# ON 2-CLASS FIELD TOWERS OF SOME REAL QUADRATIC NUMBER FIELDS WITH 2-CLASS GROUPS OF RANK 3 

## A. MOUHIB


#### Abstract

We construct an infinite family of real quadratic number fields with class group of 2 -rank $=3,4$-rank $=1$ and finite Hilbert 2-class field tower.


## 1. Introduction

Let $k$ be a number field, and let $C_{k}$ be the class group of $k$. Let $k^{1}$ be the Hilbert 2-class field of $k$, that is, the maximal unramified (including the infinite primes) abelian field extension of $k$ whose degree over $k$ is a power of 2 . Let $k^{n}$ for $n$ a non-negative integer, be defined inductively as $k^{0}=k$ and $k^{n+1}=\left(k^{n}\right)^{1}$; then

$$
k \subset k^{1} \subset k^{2} \subset \cdots \subset k^{n} \subset \cdots
$$

is called the Hilbert 2-class field tower of $k$. If $n$ is the minimal integer such that $k^{n}=k^{n+1}$, then $n$ is called the length of the tower. If no such $n$ exists, then the tower is said to be of infinite length.

We define the 2-rank of $C_{k}$, denoted $r_{2}(k)$ as the dimension of the elementary Abelian 2-group $C_{k} / C_{k}^{2}$ viewed as a vector space over $\mathbb{F}_{2}$ :

$$
r_{2}(k)=\operatorname{dim}_{\mathbb{F}_{2}}\left(C_{k} / C_{k}^{2}\right),
$$

where $\mathbb{F}_{2}$ is the finite field with two elements. We define the 4 -rank of $C_{k}$, denoted $r_{4}(k)$ by:

$$
r_{4}(k)=\operatorname{dim}_{\mathbb{F}_{2}}\left(C_{k}^{2} / C_{k}^{4}\right) .
$$

Assume $k$ is a real quadratic number field. It is well known that if $r_{2}(k) \geq 6$, then the Hilbert 2-class field tower of $k$ is infinite [5], but it is not known how far from best possible this bound is. In the case where $r_{2}(k)=2$ or 3 , there are examples of fields $k$ with finite Hilbert 2 -class field tower. We mention that in the case where $C_{k}$ contains a subgroup isomorphic to $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \times$
$\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$, then $k$ has infinite Hilbert 2-class field tower ([6], [7]). Also a positive proportion of the fields $k$ with $r_{2}(k)=5$ and $r_{4}(k)=i$ (with $i=0,1,2$, or 3) have infinite Hilbert 2-class field towers, and a positive proportion of the fields $k$ with $r_{2}(k)=4$ and $r_{4}(k)=i$ (with $i=0,1,2$, or 3 ) have infinite Hilbert 2-class field towers [4].

The aim of this article is to construct an infinite family of real quadratic number fields $k$ such that $r_{2}(k)=3, r_{4}(k)=1$ and finite Hilbert 2-class field tower. We mention that there are infinitely many imaginary quadratic number fields $k$ such that $r_{2}(k)=3, r_{4}(k)=0$ and finite Hilbert 2-class field tower [9].

## 2. Preliminary results

Let $p$ be a prime number and $K / k$ be a Galois extension of number fields with degree $p$. We define the genus field of the extension $K / k$ denoted $G(K / k)$ as the maximal Abelian $p$-extension of $k$, which is unramified over $K$ at all finite and infinite primes. Denote by $E_{k}$ the unit group of $k$ and $\operatorname{ram}(K / k)$ the number of primes ramified in $K / k$. Denote by $B(K / k)$ the elementary Abelian $p$-group $E_{k} / E_{k} \cap N_{K / k}\left(K^{*}\right)$. We note that $B(K / k)$ is a vector space over $\mathbb{F}_{p}$, let $d_{p}(B(K / k))$ be its dimension.

In the case where $p=2$ and the class number of $k$ is odd, then by the ambiguous class number formula we have (see, e.g., [1]):

$$
\begin{equation*}
r_{2}(K)=\operatorname{ram}(K / k)-d_{2}(B(K / k))-1 . \tag{*}
\end{equation*}
$$

The value of $r_{2}(K)$ is related to determining whenever the units of $k$ are norms or not in $K$.

Now, let $k$ be a quadratic number field of discriminant $d$. A factorization of the discriminant $d$ into relatively prime discriminants $d_{1}$ and $d_{2}: d=d_{1} d_{2}$ is called a $C_{4}$-factorization if $\left(\frac{d_{1}}{p_{2}}\right)=\left(\frac{d_{2}}{p_{1}}\right)=1$ for all primes $p_{i} \mid d_{i}$. We shall need the following result of Rédei and Reichardt on the 2-class group of real quadratic number fields (see [13], [14] and for more information and results see [10]).

Proposition 2.1. Let $k$ be a quadratic number field with discriminant $d$. The 4-rank $r_{4}(k)$ of $k$ equals the number of independent $C_{4}$-factorizations of $d$.

In the following proposition, we give the rank of the class group of some number fields.

Proposition 2.2. Let $p$ be a prime number and $K / k$ be a ramified Galois extension of number fields with degree $p$. Let $k^{1}$ be the Hilbert p-class field of $k$. Suppose that the p-class group of $k$ is cyclic and each ramified prime in the extension $K k^{1} / k^{1}$ is inert in the extension $k^{1} / k$. Then we have an isomorphism induced by the norm map:

$$
B\left(K k^{1} / k^{1}\right) \longrightarrow B(K / k)
$$

and we have

$$
d_{p}\left(B\left(K k^{1} / k^{1}\right)\right)=d_{p}(B(K / k))
$$

In particular case, if $p=2$, then we have:

$$
r_{2}\left(K k^{1}\right)=\operatorname{ram}(K / k)-d_{2}(B(K / k))-1 .
$$

Proof. Let the map induced by the norm in the extension $k^{1} / k$ :

$$
\phi: B\left(K k^{1} / k^{1}\right) \longrightarrow B(K / k) .
$$

Since, the $p$-class group of $k$ is cyclic, then each unit of $k$ is a norm of a unit in $k^{1}$ (see [11]). Therefore the map $\phi$ is surjective, hence

$$
\begin{equation*}
\left|B\left(K k^{1} / k^{1}\right)\right| \geq|B(K / k)| \tag{1}
\end{equation*}
$$

Accordingly, the ambiguous class number formula for the $p$-class groups in the extension $K / k$ reads:

$$
\left|A(K)^{\operatorname{Gal}(K / k)}\right|=[G(K / k): K]=\frac{|A(k)| p^{s}}{p|B(K / k)|}
$$

where $s$ is the number of primes ramified in the extension $K / k$. Also, since the $p$-class group of $k$ is cyclic, then the $p$-class number of $k^{1}$ is trivial. Consequently, the ambiguous class number formula for the $p$-class groups in the extension $K k^{1} / k^{1}$ reads:

$$
\left|A\left(K k^{1}\right)^{\operatorname{Gal}\left(K k^{1} / k^{1}\right)}\right|=\left[G\left(K k^{1} / k^{1}\right): K k^{1}\right]=\frac{p^{s}}{p\left|B\left(K k^{1} / k^{1}\right)\right|} .
$$

On other hand, since $K k^{1} / k$ is Abelian and $K k^{1} / K$ is unramified, then the genus field $G(K / k)$ of $K / k$ contains $K k^{1}$. Also, since $G(K / k) / k^{1}$ is Abelian and $G(K / k) / K k^{1}$ is unramified, then $G(K / k)$ is contained in the genus field $G\left(K k^{1} / k^{1}\right)$ of $K k^{1} / k^{1}$. Hence, one readily verifies that:

$$
\begin{aligned}
{[G(K / k): K] } & =\left[K k^{1}: K\right]\left[G(K / k): K k^{1}\right]=|A(k)|\left[G(K / k): K k^{1}\right] \\
& \leq|A(k)|\left[G\left(K k^{1} / k^{1}\right): K k^{1}\right]
\end{aligned}
$$

So we obtain,

$$
\begin{equation*}
\left|B\left(K k^{1} / k^{1}\right)\right| \leq|B(K / k)| \tag{2}
\end{equation*}
$$

Consequently, from (1) and (2), we have

$$
\left|B\left(K k^{1} / k^{1}\right)\right|=|B(K / k)|
$$

then $\phi$ is an isomorphism. Since $B(K / k)$ and $B\left(K k^{1} / k^{1}\right)$ are elementary $p$-groups, so

$$
d_{p}\left(B\left(K k^{1} / k^{1}\right)\right)=d_{p}(B(K / k))
$$

In the case where $p=2$, the class number of $k^{1}$ is odd and by the formula $(*)$ of Section 2, we obtain

$$
r_{2}\left(K k^{1}\right)=\operatorname{ram}(K / k)-d_{2}(B(K / k))-1 .
$$

In the following, we will study some family of real quadratic number fields in which the 2 -class group is of rank equal to 3 and finite Hilbert 2-class field tower.

Let $p_{1}, p_{2}, p_{3}$ and $q$ be distinct prime numbers and $k=\mathbf{Q}\left(\sqrt{q p_{1} p_{2} p_{3}}\right)$ be a quadratic number field such that the following conditions are satisfied:
(1) $p_{1} \equiv p_{2} \equiv p_{3} \equiv-q \equiv 1(\bmod 4)$,
(2) $\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=\left(\frac{p_{3}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{2}}\right)=\left(\frac{2}{p_{3}}\right)=-\left(\frac{q}{p_{3}}\right)=-1$,
(3) $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)$ and $N_{\mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbf{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)=1$, where $\varepsilon_{p_{1} p_{2}}$ is the fundamental unit of $\mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right)$.
It's clear by genus theory that the rank of the 2 -class group of $k$ is equal to 3 .
Lemma 2.3. Let $k$ be the real quadratic number field defined above verifying the conditions (1), (2) and (5). Then the 2-class group of $k$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{n} \mathbb{Z}, n \geq 2$.

Proof. By the hypotheses above, we find that:

$$
\left(\frac{p_{1} p_{2}}{p_{3}}\right)=\left(\frac{p_{1} p_{2}}{q}\right)=\left(\frac{2}{p_{1}}\right)\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{3} q}{p_{1}}\right)=\left(\frac{p_{3} q}{p_{2}}\right)=1
$$

then one can verify that there is only one $C_{4}$-factorization of the discriminant $d=4 q p_{1} p_{2} p_{3}$ of $k$ into relatively prime discriminants $d_{1}=p_{1} p_{2}$ and $d_{2}=4 q p_{3}: d=d_{1} \cdot d_{2}$. Then by Proposition 2.1 , there exists only one cyclic extension over $k$ of degree 4 which is unramified at all finite and infinite primes. Consequently, we obtain the result.

Lemma 2.4. Let $q, p_{1}$ and $p_{2}$ be distinct prime numbers such that $p_{1} \equiv$ $p_{2} \equiv-q \equiv 1(\bmod 4)$ and $\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-1$. Then the 2 -class group of the biquadratic number field $L=\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1} p_{2}}\right)$ is cyclic non-trivial.

Proof. By genus theory, the genus field of $L$ is exactly the triquadratic number field $\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1}}, \sqrt{p_{2}}\right)$, then the 2-class group of $L$ is non-trivial. It remains to prove that the 2 -class group of $L$ is cyclic. Also by genus theory the 2 -class group of $\mathbf{Q}(\sqrt{q})$ is trivial. Moreover, since $\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-1$, then the number of ramified primes in the extension $L / \mathbf{Q}(\sqrt{q})$ is equal to 2 : $\operatorname{ram}(L / \mathbf{Q}(\sqrt{q}))=2$. Consequently by the formula $(*)$ and the fact that the 2-class group of $L$ is non-trivial, we find:

$$
r_{2}(L)=\operatorname{ram}(L / \mathbf{Q}(\sqrt{q}))-d_{2}(B(L / \mathbf{Q}(\sqrt{q})))-1=1
$$

Lemma 2.5. Let $q, p_{1}, p_{2}$ and $p_{3}$ be distinct prime numbers such that $p_{1} \equiv$ $p_{2} \equiv p_{3} \equiv-q \equiv 1(\bmod 4)$ and $\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-1$. Denote by $L^{1}$ the Hilbert 2 -class field of $L=\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1} p_{2}}\right)$, then the class number of $L^{1}\left(\sqrt{p_{3}}\right)$ is even.

Proof. By Lemma 2.4, the extension $L^{1} / L$ is an unramified cyclic extension, so the extension $L^{1}\left(\sqrt{p_{3}}\right) / L\left(\sqrt{p_{3}}\right)$ is also an unramified cyclic extension. On other hand, by [12, Theorem 3.3], the 2-rank of the class group of the
multiquadratic number field $\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{p_{3}}\right)$ is greater than or equal to two. Hence, since $\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{p_{3}}\right) / L\left(\sqrt{p_{3}}\right)$ is an unramified quadratic extension, then the 2-rank of the class group of $L\left(\sqrt{p_{3}}\right)$ is greater than or equal to two. Consequently, the fact that the cyclic extension $L^{1}\left(\sqrt{p_{3}}\right) / L\left(\sqrt{p_{3}}\right)$ is unramified shows that the class number of $L^{1}\left(\sqrt{p_{3}}\right)$ is even.

## 3. The tower of 2 -Hilbert class field of $k$ is finite of length at most three

In this section, we give an infinite family of real quadratic number fields with 2-class group isomorphic with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{n} \mathbb{Z}, n \geq 2$ and with finite Hilbert 2-class field of length at most three. The objective is to prove the following theorem:

THEOREM 3.1. Let $p_{1}, p_{2}, p_{3}$ and $q$ be distinct prime numbers such that $p_{1} \equiv p_{2} \equiv p_{3} \equiv-q \equiv 1(\bmod 4),\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=\left(\frac{p_{3}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{2}}\right)=\left(\frac{2}{p_{3}}\right)=-\left(\frac{q}{p_{3}}\right)=$ $-1,\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)$ and $N_{\mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbf{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)=1$. Then the Hilbert 2 -class field tower of $k=\mathbf{Q}\left(\sqrt{q p_{1} p_{2} p_{3}}\right)$ is finite of length at most three.

Before proving our main theorem, we establish the following lemma on units. We denote, for every integer $m, \varepsilon_{m}$ the fundamental unit of $\mathbf{Q}(\sqrt{m})$.

Lemma 3.2. Let $q, p_{1}$ and $p_{2}$ be distinct prime numbers such that $p_{1} \equiv$ $p_{2} \equiv-q \equiv 1(\bmod 4),\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-1$ and $N_{\mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbf{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)=1$. Then the biquadratic number field $L=\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1} p_{2}}\right)$ contains one of the following units $\sqrt{\varepsilon_{q} \varepsilon_{q p_{1} p_{2}}}, \sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}$ or $\sqrt{\varepsilon_{q} \varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}$.

Proof. For every positive integer $m$ such that $N_{\mathbf{Q}(\sqrt{m}) / \mathbf{Q}}\left(\varepsilon_{m}\right)=1$, we have by Hilbert's theorem $90, \varepsilon_{m}=\frac{\alpha}{\alpha^{\sigma}}$ where $\sigma$ is the non-trivial automorphism of $\mathbf{Q}(\sqrt{m})$ and $\alpha$ is an element of $\mathbf{Q}(\sqrt{m})$. Moreover, since $\sigma$ acts trivially on $\mathbf{Q}$, then we can choose $\alpha$ such that it becomes an integer in $\mathbf{Q}(\sqrt{m})$ not divisible by any rational integer. Let $\mathcal{P}$ be a prime ideal of $\mathbf{Q}(\sqrt{m})$ dividing the ideal $(\alpha)$ generated by $\alpha$. It is clear that $\mathcal{P}^{\sigma}$ divides $(\alpha)$, so under the hypothesis $\alpha$ is not divisible by any rational number, the prime ideal $\mathcal{P}$ must lies above than a prime number $l$ ramified in $\mathbf{Q}(\sqrt{m})$. Then, $\alpha \alpha^{\sigma}=N_{K / \mathbf{Q}}(\alpha)$ divides the discriminant of $\mathbf{Q}(\sqrt{m})$ and since $\varepsilon_{m} \alpha \alpha^{\sigma}=\alpha^{2}$, then there exists an integer $m^{\prime}:=\alpha^{1+\sigma}$ dividing the discriminant of $\mathbf{Q}(\sqrt{m})$ such that $m^{\prime}$ is a norm in the extension $\mathbf{Q}(\sqrt{m}) / \mathbf{Q}$ and $m^{\prime} \varepsilon_{m}$ is a square in $\mathbf{Q}(\sqrt{m})$.

On other hand, the discriminant of $\mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right)$ is equal to $p_{1} p_{2}$, then there exists an integer $m^{\prime} \mid p_{1} p_{2}$ such that $\sqrt{m^{\prime} \varepsilon_{p_{1} p_{2}}} \in \mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right)$. Since $\varepsilon_{p_{1} p_{2}}$ is the fundamental unit of $\mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right)$, then $m^{\prime}$ must be contained in $\left\{p_{1}, p_{2}\right\}$. Either way, we can conclude that:

$$
\begin{equation*}
\sqrt{p_{1} \varepsilon_{p_{1} p_{2}}} \in \mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right) . \tag{3}
\end{equation*}
$$

The discriminant of $\mathbf{Q}(\sqrt{q})$ is equal to $4 q$, then there exists an integer $m^{\prime} \mid 2 q$ such that $\sqrt{m^{\prime} \varepsilon_{q}} \in \mathbf{Q}(\sqrt{q})$. Since $\varepsilon_{q}$ is the fundamental unit of $\mathbf{Q}(\sqrt{q})$, then $m^{\prime}$ must be contained in $\{2,2 q\}$. Either way, we can conclude that:

$$
\begin{equation*}
\sqrt{2 \varepsilon_{q}} \in \mathbf{Q}(\sqrt{q}) . \tag{4}
\end{equation*}
$$

Also, since the discriminant of $\mathbf{Q}\left(\sqrt{q p_{1} p_{2}}\right)$ is equal to $4 q p_{1} p_{2}$, then there exists an integer $m^{\prime} \mid 2 q p_{1} p_{2}$ such that $\sqrt{m^{\prime} \varepsilon_{q p_{1} p_{2}}} \in \mathbf{Q}\left(\sqrt{q p_{1} p_{2}}\right)$ and $m^{\prime}$ is a norm in the extension $\mathbf{Q}\left(\sqrt{q p_{1} p_{2}}\right) / \mathbf{Q}$. Since $\varepsilon_{q p_{1} p_{2}}$ is the fundamental unit of $\mathbf{Q}\left(\sqrt{q p_{1} p_{2}}\right)$, then $m^{\prime} \notin\left\{1, q p_{1} p_{2}\right\}$. On other hand, since $\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-1$, then $q$ is not a norm in the extension $\mathbf{Q}\left(\sqrt{q p_{1} p_{2}}\right) / \mathbf{Q}$, so $m^{\prime} \notin\left\{q, p_{1} p_{2}\right\}$ and we have:
(5) $\sqrt{m^{\prime} \varepsilon_{q p_{1} p_{2}}} \in \mathbf{Q}\left(\sqrt{q p_{1} p_{2}}\right)$ such that $m^{\prime} \mid 2 q p_{1} p_{2}$ and $m^{\prime} \notin\left\{1, q, p_{1} p_{2}, q p_{1} p_{2}\right\}$.

Consequently, using (3), (4) and (5), we obtain that one of the units $\sqrt{\varepsilon_{q} \varepsilon_{q p_{1} p_{2}}}$, $\sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}$ or $\sqrt{\varepsilon_{q} \varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}$ is contained in $L$.

Proof of Theorem 3.1. By Lemma 2.4, the 2-class group of the biquadratic field $L=\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1} p_{2}}\right)$ is cyclic non-trivial. Denote by $L^{1}$ the Hilbert 2-class field of $L$, then the class number of $L^{1}$ is odd. By formula $(*)$ of Section 2, we have

$$
r_{2}\left(L^{1}\left(\sqrt{p_{3}}\right)\right)=\operatorname{ram}\left(L^{1}\left(\sqrt{p_{3}}\right) / L^{1}\right)-d_{2}\left(B\left(L^{1}\left(\sqrt{p_{3}}\right) / L^{1}\right)\right)-1 .
$$

It is clear that the $p_{3}$-adic places of $L^{1}$ are the unique ramified places in $L^{1}\left(\sqrt{p_{3}}\right) / L^{1}$. Since $\left(\frac{q}{p_{3}}\right)=-\left(\frac{p_{1}}{p_{3}}\right)=-\left(\frac{p_{2}}{p_{3}}\right)=1$, then $p_{3}$ is totally decomposed in $L$ and the $p_{3}$-adic places of $L$ are inert in the triquadratic extension $L\left(\sqrt{p_{1}}\right)$. Moreover, the cyclicity of the 2 -class group of $L$ implies that the $p_{3}$-adic places of $L$ are inert in $L^{1}$. Since $\operatorname{ram}\left(L\left(\sqrt{p_{3}}\right) / L\right)=4$, then by Proposition 2.2, we conclude $r_{2}\left(L^{1}\left(\sqrt{p_{3}}\right)\right)=3-d_{2}\left(B\left(L\left(\sqrt{p_{3}}\right) / L\right)\right)$. Next, we prove that $d_{2}\left(B\left(L\left(\sqrt{p_{3}}\right) / L\right)\right)=2$.

We have $\varepsilon_{q}$ and $\varepsilon_{p_{1} p_{2}}$ are units of $L$. Since $\sqrt{p_{1} \varepsilon_{p_{1} p_{2}}} \in \mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right)$ (see (3) in the proof of Lemma 3.2) and $\sqrt{2 \varepsilon_{q}} \in \mathbf{Q}(\sqrt{q})$ (see (4) in the proof of Lemma 3.2), we have for each $p_{3}$-adic place $\mathcal{P}$ of $L$ :

$$
\begin{equation*}
\left(\frac{\varepsilon_{q}, p_{3}}{\mathcal{P}}\right)=\left(\frac{2, p_{3}}{\mathcal{P}}\right)=\left(\frac{2}{p_{3}}\right)=-1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\varepsilon_{p_{1} p_{2}}, p_{3}}{\mathcal{P}}\right)=\left(\frac{p_{1}, p_{3}}{\mathcal{P}}\right)=\left(\frac{p_{1}}{p_{3}}\right)=-1 . \tag{7}
\end{equation*}
$$

Then $\varepsilon_{q}$ and $\varepsilon_{p_{1} p_{2}}$ are not norms in the extension $L\left(\sqrt{p_{3}}\right) / L$, but the product $\varepsilon_{q} \varepsilon_{p_{1} p_{2}}$ is a norm in $L\left(\sqrt{p_{3}}\right) / L$. Therefore, $d_{2}\left(B\left(L\left(\sqrt{p_{3}}\right) / L\right)\right) \geq 1$. We are going in the next to determine a new unit $u$ in $L$ such that $u$ and $u \varepsilon_{l}, l \in$ $\left\{q, p_{1} p_{2}\right\}$ are not norms in the extension $L\left(\sqrt{p_{3}}\right) / L$.

From Lemma 3.2, one of the units $\sqrt{\varepsilon_{q} \varepsilon_{q p_{1} p_{2}}}, \sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}$ or $\sqrt{\varepsilon_{q} \varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}$ is contained in $L$.

In the case where $u$ is a unit of $L$ such that $u$ is one of the units $\sqrt{\varepsilon_{q} \varepsilon_{q p_{1} p_{2}}}$ or $\sqrt{\varepsilon_{q} \varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}$, let $\sigma$ be the non-trivial $\mathbf{Q}(\sqrt{q})$-isomorphism of $L$. Then for each $p_{3}$-adic place $\mathcal{P}$ of $L$, we have:

$$
\left(\frac{u, p_{3}}{\mathcal{P}}\right)\left(\frac{u, p_{3}}{\sigma(\mathcal{P})}\right)=\left(\frac{N_{L / \mathbf{Q}(\sqrt{q})}(u), p_{3}}{N_{L / \mathbf{Q}(\sqrt{q})}(\mathcal{P})}\right)=\left(\frac{ \pm \varepsilon_{q}, p_{3}}{N_{L / \mathbf{Q}(\sqrt{q})}(\mathcal{P})}\right)
$$

Using equality (6), we obtain:

$$
\begin{equation*}
\left(\frac{\sqrt{\varepsilon_{q} \varepsilon_{q p_{1} p_{2}}}, p_{3}}{\mathcal{P}}\right)\left(\frac{\sqrt{\varepsilon_{q} \varepsilon_{q p_{1} p_{2}}}, p_{3}}{\sigma(\mathcal{P})}\right)=\left(\frac{2}{p_{3}}\right)=-1 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\sqrt{\varepsilon_{q} \varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}, p_{3}}{\mathcal{P}}\right)\left(\frac{\sqrt{\varepsilon_{q} \varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}, p_{3}}{\sigma(\mathcal{P})}\right)=\left(\frac{2}{p_{3}}\right)=-1 . \tag{9}
\end{equation*}
$$

In the case where $u=\sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}$, let $\tau$ be the non-trivial $\mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right)$ isomorphism of $L$. Then for each $p_{3}$-adic place $\mathcal{P}$ of $L$, we have:

$$
\begin{aligned}
\left(\frac{\sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}, p_{3}}{\mathcal{P}}\right)\left(\frac{\sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}, p_{3}}{\tau(\mathcal{P})}\right) & =\left(\frac{N_{L / \mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right)}\left(\sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}\right), p_{3}}{N_{L / \mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right)}(\mathcal{P})}\right) \\
& =\left(\frac{ \pm \varepsilon_{p_{1} p_{2}}, p_{3}}{N_{L / \mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right)}(\mathcal{P})}\right) .
\end{aligned}
$$

Using equality (7), we obtain:

$$
\begin{equation*}
\left(\frac{\sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}, p_{3}}{\mathcal{P}}\right)\left(\frac{\sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}, p_{3}}{\tau(\mathcal{P})}\right)=\left(\frac{p_{1}}{p_{3}}\right)=-1 . \tag{10}
\end{equation*}
$$

Consequently, for $u \in\left\{\sqrt{\varepsilon_{q} \varepsilon_{q p_{1} p_{2}}}, \sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}, \sqrt{\varepsilon_{q} \varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}\right\}$ and $l \in\{q$, $\left.p_{1} p_{2}\right\}, u$ and $u \varepsilon_{l}$ are not norms in the extension $L\left(\sqrt{p_{3}}\right) / L$. Then, we have

$$
d_{2}\left(B\left(L\left(\sqrt{p_{3}}\right) / L\right)\right) \geq 2
$$

By Lemma 2.5, the class number of $L^{1}\left(\sqrt{p_{3}}\right)$ is even, then

$$
r_{2}\left(L^{1}\left(\sqrt{p_{3}}\right)\right)=3-d_{2}\left(B\left(L\left(\sqrt{p_{3}}\right) / L\right)\right)=1 .
$$

Hence the Hilbert 2-class field tower of $L^{1}\left(\sqrt{p_{3}}\right)$ is of length 1. Consequently, the Hilbert 2 -class field tower of $k$ is finite.

Next, we give the length of the Hilbert 2-class field tower of $k$. Denote by $\mathcal{L}(k)$ the maximal unramified 2-extension of $k$. We need the following lemma.

Lemma 3.3. Let $p_{1}, p_{3}$ and $q$ be distinct prime numbers such that $p_{1} \equiv$ $p_{3} \equiv-q \equiv 1(\bmod 4)$ and $\left(\frac{q}{p_{3}}\right)=-\left(\frac{p_{1}}{p_{3}}\right)=-\left(\frac{q}{p_{1}}\right)=-\left(\frac{2}{p_{3}}\right)=1$. Then the class number of the triquadratic number field $\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1}}, \sqrt{p_{3}}\right)$ is odd.

Proof. Since $\left(\frac{q}{p_{3}}\right)=-\left(\frac{p_{1}}{p_{3}}\right)=-\left(\frac{q}{p_{1}}\right)=-\left(\frac{2}{p_{3}}\right)=1$, then one can verify that there is no $C_{4}$-factorization of the discriminant of the quadratic number field $\mathbf{Q}\left(\sqrt{q p_{1} p_{3}}\right)$ into relatively prime discriminants, so by Proposition 2.1, the 2-class group of $\mathbf{Q}\left(\sqrt{q p_{1} p_{3}}\right)$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ (see also [3]). Consequently, since $\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1}}, \sqrt{p_{3}}\right) / \mathbf{Q}\left(\sqrt{q p_{1} p_{3}}\right)$ is an unramified Abelian extension, then $\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1}}, \sqrt{p_{3}}\right)$ is the Hilbert 2-class field of $\mathbf{Q}\left(\sqrt{q p_{1} p_{3}}\right)$. Hence, by $[2], \mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1}}, \sqrt{p_{3}}\right)$ is exactly the maximal unramified 2-extension of $\mathbf{Q}\left(\sqrt{q p_{1} p_{3}}\right)$, finally the class number of $\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1}}, \sqrt{p_{3}}\right)$ is odd.

We have the following theorem.
Theorem 3.4. We keep the hypotheses of Theorem 3.1, then the Hilbert 2 -class field tower of $k$ is of length two.

Proof. Note that since the 2-class group of $k$ is of rank 3, then $\mathcal{L}(k) / k$ can never be Abelian (see [2, Corollary 2]). Denote $F=\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{3}}\right)$, $F_{1}=\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1}}, \sqrt{p_{3}}\right), F_{2}=\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{2}}, \sqrt{p_{3}}\right), F_{3}=\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1} p_{2}}, \sqrt{p_{3}}\right)$ and let $k^{*}=\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{p_{3}}\right)$ the genus field of $k$. It is clear that $F_{1}, F_{2}$ and $F_{3}$ are the sub-extensions of the biquadratic extension $k^{*} / F$. Let $\sigma$ and $\tau$ respectively the generator of the Galois group $\operatorname{Gal}\left(k^{*} / F_{1}\right)$ and $\operatorname{Gal}\left(k^{*} / F_{2}\right)$, so $\operatorname{Gal}\left(k^{*} / F_{3}\right)$ is generated by $\sigma \tau$. By Lemma 3.3, $F_{1}$ and $F_{2}$ have odd class number, so $\sigma$ and $\tau$ act on each class $C$ of the 2-class group of $k^{*}$ as $C^{-1}$, therefore $\sigma \tau$ acts trivially on the 2 -class group of $k^{*}$. Hence, since $k^{*} / F_{3}$ is an unramified quadratic extension, then the fields $F_{3}$ and $k^{*}$ have the some Hilbert 2-class field. On other hand, from the proof of Theorem 3.1, the 2class groups of $L=\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1} p_{2}}\right)$ and $L^{1}\left(\sqrt{p_{3}}\right)$ are cyclic. This yields, that $\operatorname{Gal}\left(\mathcal{L}(k) / F_{3}\right)$ is metacyclic, so by Burnside's basic theorem, the 2-class group of $F_{3}$ is of rank 2. Consequently, by [2, Proposition 7 ], $\mathcal{L}(k)$ is exactly the Hilbert 2-class field of $F_{3}$ and $k^{*}$.

Remark 3.5. For each number field $M$, let $h(M)$ (resp. $E_{M}$ ) denote the 2-part of the class number of $M$ (resp. the unit group of $M$ ).

We keep the notations and hypotheses of Theorem 3.1. We have $|\operatorname{Gal}(\mathcal{L}(k) / k)|=2^{2} h\left(F_{3}\right)$, where $h\left(F_{3}\right)$ is the 2 -part of the class number of $F_{3}=\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1} p_{2}}, \sqrt{p_{3}}\right)$. By Kuroda's class number formula of a mutiquadratic number field [8], we have:

$$
h\left(F_{3}\right)=\frac{Q_{F_{3}} \prod_{i=1}^{i=7} h\left(k_{i}\right)}{2^{9}}
$$

where $Q_{F_{3}}$ is the unit index: $Q_{F_{3}}=\left[E_{F_{3}}: \prod_{i=1}^{i=7} E_{k_{i}}\right]$ and $k_{i}, i \in\{1,2, \ldots, 7\}$ are the distinct quadratic number fields contained in $F_{3}$.

By genus theory, we have $h\left(\mathbf{Q}\left(\sqrt{p_{3}}\right)\right)=h(\mathbf{Q}(\sqrt{q}))=1$ and $h\left(\mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)$ is even. From Lemma 2.3, we have $h\left(\mathbf{Q}\left(\sqrt{q p_{1} p_{2} p_{3}}\right)\right)=2^{n+2}$, where $n \geq 2$. Also, by genus theory and Proposition 2.1, one can verify that:

$$
h\left(\mathbf{Q}\left(\sqrt{q p_{3}}\right)\right)=2, \quad h\left(\mathbf{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)\right)=4 \quad \text { and } \quad h\left(\mathbf{Q}\left(\sqrt{p_{1} p_{2} q}\right)\right)=4 .
$$

This yields that

$$
\begin{equation*}
|\operatorname{Gal}(\mathcal{L}(k) / k)|=2^{2} h\left(F_{3}\right)=2^{n} Q_{F_{3}} h\left(p_{1} p_{2}\right) . \tag{11}
\end{equation*}
$$

The computation of the unit index $Q_{F_{3}}$ is not easy. In the following, we give a refined lower bound of $Q_{F_{3}}$. By Lemma 3.2, there exist a unit $u \in$ $\mathbf{Q}\left(\sqrt{q}, \sqrt{p_{1} p_{2}}\right)$, such that $u$ is one of the following units:

$$
\begin{equation*}
u \in\left\{\sqrt{\varepsilon_{q} \varepsilon_{q p_{1} p_{2}}}, \sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}, \sqrt{\varepsilon_{q} \varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2}}}\right\} \tag{12}
\end{equation*}
$$

Also, from the proof of Lemma 3.2, if $N_{\mathbf{Q}(\sqrt{m}) / \mathbf{Q}}\left(\varepsilon_{m}\right)=1$, then there exist a positive integer $m^{\prime}$ dividing the discriminant of $\mathbf{Q}(\sqrt{m})$ such that $m^{\prime}$ is a norm in the extension $\mathbf{Q}(\sqrt{m}) / \mathbf{Q}$ and $m^{\prime} \varepsilon_{m}$ is a square in $\mathbf{Q}(\sqrt{m})$. Then using the some thechniques in the proof of Lemma 3.2, we prove that there exist a unit $v=\sqrt{\varepsilon_{q p_{3}}}$ such that:

$$
\begin{equation*}
\sqrt{q} v \in \mathbf{Q}\left(\sqrt{q p_{3}}\right) \tag{13}
\end{equation*}
$$

and using (3) and (4) in the proof of Lemma 3.2, we find a unit $w \in F_{3}$ such that $w$ is one of the following units:

$$
\begin{equation*}
u \in\left\{\sqrt{\varepsilon_{q p_{1} p_{2} p_{3}}}, \sqrt{\varepsilon_{q} \varepsilon_{q p_{1} p_{2} p_{3}}}, \sqrt{\varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2} p_{3}}}, \sqrt{\varepsilon_{q} \varepsilon_{p_{1} p_{2}} \varepsilon_{q p_{1} p_{2} p_{3}}}\right\} . \tag{14}
\end{equation*}
$$

Hence, by (12), (13) and (14), we have three independent units $u, v, w$ of $F_{3}$ such that for $i_{0}, j_{0}, k_{0} \in\{0,1\}$ :

$$
u^{i_{0}} v^{j_{0}} w^{k_{0}} \notin \prod_{i=1}^{i=7} E_{k_{i}}
$$

Then, we have $2^{3}$ divides $Q_{F_{3}}$ and from (11), we conclude $2^{n+3} h\left(p_{1} p_{2}\right)$ divides $|\operatorname{Gal}(\mathcal{L}(k) / k)|$. The order of the group $|\operatorname{Gal}(\mathcal{L}(k) / k)|$ increases, whenever the 2-part of the class number of $\mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right)$ increases.

Example. Let $p_{1}=13, p_{2}=29$ and $p_{3}=37$. We have $N_{\mathbf{Q}\left(\sqrt{p_{1} p_{2}}\right) / \mathbf{Q}}\left(\varepsilon_{p_{1} p_{2}}\right)=$ 1 and

$$
\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{2}{p_{3}}\right)=\left(\frac{p_{3}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{2}}\right)=-1 .
$$

It remains to determine an infinite family of prime numbers $q$ such that $q \equiv$ $-1(\bmod 4)$ and

$$
\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-\left(\frac{q}{p_{3}}\right)=-1 .
$$

We have

$$
\left(\frac{11}{p_{1}}\right)=\left(\frac{11}{p_{2}}\right)=-\left(\frac{11}{p_{3}}\right)=-1 .
$$

We know that there are infinitely many prime numbers in an arithmetic progession:

$$
q \equiv 11(\bmod 4 \cdot 13 \cdot 29 \cdot 37)
$$

Consequently, we construct an infinite family of real quadratic number fields $k$ verifying the conditions of Theorem 3.1 with 2 -class group isomorphic with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{n} \mathbb{Z}(n \geq 2)$ and finite Hilbert 2-class field tower.

We remark that the value of the integer $n$ may increase:
For $q=11$, the 2-class group of $k$ is isomorphic with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{2} \mathbb{Z}$.
For $q=47$, one can verify that $\left(\frac{q}{13}\right)=\left(\frac{q}{29}\right)=-\left(\frac{q}{37}\right)=-1$ and the 2-class group of $k$ is isomorphic with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{4} \mathbb{Z}$.

## References

[1] A. Azizi and A. Mouhib, Sur le rang du 2-groupe de classes de $\mathbf{Q}(\sqrt{m}, \sqrt{d})$ où $m=2$ ou un premier $p \equiv 1(\bmod 4)$, Trans. Amer. Math. Soc. 353 (2001), no. 7, 27412752. MR 1828471
[2] E. Benjamin and F. Lemmermeyer, Real quadratic fields with abelian 2-class field tower, J. Number Theory 73 (1998), 182-194. MR 1658015
[3] E. Benjamin and C. Snyder, Real quadratic number fields with 2 -class groupe of type (2,2), Math. Scand. 76 (1995), 161-178. MR 1354574
[4] F. Gerth, Quadratic fields with infinite Hilbert 2-class field towers, Acta Arith. 106 (2003), 151-158. MR 1958981
[5] E. S. Golod and I. R. Shafarevich, On the class field tower, Izv. Akad. Nauk SSSR Ser. Math. 28 (1964), 261-272 (in Russian). English translation in AMS Transl. 48 (1965), 91-102. MR 0161852
[6] F. Hajir, On a theorem of Koch, Pacific J. Math. 176 (1996), no. 1, 15-18. MR 1433980
[7] F. Hajir, Correction to "On a theorem of Koch," Pacific J. Math. 196 (2000), no. 2, 507-508. MR 1800589
[8] S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sci. Imp. Univ. Tokyo Sect. I 4 (1943), 383-406. MR 0021031
[9] F. Lemmermeyer, On 2-class field towers of some imaginary quadratic number fields, Abh. Math. Semin. Univ. Hambg. 67 (1997), 205-214. MR 1481537
[10] F. Lemmermeyer, Higher descent on Pell conics. I. From Legendre to Selmer, available at arXiv:math/0311309v1.
[11] A. Mouhib, On the parity of the class number of real multiquadratic number fields, J. Number. Theory 129 (2009), 1205-1211. MR 2521470
[12] A. Mouhib, Sur la borne inférieure du rang du 2-groupe de classes des corps multiquadratiques réels, Canad. Math. Bull. 54 (2011), 330-337. MR 2884250
[13] L. Rédei, Die Anzahl der durch 4 teilbaren Invarienten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, Math. Naturwiss. Anz. Ungar. Akad. d. Wiss. 49 (1932), 338-363.
[14] L. Rédei and H. Reichardt, Die Anzahl der durch 4 teilbaren Invarienten der klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74.
A. Mouhib, LimaO, Department of Mathematics, Physics and Computer Science, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B/P 1223, Taza-Gare, Morocco

E-mail address: mouhibali@yahoo.fr

