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ON THE QUESTION OF DIAMETER BOUNDS
IN RICCI FLOW

QI S. ZHANG

Abstract. A question about Ricci flow is when the diameters of
the manifold under the evolving metrics stay finite and bounded

away from 0. Topping (Comm. Anal. Geom. 13 (2005) 1039–
1055) addresses the question with an upper bound that depends

on the L(n−1)/2 bound of the scalar curvature, volume and a local

version of Perelman’s ν invariant. Here n is the dimension. His
result is sharp when Perelman’s F entropy is positive. In this

note, we give a direct proof that for all compact manifolds, the

diameter bound depends just on the L(n−1)/2 bound of the scalar

curvature, volume and the Sobolev constants (or positive Yamabe

constant). This bound seems directly computable in large time

for some Ricci flows. In addition, since the result in its most

general form is independent of Ricci flow, further applications
may be possible.

A generally sharp lower bound for the diameters is also given,
which depends only on the initial metric, time and L∞ bound

of the scalar curvature. These results imply that, in finite time,

the Ricci flow can neither turn the diameter to infinity nor zero,
unless the scalar curvature blows up.

1. Statement of result

The Ricci flow introduced by R. Hamilton is a nonlinear parabolic equa-
tion along which the metrics of a Riemannian manifold evolve. Therefore
understanding the evolution of basic geometric quantities such as volumes,
diameters etc. has been a basic task in the study of the Ricci flow. By now
it is known that in finite time, the volume of geodesic balls along the Ricci
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flow are comparable to that of the Euclidean balls provided that the scalar
curvatures are bounded. These are the κ non-collapsing property by Perel-
man and the so called κ non-inflating property. Perelman also proved that
the diameter stays bounded for the (normalized) Kähler Ricci flow on Fano
manifolds. See the paper by Sesum and Tian [ST]. Ilmanen and Knopf [IK]
proved a lower bound for the diameters under a topological condition. In the
paper [T], P. Topping considered the question of diameter upper bounds along
a general Ricci flow ∂tg = −2Ric on a compact Riemannian manifold M of
dimension n. One of his main result’s (Theorem 2.4) says that there exists a
constant C =C(g(0), T ) such that for all t ∈ [0, T ), if diam(M,g(t))≥C, then

diam
(
M,g(t)

)
≤C

∫
M

R(n−1)/2 dg(t).

Here R is the scalar curvature. The constant C depends on volume and a
local version of Perelman’s ν entropy. If the infimum of the F entropy for
(M,g(0)) is positive, then the above bound holds without the lower bound
assumption; and C is independent of time. See also Theorem 6.75 in Chow et
al. [C++] for another exposition of this result. Let us recall that Perelman’s
F entropy is F (v) =

∫
M
(4|∇v|2 +Rv2)dg where v is a W 1,2 function on M

with unit L2 norm.
The first goal of this note is to prove that: for all compact manifolds, the

diameter bound depends just on the L(n−1)/2 bound of the scalar curvature,
volume and the Sobolev constants to be defined below. The Sobolev constant
can also be replaced by the positive Yamabe constant. This result is similar in
spirit to the classical Bonnet–Myers which says that a positive lower bound of
the Ricci curvature implies an upper bound of the diameter. The difference is
that the Ricci lower bound is replaced the three quantities mentioned above.
Note that when n= 3, the integral involving the scalar curvature is just the
total curvature. We mention that some relation between the Yamabe constant
and the area of black holes are found in the paper by Cai and Galloway [CG].
In the paper [BL], Bakry and Ledoux showed the link between curvature
dimension inequality on a manifold and its diameter upper bound.

Another goal of the note is to prove a lower bound for the diameters,
which depends only on the initial metric, time and L∞ bounds of the scalar
curvature. Therefore, if the scalar curvature is bounded, the diameter of the
manifold at time t is comparable to that of the initial manifold.

To prove the upper bound, we will build on the idea in [T] where, Perel-
man’s W entropy, a maximal type of function for R+ and a covering technique
are used. The new input is the uniform Sobolev inequality along Ricci flow
and a partition and covering argument involving the volume of the manifold.
This bound seems directly computable in large time for some Ricci flows. This
is the case when M is a compact quotient of the hyperbolic space. For these
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manifolds, the Sobolev constants are independent of time, since the Ricci cur-
vature and injectivity radii are bounded from below uniformly. In addition,
since the result in its most general form is independent of Ricci flow, further
applications may be possible.

Now let us define the Sobolev constants mentioned above. Let (M,g) be a
n dimensional compact Riemannian manifold and R be the scalar curvature.
It is well known that the following Sobolev inequality holds. For any v ∈
W 1,2(M), there exist positive constants A and B, depending on g such that

(1.1)

(∫
M

v2n/(n−2) dg

)(n−2)/n

≤A

∫
M

(
4|∇v|2 +Rv2

)
dg+B

∫
M

v2 dg.

When (M,g(t)) is a Ricci flow, the following uniform Sobolev inequality also
holds. See Theorem 6.2.1 in [Z11] for example. For any v ∈W 1,2(M), there
exist positive constants A and B, depending only on the Sobolev constant of
g(0), R(·,0) and t such that

(∫
M

v2n/(n−2) dg(t)

)(n−2)/n

(1.2)

≤A

∫
M

(
4|∇v|2 +Rv2

)
dg(t) +B

∫
M

v2 dg(t).

Also, if the infimum of the F entropy is positive, then B = 0 and A is inde-
pendent of time.

The Yamabe constant is

(1.3) Y (g) = inf
v∈C∞(M),v>0

∫
M
(4(n− 1)(n− 2)−1|∇v|2 +Rv2)dg

(
∫
M

v2n/(n−2) dg)(n−2)/n
.

Here is

Theorem 1.1. (a) (Upper bound) Let M be a compact Riemannian mani-
fold of dimension n≥ 3. Let g = g(t), t ∈ [0, T ] be a family of smooth metrics
evolving under the Ricci flow ∂tg =−2Ric, or a static metric. In the later case,
the time variable is mute. Then there exists a positive constant C, depending
only on the Sobolev constants A and B, or the positive Yamabe constant Y (g),
such that

diameter
(
M,g(t)

)
≤C

(
1 +Volume

(
M,g(t)

)
+

∫
M

R
(n−1)/2
+ (x, t)dg(t)

)
.

Here R+ is the positive part of the scalar curvature under g(t).
(b) (Lower bound) Let (M,g(t)) be a Ricci flow given in (a). Then either

diam(M,g(t))≥
√
t or

diam
(
M,g(t)

)
≥H

(
t, g(0)

)[
V
(
M,g(0)

)] 1
n e−

2
n

∫ t
0
‖R(·,s)‖∞ ds,
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where H is a positive function defined by

H = ce
1
n [−α−tβ−t‖R−(·,0)‖∞]

[
1 +

2

n

∥∥R−(·,0)
∥∥
∞t

]−1/2

.

Here c is an absolute constant; α and β are positive constants depending
only on the Sobolev constants of (M, g(0)) and the infimum of Perelman’s F
entropy for (M,g(0)). Also β = 0 if R(·,0)≥ 0.

Remark 1.2. (1) It will be shown in the proof that C = C0(A +
B + 1)n/2 where C0 is a constant depending only on n. Alternatively
C =C0Y (g)−n/2.

(2) In the case of Ricci flows, if the infimum of the F entropy is posi-
tive, then C is independent of time. These will be pointed out during the
proof. Applying the maximum principle on the equation for the scalar curva-
ture

ΔR− ∂tR+ 2|Ric|2 = 0,

it is known that

Volume
(
M,g(t)

)
≤Volume

(
M,g(0)

)[ 2
n

∥∥R−(·,0)
∥∥
∞t+ 1

]n/2
.

Here R− =−min{0,R}.
(3) As mentioned earlier, the parameter β = 0 if the initial scalar curvature

is nonnegative. In this case we get the lower bound

diam
(
M,g(t)

)
≥ ce−

1
nαe−

2
n

∫ t
0
‖R(·,s)‖∞ ds

[
V
(
M,g(0)

)]1/n
.

This dependence on the scalar curvature is sharp in general as can be
seen through the standard Ricci flow on Sn. There the scalar curvature
is R=C/(T − t) and the diameter shrinks to 0 at time T .

The following are some notations to be frequently used. B(x, r, t) de-
notes the geodesic ball, centered at x, with radius r, under the metric g(t);
|B(x, r, t)| is the volume of the ball under g(t); if Γ is a curve, then |Γ| denotes
its length under g(t); R is the scalar curvature. If no confusion arises, we will
suppress the time variable t.

2. Proof of theorem

Proof of part (a). Step 1. We will just deal with the case where the Sobolev
constants are involved. The one for Yamabe constant can be treated in exactly
the same way. Let x be a point in M and r be a positive number less than
diam(M,g(t))/2. Following [Ak] and [Ca], we take v = v(y) = r − d(x, y) in
(1.1), or (1.2). Here d(x, y) is the distance between x and y under the metric
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g(t). Here and later, if no confusion arises, we suppress the time variable t
for brevity of presentation. Then∫

M

4|∇v|2 dg = 4
∣∣B(x, r)

∣∣,(2.1)

∫
M

Rv2 dg ≤ r2
∫
B(x,r)

R+ dg =
r2

|B(x, r)|

∫
B(x,r)

R+ dg
∣∣B(x, r)

∣∣(2.2)

≤M2(x, t,R+, r)
∣∣B(x, r)

∣∣.
Here M2(x, t,R+, r) is a maximal type function defined by, following [T],

(2.3) M2(x, t,R+, r) = sup
0<ρ≤r

ρ2

|B(x,ρ, t)|

∫
B(x,ρ,t)

R+ dg(t).

Also

(2.4)

∫
B(x,r)

v2 dg ≤ r2
∣∣B(x, r)

∣∣.
In the ball B(x, r/2), it is clear that v ≥ r/2. Therefore, after using Hölder

inequality and (1.1), we obtain

r2

4

∣∣B(x, r/2)
∣∣ ≤

∫
B(x,r)

v2 dg

≤
∣∣B(x, r)

∣∣2/n(∫
B(x,r)

v2n/(n−2) dg

)(n−2)/n

≤
∣∣B(x, r)

∣∣2/n[A
∫
M

(
4|∇v|2 +Rv2

)
dg(t) +B

∫
M

v2 dg(t)

]
.

Substituting (2.1), (2.2) and (2.4) into the right-hand side of this inequality,
we find that

r2

4

∣∣B(x, r/2)
∣∣≤ ∣∣B(x, r)

∣∣(n+2)/n[
4A+ 4AM2(x, t,R+, r) +Br2

]
.

This implies∣∣B(x, r)
∣∣

≥
∣∣B(x, r/2)

∣∣n/(n+2)
r2n/(n+2)

[
16A

(
1 +M2(x, t,R+, r)

)
+ 4Br2

]−n/(n+2)
.

For any number s ∈ (0, r], it is obvious that the above inequality still holds
when r is replaced by s. Since

M2(x, t,R+, s)≤M2(x, t,R+, r), s2 ≤ r2,

we arrive at the following inequality for all s ∈ (0, r],∣∣B(x, s)
∣∣ ≥ ∣∣B(x, s/2)

∣∣n/(n+2)
s2n/(n+2)(2.5)

×
[
16A

(
1 +M2(x, t,R+, s)

)
+ 4Bs2

]−n/(n+2)
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≥
∣∣B(x, s/2)

∣∣n/(n+2)
s2n/(n+2)

×
[
16A

(
1 +M2(x, t,R+, r)

)
+ 4Br2

]−n/(n+2)
.

Iterating (2.5) with s= r, r/2, . . . , r/2m for positive integers m, we deduce

∣∣B(x, r)
∣∣ ≥ [

r22−2
(
16A

(
1 +M2(x, t,R+, r)

)
+ 4Br2

)−1]∑m
i=1(n/(n+2))i

×
∣∣B(

x, r/2m
)∣∣(n/(n+2))m

.

Letting m→∞, this shows, for r < diam(M,g(t))/2,

(2.6)
|B(x, r)|

rn
≥
[
64A

(
1 +M2(x, t,R+, r)

)
+ 16Br2

]−n/2
.

In the Ricci flow case, this can be regarded as a quantified version of Perel-
man’s κ non-collapsing theorem.

Step 2. Now we start to bound the diameter of (M,g(t)), t ∈ (0, T ]. We
use Z = Z(t) and V = V (t) to denote the diameter and volume of (M,g(t))
respectively. If no confusion arises, we will ignore t. Without loss of generality,
we assume Z ≥ 2. From now on, we assume r ≤ 1 in (2.6) so that B(x, r) is
always a proper ball in M . Picking any x ∈M and writing

(2.7) κ= κ(x, r) =
|B(x, r)|

rn

in (2.6), we see that

64A
(
1 +M2(x, t,R+, r)

)
+ 16Br2 ≥ κ−2/n.

This implies, as r ≤ 1, that

(2.8) M2(x, t,R+, r)≥ (64A)−1
(
κ−2/n − 64A− 16B

)
.

Set

(2.9) κ0 =min

{
(128A+ 16B)−n/2,

ωn

2

}
,

where ωn is the volume of n dimensional Euclidean ball, which is here for
later use. From (2.8) and (2.9), we know that the following statement is true:

if κ= |B(x,r)|
rn ≤ κ0, then

(2.10) M2(x, t,R+, r)≥ 2.

Step 3. Recall that Z is the diameter of (M,g(t)). Let N be the greatest
integer which is less than or equal to Z/4. Let a and b be two points in M
such that d(a, b) = Z. Let Γ be a minimum geodesic connecting a and b. Let
p be the middle point of Γ so that d(a, p) = d(b, p) = Z/2.

Next, we claim that if

(2.11) Z >
V 4n+3

κ0
,
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then for at least N many positive integers i≤ 2N , it holds∣∣B(p, i)−B(p, i− 1)
∣∣≤ κ04

−n.

The proof is simple, for, if the claim were not true, then there would be at
least N many i such that∣∣B(p, i)−B(p, i− 1)

∣∣> κ04
−n,

which would imply

Zκ04
−n−2 ≤Nκ04

−n ≤
2N∑
i=1

∣∣B(p, i)−B(p, i− 1)
∣∣≤ V.

Thus,

Z ≤ V 4n+2

κ0
.

But this contradicts with (2.11), proving the claim. From now on, we al-
ways assume that (2.11) holds. This does not reduce any generality since the
theorem is already proven otherwise.

According to the claim, we can pick N integers i1, . . . , iN in the set
{1, . . . ,2N} such that

(2.12)
∣∣B(p, ij)−B(p, ij − 1)

∣∣≤ κ04
−n, j = 1, . . . ,N.

Pick i ∈ {i1, . . . , iN}. Denote by Γi the segment Γ∩ (B(p, i)−B(p, i−1)). Let
pi be the middle point of γi. Then

B(pi,1/2)⊂B(p, i)−B(p, i− 1).

Hence, for any x ∈B(pi,1/4), we have

B(x,1/4)⊂B(pi,1/2)⊂B(p, i)−B(p, i− 1).

This and (2.12) infer that

(2.13)
|B(x,1/4)|
(1/4)n

≤ κ0.

On the other hand

lim
ρ→0

|B(x,ρ)|
ρn

= ωn ≥ 2κ0,

where the last inequality is due to the definition of κ0 in (2.9). From this and
(2.13), we can find a positive number s = s(x) ∈ (0,1/4], which satisfies the
following properties. First,

(2.14)
|B(x, s(x))|

s(x)n
= κ0.

Second, if 0< ρ≤ s(x), then

(2.15)
|B(x,ρ)|

ρn
≥ κ0.
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In another word, s(x) is the smallest radius ρ such that |B(x,ρ)|
ρn = κ0. From

(2.14) and (2.10) with r = s(x), we find that

M2

(
x, t,R+, s(x)

)
≥ 2.

Hence there exists s1(x) ∈ (0, s(x)] such that

(2.16)
s1(x)

2

|B(x, s1(x))|

∫
B(x,s1(x))

R+ dg ≥ 1.

According to (2.15), we also have

(2.17)
|B(x, s1(x))|

s1(x)n
≥ κ0.

The rest of the proof is similar to that in [T]. It is here for completeness.
Denote by σ the (disjointed) curve⋃

i=i1,...,iN

(
Γi ∩B(pi,1/4)

)
.

Since N ≥ Z/8, we see that

|σ| ≥ Z/16.

Also the family of balls {B(x, s1(x))|x ∈ σ} forms an open cover of σ. By
standard argument, see Lemma 5.2 in [T], e.g., we can find a sequence of
points {xl|l= 1,2, . . .} ⊂ σ such that each of the balls B(xl, s1(xl)) are disjoint
from each other and that the balls {B(xl, s1(xl))|l = 1,2, . . .} cover at least
1/3 of σ. Consequently,

(2.18) Z ≤ 16|σ| ≤ 96
∑
l

∣∣s1(xl)
∣∣.

Using (2.16) and Hölder inequality, we have

|B(x, s1(xl))|
s21(xl)

≤
∫
B(x,s1(xl))

R+ dg

≤
(∫

B(x,s1(xl))

R
(n−1)/2
+ dg

)2/(n−1)

×
∣∣B(

x, s1(xl)
)∣∣(n−3)/(n−1)

.

This and (2.17) together imply that

κ0s1(xl)≤
|B(x, s1(xl))|

sn−1
1 (xl)

≤
∫
B(x,s1(xl))

R
(n−1)/2
+ dg.

Using this and (2.18), we have proven that

Z ≤ 96κ−1
0

∫
M

R
(n−1)/2
+ dg.
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This proves the theorem part (a) since we have assumed Z ≥ 2 and Z ≥ V 4n+2

κ0

to reach the above bound. Observe that κ0, defined on (2.9), only depends
on the Sobolev constants of (M,g(t)) and dimension n, which in turn depend
only on t and the Sobolev constants of (M,g(0)). If the infimum of the F
entropy is positive then κ0 is independent of time. See Theorem 6.2.1 in [Z11].

Finally, the constant in the theorem, part (a), is as claimed in Remark 1.2
due to the size of κ0.

Proof of part (b). Now we prove the lower bound for the diameter. Let
G=G(z, l;x, t) be the fundamental solution of the conjugate heat equation,
with l < t. By (1.3) in [Z12], we have the following lower bound for G.

(2.19) G(z, l;x, t)≥ c1J(t)

(t− l)n/2
e−2c2

d(z,x,t)2

t−l e
− 1√

t−l

∫ t
l

√
t−sR(x,s)ds

.

Here

(2.20) J = J(t) = exp
[
−α− tβ − t supR−(·,0)

]
,

and α and β are positive constants depending only on the Sobolev constants of
(M, g(0)) and the infimum of Perelman’s F entropy for (M,g(0)). Moreover,
β = 0 if R(·,0)≥ 0. Therefore,

(2.21) G(z, l;x, t)≥ c1J(t)

(t− l)n/2
e−2c2

d(z,x,t)2

t−l e−
∫ t
l
‖R(·,s)‖∞ ds.

Fix a time t0 > 0 and a point x0 ∈M . Write r = diam(M,g(t0))
2 . If r ≥

√
t0,

then we do not need to do anything. So we assume r <
√
t0. In (2.21), we

take z = x0, t= t0 and l = t0 − r2. Thus, for x such that d(x0, x, t0)≤ r, we
obtain

(2.22) G
(
x0, t0 − r2;x, t0

)
≥ c1J(t0)

rn
e−2c2−

∫ t0
0 ‖R(·,s)‖∞ ds.

By simple differentiation in time and applying the maximum principle on the
scalar curvature, it is easy to see that

∥∥R−(·, t)
∥∥
∞ ≤ 1

(1/‖R−(·,0)‖∞) + (2t/n)

and

d

dt

∫
M

G(z, l;x, t)dg(x, t)≤
∥∥R−(·, t)

∥∥
∞

∫
M

G(z, l;x, t)dg(x, t).

Therefore,

(2.23)

∫
M

G(z, l;x, t)dg(x, t)≤
[
1 +

2

n

∥∥R−(·,0)
∥∥
∞(t− l)

]n/2
.
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Substituting (2.22) to (2.23), we deduce

[
1 +

2

n

∥∥R−(·,0)
∥∥
∞r2

]n/2

≥
∫
M

G
(
x0, t0 − r2;x, t0

)
dg(x, t0)

≥
∫
d(x0,x,t0)≤r

G
(
x0, t0 − r2;x, t0

)
dg(x, t0)

≥ c1J(t0)

rn
e−2c2−

∫ t0
0 ‖R(·,s)‖∞ ds

∫
d(x0,x,t0)≤r

dg(x, t0).

Since r = diam(M,g(t0))
2 by choice, we know that

∫
d(x0,x,t0)≤r

dg(x, t0) =

V (M,g(t0)), the volume of M . Notice that

d

dt
V
(
M,g(t)

)
=−

∫
M

R(x, t)dg(t)≥−
∥∥R(·, t)

∥∥
∞V

(
M,g(t)

)
.

Hence,

V
(
M,g(t0)

)
≥ e−

∫ t0
0 ‖R(·,t)‖∞ dtV

(
M,g(0)

)
.

These imply that
[
1 +

2

n

∥∥R−(·,0)
∥∥
∞r2

]n/2
rn ≥ c1J(t0)e

−2c2−2
∫ t0
0 ‖R(·,t)‖∞ dtV

(
M,g(0)

)
.

Since r = diam(M,g(t0))/2 and 2r ≥
√
t0 by assumption, we see that

diam
(
M,g(t0)

)
≥ c3e

1
n [−α−t0β−t0‖R−(·,0)‖∞]e−

2
n

∫ t0
0 ‖R(·,t)‖∞ dt

×
[
1 +

2

n

∥∥R−(·,0)
∥∥
∞t0

]−1/2[
V
(
M,g(0)

)]1/n
.

Here we just used (2.20) so that α and β are positive constants depending
only on the Sobolev constants of (M, g(0)) and the infimum of Perelman’s F
entropy for (M,g(0)). Also c3 is an absolute constant. As mentioned earlier,
β = 0 if the initial scalar curvature is nonnegative. In this case, we get the
bound

diam
(
M,g(t0)

)
≥ c3e

− 1
nαe−

2
n

∫ t0
0 ‖R(·,t)‖∞ dt

[
V
(
M,g(0)

)]1/n
.

The proof is complete. �
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