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THE REFLEXIVE CLOSURE OF THE
ADJOINTABLE OPERATORS

E. G. KATSOULIS

Abstract. Given a Hilbert C∗-module E over a C∗-algebra
A, we give an explicit description for the invariant subspace

lattice latL(E) of all adjointable operators on E. We then

show that the collection EndA(E) of all bounded A-module op-
erators acting on E forms the reflexive closure for L(E), i.e.,

EndA(E) = alg latL(E). Finally, we make an observation regard-
ing the representation theory of the left centralizer algebra of a

C∗-algebra and use it to give an intuitive proof of a related result
of H. Lin.

1. Introduction

In this note, A denotes a C∗-algebra and E a Hilbert C∗-module over A,
that is, a right A-module equipped with an A-valued inner product 〈·, ·〉 so
that the norm ‖ξ‖ ≡ ‖〈ξ, ξ〉1/2‖ makes E into a Banach space. The collection
of all bounded A-module operators acting on E is denoted as EndA(E). A lin-
ear operator S acting on E is said to be adjointable iff given x, y ∈ E there
exists y′ ∈E so that 〈Sx, y〉= 〈x, y′〉. Elementary examples of adjointable op-
erators are the “rank one” operators θη,ξ , defined by θη,ξ(x)≡ η〈ξ, x〉, where
η, ξ, x ∈ E. The collection of all adjointable operators acting on E will be
denoted as L(E) while the norm closed subalgebra generated by the rank one
operators will be denoted as K(E).

It is a well-known fact that L(E)⊆ EndA(E). However, the reverse inclu-
sion is known to fail in general; this is perhaps the first obstacle one encounters
when extending the theory of operators on a Hilbert space to that of operators
on a Hilbert C∗-module. This problem has been addressed since the beginning
of the theory [21, p. 447] and has influenced its subsequent development. The
first few chapters of the monograph of Manuilov and Troitsky [19] and the
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references therein provide the basics of the theory and give a good account
of what is known regarding that issue. (See also [4], [17].) The purpose of
this note is to demonstrate that the inequality between L(E) and EndA(E)
is intimately related to another area of continuing mathematical interest, the
reflexivity of operator algebras.

If A is a unital operator algebra acting on a Banach space X, then latA will
denote the collection of all closed subspaces M ⊆X which are left invariant by
A, that is, A(m) ∈M , for all A ∈A and m ∈M . Dually, for a collection L of
closed subspaces of X, we write algL to denote the collection of all bounded
operators on X that leave invariant each element of L. The reflexive cover of
an algebra A of operators acting on X is the algebra alg latA; we say that A
is reflexive iff

A= alg latA.

Similarly, the reflexive cover of a subspace lattice L is the lattice lat algL
and L is said to be reflexive if L= latalgL. A formal study of reflexivity for
operator algebras and subspace lattices began with the work of Halmos [10],
after Ringrose’s proof [23] that all nests on Hilbert space are reflexive. Since
then, the concept of reflexivity for operator algebras and subspace lattices has
been addressed by various authors on both Hilbert space [1], [2], [3], [6], [9],
[13], [15], [20], [24], [25] and Banach space [5], [7], [8], including in particular
investigations on a Hilbert C∗-module.

The main results of this short note provide a link between the two areas
of inquiry discussed above. In Theorem 2.5, we show that the presence of
bounded but not adjointable module operators on a C∗-module E is equivalent
to the failure of reflexivity for L(E). (Here we think of L(E) simply as an
operator algebra acting on E.) Actually, we do more: we explicitly describe
latL(E) and we show that as a complete lattice, latL(E) is isomorphic to the

lattice of closed left ideals of 〈E,E〉 (Theorem 2.3). A key step in the proof of
Theorem 2.5 is a classical result of Barry Johnson [11, Theorem 1]. Actually,
our Theorem 2.5 can also be thought of as a generalization of Johnson’s result,
since its statement reduces to the statement of [11, Theorem 1], when applied
to the case of the trivial (unital) Hilbert C∗-module.

Another interpretation for the inequality between L(E) and EndA(E)
comes from the work of H. Lin. Lin shows in [18, Theorem 1.5] that EndA(E)
is isometrically isomorphic as a Banach algebra to the left centralizer algebra
of K(E). Furthermore, the isomorphism Lin constructs extends the familiar ∗-
isomorphism between L(E) and the double centralizer algebra of K(E). This
shows that the gap between L(E) and EndA(E) is solely due to the presence
of left centralizers for K(E) which fail to be double centralizers. In Propo-
sition 3.3, we observe that the representation theory of the left centralizer
algebra of a C∗-algebra is flexible enough to allow the use of representations
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on a Banach space. This leads to yet another short proof of Lin’s Theo-
rem, which we present in Theorem 3.4. Our proof makes no reference to
Cohen’s Factorization Theorem and its only prerequisite is the existence of
a contractive approximate identity for a C∗-algebra. (Compare also with [4,
Proposition 8.1.16(ii)].)

A final remark. Johnson’s Theorem [11, Theorem 1], which plays a central
role in this paper, may no longer be true for Banach algebras which are not
semisimple. Nevertheless there are specific classes of (not necessarily semisim-
ple) operator algebras for which such a theorem is actually valid. This is being
explored in a subsequent work [16].

2. The main results

We begin by identifying a useful class of subspaces of E.

Definition 2.1. Let E be a Hilbert C∗-module over a C∗-algebra A. If
J ⊆A, then we define

E(J ) := span{ξa | ξ ∈E,a ∈ J }.

The correspondence J 	→ E(J ) of Definition 2.1 is not bijective. Indeed,
if l(J ) is the closed left ideal generated by J ⊆A, then it is easy to see that
E(l(J )) = E(J ). Therefore, we restrict our attention to closed left ideals of
A. It turns out that an extra step is still required to ensure bijectivity. First,
we need the following.

Lemma 2.2. Let E be a Hilbert C∗-module over a C∗-algebra A and let
J ⊆A be a closed left ideal. Then

E(J ) =
{
ξ ∈E | 〈η, ξ〉 ∈ J for all η ∈E

}
.

Proof. The inclusion

E(J )⊆
{
ξ ∈E | 〈η, ξ〉 ∈ J for all η ∈E

}

is obvious. The reverse inclusion follows from the well known fact [19,
Lemma 1.3.9] that

ξ = lim
ε→0

ξ〈ξ, ξ〉
[
〈ξ, ξ〉+ ε

]−1

for any ξ ∈E. �

The following gives now a complete description for the lattice of invariant
subspaces of the adjointable operators.

Theorem 2.3. Let E be a Hilbert C∗-module over a C∗-algebra A. Then

latL(E) =
{
E(J ) | J ⊆ 〈E,E〉 closed left ideal

}

and the association J 	→E(J ) establishes a complete lattice isomorphism be-

tween the closed left ideals of 〈E,E〉 and latL(E).
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In addition,

latK(E) = latL(E) = latEndA(E).

Proof. First, observe that if J ⊆A is a closed left ideal, then the subspace
E(J ) is invariant under L(E), because L(E) consists of A-module operators.

Conversely assume that M ∈ latL(E) and let

J(M)≡ span
{
〈η,m〉 | η ∈E and m ∈M

}
.

Clearly, J(M)⊆ 〈E,E〉 and the identity

a〈η,m〉=
〈
ηa∗,m

〉
, a ∈A, η ∈E,m ∈M,

implies that J(M) is a left ideal. We claim that M = E(J(M)). Indeed, if
m ∈M , then by the definition of J(M) we have 〈η,m〉 ∈ J(M), for all η ∈E,
and so Lemma 2.2 implies that m ∈ E(J(M)). On the other hand, any ξa,
with ξ ∈ E and a ∈ J(M) is the limit of finite sums of elements of the form
ξ〈η,m〉, where η ∈E and m ∈M . However,

ξ〈η,m〉= θξ,η(m) ∈M

and so M =E(J(M)). This shows that J 	→E(J ) is surjective.
In order to prove that J 	→ E(J ) is also injective we need to verify that

J = J(E(J )), for any closed ideal J ⊆ 〈E,E〉. Since J ⊆ 〈E,E〉 is a left ideal,
J(E(J ))⊆J . On the other hand, if (ei)i is a right approximate identity for

J , then any element of J ⊆ 〈E,E〉 can be approximated by elements of the
form ∑

k

〈ηk, ξk〉ek =
∑

k

〈ηk, ξkek〉, ηk, ξk ∈E.

However, ξkek ∈ E(J ), by Definition 2.1, and so sums of the above form
belong to J(E(J )). Hence, J ⊆ J(E(J )) and so J 	→E(J ) is also injective
with inverse M 	→ J(M).

The proof that J 	→E(J ) respects the lattice operations follows from two
successive applications of Lemma 2.2. Indeed, if (Ji)i is a collection of closed

ideals of 〈E,E〉, then ξ ∈
⋂

iE(Ji) is equivalent by Lemma 2.2 to 〈η, ξ〉 ∈
⋂

iJi

which, once again by Lemma 2.2, is equivalent to ξ ∈ E(
⋂

iJi). Therefore⋂
iE(Ji) =E(

⋂
iJi). The proof of

∨
iE(Ji) =E(

∨
iJi) is immediate.

For the final assertion of the theorem, first note that

latK(E)⊇ latL(E)⊇ latEndA(E).

On the other hand, if M ∈ latK(E), then an argument identical to that of
the second paragraph of the proof shows that M = E(J(M)). Hence, M ∈
latEndA(E) and the conclusion follows. �

The following result was proved by B. Johnson [11, Theorem 1] for arbitrary
semisimple Banach algebras by making essential use of their representation
theory. One can adopt Johnson’s original proof to the C∗-algebraic context
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by using the GNS construction and Kadison’s transitivity theorem wherever
representation theory is required in the original proof.

Theorem 2.4. Let A be a C∗-algebra and let Φ be a linear operator acting
on A that leaves invariant all closed left ideals of A. Then Φ(ba) = Φ(b)a,
∀a, b ∈ A. In particular, if 1 ∈ A is a unit then Φ is the left multiplication
operator by Φ(1).

Note that the proof of Theorem 2.3 shows that any bounded A-module
map leaves invariant latL(E). This establishes one direction in the following,
which is the main result of the paper.

Theorem 2.5. Let E be a Hilbert module over a C∗-algebra A. Then

alg latL(E) = EndA(E).

In particular, EndA(E) is a reflexive algebra of operators acting on E.

Proof. Let S ∈ alg latL(E) and ξ, η ∈E. Consider the linear operator

Φη,ξ : A a 	−→
〈
η,S(ξa)

〉
∈A.

We claim that Φη,ξ leaves invariant any of the closed left ideals of A. Indeed,
if J ⊆A is such an ideal and j ∈ J , then ξj ∈ E(J ) and since S ∈ alg latL,
S(ξj) ∈E(J ). By Theorem 2.3, we have

Φη,ξ(j) =
〈
η,S(ξj)

〉
∈ J

and so Φη,ξ leaves J invariant, which proves the claim. Hence Theorem 2.4,
implies now that Φη,ξ(ba) = Φη,ξ(b)a, ∀a, b ∈A.

Let (ei) be an approximate unit for A. By the above Φη,ξ(eia) = Φη,ξ(ei)a,
∀i, and so

〈
η,S(ξa)

〉
= lim

i

〈
η,S(ξeia)

〉
= lim

i
Φη,ξ(eia)

= lim
i
Φη,ξ(ei)a= lim

i

〈
η,S(ξei)

〉
a

=
〈
η,S(ξ)

〉
a.

Hence 〈
η,S(ξa)

〉
=
〈
η,S(ξ)a

〉
, ∀a ∈A,

which establishes that S is an A-module map. �

The above theorem can also be thought as a generalization of Theorem 2.4
(Johnson’s theorem) since its statement reduces to the statement of Theo-
rem 2.4 when applied to the case of the trivial unital Hilbert C∗-module.

Corollary 2.6. If E is a selfdual Hilbert C∗-module, then L(E) is reflex-
ive as an algebra of operators acting on E.
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In particular, the above corollary shows that if A is a unital C∗-algebra,
then L(A(n)), 1≤ n <∞, is a reflexive operator algebra. This is not necessar-
ily true for L(A(∞)). Indeed in [19, Example 2.1.2] the authors give an exam-
ple of a unital commutative C∗-algebra A for which L(A(∞)) �=EndA(A(∞)).
By Theorem 2.5, L(A(∞)) is not reflexive.

3. Left centralizers and a theorem of H. Lin

An alternative description for the inclusion L(E) ⊆ EndA(E) has been
given by H. Lin in [18].

Definition 3.1. If A is a Banach algebra then a linear and bounded map
Φ : A→ A is called a left centralizer if Φ(ab) = Φ(a)b, for all a, b ∈ A. If in
addition there exists a map Ψ : A→A so that Ψ(a)b= aΦ(b), for all a, b ∈A,
then Φ is called a double centralizer.

The collection of all left (resp. double) centralizers equipped with the supre-
mum norm will be denoted as LC(A) (resp. DC(A)). Note that in the case
where A has an approximate unit, the linearity and boundedness of centraliz-
ers do not have to be assumed a priori but instead follow from the condition
Φ(ab) = Φ(a)b, for all a, b ∈A. (See [12] for a proof; the unital case is of course
trivial.)

In [18, Theorem 1.5] Lin shows that EndA(E) is isometrically isomorphic
as a Banach algebra to LC(K(E)). Furthermore, the isomorphism Lin con-
structs extends the familiar ∗-isomorphism of Kasparov [14] between L(E)
and DC(K(E)). Lin’s proof is similar in nature to that of Kasparov [14]
for the double centralizers of K(E). However it is more elaborate and also
requires some additional results of Paschke [21]. In what follows we give an
elementary proof of Lin’s theorem. Our argument depends on the observation
that the representation theory for the left centralizers of a C∗-algebra A is
flexible enough to allow the use of representations on a Banach space.

Definition 3.2. Let X be a Banach space and let A be a norm closed
subalgebra of B(X), the bounded operators on X. The left multiplier algebra
of A is the collection

LMX(A)≡
{
b ∈B(X) | ba ∈A, for all a ∈A

}
.

If b ∈ LMX(A), then Lb ∈B(A) denotes the left multiplication operator by b.

The following has also a companion statement for double centralizers, which
we plan to state and explore elsewhere.

Proposition 3.3. Let A be a C∗-algebra and assume that A is acting
isometrically and non-degenerately on a Banach space X. Then the mapping

(1) LMX(A)−→ LC(A) : b 	−→ Lb
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establishes an isometric Banach algebra isomorphism between LMX(A) and
LC(A).

Proof. The statement of this proposition is a well-known fact, provided
that X is a Hilbert space. In that case, in order to establish the surjectivity of
(1) one starts with a contractive approximate unit (ei)i for A. If B ∈ LC(A),
then the net (B(ei))i is bounded and therefore has at least one weak limit
point b ∈ B(X). The conclusion then follows by showing that b ∈ LMX(A).
(See [22, Proposition 3.12.3] for a detailed argument.)

Bounded nets of operators on a Banach space need not have weak limits.
However, the non-degeneracy of the action and the identity

B(ei)ax=B(eia)x, a ∈A, x ∈X,

guarantees that the net (B(ei)x)i is convergent when x ranges over a dense
subset of X. Since (B(ei))i is bounded, we obtain that (B(ei)x)i is Cauchy
(and thus convergent) for any x ∈X. This establishes that (B(ei))i converges
pointwise to some bounded operator b ∈ B(X), even when X is assumed to
be a Banach space. With this observation at hand, the rest of the proof now
goes as in the Hilbert space case. �

We are in position now to give the promised proof for Lin’s theorem.

Theorem 3.4. Let E be a Hilbert C∗-module over a C∗-algebra A. Then
there exists an isometric isomorphism of Banach algebras

φ : EndA(E)−→ LC
(
K(E)

)
,

whose restriction φ|L(E) establishes a ∗-isomorphism between L(E) and
DC(K(E)).

Proof. In light of Proposition 3.3, it suffices to verify that

LME

(
K(E)

)
=EndA(E).

Clearly EndA(E)⊆ LME(K(E)). Conversely, let S ∈ LME(K(E)). If a ∈ A
and η, ξ, ζ ∈E, then

S
(
η〈ξ, ζ〉a

)
= Sθη,ξ(ζa) = Sθη,ξ(ζ)a

= S
(
η〈ξ, ζ〉

)
a.

However vectors of the form η〈ξ, ζ〉, η, ξ, ζ ∈ E, are dense in E by [19,
Lemma 1.3.9] and so S is an A-module map, as desired.

Specializing now the mapping of (1) to our setting, we obtain an isometric
isomorphism

(2) φ : EndA(E)−→ LC
(
K(E)

)
: S 	−→ LS .

Furthermore, the restriction φ|L(E) coincides with Kasparov’s map and the
conclusion follows. �
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