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IMPROVED ESTIMATES FOR THE DISCRETE FOURIER
RESTRICTION TO THE HIGHER DIMENSIONAL SPHERE

JEAN BOURGAIN AND CIPRIAN DEMETER

Abstract. We improve the exponent in (Int. Math. Res. Not.
IMRN 1993 (1993) 61–66) for the discrete restriction to the n

dimensional sphere, from p= 2(n+1)
n−3

to p= 2n
n−3

, when n≥ 4.

1. Introduction

Let n≥ 2 and λ≥ 1 be two integers. Define N = [λ1/2] + 1 and

Fn,λ =
{
ξ = (ξ1, . . . , ξn) ∈ Zn : |ξ1|2 + · · ·+ |ξn|2 = λ

}
.

When n= 2,3,4 it is known that for each ε we have |Fn,λ| �Nn−2+ε, but the
upper bound is only sharp for certain values of λ. For example, F3,λ = ∅ when
λ = 4a(8m+ 7) for a,m ∈ N. On the other hand, if n ≥ 5 we have a sharp
estimate |Fn,λ| ∼Nn−2, see [7]. Throughout the paper, the implicit bounds
hidden in the symbol � will depend on ε, p, q and n, but never on N .

The discrete restriction (sometimes called extension) problem relative to
the sphere is concerned with determining the order of growth in N of the
numbers

Mp,q,n(λ) = sup
aξ∈C

‖
∑

ξ∈Fn,λ
aξe(ξ · x)‖Lp(Tn)

‖aξ‖lq

for 1≤ p, q ≤∞. We use the notation e(z) = e2πiz . It is conjectured in [3], [2]
that
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Conjecture 1.1. For each n≥ 3 and ε > 0, we have

Mp,2,n(λ) � N
n−2
2 −n

p +ε

for each p≥ 2n
n−2 .

The first author proved this in [3] when p ≥ 2(n+1)
n−3 and n ≥ 4. Here we

improve that range to the following.

Theorem 1.2. Assume n≥ 4 and p≥ 2n
n−3 . Then for each ε > 0 we have

Mp,2,n(λ) � N
n−2
2 −n

p +ε.

2. A brief overview of the known results and methods

The literature on the discrete restriction to the sphere is very sparse, we
are only aware of three relevant papers [2], [3], [5]. We start by making a few
simple observations.

First, note that Mp,q,n(λ) is monotone in both p and q and it is always at
least 1. It is conjectured in [3] that for the critical index pc :=

2n
n−2 one has

(1) Mpc,2,n(λ)� Nε.

We recall that the “continuous” analogue of (1), proved by Stein and
Tomas, is the estimate

(2) ‖f̂ dσ‖Lp(Rn) � ‖f‖L2(Sn−1), p≥ 2(n+ 1)

n− 1
.

The discrepancy between the critical exponents 2n
n−2 and 2(n+1)

n−1 in the discrete
and continuous settings can be at least naively explained by the fact that the
discrete sphere has “holes.” More precisely, Fn,λ has roughly Nn−2 points,
while a maximal 1 separated set on the sphere {ξ ∈Rn : |ξ|2 = λ} has roughly
Nn−1 points. However, this discrepancy is not present in the case of the
paraboloid {

ξn = ξ21 + · · ·+ ξ2n−1 : −N ≤ ξ1, . . . , ξn−1 ≤N
}
,

where it is conjectured that pc =
2(n+1)
n−1 . See [5] for the best known estimate

for the paraboloid.
The bound |F2,λ| � Nε trivially implies Mp,q,n(λ) � Nε when n = 2, for

each p, q. However, (1) is open when n≥ 3.
On the other hand (1) is known for some range below the critical index. For

example, the bound for the number of lattice points on ellipses and a simple
counting argument can be easily used to derive the estimate M4,2,3(λ) � Nε,
see [5]. Also, the first authors’s recent result in [5] proves (1) for p ≤ 2n

n−1 ,
n≥ 2.

Remarkably, the conjectured bound (1) implies all the correct values
Mp,q,n(λ) within a factor of Nε. This is in contrast with the continuous
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version of the restriction problem, where the q = 2 case is fully understood
via the work of Stein and Tomas, but a whole range of other estimates remains
open (and very difficult). We prove below that (1) implies the following.

Conjecture 2.1. For each ε > 0, we have

Mp,q,n ∼Nε, if 1≤ p≤ pc,q :=
q′pc
2

and q ≤ 2,(3)

Mp,q,n ∼Nε N
(n−2)

q′ −n
p , if pc,q < p and q ≤ 2,(4)

Mp,q,n ∼Nε N (n−2)( 1
2− 1

q ), if 1≤ p≤ pc and q > 2,(5)

Mp,q,n ∼Nε N
(n−2)

q′ −n
p , if pc < p and q > 2.(6)

Proof. We first prove the upper bounds forMp,q,n. Note the trivial estimate

M∞,1,n ≤ 1.

This together with (1) implies (3), by interpolation. (4) follows from (3) and

the immediate bound M∞,q,n ≤N
n−2
q′ , via Hölder. To see (5), note that using

(1) and Hölder∥∥∥∥ ∑
ξ∈Fn,λ

aξe(ξ · x)
∥∥∥∥
Lp(Tn)

≤
∥∥∥∥ ∑
ξ∈Fn,λ

aξe(ξ · x)
∥∥∥∥
Lpc (Tn)

� Nε‖aξ‖l2 ≤N (n−2)( 1
2− 1

q )+ε‖aξ‖lq .
Finally, to get the upper bound in (6) note that∥∥∥∥ ∑

ξ∈Fn,λ

aξe(ξ · x)
∥∥∥∥
Lp(Tn)

� Mp,2,n‖aξ‖l2

≤Mp,2,nN
(n−2)( 1

2− 1
q )‖aξ‖lq � N

(n−2)

q′ −n
p +ε‖aξ‖lq ,

where the last inequality follows from (4) with q = 2.
It remains to prove the lower bounds. The one in (3) is trivial, by taking

the singleton aξ = δξ0 . Then (4) and (6) follow by noticing that

K(x) :=
∑

ξ∈Fn,λ

e(ξ · x)

satisfies |K(x)| � Nn−2 when |x| � N−1. Thus ‖K‖p � Nn−2−n
p , while

‖aξ‖lq =N
n−2
q , for each 1≤ p, q ≤∞.

To see (5), a standard randomization argument shows that given any 1≤
p≤∞ and q > 2, there exists aξ ∈ {−1,1} such that∥∥∥∥ ∑

ξ∈Fn,λ

aξe(ξ · x)
∥∥∥∥
Lp(Tn)

� ‖aξ‖l2 = |Fn,λ|
1
2− 1

q ‖aξ‖lq .
�
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An immediate corollary is that (1) implies Conjecture 1.1.
We give two slightly different arguments for Theorem 1.2. The first one

seems to only apply to n ≥ 6 but is technically a bit simpler. The second
argument, presented in Section 7 covers the full range n≥ 4.

In the first argument, we apply the point of view from [8] on the Stein–
Tomas restriction argument. This amounts to cutting the kernel in only two
pieces, near rationals with denominators greater than N . The first piece is
small in L∞ norm. The second piece is supported in frequency away from
the sphere, and its Fourier transform is small in the L∞ norm. This type
of construction has a lot of flexibility and in particular allows us to simplify
the argument by working with prime moduli. We will rely on three type
of level set estimates corresponding to three different regimes. On the one
hand, we use the sharp bounds for the Kloosterman and Salié sums, following
the approach in [3]. Second we rely on a sharp estimate for certain partial
moments of the Weyl sums. The third ingredient is the subcritical estimate
in [5]. It is worth pointing out the fact that the estimate in [5] does not rely
at all on Number Theory, it is entirely of Fourier analytic flavor. See a brief
account in Section 5.

It seems that a full resolution of the problem would require substantially
new insight. One such possible avenue is getting estimates for moments of
Kloosterman sums. This is briefly described in the end of the paper. See also
[2].

3. Some number theoretical generalities

Let 1[−1,1] ≤ γ ≤ 1[−2,2] be a Schwarz function. Define the smooth Weyl
sums

G(t, x) =
∑
k∈Z

γ(k/N)e
(
kx+ k2t

)
.

Inserting the smooth cut off will be completely harmless, in fact it will ease
some of our computations. Let t= a

q +ϕ where (a, q) = 1 and |ϕ|< 1
q . Using

the representation k = rq + k1, 0 ≤ k1 ≤ q − 1 and the Poisson summation
formula we get

G(t, x) =

q−1∑
k1=0

e
(
k21a/q

)∑
r∈Z

γ

(
k1 + rq

N

)
e
(
(rq+ k1)x+ (rq+ k1)

2ϕ
)

(7)

=
∑
m∈Z

[
1

q

q−1∑
k1=0

e
(
k21a/q− k1m/q

)]

×
[∫

R

γ(y/N)e

((
x+

m

q

)
y+ϕy2

)
dy

]
=

∑
m∈Z

S(a,m, q)J(x,ϕ,m, q),
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where

S(a,m, q) =
1

q

q−1∑
k=0

e
(
k2a/q− km/q

)
,

J(x,ϕ,m, q) =

∫
R

γ(y/N)e

((
x+

m

q

)
y+ϕy2

)
dy.

Assume now that 2≤ q ≤N , and |ϕ| ≤ 1
Nq . The relevance of this choice is

that, according to Dirichlet’s theorem every t ∈ [0,1] is of the form t= a
q +ϕ,

with 2≤ q ≤N and |ϕ| ≤ 1
Nq . The classical van der Corput estimate reads∣∣∣∣∫

R

γ(z)e
(
Az +Bz2

)
dz

∣∣∣∣ � |B|−1/2,

and combining this with the trivial estimate we get∣∣J(x,ϕ,m, q)
∣∣ � min

{
N, |ϕ|−1/2

}
.

On the other hand, repeated integration by parts shows that for each M and ε∣∣J(x,ϕ,m, q)
∣∣ �M,ε N

−M

when |xq+m| ≥Nε. These values of m will produce a negligible contribution.
Combining this with the classical estimate∣∣S(a,m, q)

∣∣ � 1
√
q

we get

(8)
∣∣G(t, x)

∣∣ �ε
Nε

√
q
min

{
N,

∣∣∣∣t− a

q

∣∣∣∣−1/2}
.

We will also need more refined estimates for S(a,m, q), in particular we
will need to exploit cancelations when summing over a. We start by a simple
computation. If q is odd then

S(a,m, q) = e
(
−4∗a∗m2/q

)1
q

q−1∑
k=0

e
(
a/q

(
k2 − 2k2∗a∗m+ 4∗

(
a∗

)2
m2

))
= e

(
−4∗a∗m2/q

)1
q

q−1∑
k=0

e
(
k2a/q

)
= e

(
−4∗a∗m2/q

)(a

q

)
G(q).

Here and in the following, x∗ denotes the inverse of x modulo q, (aq ) is the

Jacobi symbol, while

G(q) =
1

q

q−1∑
k=0

e
(
k2/q

)
,

is the standard Gauss sum.
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Fix mj . Consider the function

Σ(s) =
∑

(a,s)=1

[
n∏

j=1

S(a,mj , s)e(−λa/s)

]
.

When mj = 0 for each j, Σ becomes the classical singular series introduced by
Hardy and Littlewood in the problem of representations of integers as sums
of squares. See for example [7] for a detailed discussion.

It is easily seen that Σ is multiplicative, though we will not need to exploit
this in our argument. Moreover, the previous computations show that for
each odd q we have

Σ(q) =G(q)n
∑

(a,q)=1

(
a

q

)n

e

(
−4∗m̃a∗

q
− λ

a

q

)
,

where m̃=m2
1 + · · ·+m2

n.
At this point we need to recall the Salié sums, for odd q

K2(a, b, q) =
∑

(k,q)=1

(
k

q

)
e

(
ka

q
+

k∗b

q

)
.

If q is a prime number, they have a remarkably simple formula, see for example
[9]

K2(a, b, q) = 2q cos

(
4πx

q

)
G(q),

where x2 ≡ ab (mod q). In particular, we have∣∣K2(a, b, q)
∣∣≤ 2

√
q

for each prime q.
Finally, recall the Kloosterman sums

K(a, b, q) =
∑

(k,q)=1

e

(
ka

q
+

k∗b

q

)
,

and their estimates for prime q∣∣K(a, b, q)
∣∣ � qε

√
q
√

gcd(a, b, q).

We conclude that for each q prime and for each n (both even and odd) we
have ∣∣Σ(q)∣∣ � qε(

√
q)1−n

√
(λ, q).
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4. Level set estimates

If g : Rn → C and h : Tn → C, we will denote by ĝ : Rn → C and
F(h) : Zn →C their Fourier transforms.

For x ∈ Tn recall that K(x) =
∑

ξ∈Fn,λ
e(ξ · x). The integral points on the

sphere do not have an explicit formula, we need to introduce a new variable
t to fix this deficiency and we notice that

(9) K(x) =

∫
[0,1]

n∏
j=1

[∑
k

γ(k/N)e
(
kxj + k2t

)]
e(−λt)dt.

The kernel K is the discrete analogue of d̂σ, where dσ is the surface measure
on the sphere Sn−1 in Rn.

We now proceed with decomposing K in two pieces. For N ≤ Q ≤ N2

define

AQ := {Q≤ q ≤ 2Q : q is prime},
so that by the Prime Number theorem we get |AQ| ∼Q(logQ)−1. The reason
we work with this restricted set of moduli is to simplify the analysis of the
Kloosterman, Salié and Ramanujan sums. The cardinality NQ of the set of
Farrey fractions

FQ :=

{
a

q
: q ∈AQ,1≤ a≤ q− 1

}
satisfies NQ ∼Q2(logQ)−1.

Let 0≤ η ≤ 1[−1,1] be a Schwarz function. Define cQ =
10Q2

∫
η

NQ
and

ηQ = cQ
∑

a/q∈FQ

η
(
(t− a/q)10Q2

)
.

Note that
∫
ηQ = 1 and cQ � logQ. Define also

KQ(x) =

∫
[0,1]

n∏
j=1

G(t, xj)e(−λt)ηQ(t)dt.

We will prove the following proposition.

Proposition 4.1. Given N ≤Q≤N2 we have for each n≥ 1 and ε∥∥KQ
∥∥
∞ � Q

n−1
2 +ε.

Proof. Fix q ∈AQ, |ϕ| ≤ (10Q2)−1 and x ∈ Tn. Since ϕ is small, the trivial
estimate prevails over the van der Corput one and the best we can say is∣∣J(xj , ϕ,m, q)

∣∣ � N.

Repeated integration by parts shows as before that∣∣J(xj , ϕ,m, q)
∣∣ �M,ε N

−M
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if |xj +
m
q | >N−1+ε, for each ε,M > 0. This means that in the summation

(7) the range of values of m can be restricted to an interval Ixj ,q of length

O( Q
N1−ε ), if error terms of order O(N−M ) are to be tolerated.
For each (m1, . . . ,mn) ∈

∏
Ixj ,q , we have from the previous section that∣∣∣∣∣ ∑

(a,q)=1

n∏
j=1

S(a,mj , q)e(−λa/q)

∣∣∣∣∣ � qε(
√
q)1−n

√
(λ, q),

for each n ≥ 1. By invoking (7), summing over the (Q/N1−ε)n values in∏
Ixj ,q , and integrating over |ϕ| � (10Q2)−1 we get for each M > 0∣∣KQ(x)

∣∣ �ε,M Qn−2+ε
∑
q∈AQ

qε(
√
q)1−n

√
(λ, q) +N−M

�Qn−2Qε(
√

Q)3−n =Q
n−1
2 +ε.

We have used the fact that since λ ≤ Q2, there can be at most one q ∈ AQ

such that (λ, q)> 1. �

The estimate in the previous proposition is good for Q close to N . The
next result is a much more elementary estimate which is good for large Q.

Proposition 4.2. Given N ≤Q≤N2 we have for each n≥ 4∥∥KQ
∥∥
∞ �N2+εQ

n−4
2 .

Proof. Fix x ∈ T and 2s � Nε
√
N . From (8), we deduce that∣∣{t ∈ [0,1] :

∣∣G(t, x)
∣∣≥ 2s

}∣∣ �
∑

q�(N1+ε

2s )2

φ(q)

q22s
� N2+2ε2−4s,

where φ is the Euler totient function. The proof of Proposition 4.1 shows that
if t is in the support SQ of ηQ we have∣∣G(t, x)

∣∣ � Nε
√
Q.

Thus, for each fixed x∥∥G(t, x)
∥∥n
Ln(SQ)

� N2+ε
∑

N
1
2
+ε≤2s�Nε

√
Q

2s(n−4) +N
n
2 +ε � N2+εQ

n−4
2 .

The result now follows from Hölder in t. �

To summarize, we have for each n≥ 4

(10)
∥∥KQ

∥∥
∞ �

{
N2Q

n−4
2 +ε if Q≥N4/3,

Q
n−1
2 +ε if N ≤Q≤N4/3.

We also have the following estimate on the Fourier side.
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Proposition 4.3. Given N ≤Q≤N2 we have for each n≥ 1∥∥F(
K −KQ

)∥∥
∞ � NεQ−1.

Proof. Note that for each k ∈ Zn

F
(
K −KQ

)
(k) = 1̂− ηQ

(
|k|2 − λ

) n∏
i=1

γ

(
ki
N

)
.

If l is any nonzero integer, then

1̂− ηQ(l) = cQ
(
10Q2

)−1
η̂

(
l

10Q2

) ∑
q∈AQ

q−1∑
a=1

e(la/q)

= cQ
(
10Q2

)−1
η̂

(
l

10Q2

) ∑
q∈AQ

q−1∑
a=1

e(la/q)

= cQ
(
10Q2

)−1
η̂

(
l

10Q2

)( ∑
q∈AQ:q divides l

q− |AQ|
)
.

When l gets larger, the increase of the number of its prime divisors from AQ

is offset by the decay of η̂ ∣∣η̂(z)∣∣ �
(
1 + |z|

)−100

and we get ∣∣1̂− ηQ(l)
∣∣ �ε Q

ε−1.

The result now follows from the fact that 1− ηQ has mean zero. �
Assume now ‖aξ‖l2(Fn,λ) = 1 and let

F (x) =
∑

ξ∈Fn,λ

aξe(ξ · x).

For α > 0 define

Eα =
{
x ∈ Tn :

∣∣F (x)
∣∣>α

}
,

f(x) =
F (x)

|F (x)|1Eα(x).

It follows that

α|Eα| ≤
∫
Tn

F̄ (x)f(x)dx=
∑

ξ∈Fn,λ

āξF(f)(ξ),

and thus
α2|Eα|2 ≤

∑
ξ∈Fn,λ

∣∣F(f)(ξ)
∣∣2 = 〈K ∗ f, f〉.

This in turns implies that

α2|Eα|2 ≤
∥∥KQ

∥∥
∞|Eα|2 +

∥∥F(
K −KQ

)∥∥
∞|Eα|.
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We now use (10), by choosing Q appropriately so that the upper bound for
‖KQ‖∞ is roughly α2. We get for each n≥ 5

(11) |Eα| �

⎧⎨⎩Nε 1

α
2 n+1
n−1

if N
n−1
4 ≤ α≤N

n−1
3 ,

N
4

n−4+ε 1

α
2n−4
n−4

if α≥N
n−1
3 .

5. From continuous to discrete restriction

One may wonder whether the estimate (2) for some p directly implies its
discrete analogue, namely Mp,2,n(λ) � Nε. The answer is “no” for both the
sphere and the paraboloid, and here is why. It is a basic fact that (2) is
equivalent with (BN is the ball centered at the origin with radius N in Rn)∥∥∥∥∑

ξ∈Λ

aξe(ξ · x)
∥∥∥∥
Lp(B1)

� N
n−1
2 −n

p ‖aξ‖l2(Λ)

for each aξ ∈C and each 1-separated set Λ on the sphere {ξ ∈Rn : |ξ|2 = λ}.
The result also holds for the paraboloid{

ξ = (ξ1, . . . , ξn) ∈Rn : |ξ1|, . . . , |ξn−1| ≤N,ξn = ξ21 + · · ·+ ξ2n−1

}
.

Since (2) fails for p= 2n
n−1 , no valuable information can be derived this way

about M 2n
n−1 ,2,n

(λ). Luckily, the index 2n
n−1 plays a key role in the multilin-

ear restriction theory. More precisely, it was proved in [1] that if P1, . . . , Pn

are transverse regions of the sphere Sn−1 (or the paraboloid), then one can
improve over the Stein–Tomas exponent, at the expense of loosing Nε∥∥∥∥∥

(
n∏

i=1

f̂ dσPi

)1/n∥∥∥∥∥
L

2n
n−1 (BN )

� Nε‖f‖L2(Sn−1).

As in the linear case, this implies∥∥∥∥∥
(

n∏
i=1

∣∣∣∣∑
ξ∈Λi

aξe(ξ · x)
∣∣∣∣
)1/n∥∥∥∥∥

L
2n

n−1 (B1)

� Nε‖aξ‖l2(Λ),

where Λ is as before, while Λi are transverse subsets of Λ. This is the staring
point in the argument from [5] which combines it with induction on scales to
prove that, if Λ is in addition assumed to be in Zn, we have the unrestricted
inequality ∥∥∥∥∑

ξ∈Λ

aξe(ξ · x)
∥∥∥∥
L

2n
n−1 (Tn)

� Nε‖aξ‖l2(Λ).

In particular,

(12) M 2n
n−1 ,2,n

(λ) � Nε.
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6. Proof of Theorem 1.2

We use the notation from the previous section, and the assumption
‖aξ‖l2(Fn,λ) = 1. Define the index pn = 2n

n−3 . The estimate in (12) implies

|Eα| � Nε 1

α2 n
n−1

,

valid for each α > 0 and n≥ 2. Using this, we get the conjectured bound for
each n≥ 4 and p≥ pn for α small∫ N

n−1
4

0

αp−1|Eα|dα � Np(n−2
2 −n

p +ε).

Using the bounds in (11), we get∫ N
n−1
3

N
n−1
4

αp−1|Eα|dα � Np(n−2
2 −n

p +ε),

for n≥ 6 and p≥ pn, and also∫ N
n−2
2

N
n−1
3

αp−1|Eα|dα � Np(n−2
2 −n

p +ε),

for each n≥ 5 and all p≥ 1. This completes the proof.

7. An alternative argument

We now sketch an alternative argument which will also cover the remaining
cases n = 4,5 of Theorem 1.2. The argument follows the lines of [4] with
input from [3]. Let η be an appropriate Schwarz function which equals 1 on
1
4 ≤ |t| ≤ 1

2 and is supported on 1
8 ≤ |t| ≤ 1. For Q<N and Q ≤ 2s ≤N we

define

RQ =

{
a

q
: (a, q) = 1,Q≤ q < 2Q

}
,

ηQ,s(t) =
∑

a/q∈RQ

η
(
(t− a/q)N2s

)
.

Note that ηQ,s is supported on

VQ,s =

{
t ∈ T :

∣∣∣∣t− a

q

∣∣∣∣∼ 1

N2s
for some

a

q
∈RQ

}
.

Define also

KQ,s(x) =

∫
[0,1]

n∏
j=1

G(t, xj)e(−λt)ηQ,s(t)dt,
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and the correction factors

ρ := 1−
∑

Q<N/100

∑
Q≤2s≤N

ηQ,s,

Kminor = K −
∑

Q<N/100

∑
Q≤2s≤N

KQ,s.

Recall the estimate (2.15) in [3] (see also Proposition 4.1 here)

(13)
∥∥KQ,s

∥∥
∞ �

(
N2s

)n
2 −1+ε

Q−n−3
2 .

An argument very similar to the one in Proposition 4.3 here shows that

(14)
∣∣F(

KQ,s
)
(k)

∣∣={
∼ Q2

N2s if k= 0,

� Q1+ε

N2s if k �= 0.

Also, it is immediate that

(15)
∥∥Kminor

∥∥
∞ � N

n−1
2 +ε,

and

(16)
∣∣F(

Kminor
)
(k)

∣∣={
=F(ρ)(0)∼ 1 if k= 0,

� 1
N1−ε if k �= 0.

Define

αQ,s =
F(KQ,s)(0)

F(ρ)(0)

and KQ,s
1 =KQ,s − αQ,sK

minor.
It follows from (13)–(16) that

(17)
∥∥F(

KQ,s
1

)∥∥
∞ � QNε

N2s

and

(18)
∥∥KQ,s

1

∥∥
∞ � (N2s)

n
2 −1+ε

Q
n−3
2

.

These estimates imply as before that

(19)
∥∥F ∗KQ,s

1

∥∥
2
� QNε

N2s
‖F‖2

and

(20)
∥∥F ∗KQ,s

1

∥∥
∞ � (N2s)

n
2 −1+ε

Q
n−3
2

‖F‖1.

Interpolating between (19) and (20) gives for p0 =
2(n−1)
(n−3)

(21)
∥∥F ∗KQ,s

1

∥∥
p0

� N
2

n−1+ε‖F‖p′
p
.



IMPROVED ESTIMATES FOR THE DISCRETE FOURIER RESTRICTION 225

Thus, if we denote

K1 =
∑

Q<N/100

∑
Q≤2s≤N

KQ,s
1

we also get via the triangle inequality

(22) ‖F ∗K1‖p0 � N
2

n−1+ε‖F‖p′
0
.

Next, we note that ∥∥F(K −K1)
∥∥
∞ � N

n−1
2 +ε

and thus

(23)
∥∥F ∗ (K −K1)

∥∥
∞ � N

n−1
2 +ε‖F‖1.

Assume now ‖aξ‖l2(Fn,λ) = 1 and let

F (x) =
∑

ξ∈Fn,λ

aξe(ξ · x).

For α > 0, define

Eα =
{
x ∈ Tn :

∣∣F (x)
∣∣>α

}
,

f(x) =
F (x)

|F (x)|1Eα(x).

It follows that

α|Eα| ≤ 〈F,f〉= 〈F ∗K,f ∗K〉 ≤ ‖f ∗K‖2.

Thus, by invoking (22) and (23) we get

α2|Eα|2 ≤ 〈f, f ∗K〉 ≤
∣∣〈f, f ∗K1〉

∣∣+ ∣∣〈f, f ∗ (K −K1)
〉∣∣

≤ ‖f‖2p′
0
N

2
n−1+ε + ‖f‖21N

n−1
2 +ε

≤ |Eα|
2
p′0 N

2
n−1+ε + |Eα|2N

n−1
2 +ε.

Thus, for α > α0 :=N
n−1
4 +ε we get

(24) |Eα| ≤ α−2n−1
n−3N

2
n−3 .

Fix now p > 2n
n−3 . We first use (12) to write∫

|F |p ≤ α
p− 2n

n−1

0 +

∫
|F |>α0

|F |p.

Using (24) this is further bounded by

N
n−1
4 (p− 2n

n−1 )+ε +N
n−2
2 (p− 2(n−1)

n−3 )+ 2
n−3 � N

n−2
2 p−n.

This finishes the argument.
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8. Closing remarks

Improving further the range in Theorem 1.2 may rely on exploiting can-
celations occurring in sums of Kloosterman sums. Such an example is the
Selberg conjecture, which states that∣∣∣∣∑

q≤X

K(m,n, q)

q

∣∣∣∣ � (mnX)ε.

Since the typical size of |K(m,n, q)| is √
q, the conjecture predicts a square

root cancelation between Kloosterman sums. Recent progress in this direction
appears in [10] and [6].

The piece KQ of the kernel K introduced earlier in the paper can be defined
to incorporate all moduli Q≤ q ≤ 2Q (not only the primes), and the bound
in Proposition 4.3 will continue to hold. It is possible that the correct bound
for such a variant of KQ to be

(25)
∥∥KQ

∥∥
∞ � Q

n−2
2 .

This amounts to an additional square root cancelation over the result in
Proposition 4.1. If (25) held true, the approach described in this paper would
imply precisely the sharp level set estimate

|Eα| ≤
1

α
2n

n−2

,

albeit only for α � N
n−2
4 . The difficulty of getting the estimate∣∣KQ(x)

∣∣ � Q
n−2
2

for a fixed x comes from the fact that while one of the entries m,n in the
Kloosterman sum is fixed (it equals −λ), the other entry is variable, it depends
on q.

We also mention that appropriate control over sums of Kloosterman sums
would allow a circle method treatment of the representation problem of inte-
gers by sums of three squares.

Acknowledgments. We would like to thank Yi Hu for stimulating discus-
sions and to Alexandru Zaharescu for pointing out the reference [10].
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