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RIEMANNIAN ALMOST CR MANIFOLDS WITH TORSION

GIULIA DILEO AND ANTONIO LOTTA

Abstract. We characterize and study Riemannian almost CR
manifolds admitting characteristic connections, that is, metric

connections with totally skew-symmetric torsion parallelizing the

almost CR structure. Natural constructions are provided of new

nontrivial examples. We study the influence of the curvature

of the metric on the underlying almost CR structure. A global

classification is obtained under flatness assumption of a charac-
teristic connection, provided that the fundamental 2-form of the
structure is closed (quasi Sasakian condition).

1. Introduction

The study of Riemannian geometry on (almost) complex and (almost) con-
tact manifolds is a primary topic in differential geometry. In particular, Kähler
metrics and Sasakian metrics are widely studied in the literature and their
most important features are well understood. The study of the interplay of
curvature properties of the metric and the underlying structure is a fascinat-
ing subject, including for instance the classification and structure theory of
Hermitian symmetric spaces and Sasakian ϕ-symmetric spaces.

On the other hand, both almost complex structures and almost contact
structures are instances of the more general concept of almost CR structure.
Recall that an almost CR manifold of type (n,k) is a triple (M,HM,J),
where M is a real smooth manifold of dimension 2n + k, HM ⊂ TM is a
subbundle of rank 2n of the tangent bundle and J :HM →HM is a partial
almost complex structure, that is, a vector bundle endomorphism such that
J2 =−Id. The integers n and k are respectively, the CR dimension and the
CR codimension of M . When (HM,J) satisfies a standard condition of inte-
grability one speaks of a CR structure (see Section 2). In particular, we recall
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that Sasakian manifolds are strongly pseudoconvex CR manifolds of hyper-
surface type, that is, k = 1 (see, e.g., [9]). For the notion of pseudoconvexity
and pseudoconcavity in CR geometry, we refer the reader to [27]; see also
Section 2.

Given an almost CR manifold, the most natural Riemannian metrics to
study on M are those compatible with the underlying structure, that is

g(JX,JY ) = g(X,Y )

for all sections X,Y of HM ; we refer to (HM,J, g) as a Riemannian almost
CR structure. In the present paper, we single out a special class of compatible
Riemannian metrics on almost CR manifolds. They are defined by the require-
ment that M should admit a metric linear connection parallelizing the almost
CR structure, and whose torsion tensor is totally skew-symmetric (with re-
spect to the metric). Given such a metric g, any connection on M having
the properties stated above will be called characteristic, while (M,HM,J, g)
will be referred to as a Riemannian almost CR manifold with torsion. The
main motivation in the choice of this kind of metrics is in a recent develop-
ment of the theory of metric G-structures by Friedrich and Ivanov, see [15];
their study reveals that for a subgroup G of O(n), the circumstance that a
G-structure on a manifold admits an adapted connection with (nonvanishing)
totally skew-symmetric torsion leads to remarkable features of the structure
itself, often of interest in the theoretical and mathematical physics literature.
For a comprehensive discussion of this subject, see the survey article [2] of
Agricola.

In [15], the authors obtain two characterizations of almost Hermitian and
almost contact metric structures admitting a characteristic connection, also
proving the uniqueness (see Theorems 10.1 and 8.2 in [15]). The almost Her-
mitian structures satisfying this condition are exactly those belonging to the
class G1 in the Gray–Hervella classification. For Kähler manifolds, the Levi–
Civita connection is the unique characteristic one, while for Hermitian mani-
folds, it is the Bismut connection. For Sasakian structures, the characteristic
connection is the one introduced first by Okumura in [28].

We generalize and unify the above results providing necessary and sufficient
conditions for a Riemannian almost CR manifold (M,HM,J, g) to admit a
characteristic connection (Theorem 3.3); such a connection is unique only in
the case where the CR codimension is less than 3. We also furnish an explicit
description of the torsion of any characteristic connection.

Examples of Riemannian almost CR manifolds with torsion having CR
codimension higher than 1 come from the theory of homogeneous naturally
reductive spaces, standard CR manifolds according to Tanaka’s theory [36],
f -structures with complemented frames [8], 3-Sasakian manifolds, complex
contact manifolds [9], and from the geometry of CR submanifolds according
to Bejancu [6]. See Section 4 for a detailed description of these examples.
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Our first objective is to construct a wide class of new examples, show-
ing that this kind of structures actually arise in natural constructions. For
instance, starting from a generalized flag manifold N =G/H , we prove that
each G-invariant Kähler structure (J, g), J being the canonical complex struc-
ture on N , admits a canonical lift to a G-invariant Riemannian CR structure
with torsion on every homogeneous space M = G/K, with K an arbitrary
closed subgroup of H . For instance, this construction is available on Stiefel
manifolds.

In particular, every compact semisimple Lie group admits a family of nat-
ural left-invariant Riemannian CR structures with torsion; these structures
have some interesting features resembling Sasakian ones; namely, the funda-
mental 2-form Φ, defined as customary by

Φ(X,Y ) := g(X,JPY ),

is closed; here P : TM →HM denotes the orthogonal projection. Moreover,
the underlying CR structure is strongly pseudoconvex, in fact the metric g
coincides on HM with the Levi form in a suitable direction (Corollary 6.2).

A Riemannian almost CR manifold with torsion whose fundamental 2-
form is closed will be called a quasi Sasakian CR manifold. This terminology
is consistent with the notion of quasi Sasakian manifolds in almost contact
metric geometry (cf. [7]).

Actually, we prove that a homogeneous space M = G/H of a compact
semisimple Lie group carries a G-invariant quasi Sasakian CR structure if and
only if it carries a G-invariant closed 2-form; the structure is regular in the
sense that the distribution HM⊥ is integrable and the corresponding foliation
F is regular; the space of leaves M/F is a flag manifold and (HM,J, g) projects
onto an invariant Kähler structure (Proposition 3.12 and Theorem 6.8). We
remark that the above considerations applied to the orthogonal group, yield
that the bundle of orthonormal frames O(M) of any Riemannian manifold
(M,g) is a natural way a Riemannian CR manifold with torsion.

In Section 5, we treat the general problem of lifting Riemannian almost CR
structures with torsion from the base to the total space of a principal fiber
bundle Q → M , endowed with a principal connection. The necessary and
sufficient condition is formulated in terms of the curvature of the connection
(see Theorem 5.1); it is automatically satisfied for flat bundles. It holds true
also for the frame bundle L(M) of any Riemannian almost CR manifold M
with parallel torsion, such as nearly Kähler and Sasakian manifolds.

Another objective of the paper is to investigate the influence of the curva-
ture on the underlying almost CR structure. It is well known that for Sasakian
manifolds all the mixed sectional curvatures K(X,ξ) of 2-planes spanned by

a holomorphic vector X ∈HM and ξ ∈HM⊥ are equal to 1. The situation
changes radically in our more general setting. For instance, when k = 2 and



810 G. DILEO AND A. LOTTA

the almost CR structure is at least partially integrable, if all the mixed sec-
tional curvatures do not vanish at one point xo, then (M,HM,J) must be
pseudoconcave at xo. Moreover, n must be even. More generally, for k ≥ 2,
assuming in addition that HM⊥ is an integrable distribution, then all Levi
forms at xo turn out to be nondegenerate, so that (M,HM,J) is pseudocon-
cave and we obtain the sharp inequality

k ≤ 2b+ 1,

where 2b is the greatest power of 2 which divides n. Section 7 contains other
results concerning the interplay between Levi forms and mixed sectional cur-
vatures, yielding some obstructions to the integrability of HM⊥ or of HM
(Levi-flatness).

We also prove that a Riemannian space form (M,g) cannot carry a non-
Levi-flat compatible almost CR structure with CR codimension k ≥ 2, turning
it into an a Riemannian almost CR manifold with parallel torsion (see The-
orems 7.1 and 7.17). The parallelizable 7-dimensional sphere with the round
metric provides an example showing that the last condition on torsion cannot
be dropped.

Finally, the complete, simply connected, irreducible quasi Sasakian CR
manifolds admitting a flat characteristic connection are classified in Theo-
rem 8.2. In accordance with a classical result of Cartan–Schouten, these must
be compact simple Lie groups; precisely, we show they are those arising as
the universal covering of the connected component G of the isometry group of
an irreducible Hermitian symmetric space of compact type G/H . The quasi
Sasakian CR structure coincides with the one obtained, according to the above
cited Corollary 6.2, from the Kähler–Einstein structure on G/H . It should
be observed again that, in particular, the underlying CR structure is strongly
pseudoconvex. This is remarkable, since for any quasi Sasakian manifold of
dimension at least 5, flatness of the characteristic connection forces the Levi
degeneracy of HM (cf. Proposition 8.1).

The above classification is of global nature; on the other hand, we prove
existence results of local nature, stating that given a Hermitian locally sym-
metric space, respectively a Sasakian locally ϕ-symmetric space N , if the
sectional curvature at a fixed point is nonnegative, respectively ≥−3, there
exists a quasi Sasakian CR manifold admitting a flat characteristic connection
and fibering onto N .

2. Preliminaries

An almost CR structure of type (n,k) on a differentiable manifold M of
dimension 2n+ k, k ≥ 0, is a pair (HM,J), where HM is a rank 2n vector
subbundle of the tangent bundle TM , and J :HM →HM is a smooth fiber
preserving bundle isomorphism, such that J2 =−Id. The triple (M,HM,J)
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will be called an almost CR manifold of type (n,k); n and k are the CR dimen-
sion and the CR codimension of M , respectively. The almost CR structure
(HM,J) will be called partially integrable if

(2.1) [X,Y ]− [JX,JY ] ∈ ΓHM ∀X,Y ∈ ΓHM.

If, in addition, the formal integrability condition

(2.2) NJ(X,Y ) := [JX,JY ]− [X,Y ]− J
(
[JX,Y ] + [X,JY ]

)
= 0

is satisfied for every X,Y ∈ ΓHM , (M,HM,J) is called a CR manifold. Here
and in the following we use the notation ΓE for the module of smooth sections
of a vector bundle E; we also set X(M) := ΓTM .

We recall that a CR map between two almost CR manifolds (M,HM,J)
and (M ′,HM ′, J ′) is a smooth map f :M →M ′ whose tangent map at each
point x ∈M satisfies f∗(HxM) ⊂Hf(x)M

′ and J ′
f(x) ◦ f∗ = f∗ ◦ Jx. We say

that M and M ′ are CR diffeomorphic provided there exits a CR map f :
M →M ′ which is also a diffeomorphism.

If D is any differentiable distribution on a manifold M , the Levi–Tanaka
form of D is the C∞(M)-bilinear map L : ΓD× ΓD→ Γ(TM/D) defined by

L(X,Y ) := π[X,Y ],

where π : TM → TM/D is the projection onto the quotient bundle (see [32]).
The vanishing of L is equivalent to the integrability of the distribution D in
the sense of Frobenius; in this case D is called Levi flat. We shall denote by
N(Lxo) the kernel of the determination Lxo of the Levi–Tanaka form at the
point xo. If N(Lxo) = 0, D is said to be Levi nondegenerate at xo. In all that
follows, we shall adopt the notation N(L) for the kernel of a skew-symmetric
bilinear map L : V × V →W , where V,W are vector spaces.

Denoting by Do ⊂ T ∗M the annihilator of D and given a global section
η ∈ ΓDo, the corresponding (scalar) Levi form is defined by

(2.3) Lη(X,Y ) :=−2dη(X,Y ) = η
(
[X,Y ]

)
, ∀X,Y ∈ ΓD.

If furthermore M is endowed with a Riemannian metric g, both the bun-
dles TM/D and Do will be identified with D⊥, and π with the orthogonal
projection with respect to g. In this context, if ξ ∈ ΓD⊥ and η is the dual
1-form, we shall denote the Levi form Lη by Lξ , so that

Lξ(X,Y ) = g
(
[X,Y ], ξ

)
.

A kind 2 distribution is defined by the requirement that

(2.4) X(M) = ΓD+ [ΓD,ΓD],

which is equivalent to require that at each point x ∈M ,
{
ξ ∈D⊥

x : Lξ = 0
}
= {0}.



812 G. DILEO AND A. LOTTA

When the above condition holds at one point xo, we also say that D has kind
2 at xo.

For a partially integrable almost CR structure (HM,J), for any η ∈
ΓHoM we can also introduce a Hermitian symmetric C∞(M)-bilinear map
Lη : ΓHM × ΓHM →C∞(M), also called Levi form, defined as follows:

Lη(X,Y ) := η
(
[X,JY ]

)
.

A partially integrable almost CR manifold is called pseudoconvex at a point
x ∈M if Lη is positive definite for some η ∈Ho

xM . It is called q-pseudoconcave
at x, if for every η ∈Ho

xM , Lη has at least q negative eigenvalues (see, e.g.,
[27]). Finally, M is called strongly pseudoconvex if there exists a global section
η of HoM such that Lη is everywhere positive definite.

Next, we recall some basic information concerning metric connections with
torsion. Let (M,g) be a Riemannian manifold; a metric connection ∇ with
torsion T is said to have (totally) skew-symmetric torsion if the (0,3)-tensor
field T defined by

T (X,Y,Z) = g
(
T (X,Y ),Z

)

is a 3-form. In this case, the relation between ∇ and the Levi–Civita connec-
tion ∇g is

(2.5) ∇XY =∇g
XY +

1

2
T (X,Y ).

Denoting by R the curvature tensor of ∇, we define the (0,4) curvature tensor
by

R(X,Y,Z,V ) := g
(
R(Z,V )Y,X

)
,

which satisfies

R(X,Y,Z,V ) =−R(Y,X,Z,V ) =−R(X,Y,V,Z),

and the Bianchi identity:

SXY ZR(V,X,Y,Z) = 4dT (X,Y,Z,V )− σT (X,Y,Z,V )(2.6)

+ (∇V T )(X,Y,Z),

where σT is the 4-form given by

σT (X,Y,Z,V ) = g
(
T (X,Y ), T (Z,V )

)
+ g

(
T (Y,Z), T (X,V )

)
(2.7)

+ g
(
T (Z,X), T (Y,V )

)
.

Moreover, the exterior derivative of T satisfies

4dT (X,Y,Z,V ) =SXY Z

[
(∇XT )(Y,Z,V )− (∇V T )(X,Y,Z)

]
(2.8)

+ 2σT (X,Y,Z,V ).

If ∇T = 0, then one can show that

(2.9) R(X,Y,Z,V ) =R(Z,V,X,Y ).
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Finally, the Riemannian curvature and R are related by:

Rg(V,Z,X,Y ) =R(V,Z,X,Y )− 1

2
(∇XT )(Y,Z,V )(2.10)

+
1

2
(∇Y T )(X,Z,V )− 1

4
g
(
T (X,Y ), T (Z,V )

)

− 1

4
σT (X,Y,Z,V ).

See for more details [2] and references therein.

3. Characteristic connections on Riemannian almost CR manifolds

Let (M,HM,J, g) be a Riemannian almost CR manifold of type (n,k), that
is (HM,J) is an almost CR structure of type (n,k) and g is a compatible
Riemannian metric on M , that is,

g(JX,JY ) = g(X,Y ) ∀X,Y ∈ ΓHM.

Let

P : TM →HM

be the orthogonal projection and define an operator Γ : ΓHM × ΓHM →
ΓHM by

ΓXY := P
(
∇g

XY
)
.

We also introduce the tensor N : ΓHM × ΓHM → ΓHM defined by

(3.1) N(X,Y ) := P
(
[JX,JY ]− [X,Y ]

)
− JP

(
[JX,Y ] + [X,JY ]

)
.

Notice that if the almost CR structure is partially integrable, the tensor N
coincides with NJ . It can be verified that

(3.2) N(X,Y ) = (ΓJXJ)Y − (ΓJY J)X + (ΓXJ)JY − (ΓY J)JX,

where, for any X ∈ ΓHM , ΓXJ : ΓHM → ΓHM is the C∞(M)-linear opera-
tor defined by

(ΓXJ)Y := ΓX(JY )− J(ΓXY ).

This operator is skew-symmetric with respect to g and anticommutes with J .
We shall denote by the same symbol N the (0,3)-tensor defined by

N(X,Y,Z) := g
(
N(X,Y ),Z

)
∀X,Y ∈ ΓHM.

Proposition 3.1. The following conditions are equivalent:

(a) the (0,3)-tensor N is skew-symmetric;
(b) for every X ∈ ΓHM , (ΓXJ)X = (ΓJXJ)JX ;
(c) for every Y,Z ∈ ΓHM , (ΓY J)Z + (ΓZJ)Y = (ΓJY J)JZ + (ΓJZJ)JY .



814 G. DILEO AND A. LOTTA

Proof. Using (3.2) and the fact that the operators ΓXJ are skew-symmetric
and anticommute with J , a straightforward computation shows that

N(X,Y,JZ)−N(Y,Z,JX) +N(Z,X,JY )

= 2g
(
(ΓJXJ)JY ,Z

)
− 2g

(
(ΓXJ)Y,Z

)
.

Applying this formula for Z = JX , we have

N(X,Y,X) +N(Y,JX,JX)−N(JX,X,JY )(3.3)

= 2g
(
(ΓXJ)Y,JX

)
− 2g

(
(ΓJXJ)JY ,JX

)
.

Now, the tensor N satisfies N(Y,JX) =−JN(Y,X) so that

N(Y,JX,JX) =−g
(
JN(Y,X), JX

)
=N(X,Y,X).

Being also N(X,JX) = 0, (3.3) yields

N(X,Y,X) = g
(
(ΓJXJ)JX,JY

)
− g

(
(ΓXJ)X,JY

)

for every X,Y ∈ ΓHM , which implies the equivalence of (a) and (b). The
equivalence of (b) and (c) is immediate. �

Definition 3.2. Let (M,HM,J, g) be a Riemannian almost CR manifold.
We say that (M,HM,J, g) is a Riemannian almost CR manifold with torsion
if there exists a metric connection on M with totally skew-symmetric torsion
which parallelizes the structure (HM,J). Such a connection will be called
characteristic.

In order to provide necessary and sufficient conditions for the existence of
a characteristic connection, we introduce for every ξ ∈ ΓHM⊥, the bundle
endomorphism θξ :HM →HM defined by

θξ(X) := P [ξ, JX]− JP [ξ,X], X ∈ ΓHM.

We shall also denote by L : ΓHM × ΓHM → ΓHM⊥ and L′ : ΓHM⊥ ×
ΓHM⊥ → ΓHM the Levi–Tanaka forms of HM and HM⊥, respectively.
Then we state the following theorem.

Theorem 3.3. Let (M,HM,J, g) be a Riemannian almost CR manifold.
Then M admits a characteristic connection if and only if the following con-
ditions are satisfied:

(1) the tensor N is skew-symmetric,
(2) g(θξ(X), Y ) = g([JX,Y ] + [X,JY ], ξ),
(3) (Lξg)(X,Y ) = 0,
(4) (LXg)(ξ, ξ′) = 0,

for every X,Y ∈ ΓHM , and ξ, ξ′ ∈ ΓHM⊥. Furthermore, the torsion of each
characteristic connection satisfies:

T (X,Y,Z) =N(X,Y,Z)−SXY Zg
(
(ΓJXJ)Y,Z

)
,(3.4)

T (X,Y, ξ) =−g
(
[X,Y ], ξ

)
=−Lξ(X,Y ),(3.5)
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T
(
X,ξ, ξ′

)
=−g

([
ξ, ξ′

]
,X

)
=−L′

X

(
ξ, ξ′

)
(3.6)

for every X,Y,Z ∈ ΓHM , and ξ, ξ′ ∈ ΓHM⊥.

Remark 3.4. We point out the circumstance that a Riemannnian almost
CR manifold with torsion of CR codimension k < 3 admits a unique charac-
teristic connection. For k ≥ 3 the characteristic connections are in a one-to-
one correspondence with the smooth sections of Λ3(HM⊥). In fact, for each

A ∈ ΓΛ3(HM⊥), the corresponding characteristic connection is the one whose
torsion satisfies

(3.7) T
(
ξ, ξ′, ξ′′

)
=A

(
ξ, ξ′, ξ′′

)

for every ξ, ξ′, ξ′′ ∈ ΓHM⊥.

Proof of Theorem 3.3. Assume that M carries a characteristic connection
∇, given as in (2.5). If D :X(M)× ΓHM → ΓHM is the induced connection
on HM , being DJ = 0 one gets

(3.8) 2g
(
(ΓXJ)Y,Z

)
+ T (X,JY ,Z) + T (X,Y,JZ) = 0

for every X,Y,Z ∈ ΓHM . Using (3.2) and (3.8), we get

N(X,Y,Z) = T (X,Y,Z)− T (JX,JY ,Z)(3.9)

− T (JX,Y,JZ)− T (X,JY ,JZ),

which implies that N is skew-symmetric, thus proving (1). Before proving
(2)–(4), we observe that the torsion satisfies Formulas (3.5) and (3.6) since ∇
parallelizes HM . We also prove (3.4); applying (3.8), we have

(3.10) SXY Zg
(
(ΓXJ)Y,Z

)
=−SXY ZT (X,Y,JZ).

Now, since the operator ΓJXJ anticommutes with J , we have

g
(
(ΓJXJ)Y,Z

)
=−g

(
(ΓJXJ)JY ,JZ

)
,

and applying (3.9) and (3.10), we obtain (3.4).
In order to prove (2), using the parallelism of (HM,J), we have

g
(
θξ(X), Y

)
= g

(
[ξ, JX], Y

)
+ g

(
[ξ,X], JY

)

= g
(
∇ξ(JX)−∇JXξ − T (ξ, JX), Y

)

+ g
(
∇ξX −∇Xξ − T (ξ,X), JY

)

=−T (JX,Y, ξ)− T (X,JY , ξ),

and applying (3.5), we get (2). Using ∇g = 0, we also have

(Lξg)(X,Y ) = ξ
(
g(X,Y )

)
− g

(
∇ξX −∇Xξ − T (ξ,X), Y

)

− g
(
X,∇ξY −∇Y ξ − T (ξ,Y )

)

= T (ξ,X,Y ) + T (ξ,Y,X) = 0.

Analogously, we get (4).
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As for the converse, let us suppose that (1)–(4) hold. Let ∇ be the linear
connection given by (2.5), where T as a (0,3)-tensor is determined by (3.4)-
(3.7) and

T (ξ,X,Y ) =−T (X,ξ,Y ) = T (X,Y, ξ),

T
(
ξ, ξ′,X

)
=−T

(
ξ,X, ξ′

)
= T

(
X,ξ, ξ′

)
.

In order to check that T is a 3-form, a simple computation using (3.2) gives

(3.11) T (X,Y,Z) = g
(
(ΓXJ)Y − (ΓY J)X,JZ

)
− g

(
(ΓJZJ)X,Y

)
,

for every X,Y,Z ∈ ΓHM , which implies that T (X,X,Z) = 0. Moreover,

T (X,Y,X) =−g
(
(ΓXJ)JX + (ΓJXJ)X,Y

)
− g

(
(ΓY J)X,JX

)
.

BeingN skew-symmetric, from (c) of Proposition 3.1, (ΓXJ)JX+(ΓJXJ)X =
0. On the other hand, g((ΓY J)X,JX) = 0 since the operators ΓY J and J are
skew-symmetric and anticommute. Thus, T (X,Y,X) = 0.

Now, we prove that ∇ parallelizes HM . Indeed, for every X,Y ∈ ΓHM
and ξ ∈ ΓHM⊥, we have

g(∇XY, ξ) = g
(
∇g

XY, ξ
)
− 1

2
g
(
[X,Y ], ξ

)

=
1

2
g
(
∇g

XY +∇g
Y X,ξ

)

=−1

2
g
(
Y,∇g

ξX − [ξ,X]
)
− 1

2
g
(
X,∇g

ξY − [ξ,Y ]
)

=−1

2
(Lξg)(X,Y )

which vanishes because of (3). Analogously, by assumption (4), for every

X ∈ ΓHM and ξ, ξ′ ∈ ΓHM⊥,

g
(
∇ξX,ξ′

)
=

1

2
(LXg)

(
ξ, ξ′

)
= 0.

Finally, denoting by D : X(M)× ΓHM → ΓHM the induced connection on
HM , we prove that DJ = 0. For every X,Y,Z ∈ ΓHM , we have

g
(
(DXJ)Y,Z

)
= g

(
∇X(JY ),Z

)
+ g(∇XY,JZ)

= g
(
(ΓXJ)Y,Z

)
+

1

2

(
T (X,JY ,Z) + T (X,Y,JZ)

)
,

which vanishes, since applying (3.11) and (c) of Proposition 3.1, we have

T (X,JY ,Z) + T (X,Y,JZ) = g
(
(ΓXJ)JY − (ΓJY J)X,JZ

)

− g
(
(ΓXJ)Y − (ΓY J)X,Z

)

− g
(
(ΓJZJ)X,JY

)
+ g

(
(ΓZJ)X,Y

)

=−2g
(
(ΓXJ)Y,Z

)
.
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Now, notice that, since ∇ parallelizes HM , for every X,Y ∈ ΓHM and ξ ∈
ΓHM⊥,

T (X,ξ,Y ) =−g(∇ξX,Y )− g
(
[X,ξ], Y

)
.

Hence, using also (3.5), we have

(3.12) g(∇ξX,Y ) =−g
(
[X,Y ], ξ

)
+ g

(
[ξ,X], Y

)
.

Therefore, for every ξ ∈ ΓHM⊥ and X,Y ∈ ΓHM ,

g
(
(DξJ)X,Y

)
= g

(
∇ξ(JX), Y

)
+ g(∇ξX,JY )

=−g
(
[JX,Y ] + [X,JY ], ξ

)
+ g

(
θξ(X), Y

)

which vanishes because of (2). �

Remark 3.5. If R is the curvature tensor of a characteristic connection ∇,
then

R(JX,JY ,Z,V ) =R(X,Y,Z,V )

for every X,Y,Z,V ∈ ΓHM . If furthermore ∇T = 0, then by (2.9), we have

(3.13) R(X,Y,JZ,JV ) =R(X,Y,Z,V ).

Remark 3.6. For a Riemannian almost CR manifold with torsion, the
integrability of the distributions HM and HM⊥ can be characterized by
means of the torsion of any characteristic connection. Indeed, from (3.5) and
(3.6), it follows that

(i) HM is integrable iff T (X,Y, ξ) = 0, for anyX,Y ∈ ΓHM and ξ ∈ ΓHM⊥;
(ii) HM⊥ is integrable iff T (X,ξ, ξ′) = 0 for any X ∈ ΓHM and ξ, ξ′ ∈

ΓHM⊥;
(iii) HM and HM⊥ are both integrable iff T (X,ξ) = 0, for any X ∈ ΓHM

and ξ ∈ ΓHM⊥.

Moreover, the almost CR structure (HM,J) is partially integrable if and

only if θξ = 0 for every ξ ∈ ΓHM⊥. If furthermore N = 0, the structure is
integrable.

Proposition 3.7. Let (M,HM,J, g) be a Riemannian almost CR manifold

with torsion. Assume that HM⊥ is integrable, then

(i) the foliation F determined by HM⊥ is Riemannian with totally geodesic
leaves;

(ii) if F is regular, the space of leaves M/F is an almost Hermitian manifold
of type G1, provided that J is partially integrable. Furthermore, M/F is
Hermitian if and only if (HM,J) is integrable.

In the case (ii), we say that M is regular.
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Proof. From (2.5) and (3.6) it follows that the leaves of F are totally ge-
odesic, while condition (3) in Theorem 3.3 guarantees that the foliation is
Riemannian. Assuming F regular, g is projectable and induces a Riemannian
metric on M/F, making the natural projection π : M → M/F a Riemann-
ian submersion. Now, if J is partially integrable, being θξ = 0 for every

ξ ∈ ΓHM⊥, the (1,1)-tensor field ϕ defined by ϕZ = JPZ is projectable (cf.
e.g., (P.1) in [4]) and induces an almost complex structure J on M/F, making
π a CR map. Finally, it is straightforward to see that for everyX,Y,Z ∈ ΓHM
which are projectable vector fields with respect to π, we have

N(X,Y,Z) ◦ π =N(π∗X,π∗Y,π∗Z),

where the tensor N in the right-hand side is the Nijenhuis tensor of M/F.
This justifies the last claims. �

Next we describe some special classes of Riemannian almost CR manifolds
which may be thought as generalizations of Kähler and (quasi) Sasakian man-
ifolds. In order to do this, we introduce the fundamental 2-form Φ defined
by

Φ(U,V ) := g(PU,JPV )

for every U,V ∈X(M).

Proposition 3.8. Let (M,HM,J, g) be a Riemannian almost CR manifold
with torsion. Then, the following conditions are equivalent:

(i) ΓXJ = 0 for every X ∈ ΓHM ,
(ii) T (X,Y,Z) = 0 for every X,Y,Z ∈ ΓHM ,
(iii) dΦ(X,Y,Z) = 0 for every X,Y,Z ∈ ΓHM .

If any of the above conditions is satisfied, then N = 0.

Proof. The equivalence of (i) and (ii) is an immediate consequence of (3.11)
and (3.8). Now a simple computation shows that

3dΦ(X,Y,Z) =−SXY Zg
(
(ΓXJ)Y,Z

)

for every X,Y,Z ∈ ΓHM , and thus (i) implies (iii). Conversely, supposing
(iii), from (3.4) we have that T and N coincide on HM . Hence, from (3.10),
we have

N(X,Y,JZ) +N(Y,Z,JX) +N(Z,X,JY ) = 0

for every X,Y,Z ∈ ΓHM . Since N is skew-symmetric and N(JX,Y ) =
−JN(X,Y ), we deduce that N(X,Y,JZ) = 0. Therefore (ii), or equivalently
(i), holds. �

A Riemannian almost CR manifold with torsion satisfying any of the equiv-
alent conditions in the previous result will be called of Kähler type. This ter-
minology is in accordance with [14], where it has been adopted in the more
general context of (generalized) pseudohermitian geometry.



RIEMANNIAN ALMOST CR MANIFOLDS WITH TORSION 819

Proposition 3.9. Let (M,HM,J, g) be a Riemannian almost CR manifold
with torsion. Then the fundamental 2-form is closed if and only if the almost
CR structure (HM,J) is partially integrable, M is of Kähler type and HM⊥

is an integrable distribution. If these conditions are satisfied the almost CR
structure is integrable.

Proof. The partial integrability of the almost CR structure is equivalent to
the vanishing of dΦ(ξ,X,Y ) for every ξ ∈ ΓHM⊥ and X,Y ∈ ΓHM . Indeed,
applying (3) of Theorem 3.3, we have

3dΦ(ξ,X,Y ) = ξ
(
g(X,JY )

)
− g

(
[ξ,X], JY

)
− g

(
[Y, ξ], JX

)

= g
(
X, [ξ, JY ]

)
− g

(
X,JP [ξ,Y ]

)

= g
(
θξ(Y ),X

)
.

On the other hand, the distribution HM⊥ is integrable iff dΦ(ξ, ξ′,X) = 0 for

every ξ, ξ′ ∈ ΓHM⊥ and X ∈ ΓHM , being

3dΦ
(
ξ, ξ′,X

)
=−g

([
ξ, ξ′

]
, JX

)
.

Finally, taking into account Proposition 3.8 the proof is easily completed. �

Remark 3.10. In the case of an almost contact metric manifold (M,ϕ, ξ,
η, g), necessary and sufficient conditions for the existence of a characteristic
connection have been already determined in [15, Theorem 8.2], namely such
a connection exists if and only if the tensor Nϕ := [ϕ,ϕ] + 2dη ⊗ ξ is totally
skew-symmetric and ξ is Killing. Here [ϕ,ϕ] denotes the Nijenhuis tensor
of ϕ. Consequently, if these conditions are satisfied, it can be easily seen that
the requirement dΦ = 0 is equivalent to the circumstance that the structure
is quasi Sasakian in the sense of Blair [7] (see also [15, Theorem 8.4]).

According to this remark, we shall adopt the following terminology:

Definition 3.11. A Riemannian almost CR manifold with torsion, whose
fundamental 2-form Φ is closed, will be called a quasi Sasakian CR manifold.

Proposition 3.12. Every homogeneous quasi Sasakian CR manifold M =
G/K, where G is a compact semisimple Lie group is regular. The space of
leaves M/F is a generalized flag manifold G/H and the projected structure is
Kähler and G-invariant.

Proof. Consider the orthogonal decomposition g= k⊕n of g with respect to
the Killing form B, where k=Lie(K). Since the fundamental 2-form Φ of M
is G-invariant, it determines an element Φ̄ ∈ Λ2(n), invariant under Ad(K).
We extend Φ̄ to an element of Λ2(g) in a trivial way. Since Φ is closed, a
standard argument based on the assumption that G is semisimple shows that
Φ̄ is given by

(3.14) Φ̄(X,Y ) =B
(
[Zo,X], Y

)
∀X,Y ∈ g,



820 G. DILEO AND A. LOTTA

where Zo ∈ g is uniquely determined (cf. [11]). Since Φ̄ is Ad(K)-invariant,
we have that K is contained in the centralizer H of Zo in G. Now G/H
is a generalized flag manifold; denote by π : M → G/H the natural projec-
tion. Observe that, denoting by h the Lie algebra of H , at the point o ∈M
corresponding to the coset K, we have

HoM
⊥ =N(Φ̄)∩ n= h∩ n

which implies that HoM
⊥ =Ker(π∗o). By G-invariance, it follows that F is

regular (cf. [37]) and that M/F∼=G/H . Finally, we know that the projected
structure is Kähler according to Proposition 3.7. �

4. Examples

Example 4.1. Let M = G/H be a homogeneous space endowed with a
G-invariant Riemannian almost CR structure (HM,J, g). If M is a naturally
reductive space with respect to g (see e.g. [20, Ch. X]), then the canonical
G-invariant connection determined by a reductive decomposition of the Lie
algebra g of G is a characteristic connection, since it parallelizes (HM,J)
according to [20, Proposition 2.7, Ch. X]. A remarkable class is given by
compact standard homogeneous CR manifolds associated to semisimple Levi–
Tanaka algebras (see, for more information, [27], [24], [25]).

Example 4.2. Let m = m−1 ⊕ m−2 be a pseudocomplex fundamental
graded Lie algebra of kind 2, that is m is Z-graded and generated by m−1,
and m−1 is endowed with a complex structure J such that

[JX,JY ] = [X,Y ] ∀X,Y ∈m−1.

For more details, see [27]. The simply connected Lie group M with Lie alge-
bra m carries a canonical left invariant CR structure (HM,J) of type (n,k),
where 2n = dimm−1, k = dimm−2, HM is the left invariant distribution of
kind 2 such that HeM =m−1, and Je = J . Notice that M is CR diffeomor-
phic to an affine CR quadric in C

n+k [36]. Fix an inner product 〈 , 〉 on m

which is Hermitian on m−1 with respect to J and such that m−1 and m−2

are orthogonal. Then taking the left invariant Riemannian metric g on M de-
termined by 〈 , 〉, (M,HM,J, g) is a Riemannian CR manifold with torsion.
Indeed the tensor N vanishes and conditions (2), (3), (4) in Theorem 3.3 can
be readily verified using left invariant vector fields.

Example 4.3. We discuss now K-manifolds defined by Blair in [8]. Con-
sider a manifold M of dimension 2n+ k endowed with a normal f -structure
ϕ of rank 2n. This means that there exist vector fields ξi, i= 1, . . . , k, with
dual forms ηi such that

ϕξi = 0, ηi ◦ϕ= 0, ϕ2 =−I +
∑

ηi ⊗ ξi,

Nϕ := [ϕ,ϕ] + 2
∑

dηi ⊗ ξi = 0.
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The vanishing of Nϕ ensures that M is a CR manifold of type (n,k) with
structure (HM,J), where HM = Imϕ and J = ϕ|HM . Such a manifold is
called a K-manifold if it admits a Riemannian metric g such that

g(X,Y ) = g(ϕX,ϕY )−
∑

ηi(X)ηi(Y ),

and the fundamental 2-form Φ, defined by Φ(X,Y ) = g(X,ϕY ), is closed.
Then M is a quasi Sasakian CR manifold in the sense of Definition 3.11.
Indeed, being the structure CR integrable, condition (1) in Theorem 3.3 is
satisfied; each operator θξi vanishes since it is known that Lξiϕ = 0, thus
yielding condition (2). The vector fields ξi are Killing (see [8]) and this gives
(3). Finally, from Nϕ(ξi,X) = 0 it follows that [ξi,X] ∈ ΓHM for every X ∈
ΓHM , implying (LXg)(ξi, ξj) = 0 and thus (4) holds.

Example 4.4. A 3-Sasakian manifold is a (4n+ 3)-dimensional manifold
M endowed with three Sasakian structures (ϕα, ξα, ηα, g), with the same com-
patible metric g, satisfying the following relations, for any even permutation
(α,β, γ) of {1,2,3}:

ϕγ = ϕαϕβ − ηβ ⊗ ξα =−ϕβϕα + ηα ⊗ ξβ ,

ξγ = ϕαξβ =−ϕβξα, ηγ = ηα ◦ϕβ =−ηβ ◦ϕα.
(4.1)

It is known that the Reeb vector fields ξ1, ξ2, ξ3 are orthonormal with respect
to the metric g. We shall denote by V the distribution 〈ξ1, ξ2, ξ3〉, which is
invariant with respect to each ϕα.

Let HM be the 4n-dimensional distribution given by

HM =

3⋂
α=1

Ker(ηα)

which is orthogonal to V . Denote by Jα, α= 1,2,3, the endomorphism of HM
induced by ϕα, which satisfies J2

α =−Id; the quaternionic identities JαJβ =
Jγ =−JβJα hold for every even permutation (α,β, γ) of {1,2,3}. Given three
real constants a1, a2, a3 such that a21+a22+a23 = 1, we consider in the following
the almost CR structure (HM,J), where J := a1J1 + a2J2 + a3J3.

The Riemannian almost CR structure (HM,J, g) does not admit any char-
acteristic connection since one can verify that conditions (1), (3), (4) in Theo-
rem 3.3 are satisfied, but not condition (2); however, this problem is rectified
by considering instead of g the modified metric g′ defined as follows:

(4.2) g′(X,Y ) := g(X,Y ), g′(X,ξ) = 0, g′
(
ξ, ξ′

)
:=

1

2
g
(
ξ, ξ′

)

for every X,Y ∈ ΓHM , ξ, ξ′ ∈ ΓV .
First, it is known that ΓXJα = 0 for each α = 1,2,3 and X ∈ ΓHM , cf.

[14, Prop. 8.1]. Hence, (1) holds. As regards (2), first we observe that the
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Levi–Tanaka form relative to HM is given by

(4.3) L(X,Y ) =

3∑
δ=1

ηδ[X,Y ]ξδ =−2

3∑
δ=1

dηδ(X,Y )ξδ =−2

3∑
δ=1

Φδ(X,Y )ξδ,

where Φδ is the fundamental 2-form of the Sasakian structure (ϕδ, ξδ, ηδ, g) de-
fined by Φδ(X,Y ) = g(X,ϕδY ). Now, it is also known that Φα(JαX,JαY ) =
Φα(X,Y ) and Φα(JβX,JβY ) =−Φα(X,Y ) for β �= α, and thus

g′
(
[JX,Y ] + [X,JY ], ξα

)
=−Φα(JX,Y )−Φα(X,JY )

=−2aβg(X,JγY ) + 2aγg(X,JβY )

with (α,β, γ) an even permutation of {1,2,3}. On the other hand, using
Lξαϕα = 0 and (Lξβϕα)X =−2ϕγX (see [12]), and taking into account that
each ξα is an infinitesimal automorphism of HM , we see that

θξα(X) = 2aβϕγX − 2aγϕβX

which implies condition (2). Finally, (3) holds since each ξα is a Killing
vector field with respect to g; further it is immediately verified that (LXg′)(ξα,
ξβ) = 0, which implies (4).

Example 4.5. Let M be a 3-Sasakian manifold of dimension 4n+ 3 with
structure (ϕα, ξα, ηα, g). For an even permutation (α,β, γ) of {1,2,3}, con-
sider the CR structure (HM,Jα) of type (1,4n+1), defined by HM = 〈ξβ , ξγ〉
and Jα(ξβ) = ξγ . We shall verify that (HM,Jα, g) is a Riemannian CR struc-
ture with torsion.

Conditions (1) and (4) in Theorem 3.3 are trivially satisfied. As regards
condition (2), we have θξα = 0 as consequence of the basic relation [ξα, ξβ ] =
2ξγ ; furthermore, for every vector field ζ orthogonal to V = 〈ξ1, ξ2, ξ3〉, θζ also
vanishes since [ζ, ξi] is orthogonal to V . Finally, condition (3) holds since ξα
is Killing and (Lζg)(ξi, ξj) = 0.

Concerning this example we also claim that (HM,Jα, g) does not admit
any characteristic connection with parallel torsion. Indeed, we shall prove
that any characteristic connection ∇ satisfies

(4.4) (∇ξβT )
(
ξγ , ζ, ζ

′) = 4g
(
ζ ′, ϕαζ

)

for every vector fields ζ, ζ ′ orthogonal to V . Applying (3.6) the torsion T of
any characteristic connection ∇ satisfies

T
(
ξγ , ζ, ζ

′) =−ηγ
([
ζ, ζ ′

])
= 2g

(
ζ,ϕγζ

′),(4.5)

T (ξγ , ξα, ζ) =−g
(
[ξα, ζ], ξγ

)
= 0.(4.6)

Notice that by (2.5), we get

g(∇ξβξγ , ξβ) = g
(
∇g

ξβ
ξγ , ξβ

)
=−g

(
ξγ ,∇g

ξβ
ξβ

)
= 0,
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which implies ∇ξβξγ = 0, since HM is ∇-parallel. Since ∇ξβζ ∈ ΓHM⊥, by
(4.5) and (4.6) we have

T
(
ξγ ,∇ξβζ, ζ

′) = 2g
(
∇ξβζ,ϕγζ

′).
Therefore,

(∇ξβT )
(
ξγ , ζ, ζ

′) = 2ξβ
(
g
(
ζ,ϕγζ

′))− 2g
(
∇ξβζ,ϕγζ

′)+ 2g
(
∇ξβζ

′, ϕγζ
)

= 2g
(
ζ, (∇ξβϕγ)ζ

′).
On the other hand, by (2.5)

g
(
(∇ξβϕγ)ζ

′, ζ
)
= g

((
∇g

ξβ
ϕγ

)
ζ ′, ζ

)
+

1

2

(
T

(
ξβ , ϕγζ

′, ζ
)
+ T

(
ξβ , ζ

′, ϕγζ
))
.

Recalling that (ϕα, ξα, ηα, g) is a Sasakian structure, the first term on the
right-hand side vanishes, and applying (4.5) we get

g
(
(∇ξβϕγ)ζ

′, ζ
)
=−2g

(
ζ ′, ϕγϕβζ

)
= 2g

(
ζ ′, ϕαζ

)

and this completes the proof of (4.4).

Example 4.6. A complex contact manifold [9] is a complex manifold M
of odd complex dimension 2n + 1, endowed with an open covering {O} of
coordinate neighborhoods such that:

(1) On each O there is a holomorphic 1-form θ such that θ∧ (dθ)n �= 0 every-
where on O.

(2) If O ∩O′ �= ∅, there is a nonvanishing holomorphic function f such that
θ′ = fθ.

The local complex contact forms determine a global nonintegrable subbundle
HM , defined by the equation θ = 0, which has complex dimension 2n and is
called the complex contact subbundle or the horizontal subbundle.

Denoting by J the complex structure on M , if g is a Hermitian metric, M
is called a complex almost contact metric manifold if the following conditions
hold:

(1) In each O there exist real 1-forms u and v = u ◦ J with dual vector fields
U and V =−JU , and (1,1)-tensor fields G and H =GJ such that

G2 =H2 =−I + u⊗U + v⊗ V,

GJ =−JG, GU = 0, g(X,GY ) =−g(GX,Y ).

(2) On the overlaps O ∩O′ �= ∅, the above tensors transform as

u′ = au− bv, v′ = bu+ av,

G′ = aG− bH, H ′ = bG+ aH,

for some functions a and b with a2 + b2 = 1.
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A complex contact manifold always admits a complex almost contact metric
structure for which the local contact form θ is u− iv to within a nonvanishing
complex valued function multiple. Such a structure is in fact a complex contact
metric structure: the tensor fields G and H are related to du and dv by

du(X,Y ) = g(X,GY ) + (σ ∧ v)(X,Y ),(4.7)

dv(X,Y ) = g(X,HY )− (σ ∧ u)(X,Y ),(4.8)

where σ is the 1-form given by σ(X) = g(∇g
XU,V ). The tangent bundle splits

as the orthogonal sum

TM =HM ⊕V ,
where V is locally spanned by the vector fields U and V , and in the literature
is usually assumed to be integrable; actually, the integral surfaces of V are
totally geodesic submanifolds.

Now, the complex structure of M induces an almost CR structure (HM,J)
of type (2n,2), sinceHM is J -invariant. Notice that, being also V J -invariant,
the orthogonal projection P : TM →HM commutes with J .

We claim that (HM,J) is not partially integrable. Indeed, using (4.7) and
(4.8), the Levi–Tanaka form of HM is given by

(4.9) L(X,Y ) = u
(
[X,Y ]

)
U + v

(
[X,Y ]

)
V =−2

(
g(X,GY )U + g(X,HY )V

)

which implies

(4.10) L(X,Y ) =−L(JX,JY ).

This proves our claim because of the nonintegrability of the distribution HM .
Nevertheless, the tensor N identically vanishes, since a simple computation
using (4.9) and (4.10) shows that

N(X,Y ) = [J,J ](X,Y ) = 0

for every X,Y ∈ ΓHM .
Now, we restrict our attention to normal complex contact metric manifolds

[21], in which case the covariant derivative of J is given by

g
((
∇g

XJ
)
Y,Z

)
= u(X)

(
dσ(Z,GY )− 2g(HY,Z)

)
(4.11)

+ v(X)
(
dσ(Z,HY ) + 2g(GY,Z)

)
.

The Levi–Civita connection also verifies

(4.12) ∇g
XU =−GX + σ(X)V, ∇g

XV =−HX − σ(X)U,

for every X ∈X(M), yielding

(LUg)(X,Y ) = (LV g)(X,Y ) = 0,

(LXg)(U,V ) = (LXg)(U,U) = (LXg)(V,V ) = 0

for every X,Y ∈ ΓHM .
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Now, the Riemannian almost CR structure (HM,J, g) does not admit any
characteristic connection. However, considering instead of g the modified
metric g′ defined by

(4.13) g′(X,Y ) := g(X,Y ), g′(X,ξ) = 0, g′
(
ξ, ξ′

)
:=

1

2
g
(
ξ, ξ′

)

for every X,Y ∈ ΓHM , ξ, ξ′ ∈ ΓV , we shall see that conditions (1)–(4) in
Theorem 3.3 hold if and only if g is Kähler.

Notice that
(
Lξg

′)(X,Y ) = (Lξg)(X,Y ) = 0,
(
LXg′

)(
ξ, ξ′

)
=

1

2
(LXg)

(
ξ, ξ′

)
= 0

for every ξ, ξ′ ∈ ΓV and X,Y ∈ ΓHM . Since N = 0, it remains to verify that
g is Kähler if and only if condition (2) in Theorem 3.3 holds for g′, i.e.

(4.14) g′
(
θξ(X), Y

)
= 2g′

(
L(X,JY ), ξ

)

for every X,Y ∈ ΓHM and ξ ∈ ΓV . From (4.9) we have

2g′
(
L(X,JY ),U

)
=−2g(X,HY ).

On the other hand,

g′
(
θU (X), Y

)
= g

(
(LUJ)X,Y

)

= g
((
∇g

UJ
)
X −∇g

JXU + J
(
∇g

XU
)
, Y

)
= dσ(Y,GX),

where we used (4.11) and (4.12). Hence (4.14) holds for ξ = U iff

dσ(Y,GX) =−2g(X,HY ).

Analogously, (4.14) holds for ξ = V iff

dσ(Y,HX) = 2g(X,GY ).

The above two equation are both equivalent to require

dσ(X,Y ) =−2g(X,JY )

for every X,Y ∈ ΓHM . From (4.11), it is readily seen that this is equivalent
to ∇gJ = 0.

As a remarkable case, we point out that the odd dimensional complex
projective space CP 2n+1 carries a normal complex contact metric structure
whose Hermitian metric is Kähler, namely g is the Fubini–Study metric (see
[21], [9]).

Example 4.7. Consider a Kähler manifold (N,J, g) of complex dimension
n and a CR-submanifold M ⊂N of real dimension 2n− s, s≥ 1. According
to the definition in [6, p. 20], TM admits an orthogonal decomposition TM =

HM ⊕HM⊥, where HM is the maximal J -invariant subbundle of TM and
J(HM⊥)⊂ TM⊥. Recall that M carries a canonical f -structure ϕ : TM →
TM , where for every vector X tangent to M , ϕX is the tangential component
of JX .
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Taking into account the induced Riemannian metric g on M , we claim
that (HM,J, g) is a Riemannian CR structure with torsion if and only if M
is normal in the sense of [6, Ch. 3]. Indeed, according to [6, Theorem 3.2,
Ch. 3], a necessary and sufficient condition for M to be normal is that for

each local orthonormal frame ξ1, . . . , ξk of HM⊥ and for each X,Y ∈ ΓHM ,

(4.15) g
(
∇g

Xξi, Y
)
+ g

(
X,∇g

Y ξi
)
= 0.

In fact this condition is equivalent to (3) of Theorem 3.3. Hence, it is enough
to verify that if M is normal (2) and (4) of Theorem 3.3 hold. First, we prove
that θξi = 0, i= 1, . . . , k. Denoting by ∇̄ the Levi–Civita connection of N and
by Ai the Weingarten operator relative to Jξi, we have:

g
(
θξi(X), Y

)
= g(∇̄ξiJX,Y )− g(∇̄JXξi, Y ) + g(∇̄ξiX,JY )− g(∇̄Xξi, JY )

=−g
(
∇g

JXξi, Y
)
− g

(
∇g

Xξi, JY
)

= g
(
∇g

Y ξi, JX
)
− g

(
∇g

Xξi, JY
)

= g(AiY,X)− g(AiX,Y ) = 0,

where we used ∇̄J = 0 and (4.15). As regards condition (4), notice that it is
equivalent to

g
(
∇g

ξi
X,ξj

)
+ g

(
∇g

ξj
X,ξi

)
= 0.

Now,

g
(
∇g

ξi
X,ξj

)
= g(∇̄ξiJX,Jξj) = g(Ajξi, ϕX) = 0,

where the last equality holds since it is known that, being M normal, each
operator Ai commutes with ϕ.

Example 4.8. We consider a parallelizable manifoldM of dimension 2n+k
with a global frame {Ei}. We assume that M is endowed with a Riemannian
metric g consistent with {Ei}, that is,

g(Ei,Ej) = δij , g
(
[Ei,Ej ],Ek

)
+ g

(
Ej , [Ei,Ek]

)
= 0

(cf. [38]). Consider the almost CR structure (HM,J), where HM is the
subbundle of TM spanned by E1, . . . ,E2n and J :HM →HM is defined by

JEi =Ei+n, JEi+n =−Ei, i= 1, . . . , n.

Then the flat connection ∇ associated with {Ei} is a characteristic connection
for the structure (HM,J, g); recall that ∇ is the unique linear connection
parallelizing each Ei.

Example 4.9. Let (M1,HM1, J1, g1) and (M2,HM2, J2, g2) be two Rie-
mannian almost CR manifolds with torsion of type (n1, k1) and (n2, k2) re-
spectively; then the product M =M1 ×M2 is in a natural way a Riemannian
almost CR manifold with torsion of type (n1 + n2, k1 + k2).
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5. Riemannian almost CR structures on principal bundles

This section is devoted to a description of some Riemannian almost CR
structures with torsion on the total space of a principal bundle, arising by
lifting analogous structures from the base space.

Let π : Q→M be a principal bundle with structure group G and let ω :
TQ→ g be the connection form of a given connection on Q, where g is the
Lie algebra of G. Denote by V the vertical subbundle of TQ and by H the
horizontal subbundle determined by ω. We also denote by π∗ :H→ TM the
natural bundle isomorphism and by X∗ the horizontal lift of a vector field X
on M .

We shall call a Jensen type metric on Q any Riemannian metric g given by

(5.1) g
(
X∗, Y ∗) = h(X,Y ) ◦ π, g

(
X∗,A∗) = 0, g

(
A∗,B∗) = 〈A,B〉,

where h is a fixed Riemannian metric on M , and 〈 , 〉 is an inner product on g

(see [17]); here X,Y ∈X(M) and A∗, B∗ are the fundamental vertical vector
fields corresponding to A,B ∈ g.

Now assume that (HM,J) is an almost CR structure on M . We define an
almost CR structure (HQ,J) on Q by

(5.2) HQ := π−1
∗ (HM), JX∗ := (JX)∗

for every X ∈ ΓHM . This structure will be called the canonical lift of
(HM,J) with respect to the connection ω.

We notice that if h is a Riemannian metric on M compatible with (HM,J),
the Jensen type metric (5.1) is compatible with (HQ,J) and we have that

HQ⊥ =W ⊕V ,

where W := π−1
∗ (HM⊥). We shall denote by N̄ and N the tensors associated

to the structures (HM,J,h) and (HQ,J, g) according to (3.1).
Let Ω be the curvature form of ω; we prove the following theorem.

Theorem 5.1. (Q,HQ,J, g) is a Riemannian almost CR manifold with
torsion if and only if the following conditions are satisfied:

(1) (M,HM,J,h) is a Riemannian almost CR manifold with torsion,
(2) Ω(JX,JY ) = Ω(X,Y ) for any X,Y ∈ ΓHQ,
(3) Ω(X,ξ) = 0 for any X ∈ ΓHQ and ξ ∈ ΓW .

Furthermore, if the above conditions hold then:

(i) (HQ,J) is partially integrable iff (HM,J) is;
(ii) N̄ = 0 iff N = 0;
(iii) Q is of Kähler type iff M is;

(iv) HQ⊥ is integrable iff HM⊥ is;
(v) Q is quasi Sasakian iff M is.
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Proof. We shall use Theorem 3.3. First, for any X,Y,Z ∈ ΓHM we have

N̄
(
X∗, Y ∗,Z∗)

= g
([
JX∗, JY ∗]− [

X∗, Y ∗],Z∗)+ g
([
JX∗, Y ∗]+ [

X∗, JY ∗], JZ∗)

= g
(
[JX,JY ]∗ − [X,Y ]∗,Z∗)+ g

(
[JX,Y ]∗ + [X,JY ]∗, (JZ)∗

)

= h
(
[JX,JY ]− [X,Y ],Z

)
◦ π+ g

(
[JX,Y ] + [X,JY ], JZ

)
◦ π

=N(X,Y,Z) ◦ π.
Hence, N̄ is skew-symmetric if and only if N is. Analogously, for any ξ ∈
ΓHM⊥ and X,Y ∈ ΓHM , we have

g
(
θξ∗

(
X∗), Y ∗) = h

(
θξ(X), Y

)
◦ π,

g
([
JX∗, Y ∗]+ [

X∗, JY ∗], ξ∗) = h
(
[JX,Y ] + [X,JY ], ξ

)
◦ π.

On the other hand, remarking that θA∗(X∗) = 0 for any A ∈ g and X ∈ ΓHM ,
condition (2) in Theorem 3.3 is satisfied by the metric g if and only if it is
satisfied by h and in addition

g
([
JX∗, Y ∗]+ [

X∗, JY ∗],A∗) = 0

for every X,Y ∈ ΓHM and A ∈ g. The last condition is equivalent to

ω
([
JX∗, JY ∗]− [

X∗, Y ∗]) = 0,

that is

Ω
(
JX∗, JY ∗) =Ω

(
X∗, Y ∗).

Now, notice that for every X,Y,Z ∈X(M),

(LX∗g)
(
Y ∗,Z∗) = (LXh)(Y,Z) ◦ π.

Therefore, condition (3) in Theorem 3.3 is equivalent for the metrics g and h
since (LA∗g)(X∗, Y ∗) = 0 for every A ∈ g and X,Y ∈ ΓHM . Finally,

(LX∗g)
(
A∗,B∗) = 0, (LX∗g)

(
ξ∗,A∗) =−g

([
X∗, ξ∗

]
,A∗)

for every X ∈ ΓHM , A,B ∈ g and ξ ∈ ΓHM⊥. Hence, the Riemannian metric
g satisfies condition (4) if and only if h satisfies it and ω([X∗, ξ∗]) = 0 or
equivalently

Ω
(
X∗, ξ∗

)
= 0.

The proof of the last claims is straightforward. �

Corollary 5.2. Let (M,HM,J,h) be a Riemannian almost CR manifold.
Let ∇ be a linear connection on M and L(M) the bundle of linear frames.
Endow L(M) with the canonical lift of (HM,J) determined by ∇ and fix a
Jensen type metric g. Then, L(M) admits a characteristic connection if and
only if the following conditions hold:

(1) M admits a characteristic connection,
(2) R(JX,JY ) =R(X,Y ) for any X,Y ∈ ΓHM ,
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(3) R(X,ξ) = 0 for any X ∈ ΓHM and ξ ∈ ΓHM⊥,

where R is the curvature tensor of ∇.

Corollary 5.3. Let (M,HM,J,h) be a Riemannian almost CR manifold
with torsion. If M admits a characteristic connection with parallel torsion,
then L(M) admits a Riemannian almost CR structure with torsion.

Proof. If ∇ is a characteristic connection satisfying ∇T = 0, then the above
corollary applies since conditions (2) and (3) hold. Indeed, (2) is consequence
of (3.13); moreover, by (2.9) and being HM ∇-parallel, we have:

g
(
R(X,ξ)Y,Z

)
= g

(
R(Y,Z)X,ξ

)
= 0,

g
(
R(X,ξ)ξ′, ξ′′

)
= g

(
R

(
ξ′, ξ′′

)
X,ξ

)
= 0

for every X,Y,Z ∈ ΓHM and ξ, ξ′, ξ′′ ∈ ΓHM⊥, thus proving (3). �

Remark 5.4. We point out that the characteristic connection of a nearly
Kähler manifold or a Sasakian manifold does have parallel torsion (see [2]).
The canonical invariant connection of a naturally reductive homogeneous Rie-
mannian CR manifold also has this property.

Another criterion providing Riemannian almost CR structures with torsion
on the total space of a principal bundle is given by the following result.

Proposition 5.5. Let π :Q→M be a G-principal bundle. Assume G is
endowed with a left invariant Riemannian almost CR structure with torsion
(HG,J, 〈 , 〉). Then Q inherits a Riemannian almost CR structure with tor-
sion (HQ,J, g) where g is any Jensen type metric (5.1) on Q, and (HQ,J)
is defined by

HuQ= λ(HeG), JA∗ = (JA)∗, A ∈HeG.

Here, for each u ∈Q, λ : g→ Vu is the canonical isomorphism A �→A∗
u.

Proof. One checks for (HQ,J, g) the validity of conditions (1)–(4) in The-
orem 3.3 with the same technique of the proof of Theorem 5.1. �

6. Some homogeneous models

Let G be a compact semisimple Lie group. Let N =G/H be a (generalized)
flag manifold of G. Recall that H is the centralizer of a torus T ⊂ G. We
shall assume for semplicity that G acts almost effectively on N .

It is known that N admits a canonical G-invariant complex structure J ,
see [10] or [11]. We shall consider a G-invariant metric go Hermitian with
respect to J . Among the possible choices of go, we recall that up to scaling,
there exists a unique G-invariant compatible Kähler–Einstein metric. There
is a canonical reductive decomposition of the Lie algebra g of G:

(6.1) g= h⊕m,
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where m is the orthogonal complement of h := Lie(H) with respect to the
Killing form B of g. We shall identify m with the tangent space of N at the
point corresponding to the coset H in a canonical way.

Let K ⊂ H be a closed subgroup. Since Ad(K)m ⊂ m, and J : m → m

is Ad(K)-invariant, the homogeneous space M =G/K admits a G-invariant
almost CR structure (HM,J) such that HoM =m, where o ∈M is the point
corresponding to the coset K. Next, we introduce a G-invariant metric on M
as follows; let p⊂ h be the orthogonal complement of the Lie algebra k of K
with respect to the Killing form. We consider the G-invariant metric g on M
determined by the orthogonal direct sum inner product of −B on p and of
go on m. Clearly, (HM,J, g) is a Riemannian almost CR sructure; we shall
call it the canonical lift to G/K of the Hermitian structure (J, go) of the flag
manifold N .

Theorem 6.1. M = G/K is a homogeneous Riemannian CR manifold

with torsion. The distribution HM⊥ is integrable, the associated foliation F

is regular and the space of leaves M/F is N . If go is Kähler, then M is quasi
Sasakian.

Proof. We prove the first claim. Consider the principal K-bundle p :G→
M and the principal H-bundle q :G→N . Let ω : TG→ h be the left invariant
connection form on G whose horizontal space at e ∈G is m, and let ω′ : TG→ k

be the left invariant connection form on G whose horizontal space at e is
p⊕m. We observe that the canonical lifts of (HN,J) with respect to ω and
of (HM,J) with respect to ω′ coincide; we shall denote this lift by (HG,J).
Moreover, the Jensen type metrics

p∗g−B
(
ω′, ω′), q∗go −B(ω,ω)

also coincide; we shall denote this metric by ĝ. By virtue of Theorem 5.1, we
are reduced to prove that (HG,J, ĝ) admits a characteristic connection.

In order to apply Theorem 5.1 to the bundle q : G → N , since (N,J, go)
admits a characteristic connection, it suffices to prove that the curvature form
Ω of ω satisfies

(6.2) Ω(JX,JY ) = Ω(X,Y )

for every X,Y ∈ ΓHG. Observe that the structure (HG,J, ĝ) is left invari-
ant by construction and HeG = m. Hence, it suffices to prove (6.2) for left
invariant vector fields X,Y ∈ m. According to Theorem 11.1 in [19, p. 103],
we have to show that

(6.3) [JX,JY ]h = [X,Y ]h.

Now let ∇ be the canonical G-invariant linear connection on N determined
by the decomposition (6.1). Its curvature tensor satisfies

(6.4) R(JX,JY ) =R(X,Y )
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for every X,Y ∈X(N), by Remark 3.5, because ∇J = 0, ∇ has parallel torsion
and the normal G-invariant metric on N (i.e., the naturally reductive metric
induced by −B) is compatible with J (cf. e.g., [11, (3.52)]).

On the other hand, at the point o= q(e), Ro is given by

Ro(X,Y ) =−ad
(
[X,Y ]h

)

for every X,Y ∈ m∼= ToN , where ad : h→ End(m) is the adjoint representa-
tion. Observe that this representation is faithful since we assumed that G
acts almost effectively. Hence, (6.4) implies (6.3). Thus, we have showed that
the (HG,J, ĝ) is a Riemannian almost CR structure with torsion.

The integrability of HM⊥ and of the almost CR structure (HM,J) follows
applying (i), (ii) and (iv) in Theorem 5.1 to both the bundles q :G→N and
p :G→M . Moreover, if go is Kähler, taking into account (v), we deduce that
M is quasi Sasakian. Finally, F is regular in accordance with Proposition 3.12;
it is straightforward to verify that the induced Kähler structure on M/F∼=N ,
is just (J, go). �

Corollary 6.2. Let G be a compact semisimple Lie group and let H ⊂G
be the centralizer of a torus T ⊂G. Choose a G-invariant Kähler metric go
with respect to the canonical complex structure on the flag manifold G/H .
Then the canonical lift to G of (J, go) is a left invariant, quasi Sasakian
strongly pseudoconvex CR structure.

Proof. The above theorem applies taking K = {e} and provides the quasi
Sasakian CR structure on G. It remains to prove that (HG,J) is strongly
pseudoconvex. Indeed it is known that there exists a vector ξ belonging to
the center of h such that

go(X,JY ) =B
(
ξ, [X,Y ]

)

for every X,Y ∈ m (see, e.g., [11, pp. 613–614]). This means that the Levi
form of the corresponding left invariant section of HG⊥ satisfies

g(X,Y ) = Lξ(X,Y ),

proving the assertion. �

Combining this corollary and Proposition 5.5, we get the following corollary.

Corollary 6.3. The total space of any principal fiber bundle with compact
semisimple structure group carries a Riemannian CR structure with torsion,
strongly pseudoconvex and of Kähler type.

Another application of Theorem 6.1 is the following corollary.

Corollary 6.4. Every homogeneous manifold G/K where G is com-
pact semisimple and K has nondiscrete center, carries a G-invariant quasi
Sasakian CR structure.
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Example 6.5. By applying Theorem 6.1, we see that the (oriented) Stiefel
manifolds Vk,n(K), k ≥ 2, admit several homogeneous quasi Sasakian CR
structures.

In the case K = R the manifold Vn,k(R) = SO(n)/SO(n − k), can be en-
dowed with a rich family of structures, projecting onto one of the following
flag manifolds:

N = SO(n)/U(n1)× · · · ×U(np)×U(1)m × SO(r),

where

2
(∑

ni +m
)
+ r = n, n− k ≤ r ≤ n− 2.

If K=C, for Vn,k(C) = SU(n)/SU(n− k), one can choose as base manifold

N = SU(n)/S
(
U(n1)× · · · ×U(np)

)
,

where
n1 ≥ n2 ≥ · · · ≥ np ≥ 1, np ≥ n− k,

∑
ni = n.

Finally, in the case K=H, possible choices for N are

N = Sp(n)/U(n1)× · · · ×U(np)×U(1)m × Sp(r),

where(∑
ni +m

)
+ r = n, n1 ≥ n2 ≥ · · · ≥ np > 1, n− k ≤ r ≤ n− 1.

We remark that, by construction, the metric of the Riemannian CR struc-
ture thus obtained on Vn,k(K) in general is not the normal one.

Example 6.6. Another family of examples is provided by the homogeneous
spaces SO(4n)/Sp(n); in this case they fiber onto the Hermitian symmetric
space SO(4n)/U(2n).

Example 6.7. According to Corollary 6.3, we see that for every Riemann-
ian manifold (M,g), the orthonormal frame bundle O(M) can be endowed
with several Riemannian strongly pseudoconvex CR structures with torsion
(HO(M), J, g̃), of Kähler type. Here g̃ is a suitable Jensen type metric

g̃ = π∗g+ 〈ω,ω〉,
where ω is the Levi–Civita connection. Alternatively, g̃ can be chosen as the
diagonal lift of g, that is, taking 〈 , 〉 equal to the opposite of the Killing form
B (cf. [22]); however the resulting structure on O(M) is not of Kähler type.

If n = 2m is even and M is orientable, one can also consider the bundle
O+(M) of positive orthonomal frames; in this case the fibration of SO(2m)
onto the Hermitian symmetric space SO(2m)/U(m) yields a left invariant
Kähler type structure on SO(2m) whose underlying metric is −B, so that
O+(M) carries a Kähler type structure with g̃ equal to the diagonal lift.

Theorem 6.8. Let M = G/K be a homogeneous manifold, where G is a
compact semisimple Lie group. Then the following conditions are equivalent:
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(a) M admits a G-invariant quasi Sasakian CR structure of CR dimension n.
(b) M admits a G-invariant closed 2-form Φ of rank 2n.

If (b) holds, Φ is the fundamental 2-form associated to some G-invariant
quasi Sasakian CR structure.

Proof. (a)⇒ (b) is clear since the fundamental 2-form must be G-invariant.
(b) ⇒ (a) Consider the orthogonal decomposition g= k⊕n of g with respect

to the Killing form B, where k= Lie(K). Fix a G-invariant closed 2-form Φ
of rank 2n; following the same argument as in the proof of Proposition 3.12,
the natural extension Φ̄ ∈Λ2(g) of Φ is given by

(6.5) Φ̄(X,Y ) =B
(
[Zo,X], Y

)
∀X,Y ∈ g,

where Zo ∈ g and K is contained in the centralizer H of Zo in G. Being
N(Φ̄) = h, the flag manifold G/H has real dimension 2n; we consider the
Kirillov–Kostant–Souriau symplectic 2-form determined by Zo, which is the
Kähler form of a metric g compatible with the canonical complex structure J
(see [10, p. 220]). Hence, according to Theorem 6.1, M inherits a G-invariant
quasi Sasakian CR structure of CR dimension n projecting onto (J, g). �

By means of a construction similar to that of Theorem 6.1, one can also
prove the following result allowing to construct several homogeneous Rie-
mannian almost CR manifolds starting from naturally reductive homogeneous
almost Hermitian manifolds.

Proposition 6.9. Let N = G/H be a naturally reductive homogeneous
almost Hermitian manifold with structure (J, go). Let K ⊂ H be a closed
subgroup. Then M =G/K admits a regular G-invariant Riemannian almost
CR structure with torsion (HM,J, g), projecting onto (J, go).

7. Riemannian curvature and Levi forms

Let (M,HM,J, g) be a Riemannian almost CR manifold. A sectional
curvature Kg(X,ξ) of a 2-plane spanned by unit vectors X ∈ HxM and
ξ ∈HxM

⊥, x ∈M , will be called a mixed sectional curvature.

Theorem 7.1. Let (M,HM,J, g) be a Riemannian almost CR manifold
with torsion, of type (n,k). Then all the mixed sectional curvatures are non-
negative. If they are all vanishing, HM is Levi flat and M is locally the
Riemannian product of a 2n-dimensional almost Hermitian manifold of type
G1 and a k-dimensional Riemannian manifold.

Proof. Notice that for a characteristic connection ∇ on M , the sectional
curvatures K(X,ξ), X ∈ ΓHM and ξ ∈ ΓHM⊥, are all vanishing. Hence,
applying (2.10), for any unit vector fields X and ξ, the mixed sectional cur-
vatures are given by

(7.1) Kg(X,ξ) =
1

4
g
(
T (X,ξ), T (X,ξ)

)
.
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If these sectional curvatures are all vanishing, (iii) in Remark 3.6 implies
the Levi flatness, and by (i) of Proposition 3.7, the manifold is locally a
Riemannian product. �

Remark 7.2. The above theorem provides an alternative proof of Blair’s
Theorem 1.6 in [8] concerning C-manifolds, that is, K-manifolds with closed
characteristic 1-forms ηi, and stating that such manifolds are locally the Rie-
mannian product of a Kähler manifold and an Abelian Lie group. We refer
to Example 4.3 for the notations.

Example 7.3. We use (7.1) to show that every 3-Sasakian manifold M ,
endowed with the Riemannian metric g′ discussed in Example 4.4, has con-
stant mixed sectional curvature c = 1

2 . Indeed, by (4.3) and (3.5) one can
easily compute

T (X,ξ) =

3∑
i=1

ηi(ξ)ϕiX,

which gives Kg′
(X,ξ) = 1

2 .

Proposition 7.4. Let (M,HM,J, g) be a Riemannian almost CR manifold
with torsion, of type (n,k). Assume that all the mixed sectional curvatures
Kg(X,ξ) at a point xo ∈M are nonnull. Then

(a) Either Lxo or L′
xo

is nondegenerate.

(b) If k ≥ 2n, then HM⊥ has kind 2 at xo.
(c) If k ≤ 2n, then HM has kind 2 at xo.

Proof. (a) This is a direct consequence of (7.1), (3.5) and (3.6).
(b) Suppose k ≥ 2n and assume by contradiction that there exists X ∈

HxoM , X �= 0, such that L′
X = 0. This allows us to consider the linear map

ξ ∈HxoM
⊥ �→ Txo(ξ,X) ∈HxoM,

where T is the torsion of a fixed characteristic connection. By virtue of (7.1)
and the hypothesis on the curvatures, this map is injective. On the other
hand, being T (ξ,X,X) = 0, it is not onto, yielding a contradiction.

The proof of (c) is analogous. �

Proposition 7.5. Let (M,HM,J, g) be a Riemannian almost CR manifold
with torsion, of type (n,k). Let xo ∈M and fix ξ ∈HxoM

⊥, ξ �= 0. If Lξ is
nondegenerate, then all the mixed sectional curvatures Kg(X,ξ) are nonnull.
Conversely, if all the mixed sectional curvatures Kg(X,ξ) are nonnull, then

(7.2) rk(Lξ)≥ 2n− rk(ψξ),

where
ψξ := L′

xo
(ξ, ·) :HxoM

⊥ →HxoM.

In particular, if k = 2 or ξ ∈N(L′
xo
) then Lξ is nondegenerate.
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Proof. By virtue of (3.5), for every X,Y ∈HxoM we have

(7.3) Lξ(X,Y ) = g
(
Txo(X,ξ), Y

)

and the first claim follows taking into account (7.1). As for the converse, we
argue by contradiction assuming

rk(Lξ) + rk(ψξ)< 2n,

which can be rewritten as

dimN(Lξ) + dim
(
Im(ψξ)

⊥)
> 2n.

Hence, there exists X ∈N(Lξ)∩ Im(ψξ)
⊥, X �= 0, which satisfies Txo(X,ξ) = 0

by (7.3) and (3.6).
Finally, if k = 2, notice that rk(ψξ)< 2, and (7.2) ensures that Lξ is non-

degerate. �
A similar argument yields also the following proposition.

Proposition 7.6. Let (M,HM,J, g) be a Riemannian almost CR manifold
with torsion, of type (n,k). Let xo ∈M and fix X ∈HxoM , X �= 0. If L′

X is
nondegenerate, then all the mixed sectional curvatures Kg(X,ξ) are nonnull.
Conversely, if all the mixed sectional curvatures Kg(X,ξ) are nonnull, then

(7.4) rk
(
L′
X

)
≥ k− rk(ψX),

where
ψX := Lxo(X, ·) :HxoM →HxoM

⊥.

In particular, L′
X is nondegenerate provided that X ∈N(Lxo) or n= 1 and k

is even.

Theorem 7.7. Let (M,HM,J, g) be a Riemannian almost CR manifold
with torsion, of type (n,k). Assume that all the mixed sectional curvatures
Kg(X,ξ) are nonnull at a point xo ∈M .

(a) If k = 2, then n is even.
(b) If n= 1 and k is even, then k is a multiple of 4.

Proof. Both claims are consequences of Propositions 7.5 and 7.6, and The-
orem 3 in [5], stating that the maximum dimension of a linear space of real
skew-symmetric matrices of order q is ρ(q)− 1, where ρ denotes the Radon–
Hurwitz function. We recall that ρ is defined by

ρ(q) = 2c + 8d,

where q is factorized as q = (2a+ 1)2c+4d, c ∈ {0,1,2,3}. �
Using the same argument based on Propositions 7.5 and 7.6, one can also

deduce the following theorem.

Theorem 7.8. Let (M,HM,J, g) be a Riemannian almost CR manifold
with torsion, of type (n,k).
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(a) If dimN(L′
xo
)≥ 2 and all the mixed sectional curvatures Kg(X,ξ), with

ξ ∈N(L′
xo
), are nonnull, then n is even and

dimN
(
L′
xo

)
≤ ρ(2n)− 1.

(b) If dimN(Lxo)≥ 2 and all the mixed sectional curvatures Kg(X,ξ), with
X ∈N(Lxo), are nonnull, then k is even and

dimN(Lxo)≤ ρ(k)− 1.

Corollary 7.9. Let (M,HM,J, g) be a Riemannian almost CR manifold
with torsion, of type (n,k). Assume that all the mixed sectional curvatures
Kg(X,ξ) at a point xo ∈M are nonnull.

(a) If HM⊥ is integrable, then n is even and

k ≤ ρ(2n)− 1.

(b) If HM is integrable, then k is even and

2n≤ ρ(k)− 1.

Remark 7.10. Notice that for a 7-dimensional 3-Sasakian manifold the
inequality in (a) is in fact an equality (see Example 7.3).

Theorem 7.11. Let (M,HM,J, g) be a Riemannian partially integrable

almost CR manifold with torsion, of type (n,k). Assume that HM⊥ is inte-
grable and all the mixed sectional curvatures Kg(X,ξ) at a point xo ∈M are
nonnull. Then, setting n= (2a+ 1)2b,

(7.5) k ≤ 2b+ 1.

If k ≥ 2, all the Levi forms Lξ at xo, ξ �= 0, have signature (n2 ,
n
2 ). Hence,

(M,HM,J) is n
2 -pseudoconcave at xo.

Proof. Applying again Proposition 7.5, all the Levi forms Lξ are nonde-
generate. Now the maximum dimension of a linear space of n× n Hermitian
matrices is 2b+ 1 according to [1, Theorem 1]. It is known that the nonzero
matrices of such a space have signature (n2 ,

n
2 ). Indeed, this is an application

of the canonical simultaneous reduced form for a pair of Hermitian matrices
(see [16, Theorem 4.5.19]). �

With the same argument one proves the following theorem.

Theorem 7.12. Let (M,HM,J, g) be a Riemannian partially integrable al-
most CR manifold with torsion, of type (n,2). Assume that all the mixed sec-
tional curvatures Kg(X,ξ) at a point xo ∈M are nonnull. Then, (M,HM,J)
is n

2 -pseudoconcave at xo.
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Remark 7.13. We provide a class of examples showing that inequality
(7.5) is sharp. Consider a vector space V of n× n Hermitian matrices such
that every nonzero A ∈ V is nonsingular and V has the maximum dimension
2b+ 1 (for an explicit example of such a space see, e.g., [13]). Then one can
construct a pseudocomplex fundamental graded Lie algebra m=m−1 ⊕m−2

of kind 2, where m−1 =C
n and m−2 = V ∗, whose nontrivial bracket is defined

by

[X,Y ](A) =�
(
tX̄AY

)
, X,Y ∈C

n,A ∈ V.

As in Example 4.2, we can endow the simply connected Lie group M corre-
sponding to m with a left invariant Riemannian CR structure with torsion, of
type (n,2b+1). Clearly the distribution HM⊥ is integrable; by construction,
the space of the Levi forms Lξ , ξ ∈ HeM

⊥, coincides with V and thus, by
Proposition 7.5, all the mixed sectional curvatures are nonvanishing.

Remark 7.14. Theorem 7.11 implies Blair’s result stating the non-
existence of S-manifolds of codimension k ≥ 2 of constant curvature [8, Corol-
lary 1.9]. Recall that S-manifolds are K-manifolds whose structure satisfies
dηi = Φ for every i = 1, . . . , k. In particular, these manifolds are strongly
pseudoconvex.

As an application of Theorem 7.11, we prove the following result about CR
submanifolds of Cn (cf. Example 4.7):

Theorem 7.15. Let M ⊂ C
n be a compact, orientable, normal CR sub-

manifold of codimension s ≥ 1 and CR dimension n − s. If all the mixed
sectional curvatures of M are nonnull, then M is the sphere S2n−1.

Proof. We shall prove that M must be an hypersurface, that is, s = 1.
Then the claim follows from Okumura’s classification of normal almost contact
hypersurfaces in Euclidean spaces [29]. Indeed, since M is compact, it is
known that there exists a point xo ∈M such that (M,HM,J) is pseudoconvex
at xo. Namely, there exists a normal vector ζ at a point xo whose Weingarten
operator Aζ is positive definite; take η ∈ T ∗

xo
M defined by

η(X) := 〈X, J̄ζ〉.

Here J̄ is the complex structure of Cn. Then η belongs to Ho
xo
M and the

corresponding Levi form is

2Lη(X,X) = 〈AζX,X〉+
〈
Aζ(JX), JX

〉
,

which is positive definite. On the other hand, being HM⊥ integrable (cf. [6]),
Theorem 7.11 is applicable, forcing k = s= 1. �

We conclude this section studying the constant curvature case.
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Lemma 7.16. Let (M,HM,J, g) be a 3-dimensional orientable Riemannian
almost CR manifold with torsion. If M has constant sectional curvature c > 0,
then g is homothetic to a Sasakian metric.

Proof. Since M is orientable, there exists a global section ξ of HM⊥, with
g(ξ, ξ) = 1. Denote by η the dual form of ξ and by ϕ the (1,1)-tensor field
extending J in such a way that ϕξ = 0. Hence, (ϕ, ξ, η, g) is an almost con-
tact metric structure. We shall prove that actually this is a quasi Sasakian
structure; thus, a result of Olszak applies [26, Theorem 6.2]. First, by Propo-
sition 3.8, being HM of rank 2, (HM,J, g) is of Kähler type. Hence, Propo-
sition 3.9 ensures that Φ is closed. Recalling Remark 3.10, the structure is
quasi Sasakian. �

Theorem 7.17. Let (M,HM,J, g) be a Riemannian almost CR manifold
with torsion, of type (n,k), k ≥ 2. Assume that M has constant sectional
curvature c and M admits a characteristic connection with parallel torsion.
If M is complete and simply connected, then c= 0.

Proof. According to the Ambrose–Singer theorem [35] and to a Kirichenko’s
result (cf. [18]), since the Riemannian curvature is parallel with respect to the
characteristic connection, there exists a Lie group G acting transitively on
M and preserving the structure (HM,J, g). Arguing by contradiction, we
suppose c > 0 and up to scaling we may assume as well c = 1, so that M
is isometric to the sphere S2n+k. Now, we make use of the classification of
homogeneous almost CR structures on spheres obtained by Krüger in [23];
since k ≥ 2, M must be a sphere S4m+3, with (HM,J) invariant under the
action of Sp(m+ 1), m≥ 1. Moreover, we have two possibilities:

(a) k = 3,
(b) n= 1.

We shall examine the two cases:
(a) Fixed a representation of M as the homogeneous space Sp(m +

1)/Sp(m), there exists a single equivalence class of Sp(m + 1)-invariant al-
most CR structures. Moreover, Sp(m+1)/Sp(m) has a canonical Sp(m+1)-
invariant 3-Sasakian structure (ϕα, ξα, ηα, go) (see [9]). Hence, there exists a
Sp(m + 1)-equivariant CR diffeomorphism f : (M,H ′M,Jα)→ (M,HM,J),
where (H ′M,Jα) denotes the almost CR structure induced by ϕα in the man-
ner described in Example 4.4. Now, (H ′M,Jα, f

∗g) is also a Riemannian
almost CR structure with torsion. On the other hand, f∗g is of constant
curvature 1 and, by equivariance of f , it is Sp(m+ 1)-invariant. Therefore,
we must have f∗g = go, since go is the unique Sp(m+ 1)-invariant metric of
constant curvature 1 on Sp(m+ 1)/Sp(m) (cf. [39, §2]). This is impossible,
since we already know that (H ′M,Jα, go) does not admit any characteristic
connection (see again Example 4.4).
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(b) In this case, there exists a family of equivalence classes of Sp(m+ 1)-
invariant CR structures of type (1, k) parametrized by (0,1]. Each structure
is obtained in a natural way by choosing a homogeneous CR hypersurface
structure on each fiber S3 of the Hopf fibration S4m+3 →HPm. The parame-
ter value 1 corresponds to the standard structure inherited by S3 from C2; we
shall show that (HM,J) is actually equivalent to this structure. Indeed, the
Riemannian metric g induced on S3 turns S3 into a Riemannian CR manifold
with torsion; moreover, applying Lemma 7.16, each fiber, being totally geo-
desic, is a Sasaki space form of constant curvature 1. Therefore, each fiber is
CR equivalent to S3 with the standard CR structure [34]. We have in this case
a Sp(m+1)-equivariant CR diffeomorphism f : (M,H ′M,Jα)→ (M,HM,J),
where (H ′M,Jα) denotes the CR structure on the 3-Sasakian homogeneous
space Sp(m+1)/Sp(m) discussed in Example 4.5. Arguing as above, f∗g = go
and this is not possible since we know that (H ′M,Jα, go) does not admit any
characteristic connection with parallel torsion. �

Remark 7.18. The assumption ∇T = 0 in the above theorem is essential.
Indeed, it is well known that the 7-dimensional sphere carries a parallelization
{Ei}i=1,...,7 with respect to which the standard metric go is consistent (cf.
e.g., [3]), and such that ∇̄T̄ �= 0 where ∇̄ is the corresponding flat connection.
Fix i, j, k, l such that ∇̄T̄ (Ei,Ej ,Ek,El) �= 0. On the other hand, according
to Example 4.8, we can construct an almost CR structure of codimension
k = 3 such that Ei,Ej ,Ek,El ∈ ΓHS7 and (HS7, J, go) is a Riemannian almost
CR structure with torsion. Now, we observe that if ∇ is any charactestic
connection for (S7,HS7, J, go), then ∇T �= 0. Indeed, we have

(∇T )(Ei,Ej ,Ek,El) = (∇̄T̄ )(Ei,Ej ,Ek,El)

since according to (3.4) and (3.5), T (X,Y ) = T̄ (X,Y ) and ∇XY = ∇̄XY for
every X,Y ∈ ΓHS7.

8. Flat characteristic connections

In this section, we investigate the existence of quasi Sasakian CR manifolds
admitting flat characteristic connections. As a first remark, regarding the case
of CR codimension 1, we prove the following proposition.

Proposition 8.1. Let (M,ϕ, ξ, η, g) be a quasi Sasakian manifold. If the
characteristic connection is flat then at each point the Levi form Lη has rank
0 or 2. In particular, the Okumura connection of any Sasakian manifold of
dimension at least 5 is not flat.

Proof. By (ii) in Proposition 3.8, it follows that (∇XT )(Y,Z,V ) = 0 for
every X,Y,Z,V ∈ ΓHM ; therefore, using (2.8) and (2.6), under the assump-
tion R= 0, we see that dT (X,Y,Z,V ) = 0. Now, recall that the torsion of the
characteristic connection for a quasi Sasakian manifold is given by T = 6η∧dη
(see [15] or (3.5)). Hence, η ∧ (dη)2 = 0. �
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For CR codimensions at least 2, the existence of flat characteristic con-
nections does not necessarily lead to the Levi degeneracy of the underlying
CR structure, in fact to strong pseudoconvexity, as shown by the following
results.

Theorem 8.2. Let N =G/H be an irreducible Hermitian symmetric space,
where G is a compact simple Lie group. Let (J, go) be the G-invariant Kähler
structure on N , where go is the normal metric. Then the canonical lift
(HG,J, g) to G of (J, go) is a left invariant quasi Sasakian strongly pseu-
doconvex CR structure projecting onto N , admitting a flat characteristic con-
nection.

Furthermore, any simply connected, complete and irreducible quasi Sasakian
CR manifold admitting a flat characteristic connection arises by this construc-
tion, up to scaling the metric.

Proof. The first claim is a consequence of Corollary 6.2; in this case g is
a bi-invariant metric on G; of course the (−)-connection is a characteristic
connection on G.

Now, let (M,HM,J, g) be a simply connected, complete and irreducible
quasi Sasakian CR manifold, of type (n,k), admitting a flat characteristic
connection. Following [3], M admits a global orthonormal frame {eh, ξj},
h= 1, . . . ,2n, j = 1, . . . , k, consisting of Killing vector fields, where en+i = Jei,
i = 1, . . . , n, constructed by parallel transport from an adapted basis of the
tangent space at a fixed point. Now, there are two cases:

(a) σT = 0,
(b) σT �= 0.

We exhamine first (a). In this case, it is known that M is a compact
simple Lie group G with Lie algebra g spanned by eh, ξj [3, p. 484]. Clearly,
the structure (HM,J, g) is left invariant. Now, this Lie algebra decomposes
as g= h⊕m, where h= span{ξj} and m= span{eh}. We claim that this is a

symmetric decomposition. Indeed, being HM⊥ integrable, h is a subalgebra;
moreover, since the vector fields of the orthonormal frame are parallel, we
have

g
(
[ξi, eh], ξj

)
=−T (ξi, eh, ξj) = 0,

so that [h,m] ⊂ m. Finally, according to Proposition 3.8, T (ei, ej , eh) = 0
yielding [m,m]⊂ h. Let H be the analytic Lie subgroup of G corresponding
to h; the symmetric space N := G/H is in a canonical way an irreducible
Hermitian symmetric space of compact type (cf. Prop. 7.4 in [20, p. 250] and
Prop. 9.3 in [20, p. 260]). The result follows immediately.

Finally, we prove that the case (b) must be excluded. Indeed, when σT �=
0, M is isometric to the sphere S7. Using again Proposition 3.8, we have
T (ei, ej ,Z) = 0 for every Z ∈ ΓHM , yielding [ei, ej ] ∈ ΓHM⊥. On the other
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hand, by the CR integrability, we have

[ei, ej ]− [Jei, Jej ] = 0.

Hence, [
[ei, ej ], eh

]
=

[
[Jei, Jej ], eh

]
;

but, Rg(ei, ej)eh =− 1
4 [[ei, ej ], eh] (see [3, Prop. 2.3]), and thus

Rg(ei, ej)eh =Rg(Jei, Jej)eh.

This is impossible since g has constant curvature, provided n > 1. For the
case n= 1, one can apply (a) of Theorem 7.8. �

We can weaken the global assumptions on N in the above theorem, and
describe a construction providing again a quasi Sasakian CR manifold which
fibers onto N and admits a flat characteristic connection.

Theorem 8.3. Let (N,J,h) be a Hermitian locally symmetric manifold of
complex dimension n. If N has nonnegative sectional curvature at a point
x, then there exists a quasi Sasakian CR manifold M admitting a flat char-
acteristic connection, fibering onto N , and with strongly pseudoconvex CR
structure provided that the local de Rham decomposition of N at x contains
no flat factor.

Proof. Denote by U(N) the U(n)-structure of N and let M := P (u) ⊂
U(N) be the holonomy bundle of the Levi–Civita connection through an
adapted frame u ∈ U(N) at x ∈ N . Let (HM,J) be the canonical lift of
the CR structure of N with respect to the Levi–Civita connection. Theo-
rem 5.1 ensures that every Jensen type metric g on M defined as in (5.1)
makes M a quasi Sasakian CR manifold. Let Ψ(x) be the linear holonomy
group at x. We show that one can choose an inner product 〈 , 〉 on the Lie
algebra h := Lie(Ψ(x)) in such a way that the corresponding g admits a flat
characteristic connection.

In order to construct such an inner product on h, consider the Cartan–
Nomizu Lie algebra

g= h⊕m,

where m := TxN , whose Lie bracket is given by

[X,Y ] =−Rx(X,Y ), [A,B] =AB −BA, [A,X] =AX

for every X,Y ∈m and A,B ∈ h. The Killing form Bg satisfies

Bg(A,B) =Bh(A,B) + tr(AB)

which implies that Bg is negative definite on h, since the restricted holonomy
group Ψ0(x) is compact. Now fix a decomposition

(8.1) TxN =m1 ⊕ · · · ⊕ms
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into mutually orthogonal, invariant and irreducible subspaces with respect to
the action of Ψ0(x). Then Bg restricts to a Ψ0(x)-invariant bilinear form on
each subspace mi; therefore there exists a real number λi such that

Bg(X,Y ) = λiX · Y
for everyX,Y ∈mi (see [19, Appendix 5]), where we use the symbol · to denote
hx. Observe that λi = 0 if and only if Rx(X,Y ) = 0 for every X,Y ∈mi. Set
I = {i ∈ {1, . . . , s} : λi �= 0}. Actually we have λi < 0 for each i ∈ I ; this follows
from the curvature assumption, being

Rx(X,Y,X,Y ) =
1

λi
Bg

(
[X,Y ], [X,Y ]

)

for every orthonormal set {X,Y } in mi. Now, according to the local de Rham
decomposition theorem, applied to (8.1) (cf. e.g., [30], pp. 227–228), we can
decompose the Lie algebra h as

h= h1 ⊕ · · · ⊕ hs,

where hi := {A ∈ h|A|mj = 0 ∀j �= i} is an ideal of h. Of course, hi = {0} if
i /∈ I . Accordingly, we define an inner product on h by setting

〈 , 〉 :=
∑
i∈I

λiBg|hi×hi .

Now, let {e1, . . . , e2n} be the standard basis of R2n and {A1, . . . ,Ar} a ba-
sis of h, orthonormal with respect to 〈 , 〉. Then {B(ei),A

∗
j} is an absolute

parallelism on M , where B(ei) is the standard horizontal vector field corre-
sponding to ei [19, p. 137]. According to Example 2.9, it suffices to show
that the Jensen metric g corresponding to 〈 , 〉 is consistent with the absolute
parallelism, which amounts to

g
([
B(ei),B(ej)

]
,B(ek)

)
+ g

([
B(ei),B(ek)

]
,B(ej)

)
= 0,(8.2)

g
([
B(ei),B(ej)

]
,A∗

k

)
+ g

([
B(ei),A

∗
k

]
,B(ej)

)
= 0,(8.3)

g
([
B(ei),A

∗
j

]
,A∗

k

)
+ g

([
B(ei),A

∗
k

]
,A∗

j

)
= 0,(8.4)

g
([
A∗

i ,A
∗
j

]
,A∗

k

)
+ g

([
A∗

i ,A
∗
k

]
,A∗

j

)
= 0.(8.5)

First, we remark that using Proposition 5.5 in [19, p. 137], Ω(B(ei),B(ej))
is a constant function on M and [B(ei),B(ej)] =−2Ω(B(ei),B(ej))

∗, which
implies (8.2). On the other hand, we also have [B(ei),A

∗
k] =−B(Akei) giving

(8.4). Observe that (8.5) holds true since the inner product 〈 , 〉 is ad(h)-
invariant.

Formula (8.3) is equivalent to

(8.6) −2
〈
Ω

(
B(ei),B(ej)

)
,Ak

〉
=Ak(ei) · ej

which can be rewritten as

(8.7)
〈
u−1 ◦Rx(uei, uej) ◦ u,Ak

〉
=−Ak(ei) · ej ,
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where · here denotes the standard inner product on R
2n. After identifying

R
2n with TxN by means of the linear isometry u :R2n → TxN , this condition

can be rewritten

(8.8)
〈
Rx(X,Y ),A

〉
=−A(X) · Y

for every X,Y ∈ TxN and A ∈ h; here we use again the symbol · to denote hx.
In order to prove this formula, take A ∈ hi and X,Y ∈mi. Then

〈
Rx(X,Y ),A

〉
=− 1

λi
Bg

(
[X,Y ],A

)
=− 1

λi
Bg(AX,Y ) =−A(X) · Y.

This completes the proof of the first statement.
As concerns the last assertion, if the local de Rham decomposition of N has

no flat factor, then the Ricci tensor of N is nondegenerate. Hence, according
to [20, Theorem 8.3, p. 173], we have that Jx ∈ h. We claim that the Levi form
in the direction of the vector field J∗

x is positive definite. Indeed we compute

LJ∗
x

(
B(ei),B(ej)

)
= LJ∗

x

(
B(ei), JB(ej)

)
= LJ∗

x

(
B(ei),B(Joej)

)

= g
([
B(ei),B(Joej)

]
, J∗

x

)
=

〈
ω
[
B(ei),B(Joej)

]
, ω

(
J∗
x

)〉

=−2
〈
Ω

(
B(ei),B(ej)

)
, Jo

〉
= δij ,

where Jo is the standard complex structure on R2n and the last equality is
justified by (8.6). �

Theorem 8.4. Let (N,ϕ, ξ, η, g) be a locally ϕ-symmetric Sasakian man-
ifold of dimension 2n+ 1. Suppose that at a point x ∈N the sectional cur-
vatures of 2-planes orthogonal to ξx are ≥−3. Then there exists a quasi
Sasakian CR manifold M admitting a flat characteristic connection and fiber-
ing onto N .

Proof. Let U(N) be the U(n)×1-structure of N and letM := P (u)⊂ U(N)
be the holonomy bundle of the Tanaka–Webster connection through an
adapted frame u ∈ U(N) at x. By virtue of the curvature properties of

the Tanaka–Webster connection ∇̃ (see for details [31]), Theorem 5.1 ap-
plies. Hence M admits a quasi Sasakian CR structure (HM,J, ḡ), ḡ being
a Jensen metric defined by means of an inner product 〈 , 〉 on the Lie alge-
bra h := Lie(Φ0(x)), where Φ0(x) is the restricted holonomy group at x of
the Tanaka–Webster connection. Arguing as in the proof of Theorem 8.3, we
shall determine a suitable inner product in such a way that M admits a flat
characteristic connection.

Let U be an open neighborhood of x such that the induced Sasakian struc-
ture on U is regular and let p : U → N̄ be the corresponding fibering over
the Hermitian locally symmetric space N̄ = U/ξ. The Riemannian curvature

tensor R of N̄ and the curvature tensor R̃ of ∇̃ on U are related by

R̃
(
X∗, Y ∗)Z∗ =

(
R(X,Y )Z

)∗
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for every X,Y,Z ∈X(N̄); here X∗ denotes the horizontal lift of X with respect
to p (see [33]). On the other hand (see again [33]),

R̃
(
X∗, Y ∗)Y ∗ =R

(
X∗, Y ∗)Y ∗ + 3g

(
X∗, ϕY ∗)ϕY ∗,

so that N̄ has nonnegative sectional curvature at p(x), by our assumptions.
Now, the holonomy algebra h is isomorphic to the Riemannian holonomy

algebra hN̄ of N̄ at p(x) through the map

A ∈ h �−→A : 〈ξx〉⊥ → 〈ξx〉⊥,
taking into account that 〈ξx〉⊥ is canonically identified with Tp(x)N̄ .

By the proof of Theorem 8.3, there exists an ad(hN̄ )-invariant inner product
〈 , 〉 on hN̄ satisfying

(8.9)
〈
Rp(x)(X,Y ),A

〉
=−A(X) · Y

for every X,Y ∈ Tp(x)N̄ and A ∈ hN̄ . This inner product induces in a natural
way an ad(h)-invariant inner product on h.

We consider now an absolute parallelism {B(ei),A
∗
j} on M , {e0, . . . , e2n}

being the standard basis of R
2n+1 and {A1, . . . ,Ar} being an orthonormal

basis of h. Recall that for a locally ϕ-symmetric Sasakian manifold ∇̃ is
invariant by parallelism (see again [33]). Therefore, the Jensen metric ḡ is
consistent with the absolute parallelism since

〈
u−1 ◦ R̃x(uei, uej) ◦ u,Ak

〉
=−Ak(ei) · ej

for every i, j = 0, . . . ,2n. In fact, the above formula holds when i = 0 being
u(e0) = ξx, and for i, j ≥ 1 it holds by virtue of (8.9). �
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vol. 203, Birkhäuser, Boston, 2002. MR 1874240

[10] A. L. Besse, Einstein manifolds, Springer, Berlin, 1987. MR 0867684

http://www.ams.org/mathscinet-getitem?mr=0179183
http://www.ams.org/mathscinet-getitem?mr=2322400
http://www.ams.org/mathscinet-getitem?mr=2651537
http://www.ams.org/mathscinet-getitem?mr=0353192
http://www.ams.org/mathscinet-getitem?mr=0274478
http://www.ams.org/mathscinet-getitem?mr=0861408
http://www.ams.org/mathscinet-getitem?mr=0226538
http://www.ams.org/mathscinet-getitem?mr=0267501
http://www.ams.org/mathscinet-getitem?mr=1874240
http://www.ams.org/mathscinet-getitem?mr=0867684


RIEMANNIAN ALMOST CR MANIFOLDS WITH TORSION 845
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