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HÖLDER CONTINUOUS SOBOLEV MAPPINGS AND
THE LUSIN N PROPERTY

ALEKSANDRA ZAPADINSKAYA

Abstract. We give a new proof for the result of J. Malý and
O. Martio, stating that Hölder continuous mappings in W 1,n sat-
isfy the Lusin N property. We further generalize this result to a
metric setting.

1. Introduction

In this note, we study the Lusin N property for Sobolev mappings. We
say that a mapping f : Rn → R

m satisfies the Lusin N property, if every
set of zero Lebesgue n-measure has a zero n-dimensional Hausdorff measure
image under f . The validity of the Lusin N property for a Sobolev mapping
f : Rn →R

n enables the application of the change of variable formula for
integration and of the area formula [7]. This fact makes the study of the
Lusin N property important.

Let us consider a Sobolev mapping f ∈W 1,p(Ω;Rm), defined in a domain
Ω ⊂ R

n, where 2 ≤ n ≤m. It is well known that p > n implies the Lusin N
property [9]. On the other hand, this property may fail in the case p = n
(see examples in [12] and [8, Section 5]). However, additional assumptions
on f , such as monotonicity or Hölder continuity, may guarantee the Lusin N
property even when p= n [11], [12], [10], [8].

We consider the latter case, that is we assume that our mapping
f ∈W 1,n(Ω;Rm) satisfies a Hölder continuity condition

(1)
∣∣f(x)− f(y)

∣∣≤C0|x− y|γ

for all x, y ∈Ω, where C0 > 0 and 0< γ < 1. We give a new shorter proof for
the result in [8, Theorem C], where it was established for n=m.
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Theorem 1. Let Ω be a domain in R
n and f ∈W 1,n(Ω;Rm), m≥ n≥ 2,

a Hölder continuous mapping. Then Hn(f(E)) = 0 for each E ⊂Ω, such that
|E|= 0.

We do not know, whether this Hölder continuity assumption is sharp. How-
ever, given any α ∈ ]0, (n− 1)/n[, there exists a mapping f ∈W 1,n(Rn;Rn),
violating the Lusin N property and having modulus of continuity no worse
than

(2) ψ(t) =C0 exp

(
−c logα

(
1

t

))

with some C0, c > 0 [5, Example 1.3]. Note that the modulus of continuity (1)
we assume is (2) with c= γ and α= 1.

The method we use has its origins in [6], where quasiconformal mappings
were considered. First applications of those ideas to more general non-injective
Sobolev mappings can be found in [4].

Our proof gives a direct generalization to a metric setting, providing a new
result, stated as follows (see Section 3).

Theorem 2. Let Q ≥ 1 and let (X,dist, μ) be an Ahlfors Q-regular met-
ric measure space, which supports the Q-Poincaré inequality for continuous
functions. Suppose that f ∈ N1,Q(X;V ), with some Banach space V , is a
Hölder continuous mapping. Then HQ(f(E)) = 0 for each E ⊂X , such that
μ(E) = 0.

To demonstrate the elegance of the proof in the Euclidean case, we give
separate proofs for the two theorems.

2. Proof of Theorem 1

We start by introducing our basic notation. Given a set A⊂R
n, we denote

its n-dimensional Lebesgue measure by |A|. If |A|<∞ and f is a Lebesgue
integrable mapping, we denote the average 1

|A|
∫
A
f of f over the set A by

−
∫
A
f or fA. Next, A + a with A ⊂ R

n and a > 0 stands for the set {x ∈
R

n : dist(x,A) < a}. By diam(A) and χA, we denote the diameter and the
characteristic function of the set A, respectively. Given a point x ∈R

m and a
non-negative number r, B(x, r) denotes an open ball centred in x and having
radius r. If B =B(x, r) is a ball and a is a positive number, the notation aB
stands for the ball B(x,ar). We write Hs

δ(A) with s > 0 and 0 < δ ≤∞ for
the s-dimensional Hausdorff content of a set A, while Hs(A) denotes its s-
dimensional Hausdorff measure. Finally, C denotes a positive constant, which
may depend on data (n, m and the modulus of continuity of f ) and differ from
occurrence to occurrence.
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We need also a weighted Hausdorff content of a set A given by

λs
∞(A) = inf

{ ∞∑
i=1

ci(diamUi)
s : ci ≥ 0 and χA ≤

∞∑
i=1

ciχUi

}

for s > 0. It is known that there exists a constant β > 0, such that Hs
∞(E)≤

βλs
∞(E) for all sets E (see, for instance, [3], Theorem 8.6 and Theorem 9.7).

Proof of Theorem 1. We denote the modulus of continuity of f by ψ(t) =
C0t

γ . We may clearly assume that E is bounded and E ⊂Ω. Let us consider a
dyadic decomposition of Rn. We denote by Qi = {Qi,1,Qi,2, . . .} the collection
of cubes of generation i ∈N with edge length 2−i, such that Rn =

⋃∞
j=1Qi,j .

For each i, j ∈N, there exist 2n cubes, denoted by Q1
i,j , . . . ,Q

2n

i,j ∈Qi+1, such

that Qi,j =
⋃2n

q=1Q
q
i,j . Similarly, when i≥ 2, the unique cube Q ∈Qi−1, such

that Qi,j ⊂Q is denoted by Q̂i,j .

Once Qi,j is such that Q̂i,j ⊂Ω, we define fi,j = fQi,j ∈R
m and

(3) ri,j =max
{
|fi,j − fQ̂i,j

|, max
q=1,...,2n

|fi,j − fQq
i,j
|
}
.

We obtain the following estimate for q ∈ {1, . . . ,2n}, using the Poincaré and
Jensen inequalities

|fi,j − fQq
i,j
| ≤ −

∫
Qq

i,j

|f − fi,j | ≤ 2n−
∫
Qi,j

|f − fi,j |(4)

≤ C diamQi,j−
∫
Qi,j

|Df |

≤ C

(∫
Qi,j

|Df |n
)1/n

.

Similar computations give |fi,j − fQ̂i,j
| ≤ C(

∫
Q̂i,j

|Df |n)1/n. Thus, rni,j ≤
C
∫
Q̂i,j

|Df |n. For each ri,j > 0, we need a family of balls

Bi,j =
{
Bk

i,j =B
(
fi,j , ri,j/2

k
)
: k = 0,1, . . .

}
.

Fix an arbitrary ε > 0 and a δ ∈ ]0, ε], such that E + δ ⊂Ω and∫
E+δ

|Df |n < ε.

Additionally, we choose a number i0 ∈ N, which satisfies
√
n2−i0+1 < δ. We

restrict the families Qi, i= i0, . . . , so that Q̂⊂E + δ, whenever Q ∈Qi.
Let x ∈E. We choose a sequence of cubes (Qi(x))

∞
i=i0

, such that Qi(x) ∈Qi

and x ∈Qi(x). We have Qi(x) =Qi,j(i,x) for a suitable index j(i, x) ∈N. This
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sequence defines a sequence of centres fi(x) = fi,j(i,x), i= i0, . . . , on the image
side, which converges to f(x); indeed,

(5)
∣∣f(x)− fi(x)

∣∣≤−
∫
Qi(x)

∣∣f(x)− f(y)
∣∣dy ≤ ψ

(
diamQi(x)

)
→ 0,

when i goes to infinity. Finally, we put ri(x) = ri,j(i,x). Note that (3) implies

(6) ri(x)≥max
{∣∣fi(x)− fi−1(x)

∣∣, ∣∣fi(x)− fi+1(x)
∣∣}

for each i= i0 + 1, . . . .
We neglect the set E0 = {x ∈ E : fi(x) = f(x) for each i = i0, i0 + 1, . . .},

because its image under f is countable. For a point x ∈ E \ E0, we define
a large number l0(x) ∈ N so that there are some of fi(x) with i≥ i0 outside
the ball B(f(x),2−l0(x)+1). Denoting El = {x ∈ E \ E0 : l0(x) ≤ l}, we have
E \E0 =

⋃
l∈N

El and f(E \E0) =
⋃

l f(El).
Fix l1 ∈ N and consider the set El1 . Let x ∈ El1 and l = 4l1. We find the

smallest number J ∈ N, J ≥ i0, such that fj(x) ∈ B(f(x),2−l) for all j > J .
We have by (5)

2−l ≤
∣∣f(x)− fJ(x)

∣∣≤ ψ
(
diamQJ(x)

)
=C0

√
nγ2−Jγ ,

which implies l ≥ Jγ − log2(C0

√
nγ) ≥ Jγ/2, if i0 is initially picked so that

i0 ≥ 2
γ log2(C0

√
nγ). On the other hand, if we denote by N the number of in-

tegers k in the set {l1, . . . , l}, such that the annulus Ak(x) =B(f(x),2−k+1) \
B(f(x),2−k) contains more than 8/γ centres fi(x), i = i0, . . . , J , we obtain
8N/γ ≤ J ≤ 2l/γ, hence N ≤ l1. Thus, there exist at least l − l1 + 1−N ≥
2l1 annuli Ak(x), k = l1, . . . , l, which contain at most 8/γ centres fi(x),
i= i0, . . . , J .

Let Ak(x) be one such annulus. If it contains at least one centre fi(x) for
some i= i0, . . . , J , then (6) and the fact that l1 ≥ l0(x) yield∑

fi(x)∈Ak(x)

2ri(x)> 2−k.

Thus, there must be at least one i≥ i0, such that fi(x) ∈Ak(x) and ri(x)≥
2−k−4γ. We have f(x) ∈ 32

γ B0
i,j(i,x) = B(fi(x),32ri(x)/γ). Whenever there

are no fi(x) ∈Ak(x), we take the smallest i= i0, . . . , J + 1 such that fi(x) ∈
B(f(x),2−k). By (6) and l1 ≥ l0(x), we necessarily have ri(x)> 2−k. We pick
Bp

i,j(i,x) 	 f(x) so that 2−k < ri(x)2
−p ≤ 2−k+1. Note that when x is fixed

and we choose balls for different k, each ball is taken no more than twice.
That is

2

2l/γ+1∑
i=i0

∑
Qi,j∈Qi

∞∑
k=0

χ 32
γ Bk

i,j
(y)≥ 2l1
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for each y ∈ f(El1). In other words, the collection of inflated balls 32
γ Bk

i,j

covers the set f(El1) with l1 layers. We conclude

Hn
∞
(
f(El1)

)
≤ βλn

∞
(
f(El1)

)
≤ β

l1

2l/γ+1∑
i=i0

∑
Qi,j∈Qi

∞∑
k=0

26n

γn

rni,j
2kn

(7)

≤ Cβ

l1

2l/γ+1∑
i=i0

∑
Qi,j∈Qi

rni,j ≤
Cβ

l1

2l/γ+1∑
i=i0

∑
Qi,j∈Qi

∫
Q̂i,j

|Df |n

≤ Cβ

l1

2l/γ+1∑
i=i0

∫
E+δ

|Df |n ≤
Cβ(2lγ + 1)

l1
ε≤Cβε.

Since the sets El are nested, we obtain Hn
∞(f(E \E0))<Cβε. By the arbi-

trariness of ε, we have Hn
∞(f(E \E0)) = 0, which yields Hn(f(E)) = 0. �

3. Metric setting

For this section, we preserve the notation fA = −
∫
A
f , diam(A), χA, B(x, r),

aB, Hs
δ(A), Hs(A), λs

∞(A), defined suitably. Recall that Hs
∞(A)≤ βλs

∞(A).
By Ahlfors regularity in the statement of Theorem 2, we mean that a metric

space (X,dist) is equipped with a Borel regular measure μ, such that c1r
Q ≤

μ(B) ≤ c2r
Q, for all open balls B ⊂ X of radius r ∈ ]0,diamX[ and some

constants Q,c1, c2 > 0. Additionally, we assume that (X,dist, μ) supports
Q-Poincaré inequality for continuous functions (see [2, Section 4]):

−
∫
B

‖f − fB‖dμ≤CP (diamB)

(
−
∫
σB

ρQ dμ

)1/Q

for all balls B ⊂X , all continuous integrable functions f , defined in the ball
σB and taking values in some Banach space V , all Q-weak V -upper gradients
ρ of f , and with constants CP ≥ 0, σ ≥ 1, independent of B, f and ρ. Let V
be a Banach space. The mapping f in the statement of Theorem 2 is in the
Sobolev class N1,Q(X;V ) (see [2, Section 3]) and is Hölder continuous with
modulus ψ(t) =C0t

γ . We fix some Q-weak V -upper gradient ρ of f .

Proof of Theorem 2. The proof of Theorem 2 is a direct generalization of
the proof in the previous section, so we just outline the main differences. Let
us fix ε > 0 and take an open set Ω⊃E, such that∫

Ω

ρQ < ε.

Pick i′ ∈ N so that 10σ2−i′ < diamX . This choice ensures that the radii of
all balls, to which we are going to apply the doubling condition, are smaller
than diamX . We consider the decomposition E =

⋃
i≥i′ Ei, where Ei = {x ∈

E : B(x,5σ2−i)⊂Ω}. Next, we fix an integer i0 ≥ i′ and consider the set Ei0 .
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Applying the covering theorem [1, Theorem 1.16], we obtain finite collections
of balls Qi, i= i0, . . . , such that Ei0 ⊂

⋃
B∈Qi

B, each B ∈Qi is centred in Ei0

and has radius 2−i, and { 1
5B : B ∈Qi} is a disjoint family for each i= i0, . . . .

Let x ∈ Ei0 . There exists a sequence of balls (Bi(x))
∞
i=i0

, such that x ∈
Bi ∈ Qi. We denote fi(x) = fBi(x). As in (5), we have ‖fi(x) − f(x)‖ ≤
ψ(2 · 2−i)→ 0, when i→∞. Moreover, similarly to (4), we obtain

max
{∥∥fi(x)− fi−1(x)

∥∥,∥∥fi(x)− fi+1(x)
∥∥}≤A

(∫
5σBi(x)

ρQ
)1/Q

for i= i0 + 1, . . . , where the constant A> 0 depends on c1, c2, Q, CP and σ.
We put rB =A(

∫
5σB

ρQ)1/Q for each B ∈Qi and each i= i0, . . . , and consider

the collection BB = {Bk
B =B(fB , rB/2

k) : k = 0,1, . . .}.
As in the previous section, we decompose Ei0 =

⋃
lEi0,l according to the

number l0(x) and fix some Ei0,l1 and l= 4l1. Analogous argument implies

2

2l/γ+1∑
i=i0

∑
B∈Qi

∞∑
k=0

χ 32
γ Bk

B
(y)≥ 2l1

for each y ∈ f(Ei0,l1). Since the families { 1
5B : B ∈ Qi} are disjoint, the

doubling condition for the measure μ gives the boundedness of the overlap∑
B∈Qi

χ5σB(y)≤C

for each i= i0, . . . , y ∈ Ω and some constant C, which depends on c1, c2, Q
and σ. We finally obtain similarly to (7)

HQ
∞
(
f(Ei0,l1)

)
≤ C

l1

2l/γ+1∑
i=i0

∑
B∈Qi

∫
5σB

ρQ ≤ C

l1

2l/γ+1∑
i=i0

∫
Ω

ρQ ≤Cε,

where the constant C > 0, differing from occurrence to occurrence, depends
only on β, γ, c1, c2, Q, CP and σ. Thus, we conclude HQ

∞(f(Ei0))≤Cε and
HQ

∞(f(E))≤Cε, since the involved sequences of sets are nested. �
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