triangular subdomain T ′′ of T ′ with sides A′′,B′′,C ′′ where B′′ ⊂B′,C ′′ ⊂C ′

such that �euc(A
′′) + �euc(B

′′) + �euc(C
′′)< δ and Ω ∩ T ′′ = ∅ (see Figure 5).

Hence, T ′ \ T ′′ is a convex Euclidean quadrilateral domain whose boundary
is composed of four open Euclidean geodesic arcs A1,C1,A2,C2 in that order
with their endpoints, where A1 =A′,A2 =A′′,C1 ⊂B′ and C2 ⊂C ′. By defi-
nition, we have Ω∪C ⊂ T ′ \T ′′ and �euc(A1)+ �euc(A2)< �euc(C1)+ �euc(C2).

It follows from Theorem 4.1 that there exists a minimal solution w defined
on the Euclidean quadrilateral domain T ′ \ T ′′ taking the value +∞ on Ai

and 0 on Ci, i= 1,2. By General maximum principle (Theorem 3.4), we have

min
{
0, inf

C
f
}
≤ un ≤ un+1 ≤w+ sup

C
f on Ω∪C.

It follows from Compactness theorem (Theorem 3.10) that the sequence {un}n
converges on every compact subset of Ω ∪ C to a minimal solution u on Ω.
Moreover, we have u|C = f and u|A = limn→∞ un|A = +∞. This completes
the proof. �

Lemma 4.3. Let Ω ⊂ H2 be a bounded convex Euclidean domain whose
boundary ∂Ω is composed of an open Euclidean geodesic arc A and an open
mean convex Euclidean arc C with their endpoints. Let K be a compact subset
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of Ω∪C. There exists a real number M such that if u is a minimal solution
on Ω and

(1) if lim inf u≥ c for any approach to C within Ω and if lim inf u >−∞ for
any approach to A within Ω then u≥ c−M on K;

(2) if limsupu≤ c for any approach to C within Ω and if limsupu <+∞ for
any approach to A within Ω then u≤ c+M on K.

Proof. Suppose that lim inf u ≥ c for any approach to C within Ω and
lim inf u > −∞ for any approach to A within Ω (otherwise let u := −u). It
follows from Proposition 4.2 that there exists a minimal solution w on Ω
such that w|A = +∞ and w|C = 0. Define M = supK w ∈ R, by the general
maximum principle (Theorem 3.4), we have u ≥ c− w on Ω. From this, we
conclude that u≥ c−M on K. This completes the proof. �

Corollary 4.4 (Straight line lemma). Let Ω⊂H2 be a domain, let C ⊂
∂Ω be an open mean convex Euclidean arc (convex towards Ω) and u be a
minimal solution in Ω. If u diverges to +∞ or −∞ as one approaches C
within Ω, then C is an Euclidean geodesic arc.

Proof. Assume the contrary, that there exists a minimal solution u over Ω
that takes the value +∞ on C where C is not an Euclidean geodesic arc. Let
Γ(C) be the open Euclidean geodesic arc of H2 joining the endpoints of C.
Denote by Ω(C) the domain delimited by C ∪ Γ(C). After shrinking C if
necessary, we may assume that Ω(C)∪ Γ(C)⊂Ω (see Figure 6).

Let q be a point in Ω. It follows from the lemma 4.3 that there exists a real
number M depending only on q such that u(q)≥ c−M for all real number c,
a contradiction. �

Theorem 4.5 (Boundary values lemma, [3, p. 1882]). Let Ω⊂H2 be a do-
main and let C be an open mean convex Euclidean arc in ∂Ω. Suppose {un}n
is a sequence of minimal solutions in Ω that converges uniformly on every

C

Γ(C)

Ω(C) q

Figure 6. The domain Ω(C).
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compact subset of Ω to a minimal solution u. Suppose each un is continuous
on Ω∪C.

(1) If {un|C}n converges uniformly on every compact subset of C to a con-
tinuous function f on C then u is continuous on Ω∪C and u|C = f .

(2) If {un|C}n diverges uniformly on every compact subset of C to +∞ (resp.
−∞), then u diverges to +∞ (resp. −∞) when we approach C within Ω.

Proof. For p ∈C, define f(p) = limn→∞ un(p). It is sufficient to show that,
for p ∈C and M ∈R such that f(p)>M , there exists a neighborhood U of p
in Ω∪C that satisfies u >M on U ∩Ω.

Let M ′ such that M < M ′ < f(p). Since f is continuous (or f ≡ +∞)
and un|C converges uniformly on every compact subset of C to f , there is a
neighborhood C ′ of p in C and N0 ∈N such that un(x)>M ′ for every x ∈C ′

and for every n≥N0. Consider two cases as follows.
(i) If C ′ is not an Euclidean geodesic arc. Denote by Γ(C ′) the open

Euclidean geodesic arc of H2 joining the endpoints of C ′ and by Ω′ the domain
of H2 delimited by C ′ ∪Γ(C ′) (see Figure 7). After shrinking C ′ if necessary,
we may assume that Ω′ ∪ Γ(C ′) is contained in Ω.

By Proposition 4.2, there exists a minimal solution w on Ω′ such that
w|C′ =M ′ and w|Γ(C′) =−∞. It follows from the general maximum principle
(Theorem 3.4), that un ≥ w on Ω′ for every n≥N0. Hence, we have u ≥ w
on Ω′. Since w is continuous on Ω′ ∪ C ′ and w(p) = M ′ > M , there is a
neighborhood U of p in Ω′ ∪C ′ such that w >M on U . Therefore, u >M on
U ∩Ω.

(ii) If C ′ is an Euclidean geodesic arc. Consider a convex Euclidean quadri-
lateral domain P ⊂Ω such that ∂P is composed of four open Euclidean geo-
desic arcs B1,C1,B2,C2 in that order with their endpoints, where p ∈C1 ⊂C ′,
∂P \C ′ ⊂Ω and �euc(B1) + �euc(B2)< �euc(C1) + �euc(C2) (see Figure 8).

C ′

Γ(C ′)

Ω′
p

Figure 7. The domain Ω′.
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Figure 8. The domain Ω′ when C ′ is Euclidean geodesic.

Since un converges uniformly on each compact subset of Ω to u, M ′′ :=
infx∈C2,n∈N un(x)>−∞. By Theorem 4.1, there is a minimal solution w on
P such that w|C1 =M ′,w|C2 =M ′′ and w =−∞ on B1 ∪B2. It follows from
the general maximum principle (Theorem 3.4), that un ≥ w on P for every
n≥N0. Hence, we have u≥ w on P . Since w is continuous on P ∪ C1 and
w(p) = M ′ > M , there exists a neighborhood U of p in P ∪ C1 such that
w >M on U . Then u >M on U ∩Ω. This completes the proof. �
4.2. Flux formula. Fix a minimal solution u on a domain Ω ⊂ H2. By
definition, we have that div(yXu) = 0 where Xu = y∇u√

1+y2‖∇u‖2
is a vector

field on Ω, ‖Xu‖< 1.
Let γ be an arc in Ω ∩H2 such that its Euclidean length �euc(γ) is finite.

Denote by ν a unit normal to γ in H2. Then, we define the flux Fu(γ) of u
across γ by

Fu(γ) =

∫
γ

〈yXu, ν〉ds,

if γ ⊂ Ω, if not, we define Fu(γ) = Fu(Γ), where Γ is an arc in Ω joining the
end-points of γ such that �euc(Γ)<∞ and the domain in H2 delimited by γ
and Γ is simply connected. Clearly, Fu(γ) changes sign if we choose −ν in
place of ν. In the case γ ⊂ ∂Ω, ν will always be chosen to be the outer normal
to ∂Ω.

The following result gives geometric interpretation of flux. Let γ : (0,1)→
Ω be an arc in Ω. Denote by ν a unit normal to γ. Denote by γ̂ the arc on
the graph Gr(u) defined by (0,1)→ Sol3, γ̂(t) = (γ(t), u(γ(t))). Let ν̂ be the
unit normal to γ̂ in Gr(u) such that the frame (N, γ̂′, ν̂) is positively oriented
at a point γ̂(t) if and only if the frame (∂t, γ

′, ν) is positively oriented at γ(t).

Proposition 4.6. Let u be a minimal solution in a domain Ω ⊂ H2 and
let γ : (0,1)→Ω be an arc in Ω. Then, we have

Fu(γ) =

∫
γ̂

〈∂t, ν̂〉ds.
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Proof. Without loss of generality, we assume that the frames (∂t, γ
′, ν) and

(N, γ̂′, ν̂) are positively oriented. Then N × γ̂′ = ‖γ̂′‖ν̂ and ∂t × γ′ = y‖γ′‖ν.
Since γ̂(t) = (γ(t), u(γ(t))), we have γ̂′ = γ′ + (u ◦ γ)′∂t. It follows that∥∥γ̂′∥∥ν̂ =N × γ̂′ =

(
−Xu +

1

yW
∂t

)
×
(
γ′ + (u ◦ γ)′∂t

)
.

From this, we deduce that∥∥γ̂′∥∥〈∂t, ν̂〉= 〈
∂t,−Xu × γ′〉= 〈

Xu,−γ′ × ∂t
〉
=
∥∥γ′∥∥y〈Xu, ν〉.

Integrating this on (0,1), we see that∫
γ̂

〈∂t, ν̂〉ds=
∫ 1

0

∥∥γ̂′∥∥〈∂t, ν̂〉dt= ∫ 1

0

∥∥γ′∥∥y〈Xu, ν〉dt=
∫
γ

〈yXu, ν〉ds,

which proves the proposition. �

Proposition 4.7 (Flux theorem). Let u be a minimal solution on a domain
Ω⊂H2.

(1) For every curve γ in Ω∩H2 that �euc(γ)<∞ we have |Fu(γ)| ≤ �euc(γ).
(2) For every admissible domain Ω′ of Ω such that �euc(∂Ω

′) <∞, we have
Fu(∂Ω

′) = 0.
(3) Let γ be an open arc in Ω or an open mean convex Euclidean arc in ∂Ω

on which u is continuous, obtains the finite value and �euc(γ)<∞. Then
|Fu(γ)|< �euc(γ).

(4) Let γ ⊂ ∂Ω be an open Euclidean geodesic arc (�euc(γ)<∞) such that u
diverges to +∞ (resp. −∞) as one approaches γ within Ω, then Fu(γ) =
�euc(γ) (resp. Fu(γ) =−�euc(γ)).

Proof. (1) - Case γ ⊂Ω. Since ‖Xu‖< 1 we have∣∣Fu(γ)
∣∣≤ ∫

γ

∣∣〈yXu, ν〉
∣∣ds≤ ∫

γ

y ds= �euc(γ).

- Case γ �⊂Ω. By definition, for every ε > 0, there is an arc Γ⊂Ω joining the
endpoints of γ such that �euc(Γ)≤ �euc(γ) + ε and Fu(γ) = Fu(Γ). Moreover,
the previous case yields |Fu(Γ)| ≤ �euc(Γ). Then |Fu(γ)| ≤ �euc(γ) + ε. This
proved the result.

(2) - Case Ω′ is bounded. By divergence theorem, we have

Fu

(
∂Ω′)= ∫

∂Ω′
〈yXu, ν〉ds=

∫
Ω′

div(yXu)dA= 0.

- Case Ω′ is unbounded. Denote by E the set of ideal vertices of Ω′. For each
p ∈E, we take a net of the geodesics Hp,n that converges to p (see Figure 9).
Let us denote by Hp,n the component of H2 \Hp,n containing p on its ideal
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Figure 9. The domain Ω′ and Hp,n.

boundary. Assume Hp1,1 ∩ Hp2,1 = ∅ for every different ideal vertices p1, p2
of Ω′. We define

Ω′
n =Ω′

∖(⋃
p∈E

Hp,n

)
.

These subdomains of Ω′ are bounded. It follows from the previous case
that Fu(∂Ω

′
n) = 0. Thus, we have

Fu

(
∂Ω′)= Fu

(
∂Ω′)− Fu

(
∂Ω′

n

)
=

∑
p∈E

Fu

(
∂Ω′ ∩Hp,n

)
− Fu

(
∂Ω′

n \ ∂Ω′).
Since �euc(∂Ω

′)<∞, by (1) we have∑
p∈E

∣∣Fu

(
∂Ω′ ∩Hp,n

)∣∣≤ ∑
p∈E

�euc
(
∂Ω′ ∩Hp,n

)
→ 0 as n→∞.

Moreover, applying (1) again yields∣∣Fu

(
∂Ω′

n \ ∂Ω′)∣∣≤ �euc
(
∂Ω′

n \ ∂Ω′)≤ ∑
p∈E

�euc(Hp,n)→ 0 as n→∞.

This completes the proof.
(3) - Case γ ⊂Ω. Since ‖Xu‖< 1 we have |〈yXu, ν〉|< y, then∣∣Fu(γ)

∣∣≤ ∫
γ

∣∣〈yXu, ν〉
∣∣ds < ∫

γ

y ds= �euc(γ).

- Case γ ⊂ ∂Ω. It is sufficient to show that |Fu(γ)|< �euc(γ) for a small arc γ.
Fix p ∈ γ. Let ε > 0 such that Ωε(p) := Ω∩Dε(p) is a domain whose boundary
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Figure 10. The domain Ωε(p).

is composed of two open arcs C1,C2 and their endpoints, moreover C1 ⊂ γ
and C2 ⊂Ω∩ ∂Dε(p) (see Figure 10).

By the general existence theorem (Theorem 3.14), for δ ∈ {−1,1}, there is
a minimal solution vδ on Ωε(p) with vδ = u+ δ on C1 and vδ = u on C2. It
follows from the Lemma 3.5, that∫

Ωε(p)

〈∇vδ −∇u, yXvδ − yXu〉dA> 0.

Since u, vδ are the minimal solutions

〈∇vδ −∇u, yXvδ − yXu〉= div
(
(vδ − u)(yXvδ − yXu)

)
.

By the divergence theorem and the fact that vδ − u takes the value δ on C1

and 0 on C2, we have

0<

∫
∂Ωε(p)

〈
(vδ − u)(yXvδ − yXu), ν

〉
ds= δ

(
Fvδ (C1)− Fu(C1)

)
.

Combining these inequalities and Assertion (1), we obtain{
Fu(C1)<Fv1(C1)≤ �euc(C1),

Fu(C1)>Fv−1(C1)≥−�euc(C1),

which completes the proof.
(4) We show for the case u diverges to +∞ as one approaches γ within Ω.

For each q ∈ Ω, denote by N(q) the unit upward pointing normal vector to
the graph of u− u(q) at the point (q,0). We first prove that

(4.3) lim
q∈Ω,q→p

N(q) =−ν(p), ∀p ∈ γ.

Assume the contrary that there exists a sequence qn ∈ Ω, qn → p such that
limn→∞N(qn) = v �= −ν(p). Let Σ be the Killing graph of u. Define
Qn = (qn, u(qn)). Since u|γ = +∞, dΣ(Qn, ∂Σ) ≥ dH2(qn, ∂Ω \ γ). More-
over, limn→∞ qn = p, there exists R> 0 such that dΣ(Qn, ∂Σ)>R for n large
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Figure 11. The domain P(ε).

enough. Since Σ is stable, we deduce from Schoen’s curvature estimate [21]
(see also [2, Theorem 2.10]) that

sup
q∈DΣ

R/2(Qn)

∥∥A(q)
∥∥≤ κ,

where A is the second fundamental form of Σ and κ is an absolute constant.
Hence, by [2, Lemma 2.4], around each Qn the surface Σ is a graph over

a disk Dr(Qn) of the tangent plane at Qn of Σ and the graph has bounded
distance from the disk Dr(Qn). The radius of the disk depends only on R,
hence it is independent of n. So, if qn is close enough to γ, then the hori-
zontal projection of Dr(Qn) and thus of the surface Σ is not contained in Ω,
contradiction. Thus, (4.3) is proved.

Let η be a compact subarc of γ. Define d := 1
2deuc(η, ∂Ω \ γ). For each

0 < ε ≤ d, let P(ε) ⊂ Ω be the rectangular domain with sides η, η1(ε), η2(ε)
and η3(ε) in that order such that �euc(η1(ε)) = �euc(η3(ε)) = ε (see Figure 11).
Denote by νε the unit outer normal to ∂P(ε). By definition, νε(p) = ν(p)
for p ∈ η. For each q ∈ P(d), define υ(q) = νε(q) where ε is the unique real
number satisfying q ∈ η2(ε). For each p ∈ η, we have limq∈Ω,q→p υ(q) =−ν(p).
Combining with (4.3), we obtain

lim
q∈Ω,q→p

〈
Xu(q), υ(q)

〉
=−1, ∀p ∈ η.

We deduce that

(4.4) Fu

(
η2(ε)

)
=

∫
η2(ε)

〈yXu, νε〉ds ε→0−−−→−
∫
η

y ds=−�euc(η).

Now applying Assertions (1) and (2) for ∂P(ε), we have

0 = Fu

(
∂P(ε)

)
= Fu(η) +

3∑
i=1

Fu

(
ηi(ε)

)
,

Fu

(
ηi(ε)

)
≤ �euc

(
ηi(ε)

)
= ε, ∀i ∈ {1,3}.

Combining with (4.4) and Assertion (1), we have Fu(η) = �euc(η). It follows
that Fu(γ) = �euc(γ). �
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Proposition 4.8. Let {un}n be a sequence of minimal solutions on a fixed
domain Ω⊂H2 which extends continuously to ∂Ω and let A be an Euclidean
geodesic arc in ∂Ω such that �euc(A)<∞. Then

(1) If {un}n diverges uniformly to +∞ on compact sets of A and while re-
maining uniformly bounded on compact sets of Ω, then

lim
n→∞

Fun(A) = �euc(A).

(2) If {un}n diverges uniformly to +∞ on compact sets of Ω while remaining
uniformly bounded on compact sets of and A, then

lim
n→∞

Fun(A) =−�euc(A).

5. Monotone convergence theorem and Divergence set theorem

In this section, we will state Monotone convergence theorem and Divergence
set theorem for minimal solutions. The results are adapted from [10], [18].

5.1. Monotone convergence theorem. This subsection will be devoted to
the proof of Monotone convergence theorem (Theorem 5.2). Interior gradient
estimate (Theorem 3.6) implies a version of the Harnack inequality for minimal
solutions, which is crucial for this proof (see [9, Theorem 3] for a similar result
for minimal solutions in R3).

Theorem 5.1 (Local Harnack inequality). Let DR(p) be a disk in H2.
There exists a continuous function r : [0,∞)→ (0,∞) and a function Φ(t, s)
defined on t ∈ [0,∞), s ∈ [0, r(t)) such that

(5.1) u(q)≤Φ
(
u(p),dH2(p, q)

)
for every nonnegative minimal solution u on DR(p) and every point q ∈DR(p)
satisfying dH2(p, q)< r(u(p)). Moreover,

(1) the function r is a strictly decreasing function tending to zero as t tends
to infinity;

(2) for each fixed t, Φ(t,−) is a continuous strictly increasing function with
Φ(t,0) = t and lims→r(t)− Φ(t, s) =∞;

(3) for t1, t2 ∈ [0,∞), t1 < t2 and s ∈ [0, r(t2)), we have Φ(t1, s)<Φ(t2, s).

Proof. Let u be a nonnegative minimal solution on DR(p) and let q be a
point of DR(p). Denote by γ : [0,R)→DR(p) the unique unit speed hyperbolic
geodesic passing through q with initial point p. Let f(t) be the function

eC(1+t2) as in Interior gradient estimate (Theorem 3.6), where C = C(R,p).
For s ∈ [0,R), since u is defined on the disk DR−s(γ(s)), we have by Interior
gradient estimate (Theorem 3.6):

(u ◦ γ)′(s)≤
∥∥∇u

(
γ(s)

)∥∥≤ f

(
u(γ(s))

R− s

)
.
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For each t≥ 0, we define a function s 
→Φ(t, s) by the conditions

(5.2)
dΦ

ds
(t, s) = f

(
Φ(t, s)

R− s

)
, Φ(t,0) = t.

Define the function υ(t, s) = Φ(t,s)
R−s . The conditions (5.2) yield

dυ
ds (t, s)

f(υ(t, s)) + υ(t, s)
=

1

R− s
, υ(t,0) =

t

R
.

These conditions give

(5.3)

∫ υ(t,s)

t
R

ds̄

f(s̄) + s̄
= log

R

R− s
.

By a similar argument, we have

(5.4)

∫ u(γ(s))
R−s

u(p)
R

ds̄

f(s̄) + s̄
≤ log

R

R− s
.

It follows from (5.3) and (5.4) that u(γ(s))≤Φ(u(p), s) whenever Φ(u(p),−)
is well defined on [0, s]. This proves (5.1).

Since the right-hand side of (5.3) is a strictly increasing function on s ∈
[0,R) and tending to +∞ as s→R and the integral

∫∞
t
R

ds̄
f(s̄)+s̄ is convergent,

the functions υ(t,−),Φ(t,−) are defined on [0, r(t)) where

(5.5) r(t) =R− exp

(
log(R)−

∫ ∞

t
R

ds̄

f(s̄) + s̄

)
and lims→r(t)− υ(t, s) = ∞. Since r(t) < R, we have lims→r(t)− Φ(t, s) =
lims→r(t)−(R − s)υ(t, s) = ∞. From this and (5.3), we obtain (2). Asser-
tion (1) follows from (5.5). And finally, (5.3) gives υ(t1, s)< υ(t2, s) if t1 < t2
and 0≤ s < r(t2), which proves Assertion (3). �

Theorem 5.2 (Monotone convergence theorem). Let {un}n be a monotone
sequence of minimal solutions on a domain Ω ⊂ H2. We define the subsets
U = U({un}n) and V = V({un}n) of Ω by the formulas

U =
{
p ∈Ω : sup

n∈N

∣∣un(p)
∣∣<∞

}
, V =Ω \ U .

Then, U is an open set. Moreover, {un}n converges uniformly to a minimal
solution on compact subsets of U and diverges uniformly to +∞ or −∞ on
compact subsets of V .

The set U (resp. V) in Monotone convergence theorem (Theorem 5.2) is
called to be convergence set (resp. divergence set) of the sequence of minimal
solutions {un}n.



DIRICHLET PROBLEM FOR THE MINIMAL SURFACE EQUATION IN Sol3 925

Proof of Theorem 5.2. Suppose that {un}n be an increasing sequence (oth-
erwise let un :=−un). Let p be a point of U . There is a positive real number
R such that

DR(p)⊂Ω, C := inf
q∈DR(p)

u1(q)>−∞.

Define μ = supn∈N un(p) − C ∈ R≥0. The function Φ(t, s) in Local Har-
nack inequality (Theorem 5.1) is well defined on [0, μ] × [0, r(μ)). Define
ε= 1

2 min{r(μ),R}. For each q ∈Dε(p), by using the local Harnack inequality
(Theorem 5.1), we have

(5.6) un(q)−C ≤Φ
(
un(p)−C,dH2(p, q)

)
≤Φ

(
μ,

r(μ)

2

)
.

By the definition of U , Dε(P )⊂U . Then U is open.
Since {un}n is monotonically increasing, by (5.6), the sequence {un}n is

uniformly bounded on compact subsets of U . It follows from the monotonicity
and Compactness theorem (Theorem 3.10) that {un}n converges uniformly to
a minimal solution on compact subsets of U .

Finally, by the Dini’s monotone convergence theorem, {un}n diverges uni-
formly to +∞ on compact subsets of V . We include a proof for completeness.
Let K be a compact subset of V and let N ∈ R be given. For each n let
Vn = {p ∈ V : un(p)>N}. Each un is continuous so Vn is an open subset of V .
Since un ≤ un+1, we have Vn ⊂ Vn+1. Since un converges pointwise to +∞ on
V , the sequence {Vn}n is an open cover of V . Moreover, since K is compact,
there is some n̄ ∈N depending on N such that K ⊂ Vn for all n≥ n̄. That is,
if n≥ n̄ and p ∈K, then un(p)>N . This completes the proof. �

5.2. Divergence set theorem. We now show that the boundary ∂V of the
divergence set V has a very special structure, when V is not empty.

Theorem 5.3 (Divergence set theorem). Let Ω ⊂ H2 be a admissible do-
main whose boundary is composed with finitely open mean convex Euclidean
arcs Ci. Let {un}n be an increasing or decreasing sequence of minimal so-
lutions on Ω. Then, for each open arc Ci, we assume that, for every n, un

extends continuously on Ci and either {un|Ci}n converges uniformly on every
compact subset of Ci to a continuous function or {un|C}n diverges uniformly
on every compact subset of Ci to +∞ or −∞. Let V = V({un}) be the diver-
gence set associated to {un}n.
(1) The boundary of V consists of the union of a set of non-intersecting in-

terior Euclidean geodesic chords in Ω joining two points of ∂Ω, together
with arcs in ∂Ω. Moreover, a component of V cannot be an isolated point.

(2) A component of V cannot be an interior chord.
(3) No two interior chords in ∂V can have a common endpoint at a convex

corner of V .
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(4) The endpoints of interior Euclidean geodesic chords are among the vertices
of ∂Ω. So the boundary of V has a finite set of interior Euclidean geodesic
chords in Ω joining two vertices of ∂Ω.

Proof. Without loss of generality, assume that the sequence {un}n is in-
creasing and the divergence set is not empty.

(1) It is clear by Lemma 4.3 and Straight line lemma (Corollary 4.4) that
each arc of ∂V must be Euclidean geodesic and that no vertex of ∂V lies in
Ω, then Assertion (1) follows (see [9, Theorem 6.2] for more details).

(3) Assume the contrary that (3) does not hold. Let γ1, γ2 be two arcs of
∂V having a common endpoint p ∈ ∂Ω at a convex corner of V . Choose two
points qi ∈ γi, i = 1,2 such that the triangle � with vertices p, q1, q2 lies in
Ω. We can always assume that the Euclidean triangle � is either in U or
in V . Indeed, if � �⊂ V , we take a component �′ of U ∩ �. Let γ′

1, γ
′
2 be

two Euclidean geodesic chords in Ω having a common endpoint p such that
the domain delimited by them is the smallest domain containing �′. Then
γ′
1, γ

′
2 ⊂ ∂V and �′ is the triangle delimited by γ′

1, γ
′
2 and q1q2 and �′ ⊂ U .

We can choose γ′
1, γ

′
2 in place of γ1, γ2. By Proposition 4.8, we have

0 = Fun(∂�) = Fun(pq1) + Fun(pq2) + Fun(q1q2),

lim
n→∞

Fun(pqi) =

{
�euc(pqi) if �⊂U ,
−�euc(pqi) if �⊂V ,

i= 1,2.

On the other hand limn→∞ |Fun(q1q2)| ≤ �euc(q1q2). Hence

�euc(q1q2)≥ �euc(pq1) + �euc(pq2),

a contradiction.
(2) and (3) are proved with analogous arguments, using Lemma 4.3 and

Straight line lemma (Corollary 4.4). The details are left to the reader (see,
for instance, [10, pp. 329–331]). �

6. Jenkins–Serrin type theorem

Let Ω⊂H2 be a domain whose boundary ∂∞Ω consists of a finite number
of open Euclidean geodesic arcs Ai,Bi, a finite number of open, mean convex
Euclidean arcs Ci (convex towards Ω) together with their endpoints, which
are called the vertices of Ω and those in ∂∞H2 are called ideal vertices of Ω.
We mark the Ai edges by +∞ and the Bi edges by −∞, and assign arbitrary
continuous data fi on the arcs Ci, respectively. Assume that no two Ai edges
and no two Bi edges meet at a convex corner. We call such a domain Ω
Scherk domain (see Figure 12). Assume in addition that, the ideal vertices of
Scherk domain are the removable points. A solution to the Dirichlet problem
on Ω is by definition a minimal solution on Ω assuming the above prescribed
boundary values on the arcs Ai,Bi and Ci.
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Figure 12. An example of Scherk domain.

Figure 13. A polygonal domain P inscribed in Ω.

It is worth noting that if Ω is a Scherk domain, the Euclidean length of
boundary ∂∞Ω is finite.

An Euclidean polygonal domain P in H2 is a domain whose boundary ∂∞P
is composed of finitely many open Euclidean geodesic arcs in H2 together with
their endpoints, which are called the vertices of P . An Euclidean polygonal
domain P is said to be inscribed in a Scherk domain Ω if P ⊂Ω and its vertices
are among the vertices of Ω. We notice that a vertex may be in ∂∞H2 and
an edge may be one of the Ai or Bi (see Figure 13).
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Given an Euclidean polygonal domain P inscribed in Ω, we denote by
�euc(P) the Euclidean perimeter of ∂P , and by aeuc(P) and beuc(P) the sum
of the Euclidean lengths of the edges Ai and Bi lying in ∂P , respectively.

Now is a good time to state and to prove the main theorem of this paper.
This theorem is similar in spirit to that of [10], [18], [3], [19], [12].

Theorem 6.1 (Jenkins–Serrin type theorem). Let Ω be a Scherk domain
in H2 with the families {Ai},{Bi},{Ci}.
(1) If the family {Ci} is nonempty, there exists a solution to the Dirichlet

problem on Ω if and only if

(6.1) 2aeuc(P)< �euc(P), 2beuc(P)< �euc(P)

for every Euclidean polygonal domain P inscribed in Ω. Moreover, such
a solution is unique if it exists.

(2) If the family {Ci} is empty, there exists a solution to the Dirichlet problem
on Ω if and only if

(6.2) aeuc(P) = beuc(P)

when P = Ω and the inequalities in (6.1) hold for all other Euclidean
polygonal domains P inscribed in Ω. Such a solution is unique up to an
additive constant, if it exists.

Proof. The uniqueness of the solution is deduced from Theorem 6.2.
Let us now prove that the conditions of Jenkins–Serrin type theorem (The-

orem 6.1) are necessary for the existence. Let u be a solution to the Dirichlet
problem on Ω. When the family {Ci} is empty and P =Ω, using Flux theorem
(Proposition 4.7), we have

0 = Fu(∂P) =
∑

Ai⊂∂P
Fu(Ai) +

∑
Bi⊂∂P

Fu(Bi)

=
∑

Ai⊂∂P
�euc(Ai) +

∑
Bi⊂∂P

−�euc(Bi)

= aeuc(P)− beuc(P),

as the condition (6.2).
In the other case, ∂P \ ((

⋃
Ai⊂∂P Ai)∪ (

⋃
Bi⊂∂P Bi)) is nonempty and u is

continuous on this set. By Flux theorem (Proposition 4.7), we have

0 = Fu(∂P)

=
∑

Ai⊂∂P
Fu(Ai) +

∑
Bi⊂∂P

Fu(Bi)

+ Fu

(
∂P

∖(( ⋃
Ai⊂∂P

Ai

)
∪
( ⋃

Bi⊂∂P
Bi

)))
,
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Ai⊂∂P

Fu(Ai) =
∑

Ai⊂∂P
�euc(Ai) = aeuc(P),

∑
Bi⊂∂P

Fu(Bi) =
∑

Bi⊂∂P
−�euc(Bi) =−beuc(P)

and ∣∣∣∣Fu

(
∂P

∖(( ⋃
Ai⊂∂P

Ai

)
∪
( ⋃

Bi⊂∂P
Bi

)))∣∣∣∣
< �euc

(
∂P

∖(( ⋃
Ai⊂∂P

Ai

)
∪
( ⋃

Bi⊂∂P
Bi

)))
= �euc(P)− aeuc(P)− beuc(P).

We obtain |aeuc(P) − beuc(P)| < �euc(P) − aeuc(P) − beuc(P). It follows the
conditions (6.1).

Finally, we prove that the conditions of Jenkins–Serrin type theorem (The-
orem 6.1) are sufficient. We distinguish the following cases:

Case 6.1. Assume that the families {Ai} and {Bi} are both empty and the
continuous functions fi are bounded.

Proof. For any ideal vertex p of Ω, we take a net of geodesics Hp,n which
converges to p. Denote by Hp,n the component of H2 \ Hp,n containing p

on its ideal boundary. Assume Hp1,1 ∩ Hp2,1 = ∅ for every different ideal

vertices p1, p2 of Ω and assume that Hp,1 doesn’t contain the vertices of Ω
in H2 where p is an ideal vertex. Let us define Ωn a mean convex Euclidean
subdomain of Ω delimited by ∂Ω \

⋃
p∈E Hp,n and by the Euclidean geodesics

in Ω ∩ (
⋃

p∈E Hp,n) joining the points of ∂Ω ∩ (
⋃

p∈E Hp,n) where E is the
set of ideal vertices of Ω. By definition, the boundary of Ωn is composed of
open, mean convex Euclidean arcs C ′

i,n ⊂Ci and open Euclidean geodesic arcs
Cp,n ⊂Hp,n, p ∈E together with their endpoints.

By Theorem 3.14, for each n ∈ N, there exists a minimal solution un on
an Euclidean polygonal domain of Ωn such that un = fi on C ′

i,n and un = 0
on

⋃
p∈E Cp,n. By General maximum principle (Theorem 3.4) the sequence

{un}n is uniformly bounded on Ω. By Compactness theorem (Theorem 3.10)
there exists a subsequence of the sequence {un}n converges uniformly on every
compact set of Ω to a minimal solution u : Ω→ R that obtains the values fi
on Ci. �

Case 6.2. The family {Bi} is empty and the functions fi are non-negative.

Proof. There exists, by the previous step 6.1, for each n, a minimal solution
un on Ω taking the value n on Ai and min{n, fi} on Ci. It follows from the
general maximum principle (Theorem 3.4) that 0 ≤ un ≤ un+1 for each n.
Hence, we can apply Divergence set theorem (Theorem 5.3).
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Assertion 6.1. The divergence set V = V({un}n) is empty.

Proof. Assume the contrary, that V is not empty. By Straight line lemma
(Corollary 4.4) and Divergence set theorem (Theorem 5.3), V consists of a
finite number of Euclidean polygonal domains inscribed in Ω. Let P be a
component of V . By Flux theorem (Proposition 4.7) and Proposition 4.8, we
have:

0 = Fun(∂P) =
∑

Ai⊂∂P
Fun(Ai) + Fun

(
∂P

∖(⋃
i

Ai

))
,∣∣∣∣ ∑

Ai⊂∂P
Fun(Ai)

∣∣∣∣ ≤ ∑
Ai⊂∂P

∣∣Fun(Ai)
∣∣≤ ∑

Ai⊂∂P
�euc(Ai) = aeuc(P),

and

lim
n→∞

Fun

(
∂P

∖(⋃
i

Ai

))
=−�euc

(
∂P

∖(⋃
i

Ai

))
=−

(
�euc(P)− aeuc(P)

)
.

We conclude that �euc(P) − aeuc(P) ≤ aeuc(P), which contradicts with the
condition (6.1). �

By Assertion 6.1, we have U({un}n) = Ω. Thus {un}n converges uniformly
on the compact sets of Ω to a minimal solution u. By Boundary values lemma
(Theorem 4.5), u takes the values +∞ on Ai and fi on Ci. �

Case 6.3. The family {Ci} is nonempty.

Proof. By the previous steps, 6.1 and 6.2, there exists the minimal solutions
u+, u− and un on Ω with the following boundary values

Ai Bi Ci

u+ +∞ 0 max{fi,0}
un n −n [fi]

n
−n

u− 0 −∞ min{fi,0}

where [fi]
n
−n is defined by

[fi]
n
−n(p) =

⎧⎪⎨⎪⎩
−n if fi(p)≤−n,

fi(p) if − n < fi(p)< n,

n if fi(p)≥ n.

It follows from General maximum principle (Theorem 3.4) that u− ≤ un ≤
u+ for each n. Then there exists, by Compactness theorem (Theorem 3.10)
a subsequence of {un}n converging on compact subsets of Ω to a minimal
solution u on Ω. Moreover, by Boundary values lemma (Theorem 4.5), u
takes the desired boundary conditions. �
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Case 6.4. The family {Ci} is empty.

Proof. We fix a number n ∈ N. There exists, by Case 6.1, a minimal so-
lution vn on Ω that obtains the values n on Ai and 0 on Bi. It follows
from General maximum principle (Theorem 3.4) that 0 ≤ vn ≤ n. For each
c ∈ (0, n), we define

Ec = {vn > c}, Fc = {vn < c}.
Since vn = n on Ai, there exists a component Ei

c of Ec satisfying Ai ⊂ ∂Ei
c.

Moreover, by the general maximum principle (Theorem 3.4), Ec =
⋃

iE
i
c. Sim-

ilarly, there exists, for each i, a component F i
c of Fc satisfying Bi ⊂ ∂F i

c , and,
we have Fc =

⋃
iF

i
c . A detailed proof can be found in [3, Proof of Theorem 1].

The set Fc is disconnected (resp. connected) for c= ε (resp. c= n− ε) with
ε > 0 small enough. We define

μn = inf
{
c ∈ (0, n) : the set Fc is connected

}
, un = vn − μn.

By definition, un is a minimal solution on Ω which assumes the values n−μn

on Ai and −μn on Bi.

Assertion 6.2. There exist two piecewise minimal solutions u+, u− on Ω
such that u− ≤ un ≤ u+ for every n.

Proof. There exist, by the case 6.2, the minimal solutions u±
i on Ω such

that

u+
i =

{
∞ on

⋃
i′ =iAi′ ,

0 on Ai ∪ (
⋃

j Bj),
u−
i =

{
−∞ on

⋃
i′ =iBi′ ,

0 on Bi ∪ (
⋃

j Aj).

Define

u+ =max
i

u+
i , u− =min

i
u−
i .

Observe that, by definition of μn, both Eμn and Fμn are disconnected. In
particular, for every i1, there exists an i2 such that Ei1

μn
∩ Ei2

μn
= ∅ and we

obtain, applying the maximum principle,

0≤ un|Ei1
μn

≤ u+
i2
|
E

i1
μn

.

Similarly, for every j1, there exists an j2 such that F j1
μn

∩ F j2
μn

= ∅ and we
obtain, applying the maximum principle,

u−
j2
|
F

j1
μn

≤ un|F j1
μn

≤ 0.

It follows that u− ≤ un ≤ u+ for every n. �

By the previous assertion and the compactness theorem (Theorem 3.10),
there exists a subsequence {uσ(n)}n of {un}n that converges on compact sets
of Ω to a minimal solution u.
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Assertion 6.3. We have:

lim
n→∞

μσ(n) =∞, lim
n→∞

(n− μσ(n)) =∞.

Proof. Assume the contrary, that there exists a subsequence {μσ′(n)}n of
{μσ(n)}n that converges to some μ∞. Then, by definition of u, that u takes
the values ∞ on Ai and −μ∞ on Bi. So, by the proof of necessity, 2aeuc(Ω)<
�euc(Ω), which contradicts with Hypothesis (6.1). Then limn→∞ μσ(n) =∞.
In the same way, we can show that limn→∞(n− μσ(n)) =∞. �

So, by the previous assertion, we conclude u takes +∞ on Ai and −∞
on Bi. �

This completes the proof of the existence part of the theorem. �

The remainder of this section will be devoted to prove a maximum principle
that is valid for solutions with possible infinite boundary data. This result
immediately proves the uniqueness of Jenkins–Serrin type theorem (Theo-
rem 6.1). The proof we give is a modification of the proof of the corresponding
result of Jenkins–Serrin [10], Spruck [24], Nelli–Rosenberg [18].

Theorem 6.2 (Maximum principle for unbounded domains with possible
infinite boundary data). Let Ω⊂H2 be a domain whose boundary ∂∞Ω con-
sists of a finite number of Euclidean geodesic arcs Ai,Bi, a finite number
of mean convex Euclidean arcs (convex towards Ω) Ci in H2 together with
their endpoints, which are called the vertices of Ω. Let u1, u2 be two minimal
solutions on Ω taking the value +∞ on Ai and −∞ on Bi.

(1) If the family {Ci} is nonempty, assume that limsup(u1 − u2) ≤ 0 when
ones approach to

⋃
iCi.

(2) If {Ci} is empty, suppose that u1 ≤ u2 at some point p ∈Ω.

Then in either case u1 ≤ u2 on Ω.

Proof. Assume the contrary, that the set {p ∈ Ω : u1(p) > u2(p)} is
nonempty. Let N and ε be two positive constants with N large and ε small.
Define

ϕ=

⎧⎪⎨⎪⎩
0 if u1 − u2 ≤ ε,

u1 − u2 − ε if ε < u1 − u2 <N,

N − ε if u1 − u2 ≥N.

Then ϕ is a continuous piecewise differentiable function in Ω satisfying
0 ≤ ϕ < N . Moreover, ∇ϕ =∇u1 −∇u2 in the set where ε < u1 − u2 < N ,
and ∇ϕ= 0 almost every where in the complement of this set.

Denote by E1 (resp. E2) the set of vertices in H2 (resp. vertices at ∂∞H2)
of Ω. For each p ∈E2, we consider a sequence of nested ideal geodesics Hp,n,
n≥ 1 converging to p. By nested, we mean that if Hp,n is the component of
H2 \Hp,n containing p on its ideal boundary, then Hp,n+1 ⊂Hp,n. Assume
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Hp1,1∩Hp2,1 = ∅ for every different points p1, p2 ∈E2. For n sufficiently large

satisfying D
euc
1
n

(p1)∩D
euc
1
n

(p2) = ∅,∀p1, p2 ∈E1 and D
euc
1
n

(p1)∩Hp2,1 = ∅,∀p1 ∈
E1, p2 ∈E2, we define

Ωn =Ω
∖(( ⋃

p∈E1

D
euc
1
n

(p)

)
∪
( ⋃

p∈E2

Hp,n

))
, Γ=Ω∩ ∂Ωn

and

ΓX = (∂Ωn)∩
(⋃

i

Xi

)
for X ∈ {A,B,C}.

It follows from definition that

(6.3) ϕ= 0 on a neighborhood of ΓC , �euc(Γ)→ 0 as n→∞.

Define

Jn =

∫
Ωn

div
(
ϕy(Xu1 −Xu2)

)
dA.

Assertion 6.4. (1) Jn ≥ 0 with equality if and only if ∇u1 =∇u2 on the
set Ωn ∩ {ε < u1 − u2 <N}.

(2) Jn is an increasing function of n.

Proof. We have

Jn =

∫
Ωn

〈y∇ϕ,Xu1 −Xu2〉dA+

∫
Ωn

ϕdiv(yXu1 − yXu2)dA

=

∫
Ωn∩{ε<u1−u2<N}

〈y∇ϕ,Xu1 −Xu2〉dA+

∫
Ωn

ϕdiv(yXu1 − yXu2)dA.

By our assumptions,

ϕdiv(yXu1 − yXu2) = ϕ(Mu1 −Mu2) = 0.

Moreover, on Ωn∩{ε < u1−u2 <N}, by formula (3.2) of Lemma 3.5, we have

〈y∇ϕ,Xu1 −Xu2〉=
〈
y∇u1 − y∇u2,

y∇u1

Wu1

− y∇u2

Wu2

〉
≥ 0

and equality if and only if y∇u1 = y∇u2. Then

Jn =

∫
Ωn∩{ε<u1−u2<N}

〈y∇ϕ,Xu1 −Xu2〉dA≥ 0

and Jn = 0 if and only if ∇u1 =∇u2 on Ωn ∩ {ε < u1 − u2 <N}. Since Ωn is
an increasing domain, i.e. Ωn ⊂Ωn+1, Jn is an increasing function of n. This
proves the assertion. �
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Figure 14. The domain Ωn,δ .

Assertion 6.5. Jn = o(1) as n→∞.

Proof. For δ > 0 sufficiently small, define

Ωn,δ =Ωn

∖( ⋃
p∈ΓA∪ΓB

D
euc

δ (p)

)
.

As δ decreases to zero, the set Ωn,δ are expanding and
⋃

δ Ωn,δ = Ωn. Then
Jn = limδ→0 Jn(δ) where Jn(δ) :=

∫
Ωn,δ

div(ϕy(Xu1 − Xu2))dA. By Diver-

gence theorem Jn(δ) =
∫
∂Ωn,δ

ϕy〈Xu1 −Xu2 , ν〉ds where ν is the exterior nor-

mal to ∂Ωn,δ . The boundary ∂Ωn,δ of Ωn,δ consists of arcs Ai(δ) parallel to
Ai, arcs Bi(δ) parallel to Bi, Γ(δ) := Γ∩ ∂Ωn,δ and ΓC (see Figure 14).

Thus

Jn(δ) =
∑
i

∫
Ai(δ)

ϕy〈Xu1 −Xu2 , ν〉ds

+
∑
i

∫
Bi(δ)

ϕy〈Xu1 −Xu2 , ν〉ds

+

∫
Γ(δ)

ϕy〈Xu1 −Xu2 , ν〉ds+
∫
ΓC

ϕy〈Xu1 −Xu2 , ν〉ds.

By Property (6.3), ‖Xui‖ ≤ 1, i= 1,2 and 0≤ ϕ<N , we have∫
ΓC

ϕy〈Xu1 −Xu2 , ν〉ds= 0
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and ∣∣∣∣∫
Γ(δ)

ϕy〈Xu1 −Xu2 , ν〉ds
∣∣∣∣= ∣∣∣∣∫

Γ(δ)

ϕ〈Xu1 −Xu2 , ν〉dseuc
∣∣∣∣

≤ 2N�euc
(
Γ(δ)

)
≤ 2N�euc(Γ) = o(1) as n→∞.

Otherwise, we have∫
Ai(δ)

ϕy〈Xu1 −Xu2 , ν〉ds

=

∫
Ai(δ)

ϕy
(
1− 〈Xu2 , ν〉

)
ds−

∫
Ai(δ)

ϕy
(
1− 〈Xu1 , ν〉

)
ds

≤N

∫
Ai(δ)

y
(
1− 〈Xu2 , ν〉

)
ds

and ∫
Bi(δ)

ϕy〈Xu1 −Xu2 , ν〉ds

=

∫
Bi(δ)

ϕy
(
1 + 〈Xu1 , ν〉

)
ds−

∫
Bi(δ)

ϕy
(
1 + 〈Xu2 , ν〉

)
ds

≤N

∫
Bi(δ)

y
(
1 + 〈Xu1 , ν〉

)
ds.

Now applying Flux theorem (Proposition 4.7) for the component of Ωn \Ωn,δ

containing Ai(δ) on its boundary, we obtain∫
Ai(δ)

y〈Xu2 , ν〉ds= �euc(Ai ∩ ΓA) + o(1) = �euc
(
Ai(δ)

)
+ o(1)

as δ → 0. Equivalently, we have
∫
Ai(δ)

y(1 − 〈Xu2 , ν〉)ds = o(1) as δ → 0.

Similarly, applying Flux theorem (Proposition 4.7) for the component of Ωn \
Ωn,δ containing Bi(δ) on its boundary, we obtain

∫
Bi(δ)

y(1 + 〈Xu1 , ν〉)ds =
o(1) as δ→ 0.

Combining these estimates, the assertion is then proved. �

It follows from the previous assertions that ∇u1 = ∇u2 on the set {ε <
u1−u2 <N}. Since ε and N are arbitrary, ∇u1 =∇u2 whenever u1 > u2. So
u1 = u2+c (c > 0) in any nontrivial component of the set {u1 > u2}. Then the
maximum principle (Theorem 3.1) ensures u1 = u2 + c in Ω and by assump-
tions of the theorem, the constant must be nonpositive, a contradiction. �
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