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MINIMAL QUASI-COMPLETE INTERSECTION IDEALS

ANDREW R. KUSTIN, LIANA M. ŞEGA AND ADELA VRACIU

Abstract. A quasi-complete intersection (q.c.i.) ideal of a lo-
cal ring is an ideal with “free exterior Koszul homology”; the

definition can also be understood in terms of vanishing of André-
Quillen homology functors. Principal q.c.i. ideals are well under-
stood, but few constructions are known to produce q.c.i. ideals

of grade zero that are not principal. This paper examines the

structure of q.c.i. ideals. We exhibit conditions on a ring R which

guarantee that every q.c.i. ideal of R is principal. On the other

hand, we give an example of a minimal q.c.i. ideal I which does

not contain any principal q.c.i. ideals and is not embedded, in

the sense that no faithfully flat extension of I can be written

as a quotient of complete intersection ideals. We also describe a

generic situation in which the maximal ideal of R is an embedded
q.c.i. ideal that does not contain any principal q.c.i. ideals.

Introduction

This paper is concerned with a class of ideals referred to as quasi-complete
intersection (q.c.i.) ideals in recent work of Avramov et al. [4]. As discussed
there, the notion goes back to work of Rodicio [19], and appears in subsequent
papers of A. Blanco, J. Majadas Soto and A. Rodicio Garcia. Q.c.i. ideals of
local rings can be defined as ideals with “free exterior Koszul homology”, see
Definition 1.1. The class of q.c.i. ideals contains that of complete intersection
ideals (i.e., ideals generated by a regular sequence), and inherits many of the
homological change of rings properties of the latter.
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Consult [7], [4] for the connection between q.c.i. ideals and the vanishing of
André–Quillen homology. In particular, an ideal I is a q.c.i. if and only if the
homomorphism R → R/I satisfies the conclusion of the Quillen conjecture
[17, Conjecture 5.6]. Not many examples or methods of constructing such
homomorphisms are known, and a better understanding of q.c.i. ideals is of
value as one tries to prove or disprove the conjecture.

Our goal is to understand the structure of q.c.i. ideals I of a commutative
local noetherian ring (R,m); this notation identifies m as the maximal ideal
of the local ring R. Principal q.c.i. ideals are well understood: If x �= 0 is an
element of m, then the ideal (x) is q.c.i. if and only if x is either regular or else
ann(x) ∼= R/(x); in the last case we say, following Henriques and Şega [13],
that x is an exact zero-divisor. (Such elements are studied also in [14] under a
slightly different name.) Existence of exact zero-divisors is known for certain
classes of small Artinian rings, and has found various uses, see [8], [5] and [13].
Another well-understood method of constructing q.c.i. ideals is by means of
a pair of embedded complete intersection ideals; see Remark 2.3. The q.c.i.
ideals I that can be obtained in this manner after possibly a faithfully flat
extension are exactly the ones for which CI-dimR(R/I) <∞, where CI-dim
denotes complete intersection dimension, as defined in [3]. We say that such
q.c.i. ideals are embedded.

New q.c.i. ideals can be constructed from old ones by “composition” and
“decomposition” of surjective q.c.i. homomorphisms, see [4, 8.8, 8.9]. In par-
ticular, if I = (a1, . . . , as) is an ideal in R with ai+1 an exact zero-divisor or a
regular element on R/(a1, . . . , ai) for all i with 0≤ i≤ s− 1, then I is a q.c.i.
ideal of R. Following the lead of [14] and [4, §3], we call such ideals exact.
We say that a q.c.i. ideal J is minimal if J does not properly contain any
non-zero q.c.i. ideal.

Rodicio [20, Conjecture 11] conjectured that all q.c.i. ideals of R are em-
bedded. Although this statement holds under some additional conditions on
the ring R, see [20, Proposition 23], in general it does not. A counterexample
consisting of a principal non-embedded q.c.i. ideal is given in [4, Theorem 3.5];
one can further argue that this q.c.i. ideal is minimal, see Proposition 3.6.

Beyond the information mentioned so far, the literature seems to lack other
relevant examples and methods of constructing q.c.i. ideals. In this paper, we
further clarify the structure of q.c.i. ideals and in particular examine relations
between the classes of q.c.i. ideals (principal, exact, minimal, embedded) in-
troduced above.

Note that a minimal q.c.i. ideal is exact if and only if it is principal. In Sec-
tion 3, we discuss some classes of rings for which every q.c.i. ideal is principal
(thus exact) as follows.

Theorem 1. Let (R,m) be an Artinian local ring which is not a complete
intersection. Assume that one of the following holds:
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(1) m3 = 0;
(2) m4 = 0 and R is Gorenstein.

Then every q.c.i. ideal of R is principal.

Theorem 1 is part of Theorem 3.2, which studies, more generally, bounds
on the minimal number of generators of a q.c.i. ideal.

On the other hand, Proposition 4.3 and Theorem 4.5 give the following
theorems.

Theorem 2. There exists an Artinian local ring (R,m) with m4 = 0 and
elements f1, f2 ∈ m that are linearly independent modulo m2 and generate a
minimal, non-embedded and non-principal (thus non-exact) q.c.i. ideal.

While the example involved in the proof of this result is rather special, in
Section 5 we exhibit many grade zero embedded q.c.i. ideals which are not
exact.

Theorem 3. Let k be an algebraically closed field of characteristic different
from 2 and let P denote the polynomial ring k[x1, . . . , xn].

If n≥ 5 and f = f1, . . . , fn is a generic regular sequence of quadratic forms,
then (x1, . . . , xn)/fP is an embedded q.c.i. ideal of R = P/fP that does not
contain any principal q.c.i. ideal.

Theorem 3 is part of Theorem 5.1. The meaning of the word “generic” is
made precise through Theorem 5.2.

Preliminaries and general results on q.c.i. ideals are collected in Sections 1
and 2. In particular, Corollary 1.11 gives a necessary condition for the ex-
istence of exact zero-divisors: If R = Q/a with (Q,n, k) a regular local ring
and a⊆ n2, and R admits an exact zero-divisor, then a minimal generator of
a factors non-trivially.

1. Preliminaries

In this section, we present and discuss the notion of q.c.i. ideal. A crite-
rion for checking that a 2-generated ideal of grade zero is q.c.i. is given in
Lemma 1.7. Theorem 1.8 and Propositions 1.9 and 1.10 give some conse-
quences of the q.c.i. property.

The following notation and conventions are used throughout the paper:
Let (R,m, k) be a local ring: R is a commutative noetherian ring with unique
maximal ideal m, and k = R/m. If M is a finitely generated R-module, we
denote by ν(M) the minimal number of generators of M .

Let I be an ideal of R with ν(I) = n and set S = R/I . Let f = f1, . . . , fn
be a generating set of I and let E denote the Koszul complex on f .

Definition 1.1. We say that I is a quasi-complete intersection (q.c.i.)
ideal if H1(E) is free over S and the canonical homomorphism of graded
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S-algebras

(1.1) λS
∗ : Λ

S
∗H1(E)−→H∗(E)

is bijective, where ΛS
∗ denotes the exterior algebra functor.

We refer to [7] for the interpretation of the notion of q.c.i. in terms of
vanishing of André–Quillen homology functors.

1.2. Principal q.c.i. ideals. We say that an element x of R is an exact
zero-divisor if

R �= (0 :R x)∼=R/(x) �= 0.

If x is an exact zero-divisor, then there exists y such that (0 :R x) = (y) and
(0 :R y) = (x). We say that x, y is an exact pair of zero-divisors and y is a com-
plementary zero-divisor of x. Such pairs were first studied in [14] under the
name of exact pairs of elements; the name exact zero-divisor was introduced
in [13].

It follows directly from Definition 1.1 that a non-trivial principal ideal
I = (x) is q.c.i. if and only if x is either a non zero-divisor or an exact zero-
divisor.

1.3. Recall that gradeR(I) denotes the maximal length of an R-regular se-
quence in I ; this number is equal to the least integer i with ExtiR(R/I,R) �= 0.
In view of [4, Lemma 1.4], the study of the structure of q.c.i. ideals may be
reduced to the case when gradeR(I) = 0.

If I is a q.c.i. ideal, then [4, Lemma 1.2] gives:

(1.2) gradeR(I) = ν(I)− ν
(
H1(E)

)
.

1.4. Assume that ν(H1(E)) = n. This assumption holds whenever I is a
q.c.i. ideal with gradeR(I) = 0 by (1.2); however, we do not want to assume
that I is q.c.i. at this time.

Since ν(I) = n, we have E1
∼=Rn. Let v1, . . . , vn denote a basis of E1 with

∂(vi) = fi for each i. Consider a set of cycles

(1.3) zj =

n∑
i=1

aijvi

with aij ∈R and j = 1, . . . , n such that the homology classes cls(zj) minimally
generate H1(E). Set

A= (aij) and Δ= det(A)

and note that the map

λ := λS
n : Λ

S
nH1(E)−→Hn(E)

is described by

λ
(
cls(z1)∧ · · · ∧ cls(zn)

)
=Δv1 · · ·vn.
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Note that Δ ∈ (0 :R I). Since f is a minimal generating set for I , and each zi
is a syzygy in the free cover E1 → I , we have aij ∈m for all i, j. In particular,
we have:

(1.4) Δ ∈mn.

Lemma 1.5. If I is a q.c.i. ideal with gradeR(I) = 0, then the following
hold:

(1) H1(E)∼= Sn;
(2) (0 :R I)∼= S;
(3) (0 :R I) =ΔR and (0 :R Δ) = I .

Proof. Since gradeR(I) = 0, we know that ν(H1(E)) = n by (1.2). Then (1)
follows from the fact that H1(E) is free over S, according to Definition 1.1.

(2) We have

S ∼= ΛS
n

(
Sn
)∼= ΛS

nH1(E)∼=Hn(E)∼= (0 :R I),

where the third isomorphism is given by the map λ in 1.4. The first and the
last isomorphism are general facts, and the second one is a consequence of (1).

(3) Using the description of the map λ in 1.4, we see that the isomorphism

S
∼=−→ (0 :R I) from the proof of (2) can be described by

1 �→Δ.

In particular, (0 :R I) =ΔR. The fact that this map is an isomorphism shows
that (0 :R Δ)= I . �

Remark 1.6. For any q.c.i. ideal I the module R/I has a Tate resolu-
tion T with T1 = Rn, T0 = R and d1 = [f1 · · ·fn] (see [4, Construction 1.5,
1.6]). When gradeR(I) = 0 it gives rise to an infinite in both directions exact
sequence

· · · −→ T1
d1−→ T0

d0−→ T ∗
0

d∗
1−→ T ∗

1 −→ · · · ,
where d0 is given by multiplication with Δ. Indeed, Hn(T ∗) = 0 for n≥ 1 and

H0(T ∗)� S by [4, Theorem 2.5(4)]; Lemma 1.5 gives exactness at T0 and T ∗
0 .

As noted in 1.2, principal q.c.i. ideals admit a simple characterization.
Based on Lemma 1.5 and Definition 1.1, the two-generated q.c.i. ideals can
also be given a relatively simple characterization as follows.

Lemma 1.7. Let I be an ideal with ν(I) = 2 and gradeR(I) = 0. Then the
following statements are equivalent:

(1) I is q.c.i.
(2) H1(E)∼= S2, (0 :R I) =ΔR, and (0 :R Δ) = I , where Δ is defined as in 1.4.
(3) There exist elements a, b, c, d in m with (1.5) an exact sequence, where

(1.5) R4 d3
R3 d2

R2 d1
R

d0
R

dT
1

R2,
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with d0 = [ad− bc], d1 =
[
f1 f2

]
,

d2 =

[
−f2 a b
f1 c d

]
, and d3 =

⎡⎣−c −d a b
f1 0 f2 0
0 f1 0 f2

⎤⎦ .
Proof. (1) =⇒ (3): By Lemma 1.5 there are cycles z1 = av1 + cv2 and

z2 = bv1 + dv2 in E1, whose classes form a basis of H1(E). Let T be the Tate
resolution of R/I constructed with these cycles. Then Remark 1.6 gives the
exact sequence in (1.5).

(3) =⇒ (2): Most of the hypotheses of (2) follow immediately from (3).
We only need to verify that H1(E)∼= S2. The exactness of the complex (1.5)
implies that ν(H1(E)) = 2. Furthermore, the cycles z1 and z2 in 1.4 can be
taken to be

z1 = av1 + cv2 and z2 = bv1 + dv2.

Consider the homomorphism

ϕ : R2 �H1(E)

given by ϕ(t) = cls(t1z1 + t2z2), where t = [t1, t2]
T ∈ R2. If ϕ(t) = 0, then

there exists t0 ∈R such that the element [t0, t1, t2]
T ∈R3 is in Kerd2 = Imd3.

By looking at the matrix describing d3, we conclude that t1 and t2 are in I . It
follows that Ker(ϕ)⊆ IR2. The reverse inclusion is clear, hence H1(E)∼= S2.

(2) =⇒ (1): Let v1, v2 be an R-module basis for E1. It follows that

H2(E) =

{
rv1v2 ∈

2∧
E1 | r ∈ (0 :R I)

}
.

The hypothesis H1(E) ∼= S2 of (2) guarantees that there exist cycles z1
and z2 in E1 such that cls(z1) and cls(z2) form a basis for the free S-
module H1(E). We know from 1.4 that the S-module homomorphism

λS
2 :
∧2

(H1(E)) → H2(E) is given by λ(r cls(z1) ∧ cls(z2)) = rΔ(v1v2). The
hypotheses (0 :R I) = ΔR, and (0 :R Δ) = I of (2) ensure that λ2 is an iso-
morphism of S-modules. �

Theorem 1.8. Let (Q,n, k) be a regular local ring, a⊆ n2 be an ideal of Q,
(R,m, k) be the local ring with R=Q/a and m= n/a, and J be an ideal of Q
which contains a. If I = J/a is a q.c.i. ideal of R, then

ν(J) = ν(a) + gradeR(I).

Proof. Set H = H1(E) and S = Q/J = R/I . By [4, Theorem 5.3] or [18]
(in view of [4, Remark 5.3]), we have an exact sequence:

(1.6) 0→H/mH → π2(R)
π2(ϕ)−−−→ π2(S)

δ−→ I/mI → π1(R)
π1(ϕ)−−−→ π1(S)→ 0.
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We refer to [4, 5.1, 5.2] for the definition of the modules of indecomposables
πi(−). According to [4, 5.2] and the proof of [12, Proposition 3.3.4], we have
canonical identifications π1(R) = n/n2 and π2(R) = a/na. In particular:

rankk π1(R) = ν(n) and rankk π2(R) = ν(a).

Choose b1, . . . , bs in J so that their images form a basis of the kernel of the
induced map n/n2 → nS/(nS)2. The local ring Q =Q/(b1, . . . , bs) is regular
with maximal ideal n= n/(b1, . . . , bs) and S ∼=Q/J , where J = J/(b1, . . . , bs)⊆
n
2. We then have

rankk π1(S) = ν(n) = ν(n)− s= ν(m)− s,

rankk π2(S) = ν(J) = ν(J)− s.

The Euler characteristic of (1.6) computed using the expressions above and
the relation ν(H) = ν(I)−gradeR(I) from (1.2) gives ν(J) = ν(a)+gradeR(I).

�

Proposition 1.9. Let (Q,n, k) be a regular local ring. Let a ⊆ n2 be an
ideal and set R = Q/a. Let F,G ∈ Q such that FG ∈ a, and let f , g denote
the images of these elements in R.

If f, g is an exact pair of zero-divisors, then FG /∈ na. Furthermore, if a is
generated by a regular sequence, then the converse holds.

Proof. Assume f, g is an exact pair of zero-divisors. We apply Theorem 1.8
to the q.c.i. ideal I = J/a with J = a+ (F ). The proposition yields that the
ideals a and a + (F ) have the same minimal number of generators. Fix a
minimal generating set of a. Then one of the minimal generators of a can be
written as a linear combination of the remaining minimal generators of a and
F , and hence there exists an element H ∈ Q such that FH ∈ a� na. Since
FH ∈ a, we see that h ∈ (0 : f) = (g), where h denotes the image of H in R.
Hence H = Y G+X with X ∈ a and Y ∈Q. Thus FH − Y FG ∈ na, and we
conclude FG /∈ na, since FH /∈ na.

Assume now that a is generated by a regular sequence. Assume that FG /∈
na. In particular, FG is minimal generator of a and can be completed to a
minimal generating set for a, say a1, a2, . . . , ar, FG. Since a can be generated
by a regular sequence, its minimal generating set a1, a2, . . . , ar, FG is itself a
regular sequence. It follows that a1, a2, . . . , ar, F is a regular sequence as well.
Using this information, one can easily argue that (0 :R f) = (g), and similarly
(0 :R g) = (f). �

Let k be a field. We let P = k[x1, . . . , xe] denote the polynomial ring in n
variables of degree 1, and we set p= (x1, . . . , xe)P . We take Q= k[[x1, . . . , xe]]
to be the power series ring, with maximal ideal n= (x1, . . . , xe)Q. If h ∈Q, we
denote by h∗ the initial form of h (which can be regarded as both an element
of P and of Q).
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Proposition 1.10. Let b be a homogeneous ideal of P and set a = bQ,
where Q= k[[x1, . . . , xe]]. If y ∈ a, then y∗ ∈ b. Furthermore, if b is generated
by homogeneous polynomials of the same degree, then the following hold:

(a) If y ∈ a, then y− y∗ ∈ na.
(b) If F , G are elements of Q such that their images f , g in Q/a form an

exact pair of zero-divisors, then F ∗G∗ /∈ na.

Proof. For each integer i one has canonical isomorphisms

P/pi ∼=Q/ni

which allow one to translate the statements to a graded setting, where they
are clear. If y ∈ a, it follows that y∗ ∈ b+ pi for each i, hence y∗ ∈ b.

Assume now that b is generated by homogeneous polynomials of the same
degree.

(a) If y ∈ a, then y− y∗ ∈ na+ ni for all i > deg(y∗), hence y− y∗ ∈ na.
(b) Assume that F,G are such that f, g form a pair of exact zero-divisors.

By Proposition 1.9, we know that FG /∈ na. Part (a) gives then that FG−
(FG)∗ ∈ na, hence F ∗G∗ = (FG)∗ /∈ na. �

Corollary 1.11. Let (Q,n, k) be a regular local ring and a⊆ n2. If R=
Q/a contains an exact zero-divisor, then a has a minimal generator fg with
f, g ∈ n. Furthermore, if Q is a power series ring over k and a is generated
by homogeneous polynomials of the same degree, then f and g can be chosen
to be homogeneous polynomials.

2. Embedded q.c.i. ideals

In this section, we define the notion of embedded q.c.i. ideal. We spell
out a known characterization of such ideals in Remark 2.3. We are mainly
interested in finding a procedure for checking that a given q.c.i. ideal is not
embedded. This is achieved in Lemma 2.7, by using the terminology of ho-
motopy Lie algebra. The approach used here expands the one in the proof of
[4, Theorem 3.5].

2.1. A quasi-deformation is a pair R→R′ ←Q of homomorphisms of local
rings, with R→R′ faithfully flat and R′ ←Q surjective with kernel generated
by a Q-regular sequence. By definition, the CI-dimension of an R-module
M , denoted CI-dimRM , is finite if pdQ(R

′ ⊗R M) is finite for some quasi-
deformation; see [3].

If M is a finitely generated R-module, then its nth betti number is the
integer

βR
n (M) = rankk

(
TorRn (M,k)

)
.

2.2. Consider the following conditions concerning an ideal I of the local
ring R:
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(1) CI-dimR(R/I)<∞ and H1(E) is a free R/I-module.
(2) I is a q.c.i. ideal.
(3) The betti numbers of the R-module R/I have polynomial growth and

H1(E) is a free R/I-module.

Soto [20, Proposition 23] shows that the implications (1) =⇒ (2) =⇒ (3) al-
ways hold, and that the three statements are equivalent for certain classes of
rings, for which the asymptotic behavior of betti numbers is well understood.

Rodicio also conjectured that (1)⇐⇒ (2) always holds. As discussed in the
Introduction, [4, Theorem 3.5] provides a counterexample with I a principal
ideal.

In what follows, we say that an ideal of a ring Q is a complete intersection
ideal if it can be generated by a Q-regular sequence.

Remark 2.3. The following statements are equivalent:

(1) I is a q.c.i. ideal and CI-dimR(R/I)<∞.
(2) There exists a faithfully flat extension R→R′, a local ring Q and complete

intersection ideals a⊆ b of Q such that R′ =Q/a and R′/IR′ =Q/b.

The implication (1) =⇒ (2) is given by [4, Lemma 2.7] and the converse
follows from [4, Lemma 1.3, Lemma 1.4].

To simplify the terminology and better convey the structural property de-
scribed in Remark 2.3(2), we introduce the following definition:

Definition 2.4. We say that a q.c.i. ideal I of R is embedded if
CI-dimR(R/I)<∞.

2.5. Complexity. If M is a finitely generated R-module, the complexity of
M , denoted cxR(M), is the least integer d such that there exists a polynomial
f(t) of degree d− 1 such that βR

i (M)≤ f(i) for all i≥ 1.
If I is a q.c.i. ideal of R, then (1.2) and the minimality of Tate’s resolution

(see [4, Construction 1.5, 1.6]) yield

(2.1) ν(I)− gradeR(I) = rankRH1(E) = cxR(R/I).

Next, we extend an argument used in the proof of [4, Theorem 3.5].

2.6. The homotopy Lie algebra. It is known that there exists a graded Lie
algebra over k, denoted π∗(R) such that the universal enveloping algebra of
π∗(R) is equal to the algebra Ext∗R(k, k) with Yoneda products, see [1, §10]
for details. We let ζ∗(R) denote the center of π∗(R).

Lemma 2.7. If I is an embedded q.c.i. ideal, then ν(I) − gradeR(I) ≤
rankk ζ

2(R).

Proof. By [6, 5.3], ExtR(R/I, k) is a finitely generated module over the
symmetric algebra P of ζ2(R), and its Krull dimension equals cxR(R/I) by
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[3, Theorem 5.3]. Now (2.1) and elementary properties of Krull dimension
give

ν(I)− gradeR(I) = cxR(R/I) = dimP ExtR(R/I, k)

≤ dimP = rankk ζ
2(R). �

3. Loewy length and minimal generation of q.c.i. ideals

If the local ring (R,m, k) is Artinian, then its Loewy length is defined as
the number

		(R) = inf
{
l≥ 0 |ml = 0

}
.

In this section we show that the number of generators of a q.c.i. ideal of R
can be bounded in terms of 		(R).

We say that R is a complete intersection ring if R̂=Q/a for a regular local
ring Q and a complete intersection ideal a.

3.1. If I is a q.c.i. ideal of R, then the following statements are equivalent
(see for example [4, Proposition 7.7] and [4, Corollary 7.6]):

(1) R is Gorenstein, respectively complete intersection;
(2) R/I is Gorenstein, respectively complete intersection.

The main result of this section is as follows. Note that properties (2) and
(5) below yield immediately the statement of Theorem 1 in the Introduction.

Theorem 3.2. Let (R,m, k) be a local Artinian ring. Let I ⊂R be a non-
trivial q.c.i. ideal and set l= 		(R). The following then hold:

(1) ν(I)≤ l− 1;
(2) If R/I is not a complete intersection, then ν(I)≤ l− 2;
(3) If ν(I) = l− 2 and I ∩m2 ⊆mI , then ν(m/I)≤ ν(ml−1);
(4) If R/I is Gorenstein, not a complete intersection, and I ∩m2 ⊆mI , then

ν(I)≤ l− 3;
(5) If R/I is Gorenstein, not a complete intersection, then l ≥ 4. If l = 4,

then ν(I) = l− 3 = 1.

Remark 3.3. We can argue that the bounds in the theorem are sharp, by
pointing out extremal examples.

For (1), consider the ring R= k[[X1, . . . ,Xn]]/(X
2
1 , . . . ,X

2
n). The ideal I =

(x1, . . . , xn) is an embedded q.c.i. with ν(I) = n and l= n+ 1.
For (2) and (3), consider for example the ring R and the ideal I in Section 4,

for which ν(I) = 2, l= 4, ν(m) = 5 and ν(m3) = 3.
For (4), any generic Gorenstein algebra with m4 = 0 and ν(m)≥ 3 works,

since such a ring is known (see [13, Remark 4.3]) to have an exact zero-divisor,
so that one can take I with ν(I) = 1.

Proof. Set n= ν(I). We use the notation in 1.4. By Lemma 1.5 we have
(0 :R I) =ΔR and (0 :R Δ) = I . Also, (1.4) gives Δ ∈mn.
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(1) Note that Δ �= 0, hence mn �= 0.
(2) Assume that n = l − 1. Since Δ ∈ ml−1, we have Δ ∈ (0 :R m). On

the other hand, we have (0 :R m)I = 0, hence (0 :R m) ⊆ (0 :R I) = ΔR. It
follows that (0 :R m) = ΔR. In particular, R is Gorenstein. We conclude
I = (0 :R Δ) =m. Hence, I =m is a q.c.i. ideal. Using 3.1, we conclude that
R is a complete intersection, a contradiction.

(3) Since I ∩ m2 ⊆ mI , the ideal m has a minimal generating set
f1, . . . , fn, h1, . . . , ht such that f1, . . . , fn minimally generate I . Assuming
n = l − 2, we have Δ ∈ ml−2, and thus hiΔ ∈ ml−1 for all i. Note that the
elements hiΔ of ml−1 are linearly independent. Indeed, if

∑
cihiΔ = 0 for

some constants ci, not all zero, then it would follow
∑

i cihi ∈ (0 :R Δ) = I =
(f1, . . . , fn), a contradiction. It follows that t≤ rankk(m

l−1) = ν(ml−1).
(4) By (2), we know that n ≤ l − 2. Assume n = l − 2. Then (3) gives

that ν(m/I)≤ 1. Note that R/I is Gorenstein by 3.1. The ring R/I is thus a
Gorenstein ring of embedding dimension 1; it is thus a complete intersection,
and hence R is a complete intersection by 3.1.

(5) By (2), we have l ≥ 3. Assume l= 3 and ν(I) = 1. If I = (f), then (4)
shows that f ∈m2. Since fm= 0, it follows that m⊆ (0 : f) = (Δ). Thus m is
1-generated, and it follows that R is a complete intersection, a contradiction.

Assume now that l = 4. If I is not principal, then it can be minimally
generated by two elements. Let I = (f1, f2). By (3), we may assume that one
of these elements is in m2. Assume f1 ∈m2 and note that f2 /∈m3.

Let m3 = (δ) be the socle of R. For every x ∈ m we have xf1 ∈ m3, and
therefore xf1 = αxδ where αx is either zero or a unit in R. If αx = 0, then
we take yx = 0; if αx is a unit we use the fact that there exists a non-zero
multiple of f2 in the socle to find yx such that yxf2 = xf1. Since f2 /∈m3, we
have yx ∈m.

In either case, there exists yx ∈m such that xf1 = yxf2. With the notation
in 1.4, the elements

xv1 − yxv2

are cycles in the Koszul complex E. Since ν(I) = 2, we have that
ν(H1(E)) = 2. Let z1 and z2 be the two cycles in 1.4 whose classes generate
H1(E), with

zj = a1jv1 + a2jv2.

It follows that for every x ∈m, the element xv1− yxv2 is a linear combination
of z1, z2 and the boundary f2v1 − f1v2. Consequently, m = (a11, a12, f2).
The ring R/I is then Gorenstein and has embedding dimension at most 2.
It is thus a complete intersection, and thus R is a complete intersection, a
contradiction. �

Definition 3.4. We say that a q.c.i. ideal I is minimal if I does not
properly contain any non-zero q.c.i. ideal.
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Remark 3.5. If I is a minimal q.c.i. ideal, then gradeR(I) = 0, because
every regular element generates a q.c.i. ideal.

The results proved so far allow us to show that certain q.c.i. ideals are
minimal.

Proposition 3.6. Let R=Q/a be an Artinian local ring, where (Q,n, k) is
a regular local ring and a⊆ n2. If R is not a complete intersection, 		(R) = 3
and a∩ n3 ⊆ an, then any q.c.i. ideal of R is minimal.

In particular, the ideal I of [4, Theorem 3.5] is a minimal q.c.i. ideal.

Proof. By Theorem 3.2(2), any q.c.i. ideal of R is principal. Let I = (h)
with h ∈ m be a q.c.i. ideal. If J ⊆ I is another q.c.i. ideal with J �= I then
J = (f) and f = ah with a ∈m. In particular, f ∈m2. If g is a complementary
zero-divisor of f , and F and G are the liftings of these elements in Q, 1.9
shows that FG is a minimal generator of a. Since FG ∈ n3, this contradicts
the hypothesis that a∩ n3 ⊆ an. �

4. A non-principal, non-embedded, minimal q.c.i. ideal

In this section we establish Theorem 2 in the Introduction, which is ob-
tained by putting together information from Proposition 4.3 and Theorem 4.5.
The relevant example is described below.

Example 4.1. Let X = {X1,X2, . . . ,X5} be a set of indeterminates, c be
the ideal of Z[X] generated by the elements:

X2
1 −X2X3, X2

2 −X3X5, X2
3 −X1X4,

(4.1)
X2

4 , X2
5 , X3X4, X2X5, X4X5.

Let A be the ring Z[X]/c. We denote the image of the variable Xi in A by
xi. Let f1 and f2 be the elements

f1 = x1 + x2 + x4 and f2 = x2 + x3 + x5

of A. Let E be the Koszul complex

E : 0→A

⎡⎣−f2
f1

⎤⎦
−−−−−→A2

[
f1 f2

]
−−−−−−→A.

Lemma 4.2. The following statements hold for the data of Example 4.1:

(a) The elements listed in (4.1) form a Gröbner basis for the ideal c.
(b) The ring A is a free Z-module, with basis

1, x1, x2, x3, x4, x5, x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x3x5,

x1x2x3, x1x2x4, x1x3x5.

(c) The ring A is a free Z-module with basis 1, x3, x4, x5.
(d) The homology H•(E) is free as a module over Z.
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(e) The homology H•(E) is free as a module over A/(f1, f2). Furthermore
the elements cls(1) in H0, cls(θ1), and cls(θ2) in H1, and cls(Δ) in H2

form a basis for H•(E) over A/(f1, f2), where

θ1 =

[
x1 − x2

−x3 + x4 + 2x5

]
and θ2 =

[
x4

x2 − x3 − x4

]
in E1 and

Δ= det

[
x1 − x2 x4

−x3 + x4 + 2x5 x2 − x3 − x4

]
in E2.

Proof. (a) One may use Buchsberger’s algorithm to check that the listed
generators already form a Gröbner basis. When using this algorithm, there
is no need to check the S-polynomial for a pair of monomials and there is
no need to check the S-polynomial for two polynomials whose leading terms
are relatively prime. Thus, one need only check the S-polynomial for the
pair X3X4 and X2

3 − X1X4 and the S-polynomial for the pair X2X5 and

X2
2 − X3X5. Both S-polynomials reduce in the appropriate manner. (We

have underlined the leading terms.) Hence the listed generators are already
Gröbner basis.

(b) Every leading coefficient of the Gröbner basis is a unit in Z, hence A is
a free Z-module. Furthermore, there is no difficulty using the Gröbner basis
to show that the listed elements form a basis.

(c) In a similar manner, X2 +X3 +X5, X1 −X3 +X4 −X5, X
2
5 , X4X5,

X3X5, X
2
4 , X3X4, X

2
3 is a Gröbner basis for the ideal of Z[X1,X2,X3,X4,X5]

which defines A/(f1, f2) and therefore A/(f1, f2) is a free Z-module with the
listed basis.

(d) We treat the entire calculation as a calculation of free Z-modules. We
made the calculation by hand and also by using Macaulay2 [10]. The arXiv
version of this paper includes an Appendix which contains the Macaulay2
commands that we used for the computer computation, so that the reader
can easily reproduce this computation. We have already observed that the
homology H0(E) = A/(f1, f2) is free as a Z-module. One computes (see the
Appendix on the arXiv) that the module of 1-cycles Z1(E) is a free Z-module
of rank 20 and one identifies a basis for this module. Similarly one com-
putes that the module of 1-boundaries B1(E) is a free Z-module of rank
12 and one identifies a basis for this module. By comparing the two bases,
one sees that B1(E) is a direct summand of Z1(E) as Z-modules and one
now knows that H1(E) is a free Z-module with basis represented by the 1-
cycles θ1, θ2, x3θ1, x3θ2, x4θ1, x4θ2, x5θ1, x5θ2. In a similar manner, one com-
putes that Z2(E) (which is equal to H2(E)) is the free Z-module with basis
Δ, x3Δ, x4Δ, x5Δ.

(e) The argument of (d) exhibits natural surjections of A/(f1, f2)-modules:

(A/(f1, f2))
2 H1(E) and A/(f1, f2) H2(E).
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All four modules are free Z-modules; therefore, rank considerations over Z
show that the surjections are isomorphisms. �

For the remainder of the section, fix a field k and set

B = k⊗Z A and I = (f1, f2)B,

where A is the ring in Example 4.1.

Proposition 4.3. The following hold:

(1) B is an artinian local ring with Hilbert series HB(z) = 1+5z+7z2+3z3.
(2) The algebra B is Koszul.
(3) The ideal I is a q.c.i. and HB/I(z) = 1+ 3z.

Proof. These assertions follow from Lemma 4.2 because B = k ⊗Z A. In-
deed, (1) follows from (b), (2) follows from (a) and the last part of (3) follows
from (c).

To see that I is a q.c.i. we use (d) and note that each short exact sequence

0→ Zi(E)→Ei →Bi−1(E)→ 0 and 0→Bi(E)→ Zi(E)→Hi(E)→ 0

is split exact over Z and remains split exact after the functor k⊗Z− has been
applied. The isomorphism H•(k ⊗Z E) � k ⊗Z H•(E) has been established.
The calculation of Lemma 4.2(e) continues to hold over k⊗ZA and therefore,
(f1, f2)(k⊗Z A) is a q.c.i. ideal of k⊗Z A. �

We use next the notation of 2.6 regarding homotopy Lie algebras. We use
the recipe in [16, Corollary 1.3] (see also [1, Example 10.2.2]) to compute the
graded Lie algebra π∗(B). This technique is explained in significant detail in
[2, Section 3]. We may apply the technique because Ext∗B(k, k) is generated
as a k-algebra in degree 1 since B is a Koszul algebra.

Lemma 4.4. ζ2(B) is a 1-dimensional vector space.

Proof. Since the algebra B is Koszul with Hilbert series described
above, we have that the Poincaré series PB

k (z) (which is defined to be∑∞
i=0 dimkTor

B
i (k, k)z

i) is equal to

PB
k (z) =

1

1− 5z + 7z2 − 3z3
= 1+ 5z + 18z2 + 58z3 + · · · .

The ranks of the vector spaces πi(B), denoted εi and called the deviations of
B, may be read from this series using the techniques of [1, Remark 7.1.1 and
Theorem 10.2.1(2)]:

rankk π
1(B) = 5,

rankk π
2(B) = 18−

(
5

2

)
= 8,

rankk π
3(B) = 58− 8 · 5−

(
5

3

)
= 8
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and so on. At any rate, π1(B) has basis t1, t2, t3, t4, t5 with the following
relations:

[t1, t2] = [t1, t3] = [t2, t4] = [t1, t5] = 0,

[t2, t3] = t
(2)
1 ,

[t1, t4] = t
(2)
3 ,

[t3, t5] = t
(2)
2 .

The following elements of π2(B) are then linearly independent and hence form
a basis for π2(B):

u1 = t
(2)
1 , u2 = t

(2)
2 , u3 = t

(2)
3 , u4 = t

(2)
4 , t5 = t

(2)
5 ,

u6 = [t2, t5], u7 = [t3, t4], u8 = [t4, t5].

Computing the brackets [ti, uj ] and using the Jacobi identities and the rela-

tions [ti, t
(2)
i ] = 0, we see that the following elements form a basis for π3(B):

v1 =
[
t1, t

(2)
4

]
=−
[
t4, t

(2)
3

]
=
[
t3, [t3, t4]

]
,

v2 =
[
t2, t

(2)
5

]
=−
[
t5, [t2, t5]

]
,

v3 =
[
t3, t

(2)
5

]
=−
[
t5, t

(2)
2

]
=
[
t2, [t2, t5]

]
,

v4 =
[
t4, t

(2)
5

]
=−
[
t5, [t4, t5]

]
,

v5 =
[
t5, t

(2)
4

]
=−
[
t4, [t4, t5]

]
,

v6 =
[
t4, [t2, t5]

]
=−
[
t2, [t4, t5]

]
,

v7 =
[
t3, [t4, t5]

]
=−
[
t5, [t3, t4]

]
,

v8 =
[
t3, t

(2)
4

]
=−
[
t4, [t3, t4]

]
.

Unless listed above, all the other brackets [ti, uj ] are zero. (The signs which
pertain to the Lie bracket in a graded Lie algebra may be found in [1, Re-
mark 10.1.2].)

Now let us take an element ξ in π2(B):

ξ =C1u1 + · · ·+C8u8.

If ξ is a central element in π2(B), then we need to have [ti, ξ] = 0 for all i.
For i= 5, we have:

0 = [t5, ξ] =−C2v3 +C4v5 −C6v2 −C7v7 −C8v4

and this yields C2 =C4 =C6 =C7 =C8 = 0. Then for i= 4, we have:

0 = [t4, ξ] =−C3v1 +C5v4 +C6v6 −C7v8 −C8v5

which yields C3 = C5 = 0. On the other hand, note that [ti, u1] = 0 for all i.

Thus ζ2(B) is the vector space generated by t
(2)
1 . �
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Theorem 4.5. The ideal I of B is a non-principal, non-embedded, minimal
q.c.i. ideal.

Proof. The proof that I is a q.c.i. ideal in B is contained in Proposition 4.3.
Apply Lemma 2.7 to see that the q.c.i. ideal I of B is not an embedded

q.c.i. ideal. Indeed, according to Lemma 4.4, we have: rankk ζ
2(B) = 1 <

2− 0 = ν(I)− gradeB(I).
It remains to show that I is a minimal q.c.i. ideal. If I ′ � I were another

q.c.i. ideal, then it follows from Proposition 3.2(2) that ν(I ′) ≤ 2. We treat
the cases ν(I ′) = 1 and ν(I ′) = 2 separately.

We first show that ν(I ′) = 1 is not possible; that is, we prove that I does
not contain any exact zero-divisors from B. Since B is Artinian, we can
write B =Q/a, where Q is the power series ring k[[X]] and a= cQ, with c as
in Example 4.1. In light of Corollary 1.11, it suffices to show that the ideal
(X1+X2+X4,X2+X3+X5) of Q does not contain any homogeneous minimal
generators of the ideal a that factor non-trivially. Suppose that a, b, c, d, e, f, g
are elements of k with the product

(4.2)
[
a(X1 +X2 +X4) + b(X2 +X3 +X5)

]
[cX1 + dX2 + eX3 + fX4 + gX5]

equal to a minimal generator of a. The ideal a is generated by homogeneous
forms of degree 2; so the element of (4.2) is a minimal generator of a if and
only if this element is in a and this occurs if and only if the following seven
expressions vanish

(4.3)

ac+ bd+ ae+ be,
ad+ bd+ be+ bg,
ac+ be+ af,
ac+ bc+ ad,
bc+ ae,
bc+ ag,
ad+ af + bf.

The first expression in (4.3) is obtained by setting the coefficient of X2
1 plus

the coefficient of X2X3 in (4.2) equal to zero; the fourth expression is obtained
by setting the coefficient of X1X2 in (4.2) equal to zero; and so on. We observe
that if the seven expressions of (4.3) are zero, then the product (4.2) is also
zero. Indeed, Macaulay2 [10] shows that in polynomial ring Z[a, b, c, d, e, f, g],
the ideal ((a, b)(c, d, e, f, g))2 is contained in the ideal generated by the ele-
ments of (4.3). This inclusion of ideals passes to every field. This completes
the proof that I does not contain any exact zero-divisors.

Now suppose that I ′ ⊆ I is a q.c.i. with ν(I ′) = 2. According to Lemma 1.5,
or Lemma 1.7, there are elements a, b, c, d and a′, b′, c′, d′ in the maximal
ideal mB of B such that (0 :B I) = ΔB, (0 :B Δ) = I , (0 :B I ′) = Δ′B and
(0 :B Δ′) = I ′ with Δ= ad−bc and Δ′ = a′d′−b′c′. The inclusion I ′ ⊆ I yields
I ′Δ ⊂ IΔ = 0 and Δ ∈ (0 :B I ′) = Δ′B. It follows that Δ = αΔ′ for some
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α ∈B. The element Δ is explicitly calculated in the proof of Proposition 4.3.
This element of B is homogeneous of degree two. All four elements a′, b′, c′, d′

are in mB ; so, Δ′ is in m2
B . The element Δ is not in m3

B ; hence α /∈ mB .
Thus, α is a unit; the ideals ΔB and Δ′B of B are equal and I = (0 :B Δ) =
(0 :B Δ′) = I ′. This completes the argument that I is a 2-generated minimal
q.c.i. ideal in B. �

Remark 4.6. The ring B is an embedded deformation in the sense that
B =Q/a′⊗QQ/(θ) with θ regular on Q/a′, for θ =X2

1 −X2X3 and a′ equal to
(X2

2 −X3X5,X
2
3 −X1X4,X

2
4 ,X

2
5 ,X3X4,X2X5,X4X5). (This is a Macaulay2

calculation made over the field Q.) Nonetheless the q.c.i. ideal I of B is not
an embedded q.c.i. ideal.

On the other hand, there is an elementary argument that B does not have
the form B = Q/a′′ ⊗Q Q/(θ1, θ2) with θ1, θ2 a regular sequence on Q/a′′.
The betti numbers of B, as a Q-module are (b0, . . . , b5) = (1,8,20,23,13,3).
(Again, this is a Macaulay2 calculation, made over Q.) If B were equal to
Q/a′′ ⊗Q Q/(θ1, θ2) with θ1, θ2 a regular sequence on Q/a′′, then the betti
numbers of Q/a′′ would have to be (b0, b1, b2, b3) = (1,6,7,3). However, the
Euler characteristic forbids these numbers from being the betti numbers of a
module because no module has rank equal to −1.

5. Generic complete intersections of quadrics

The main result of this section is Theorem 5.1, which describes when an Ar-
tinian complete intersection defined by generic quadratic forms has exact zero-
divisors, thereby establishing Theorem 3 in the Introduction. Theorem 5.1 is
a consequence of Theorem 5.2, Proposition 1.9, and Corollary 1.11 and its
proof is given at the end of the section.

Theorem 5.1. Let P be the polynomial ring k[x1, . . . , xn] for some al-
gebraically closed field k of characteristic not equal to 2 and let A =
P/(f1, . . . , fn).

(1) Assume n≤ 4. If f1, . . . , fn is any regular sequence of quadratic forms in
P , then A contains a homogeneous linear exact zero-divisor.

(2) Assume 5 ≤ n. If f1, . . . , fn is a generic regular sequence of quadratic
forms in P , then A does not contain any exact zero-divisor.

For the purposes of Theorem 5.1, a regular sequence f = f1, . . . , fn is said
to be generic if it is an element of the open set I below.

Theorem 5.2. Let P be the polynomial ring k[x1, . . . , xn] for some alge-
braically closed field k of characteristic not equal to 2, and let A be the affine
space

A=
{
f = (f1, . . . , fn) | such that each fi is a quadratic form in R

}
,
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and I be the following subset of A:

I =

⎧⎨⎩f = (f1, . . . , fn) ∈A

∣∣∣∣∣∣
f1, . . . , fn is a regular sequence and every
non-zero element of the k-vector space which
is spanned by f1, . . . , fn is irreducible in P

⎫⎬⎭ .

Then the following statements hold.

(1) The set I is open in A.
(2) If n≤ 4, then I is empty.
(3) If 5≤ n, then I is non-empty.

Proof of (1) from Theorem 5.2. Each fh in the definition of A is a homo-
geneous form in P of degree 2; consequently, the affine space A of Theorem 5.2
has dimension n

(
n+1
2

)
. The subset I of A is the complement of X ∪ Y where

(5.1) X =

⎧⎨⎩f = (f1, . . . , fn) ∈A

∣∣∣∣∣∣
there exist elements b1, . . . , bn in k,
not all of which are zero, such that∑n

i=1 bifi is reducible

⎫⎬⎭
and

Y =
{
f = (f1, . . . , fn) ∈A | f1, . . . , fn is not a regular sequence

}
.

We show in Observation 5.3 that Y is a closed subset of A and in Observa-
tion 5.4 that X is a closed subset of A. �

Observation 5.3. Let P = k[x1, . . . , xn]. Fix a sequence of degrees d =
(d1, . . . , dn). Consider sequences of forms f = (f1, . . . , fn) from P , where fi is
homogeneous of degree di. Let A be the space of coefficients for f . Then there
exists a closed set Y ⊆ A such that the coefficients of f are in Y if and only
if f is not a regular sequence.

Proof. The polynomials of f form a regular sequence if and only if the
following inclusion of ideals

(x1, . . . , xn)
N ⊆ (f1, . . . , fn)

holds, for N =
∑

di −n+1. The above inclusion of ideals holds if and only if
various statements about vector spaces hold; namely,

(x1, . . . , xn)
N ⊆ (f1, . . . , fn)

⇐⇒ (x1, . . . , xn)N ⊆ (f1, . . . , fn)N

⇐⇒ (x1, . . . , xn)N = (f1, . . . , fn)N since (f1, . . . , fn)N ⊆ (x1, . . . , xn)N

⇐⇒ dim(f1, . . . , fn)N = dim(x1, . . . , xn)N .

Let T be the matrix which expresses a generating set for (f1, . . . , fn)N in
terms of the monomial basis for (x1, . . . , xn)N . The vector space (f1, . . . , fn)N
is generated by {mN−dj ,ifj} where, for each fixed d, {md,i} is the set of
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monomials in x1, . . . , xn of degree d. Express each mN−j,ifj in terms of the
basis {mN,i}. We have:

[mN,1, . . .mN,last]T = [mN−d1,1f1, . . . ,mN−dn,lastfn].

We have shown that f is not a regular sequence if and only Irow size(T ) = 0;
this is a closed condition on the coefficients of f . �

Observation 5.4. Retain the notation and hypotheses of Theorem 5.2 and
(5.1). Then X is a closed subset of A.

Proof. The coordinate ring for A is S = k[{zi,j;h | 1 ≤ i ≤ j ≤ n and 1 ≤
h ≤ n}]. The point a = ({ai,j;h)) in affine space An(n+1

2 ) corresponds to the
element fa = (f1, . . . , fn) in A with fh =

∑
i≤j ai,j;hxixj . We describe an ideal

J of S so that every polynomial of J vanishes at the point a of affine space

An(n+1
2 ) if and only if fa is in X .

We work in the polynomial ring

T = k
[
x1, . . . , xn,{zi,j;h | 1≤ i≤ j ≤ n and 1≤ h≤ n},w1, . . . ,wn

]
.

Let F be the n-tuple (F1, . . . , Fn), where Fh =
∑

i≤j zi,j;hxixj , F be the poly-

nomial F =
∑n

h=1Fiwi, H be the n×n matrix H = ( ∂2F
∂xi ∂xj

), and G1, . . . ,Gα

be a set of generators for the ideal I3(H). Each G� is a tri-homogeneous poly-
nomial in T with degree 0 in the x’s, degree 3 in the z’s, and degree 3 in the
w’s. For each large N , let μN,1, . . . , μN,(N+n−1

N ) be a list of the monomials in

{w1, . . . ,wn} of degree N , MN be the matrix which expresses each μN−3,iG�

(as μN−3,i roams over the monomials of degree of N − 3 in {w1, . . . ,wn} and
1≤ 	≤ α) in terms of the monomials {μN,1, . . . , μN,(N+n−1

N )} of degree N in

{w1, . . . ,wn}:

[μN−3,1G1, . . . , μN−3,(N+n−4
N−3 )Gα] = [μN,1, . . . , μN,(N+n−1

N )]MN .

Notice that each entry of each matrix MN is a cubic form in S = k[{zi,j;h}].
Let JN be the ideal in S generated by the

(
N+n−1

N

)
minors of MN . Let J be

the ideal
∑

N JN of S.

Let a ∈An(n+1
2 ). We claim that fa is in X if and only if a ∈ V (J). Let x be

the variables (x1, . . . , xn) and w be the variables (w1, . . . ,wn). Observe that

fa is in X(5.2)

⇐⇒ ∃b ∈An with b �= 0 and F (x,a,b) is reducible

⇐⇒ ∃b ∈An with b �= 0 and rankH(a,b)≤ 2(5.3)

⇐⇒ ∃b ∈An with b �= 0 and I3
(
H(a,b)

)
= 0(5.4)
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⇐⇒

⎧⎪⎨⎪⎩
the ideal I3(H(a,w)) of the polynomial

ring k[w1, . . . ,wn] is not primary to the maximal

ideal (w1, . . . ,wn)

(5.5)

⇐⇒ (w1, . . . ,wn)
N � I3

(
H(a,w)

)
= 0, for any N(5.6)

⇐⇒ every

(
N + n− 1

N

)
minor of MN (a) is zero for all N(5.7)

⇐⇒ a is in V (J).(5.8)

We explain the various equivalences. The point of (5.2) is that if fa is the
n-tuple (f1, . . . , fn) in A, then F (x,a,b) is the element b1f1 + · · ·+ bnfn in
the vector space spanned by f1, . . . , fn. Hence, (5.2) is the definition of the
set X .

(5.3) The matrix H(a,b) is the Hessian of the polynomial b1f1 + · · · +
bnfn in P = k[x1, . . . , xn]. Lemma 5.5 shows that a quadratic form in P is
irreducible if and only if its Hessian has rank at least 3.

(5.4) This is obvious.
(5.5) This is the critical translation where we are able to remove the words

“∃b”. If S is a set of homogeneous polynomials in k[w1, . . . ,wn], with k
algebraically closed, then the homogeneous Nullstellensatz guarantees that
the polynomials of S have a common non-trivial solution in k if and only if
the ideal generated by the elements of S is not primary to the irrelevant ideal
(w1, . . . ,wn).

(5.6) This is obvious.
(5.7) We turn (5.6) into a vector space calculation. We look at our fa-

vorite basis for k[w1, . . . ,wn]N and we express the elements of the subspace
[I3(H(a,w))]N in terms of the basis for the entire space [(x1, . . . , xn)

N ]N . The
subspace is equal to the entire space if and only if the transition matrix has
rank equal to the dimension of the entire vector space. We use the formulation
that the subspace [I3(H(a,w))]N is a proper subspace of [(x1, . . . , xn)

N ]N if
and only if every maximal minor of the transition matrix MN (a) is zero. �

Lemma 5.5 is well known; it can be seen, for example, by writing f in
diagonal form and using [9, Proposition 11.2]. We include a short proof for
the reader’s convenience. Recall that the polynomial f in k[x1, . . . , xn], where
k is a field, is called absolutely irreducible if f is irreducible in k̄[x1, . . . , xn],
where k̄ is the algebraic closure of k.

Lemma 5.5. Let f be a quadratic form in the polynomial ring P =
k[x1, . . . , xn], where k is a field of characteristic not equal to 2, and H(f)

be the n× n matrix with ∂2f
∂xi ∂xj

in the position row i and column j. Then f

is absolutely irreducible if and only if 3≤ rankH(f).
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Proof. We pass to the algebraic closure k̄ of k. Neither statement “f is
absolutely irreducible” nor “3≤ rankH(f)” is affected. Notice that rankH(f)
is invariant under change of variables. Also, the ability, or lack of ability,
to factor f into a product of two linear forms is invariant under change of
variables. Thus, we may change variables at will.

If f factors into 	1	2, then we may change variables and assume that
f = x1x2 or f = x2

1. In either event, rankH(f) ≤ 2. Now we assume that

rankH(f)≤ 2. It follows that the vector space ( ∂f
∂x1

, . . . , ∂f
∂xn

) has dimension

at most two; so, after a change of variables, ( ∂f
∂x1

, . . . , ∂f
∂xn

) = (x1, x2). (This
is the point where we use the hypothesis that the characteristic of k is not
two.) It follows that f is a homogeneous polynomial in two variables; hence,
f is reducible now that we have passed to k̄. �

Proof of (2) from Theorem 5.2. There is nothing to show for n ≤ 2. Fix

a ∈An(n+1
2 ) for n equal to 3 or 4. We use (5.5) to show that fa is in X . The

matrix H(a,w) is an n× n symmetric matrix with entries which are linear
forms in the polynomial ring k[w1, . . . ,wn]. Observe that

gradek[w1,...,wn](I3
(
H(a,w)

)
≤
{
1< n for n= 3,

3< n for n= 4; see [15, Theorem 1].

It follows that I3(H(a,w)) is not primary to (w1, . . . ,wn); and therefore, fa
is in X . �

Proof of (3) from Theorem 5.2. Fix n≥ 5. Recall that I = (A \X)∪ (A \
Y ) for X (and Y ) given in (and near) (5.1). We know that A \X is open
and A \ Y is open and non-empty. We must show that A \X is non-empty.
Again, we apply (5.5). That is, we prove the result by exhibiting an n× n
symmetric matrix Wn = (wij) of linear forms from k[w1, . . . ,wn] such that
I3(Wn) is primary to the ideal (w1, . . . ,wn). We take

wij =

{
wi+j−3 for 4≤ i+ j ≤ n+ 3,

0 otherwise.

It is obvious that each wi is in the radical of I3(Wn) for n≥ 5. �

Proof of Theorem 5.1. (1) Let f1, . . . , fn be any regular sequence of qua-
dratic forms from P with n ≤ 4. Assertion (2) of Theorem 5.2 ensures that
some minimal generator of the ideal (f1, . . . , fn) factors in a nontrivial manner
in P . The factors represent a pair of exact zero-divisors in A= P/(f1, . . . , fn),
according to Proposition 1.9.

(2) Let f = (f1, . . . , fn), with 5≤ n, be an element of the dense open subset
I of P, as described in Theorem 5.2. The definition of I ensures that f is a
regular sequence and that every minimal generator of the ideal (f1, . . . , fn) is
irreducible in P . The ring A= P/(f1, . . . , fn) is Artinian (hence complete) and
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we may apply Corollary 1.11 to conclude that every pair of exact zero-divisors
in A gives rise to a non-trivial factorization in P of a minimal generator of the
ideal (f1, . . . , fn). No such factorizations exist in P ; consequently, no exact
zero-divisors exist in A. �

Remark. In [14, Definition 3.1] a local ring (R,m, k) is called exact if
m= (x1, . . . , xn) where xi is an exact zero-divisor in R/(x1, . . . , xi−1) for i=
1, . . . , n. The resolution of k given by [14, Theorem 1.8] then yields cxR(k) = n,
so R is a complete intersection by [11, Theorem 2.3]. This sharpens one
implication in [14, Theorem 2.3].

In this terminology, (1) in Theorem 5.1 becomes the statement that Ar-
tinian complete intersections of n quadrics are exact when n≤ 4.
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