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ANALYTIC TORSION ON MANIFOLDS UNDER LOCALLY
COMPACT GROUP ACTIONS

GUANGXIANG SU

Abstract. For a complete Riemannian manifold without bound-
ary which a unimodular locally compact group properly cocom-
pact acts on it, under some conditions, we define and study the

analytic torsion on it by using the G-trace defined in (L2-index

formula for proper cocompact group actions, preprint). For a

fiber bundle π : M →B, if there is a unimodular locally compact

group acts fiberwisely properly and cocompact on it, we define

the torsion form for it, and show that the zero degree part of the

torsion form is the analytic torsion. This can be viewed as an
extension of the L2-analytic torsion.

1. Introduction

Let F be a unitary flat vector bundle on a closed Riemannian manifold M .
In [18], Ray and Singer defined an analytic torsion associated to (M,F ) and
proved that it does not depend on the Riemannian metric on M . Moreover,
they conjectured that this analytic torsion coincides with the classical Reide-
meister torsion defined using a triangulation on M (cf. [14]). This conjecture
was later proved in the celebrated papers of Cheeger [7] and Müller [15].
Müller generalized this result in [16] to the case when F is a unimodular flat
vector bundle on M . In [6], inspired by the considerations of Quillen [17],
Bismut and Zhang reformulated the above Cheeger–Müller theorem as an
equality between the Reidemeister and Ray–Singer metrics defined on the de-
terminant of cohomology, and proved an extension of it to the case of general
flat vector bundle over M . The method used in [6] is different from those of
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Cheeger and Müller in that it makes use of a deformation by Morse functions
introduced by Witten [20] on the de Rham complex.

In [3], Bismut and Lott extended the Ray–Singer analytic torsion to an
invariant of a smooth parametrized family of manifolds. They defined the
torsion form and showed that the zero degree part of it is the analytic torsion.
They also proved a C∞-analog of the Riemann–Roch–Grothendieck theorem
for holomorphic submersions and proved that the torsion form is the trans-
gression of the Riemann–Roch–Grothendieck theorem. In [11], Heitsch and
Lazarov extended the results in [3] to the flat vector bundle over a foliation
whose graph is Hausdorff. In [11], they assumed that the strong foliation
Novikov–Shubin invariants of the flat bundle are greater than three times the
codimension of the foliation.

In [19], Wang studied the index of G-invariant elliptic pseudo-differential
operators acting on a complete Riemannian manifold, where a unimodular,
locally compact group G acts properly, cocompactly and isometrically. An L2-
index formula was also obtained using the heat kernel method. The L2-index
in [19] was an extension of the classical Atiyah L2-index theorem [1].

On the other hand, the L2-analytic torsion was defined and studied by
several authors, cf. [4], [5], [8], [12], [13], [21] and etc. So it is natural to
extend the L2 analytic torsion to the manifold acting properly cocompact by
a unimodular locally compact group. In this paper, we extend the analytic
torsion to this case. We also define the torsion form and show that the 0-
degree part of the torsion form is equal to the analytic torsion.

The rest of the paper is organized as follows. In Section 2, for a complete
Riemannian manifold without boundary we define the analytic torsion under
some conditions similar as the Novikov–Shubin invariants. In Section 3, we
get the anomaly formula of the analytic torsion. In Section 4, using the
techniques in [11], define the torsion form for the fiber bundle π : M →B with
a unimodular locally compact group properly cocompact fiberwisely acting on
it and show that the 0-degree part of the torsion form is equal to the analytic
torsion.

2. Definition of the analytic torsion

Let X be a n dimensional complete Riemannian manifold and G be a
unimodular locally compact group properly and cocompact acts on X . Let
gTX be a G-invariant Riemannian metric on X . Let F be a flat vector bundle
on X with flat connection ∇F and a Hermitian metric hF on F , we assume
that ∇F and hF are all G-invariant. Let Ω∗

c(X,F ) be the compactly support
differential forms with coefficient in F . Then by gTX and hF we have an inner
product in Ω∗

c(X,F ), let L2(Ω∗(X,F )) be the L2-completion of Ω∗
c(X,F ) with

respect to the inner product. Then we have the L2-de Rham complex

(2.1) 0→ L2
(
Ω0(X,F )

) dF

−−−−→ · · · dF

−−−−→ L2
(
Ωn(X,F )

)
→ 0.
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Let dF∗ be the formally adjoint of dF with respect to the inner product. Define

DF = dF + dF∗ , D2
F =

(
dF + dF∗

)2
.

Then for any t > 0, we have e−tD2
F is of G-trace class. Let PkerD2

F
be the

orthogonal projection onto kerD2
F , then we have TrG(PkerD2

F
)<+∞.

We now define the following analogue Novikov–Shubin invariants

αj = sup
{
βj ≥ 0|TrG

(
e−tD2

F,j
)
−TrG(PkerD2

F,j
) =O

(
t−

βj
2

)}
.

In the following, we assume that αj > 0, j = 0, . . . , n.
Let

H∗
(2)(X,F ) = kerDF /imDF

be the reduced L2-cohomology of L2(Ω∗(X,F )), then by L2-Hodge theory we
have the canonical isomorphism

H∗
(2)(X,F )∼= kerDF .

Let N be the number operator acting on Ωi
c(X,F ) by multiply by i and

it obviously extends to L2(Ω∗(X,F )). Obviously that the operator N is G-
invariant. By [6, (11.1)], we have

(2.2) N =
1

2

n∑
i=1

c(ei)ĉ(ei) +
n

2
.

We denote by TrG,s[·] = TrG[(−1)N ·] the supertrace in the sense of Quillen.

By [19, Theorem 6.3], TrG,s(e
−tD2

F ) has an asymptotic expansion as t→ 0,
hence

1

Γ(s)

∫ 1

0

ts−1
(
TrG,s

(
Ne−tD2

F
)
−TrG,s(NPkerD2

F
)
)
dt

defined for Re s > n/2 can be meromorphically extends to the whole complex
plane C and holomorphically at s= 0, so we can define

T ′ =−1

2

d

ds

∣∣∣∣
s=0

1

Γ(s)

∫ 1

0

ts−1
(
TrG,s

(
Ne−tD2

F
)
−TrG,s(NPkerD2

F
)
)
dt.

On the other hand, by αj > 0 we have

T ′′ =−1

2

∫ ∞

1

(
TrG,s

(
Ne−tD2

F
)
−TrG,s(NPkerD2

F
)
)dt
t

is well defined.
Then we define

(2.3) T = exp
(
T ′ + T ′′).

Definition 2.1. The number T defined by (2.3) is called the L2 analytic
torsion of (X,F ) associated to (gTX , hF ) and the locally compact group G.
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3. Anomaly formula for the analytic torsion

In this section, we study the anomaly formula of T with respect to the
Riemannian metric gTX and the Hermitian metric hF .

Let (gu, hu) be a family of G-equivariant metrics on (X,F ) and satisfying
αu,j > 0. Then we have well defined Tu. Define

Qu = g−1
u

∂gu
∂u

+ h−1
u

∂hu

∂u

and

θu(s) =
1

2

1

Γ(s)

∫ +∞

0

ts−1
(
TrG,s

[
Ne−tD2

F,u
]
−TrG,s[NPkerD2

F,u
]
)
dt,

for s ∈C.
By definition and direct computation, we have

(3.1)
∂

∂u
TrG,s

[
Ne−tD2

F,u
]
= t

∂

∂t
TrG,s

[
Que

−tD2
F,u

]
.

Then

∂θu(s)

∂u
(3.2)

=
1

2

1

Γ(s)

∫ ∞

0

ts
∂

∂t

(
TrG,s

[
Que

−tD2
F,u

]
−TrG,s[QuPkerD2

F,u
]
)
dt

=
1

2

−s

Γ(s)

∫ ∞

0

ts−1
(
TrG,s

[
Que

−tD2
F,u

]
−TrG,s[QuPkerD2

F,u
]
)
dt.

Definition 3.1. Let B be a Banach space with norm ‖ · ‖ and f : R+ →
B : t 	−→ f(t) be a function. A formal series

∑∞
k=0 ak(t) with ak(t) ∈ B is

called an asymptotic expansion for f , denoted by f(t) ∼
∑∞

k=0 ak(t), if for
any m> 0, there are Mm and εm > 0. So that for all l ≥Mm, t ∈ (0, εm], we
have ∥∥∥∥∥f(t)−

l∑
k=0

ak(t)

∥∥∥∥∥≤Ctm.

Set

TrG,s

[
Que

−tD2
F,u

]
=

l∑
j=−n/2

Mj,ut
j + o

(
tl
)

as t→ 0.

Then we have

(3.3)
∂

∂u

(
∂θu(s)

∂s

∣∣∣∣
s=0

)
=−M0,u +TrG,s[QuPkerD2

F,u
].

So by definition we have

(3.4)
∂

∂u

(
T ′
u + T ′′

u

)
=

1

2
M0,u − 1

2
TrG,s[QuPkerD2

F,u
].
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So we need to compute

lim
t→0

TrG,s

[
Que

−tD2
F,u

]
= lim

t→0
TrG,s

[(
∗−1
u

∂∗u
∂u

+ h−1
u

∂hu

∂u

)
e−tD2

F,u

]
.

By [19, Theorem 6.3], we have

c(x)Trs

[
h−1
u

∂hu

∂u
e−tD2

F,u(x,x)

]
∼ c(x)

∞∑
j=0

Trs

[
h−1
u

∂hu

∂u
tjaj(x)

]
,

where c(x) ∈C∞
c (X) (cf. [19]) is non-negative function such that∫

X

c
(
g−1x

)
dg = 1, for any x ∈X.

Then

(3.5) lim
t→0

TrG,s

[
h−1
u

∂hu

∂u
e−tD2

F,u

]
=

∫
X

c(x)Tr

[
h−1
u

∂hu

∂u

]
e
(
TX,gTX

)
.

Let e1, . . . , en be an orthonormal base of TX with respect to gu, then by
[6, Proposition 4.15]

∗−1
u

∂∗u
∂u

=−
∑

1≤i,j≤n

1

2

〈
g−1
u

∂gu
∂u

ei, ej

〉
gu

c(ei)ĉ(ej).

As in [6], we set

θ(F,hu) = Tr

[
h−1
u

∂hu

∂u

]
and

ẽ′u(TX)(3.6)

=
∂

∂b
Pf

[
1

2π

(
RTX

u + b

(
∂

∂u
∇TX

l − 1

2

[
∇TX

u ,
(
gTX
u

)−1 ∂gTX
u

∂u

]))]
b=0

.

Then by local index technique in [6] and the proof of [20, Theorem 6.3], we
have

(3.7) lim
t→0

TrG,s

[
∗−1
u

∂∗u
∂u

e−tD2
F,u

]
=−

∫
X

c(x)θ(F,hu)ẽ
′
u(TX).

Then by (3.5) and (3.7), we have

∂

∂u
logTu =

1

2

∫
X

c(x)Tr

[
h−1
u

∂hu

∂u

]
e
(
TX,gTX

)
(3.8)

− 1

2

∫
X

c(x)θ(F,hu)ẽ
′
u(TX)− 1

2
TrG,s[QuPkerD2

F,u
].

Remark 3.2. If dimX is odd and H∗
(2)(X,F ) = 0, then Tu is independent

of the metrics (gu, hu) satisfying αu,j > 0.
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4. Torsion form

In this section, following [3] and [11], we extend the analytic torsion intro-
duced in Section 2 to the family case and show that the zero degree part of it
is the analytic torsion defined in Section 2.

4.1. The Bismut–Lott torsion form. In [3], Bismut and Lott defined the
analytic torsion form. We first briefly recall their construction of the analytic
torsion form. Given a smooth fiber bundle π : M →B with closed fibers Z,
a horizontal distribution THM on the fiber bundle, and a flat vector bundle
F on M , then it has an infinite-dimensional Z-graded vector bundle W on B
whose fiber over b ∈B is C∞(Zb; (Λ(T

∗Z)⊗F )|Zb
) (cf. [3, Section 3(a)]). The

exterior differentiation on Ω(M,F ) gives a flat superconnection of total degree
1 on W . They constructed a rescaled superconnection Ct and an operator Dt.
Recall that N is the number operator on W , it acts by multiplication by i on
C∞(M ;Λi(T ∗Z) ⊗ F ). Using the function f(a) = a exp(a2), for t > 0, they
constructed f∧(C ′

t, h
W ) (cf. [3, (3.103)]). So the Bismut–Lott analytic torsion

form is defined by (cf. [3, (3.118)])

T
(
THM,gTZ , hF

)
(4.1)

=−
∫ +∞

0

[
f∧(C ′

t, h
W
)
− χ′(Z;F )

2
f ′(0)

−
(
dim(Z) rk(F )χ(Z)

4
− χ′(Z;F )

2

)
f ′
(
i
√
t

2

)]
dt

t
.

See [3] for the meaning of the terms in the integrand. To show the integral
in the above formula is well defined, it needs to calculate the asymptotic of
f∧(C ′

t, h
W ) as t → 0 and the asymptotic as t → ∞. For the asymptotic as

t→ 0, they used the local index technique. For the asymptotic as t→∞, the
key fact is that the fiber Z is closed, so the fiberwise operators involved have
uniform positive lower bound for positive eigenvalues.

In [11], Heitsch and Lazarov defined analytic torsion for foliations. In the
case of foliations, they defined operators similar to C ′

t along the leaves instead
of the operators along the fibers. Also in [11], they exactly used the formula
(4.1) to define their analytic torsion. To calculate the asymptotic as t→ 0 for
f∧(C ′

t, h
W ), they used the techniques in [3]. For the asymptotic as t→∞,

since the leaf of the foliation may be noncompact, there is no uniform positive
lower bound for the positive eigenvalues. Nevertheless Heitsch and Lazarov
succeeded in defining the torsion form if the manifold satisfy the so called
strong foliation Novikov–Shubin invariants condition introduced in [10] (cf.
(4.16)).

In our current case, the situation is very similar as the case in [11], since the
manifold is noncompact. So we will use the techniques in [11], some of which
are originally from [9], to calculate the asymptotic as t → ∞. Finally, we
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want to mention that in [9, p. 4] they did not assume that the Γ-action can fit
together to yield a global action, so they introduced the so-called strong local
Γ-invariance to insure that the Γ-trace is well defined, see [9, pp. 8 and 9]. In
our case, the action of G is a global action on the fiber bundle preserving the
metrics and the connections.

4.2. Construction of the torsion form in the current case. Let π :
M → B be a smooth fiber bundle with connected fibers Zb = π−1(b) of di-
mension n. Let TZ be the vertical tangent bundle of the fiber bundle and let
T ∗Z be its dual bundle.

Let G be a unimodular locally compact group properly and cocompact acts
fiberwise on M . We consider that G acts as identity on B. Then there is a
positive function c ∈C∞

c (M) such that∫
G

c
(
g−1m

)
dg = 1, for any m ∈M.

Let THM be a horizontal distribution for the fiber bundle, meaning that
THM is a subbundle of TM such that

(4.2) TM = THM ⊕ TZ.

Let PTZ denote the projection from TM to TZ. We have

(4.3) THM ∼= π∗TB.

Then (4.2) and (4.3) give that as bundles of Z-graded algebras over M ,

(4.4) Λ
(
T ∗M

)∼= π∗(Λ(T ∗B
))

⊗Λ
(
T ∗Z

)
.

Let F be a flat complex vector bundle on M and let ∇F denote its flat
connection. Assume that the action of G can be lifted to F and preserve the
connection ∇F . Let W be the smooth infinite-dimensional Z-graded vector
bundle over B whose fiber over b ∈B is C∞(Zb; (Λ(T

∗Z)⊗ F )|Zb
). That is,

C∞(B;W )∼=C∞(
M ;Λ

(
T ∗Z

)
⊗ F

)
.

Let ΩV (M,F ) denote the subspace of Ω(M,F ) which is annihilated by interior
multiplication with horizontal vectors. Then there is an isomorphism

(4.5) ΩV (M ;F )∼=C∞(B;W ),

where the isomorphism is given by sending an element of ΩV (M ;F ) to its
fiberwise restrictions. From (4.4),

(4.6) Ω(M ;F )∼=Ω(B) ⊗̂ΩV (M ;F ).

Thus we have an isomorphism of Z-graded vector spaces

(4.7) Ω(M ;F )∼=Ω(B;W ).
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The exterior differentiation operator dM , acting on Ω(M ;F ), has degree 1
and satisfies (dM )2 = 0. Furthermore, for all f ∈C∞(B) and ω ∈Ω(M ;F ),

(4.8) dM
((
π∗f

)
· ω

)
=
(
π∗ dBf

)
∧ ω+

(
π∗f

)
· dM (ω).

Thus dM defines a flat superconnection of total degree 1 on W .

Definition 4.1 ([3, Definition 3.1]). Let dZ denote exterior differentiation
along fibers. We consider dZ to be an element of C∞(B;Hom(W •,W •+1)).

If U is a smooth vector field on B, let UH ∈C∞(M ;THM) be its horizontal
lift, so that π∗U

H = U . As the flow generated by UH sends fibers to fibers dif-
feomorphically, the Lie differentiation operator LUH acts on C∞(M ;Λ(T ∗Z)⊗
F ), and one can easily verify that for f ∈ C∞(B) and a ∈ C∞(M ;Λ(T ∗Z)⊗
F ),

(4.9) L(fU)Ha=
(
π∗f

)
·LUHa

and

(4.10) LUH

((
π∗f

)
a
)
= π∗(Uf) · a+

(
π∗f

)
·LUHa.

Definition 4.2 ([3, Definition 3.2]). For s ∈ C∞(B;W ) and U a vector
field on B, put

(4.11) ∇W
U s= LUHs.

From (4.9) and (4.10), ∇W is a connection on W which preserves the Z-
grading and commutes with the action of G.

If U1 and U2 are vector fields on B, put

(4.12) T (U1,U2) =−PTZ
[
UH
1 ,UH

2

]
∈C∞(M ;TZ).

One easily verifies that T gives a TZ-valued horizontal 2-from on M , which
one calls the curvature of the fiber bundle.

Definition 4.3 ([3, Definition 3.3]). iT ∈ Ω2(B;Hom(W •,W •−1)) is the
2-form on B which, to vector fields U and V on B, assigns the operator of
interior multiplication by T (U,V ) on W .

Then we have the following proposition.

Proposition 4.4 ([3, Definition 3.4]).

(4.13) dM = dZ +∇W + iT .

We assume that we have a vertical Riemannian metric on the fiber bundle
π : M → B. That is, we have a positive-definite metric gTZ on TZ and the
metric is G-invariant. Also suppose that F is equipped with a G-invariant
Hermitian metric hF . Let∇F,u denote the unitary connection 1

2 (∇F + (∇F )∗)

on F and let ∇TZ⊗F,u denote the connection on Λ(T ∗Z) ⊗ F obtained by
tensoring ∇TZ and ∇F,u. Let ψ be short for ω(F,hF ).
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Let ∗ be the fiberwise Hodge duality operator associated to gTZ , which
we extend from an operator on C∞(M ;Λ(T ∗Z)) to C∞(M ;Λ(T ∗Z)⊗ F ) ∼=
C∞(B;W ). Then W acquires a Hermitian metric hW such that for s, s′ ∈
C∞(B;W ) and b ∈B,

(4.14)
(〈
s, s′

〉
hW

)
(b) =

∫
Zb

〈
s(b)∧ ∗s′(b)

〉
hF .

Denote by (dM )∗ the adjoint of dM with respect to (4.14), then we have the
following.

Proposition 4.5 ([3, Proposition 3.7]).

(4.15)
(
dM

)∗
=
(
dZ

)∗
+
(
∇W

)∗ − T ∧ .

Definition 4.6 ([3, Definition 3.8]). Put

DZ = dZ +
(
dZ

)∗
,

∇W,u =
1

2

(
∇W +

(
∇W

)∗)
,

ω
(
W,hW

)
=

(
∇W

)∗ −∇W .

For t > 0, let hW
t be the Hermitian metric on W associated to the metrics

gTZ/t and hF on TZ and F , respectively. Let (dM )∗t be the adjoint of the
superconnection dM with respect to hW

t .
Let N be the number operator of W ; it acts by multiplication by i on

C∞(M ;Λi(T ∗Z)⊗ F ). Then we have(
dM

)∗
t
= t−N

(
dM

)∗
tN .

As in [3], we put

C ′
t = tN/2dM t−N/2,

C ′′
t = t−N/2

(
dM

)∗
tN/2.

Then C ′′
t is the adjoint of C ′

t with respect to hW .
Put

Ct =
1

2

(
C ′′

t +C ′
t

)
, Dt =

1

2

(
C ′′

t −C ′
t

)
.

Again, Ct is a superconnection and Dt is an odd element of Ω(B;End(W )).
Put V = (dZ)∗−dZ , an element of C∞(B;End(W )). For each b ∈B, Vb ex-

tends to a densely-defined skew-adjoint operators acting on the L2-completion
of Wb. Then by Hodge theory, there is an isomorphism

H(2)(Zb;F |Zb
)∼=Ker(Vb).

Then there is an isomorphism of smooth Z-graded vector bundles on B:

H(2)(Z;F |Z)∼=Ker(V ).
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Let ϕ : Ω(B) → Ω(B) be the linear map such that for all homogeneous
ω ∈Ω(B),

ϕω = (2iπ)−(degω)/2ω.

We denote by P the orthogonal projection onto Ker(V ).
Set f(z) = z exp(z2), we can apply the functional calculus fiberwise to de-

fine f(Dt). From [9, Lemma 2.2], especially the Duhamel formula therein,
one can find that f(D2

t ) is smooth respect to x ∈B. As it in the Bismut–Lott
case, −D2

t is a fiberwise generalized Laplacian operator, then by [19, Theo-
rem 6.3] we get that f(D2

t ) is a smooth form on B with values in the fiberwise
G-trace class operator. So we can define

f
(
∇F , hF

)
= (2πi)1/2ϕTrG,s

[
f

(
ω

2

(
F,hF

))]
,

f
(
∇H(2)(Z;F |Z), hH(2)(Z;F |Z)

)
= (2πi)1/2ϕTrG,s

[
f

(
P
1

2
ω
(
W,hW

)
P

)]
and

f
(
C ′

t, h
W
)
= (2πi)1/2ϕTrG,s

[
f(Dt)

]
.

In order to extend the Bismut–Lott torsion form to the current case, the
key difficulty is how to calculate the asymptotic as t→∞. As discussed in
Section 4.1, we need the similar conditions as in [11], [10]. More specifically,
denote by Pε the spectral projection associated to the interval (0, ε) for the
non-negative self-adjoint operator −V 2/4. We assume the following condition
holds in the rest part of this paper.

(*) For each choice of metric on M there is β > 3dimB so that for all
sufficiently small ε, TrG(Pε) satisfies

(4.16) TrG(Pε)∼O
(
εβ

)
.

The condition (4.16) is the strong foliation Novikov–Shubin invariants con-
dition of [10].

Put

e
(
TZ,∇TZ

)
=

{
Pf[R

TZ

2π ], if dimZ is even,

0, if dimZ is odd.

Theorem 4.7 (cf. [3, Theorem 3.16]). As t→ 0,

f
(
C ′

t, h
W
)

(4.17)

=

{∫
Z
c(x)e(TZ,∇TZ)f(∇F , hF ) +O(t), if dimZ is even,

O(
√
t), if dimZ is odd.

Under the condition (*), there is γ > 0 so that as t→∞

(4.18) f
(
C ′

t, h
W
)
= f

(
∇H(2)(Z;F |Z), hH(2)(Z;F |Z)

)
+O

(
t−γ

)
.
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Proof. Let z be an odd Grassmann variable. Given α ∈ Ω(B)⊗ C[z], we
can write α in the form

α= α0 + zα1

with α0, α1 ∈Ω(B). Put

αz = α1.

As C2
t =−D2

t , we have

(4.19) TrG,s

[
f(Dt)

]
=TrG,s

[
exp

(
−C2

t + zDt

)]z
.

For t > 0, let ψt ∈ End(Ω(B)⊗ C[z]) be such that if α ∈ Ω(B)⊗ C[z] has
total degree k, then ψt(α) = t−k/2α. Then

TrG,s

[
exp

(
−C2

t + zDt

)]
= ψtTrG,s

[
exp

(
t
(
−C2

1 + zD1

))]
.

Then by [19, Theorem 6.3], TrG,s[exp(t(−C2
1 + zD1))] has an asymptotic ex-

pansion in t as t → 0. This expansion contains only integral powers of t if
dimZ is even, and only half-integral powers of t if dimZ is odd. It then
follows that f(C ′

t, h
W ) has an asymptotic expansion in t of the same type.

To calculate the t→ 0 limit of TrG,s[exp(−C2
t + zDt)]

z , we note that Ct

and Dt satisfy the Lichnerowicz-type identity of [3, Theorem 3.11]. Then
standard rescaling and local index argument [2] show that

lim
t→0

(2πi)1/2ϕTrG,s

[
exp

(
−C2

t + zDt

)]z
(4.20)

=

∫
Z

c(x)e
(
TZ,∇TZ

)
(2πi)1/2ϕ

×Trs

[
exp

(
ω(F,∇F )2

4
+ z

ω(F,∇F )

2

)]z
.

Then we get (4.17).
Next, we will prove (4.18). As it in [11], we will first prove (4.18) in the

case that Pε = 0 for some ε > 0, then we will deal with the general case.
We first filter the space M of all sections of ∧∗T ∗M ⊗ End(W ) by the

subspace Mi of sections of
∑

j≥i∧jT ∗M ⊗ End(W ). Filter the space N of

all sections of ∧∗T ∗M ⊗ EndS(W ) similarly, where EndS(W ) is the space of
smoothing operators.

Given ε > 0, denote by Qε the spectral projection associated to the interval
[ε,∞) for the non-negative self-adjoint operator −V 2/4. Note that Pε is a
bounded element of N and Qε is a bounded element of M. Recall that there
is an element ĉ ∈M2, so that

(4.21) Dt =

√
t

2
V +

1

2
ω
(
W,hW

)
+

1

2
√
t
ĉ,
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and note that V ∈M0 and ω(W,hW ) ∈M1. Set

D̄ε,t = (P +Qε)Dt(P +Qε) + PεDtPε,

and

Aε,t = (P +Qε)

(
1

2
ω
(
W,hW

)
+

1

2
√
t
ĉ

)
Pε(4.22)

+ Pε

(
1

2
ω
(
W,hW

)
+

1

2
√
t
ĉ

)
(P +Qε).

As V commutes with the spectral projections of −V 2/4, and (P +Qε)Pε = 0=
Pε(P +Qε), we have that Dt = D̄ε,t +Aε,t. We first show that TrG,s[f(D̄ε,t)]
satisfies equation (4.18). When Pε = 0 for some ε > 0 this completes the proof
of Theorem 4.7, since in that case, D̄ε,t =Dt. In the next section, we will finish
the proof in general by showing that TrG,s[f(Dt)] = TrG,s[f(D̄ε,t)] +O(t−γ)
as t→∞ for some γ > 0.

Set D =D1 and D̂ε = (P +Qε)D(P +Qε). Then D̄ε ≡ D̄ε,1 = D̂ε+PεDPε.
Set Tε,t =QεDtQε, and Tε = Tε,1.

Proposition 4.8 ([11, Proposition 2.7]). There is a bounded measurable
section gε in M with gε− I and g−1

ε − I ∈N1 so that under the decomposition
W = PW ⊕QεW ⊕ PεW ,

gεD̄
2
εg

−1
ε ≡

∣∣∣∣∣∣
(P 1

2ω(W,hW )P )2 0 0
0 T 2

ε 0
0 0 (PεDPε)

2

∣∣∣∣∣∣ mod

∣∣∣∣∣∣
N3 0 0
0 N2 0
0 0 0

∣∣∣∣∣∣ ,
and

gεD̄εg
−1
ε ≡

∣∣∣∣∣∣
P 1

2ω(W,hW )P 0 0
0 Tε 0
0 0 PεDPε

∣∣∣∣∣∣ mod

∣∣∣∣∣∣
N2 N2 0
N2 N2 0
0 0 0

∣∣∣∣∣∣ .
Now for all t > 0, let ψt be the map of M which multiplies a section of

∧kT ∗M ⊗End(W ) by t−k/2. Then

Dt =
√
tψtDψ−1

t , D̄ε,t =
√
tψtD̄εψ

−1
t ,

D̂ε,t =
√
tψtD̂εψ

−1
t , Tε,t =

√
tψtTεψ

−1
t .

Denote q = dimB. We now couple the variable ε and t. (If Pε = 0 for
some ε > 0, this step is not necessary.) The β satisfies β > 3q. Choose a real
number a ∈ (6,2β/q) and set

ε= t−
1
a .

Then

(4.23) ‖Gε‖s,s ≤ t
1
a for all s.
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Lemma 4.9 ([11, Lemma 2.8]). Any element A ∈Nk which is gε−I , g−1
ε −I

or the part which is modded out in Proposition 4.8, satisfies, for all r and s,∥∥ψtAψ
−1
t

∥∥
r,s

at least O
(
t−

k
2+

k
a

)
as t→∞.

Note that any A in Lemma 4.9 is nilpotent since it is at least in N1. Since
a > 6, if A ∈ N3, then ‖ψtAψ

−1
t ‖r,s is at least O(t−(1+γ)) for some γ > 0.

Thus, we have

D̄ε,t =
√
tψtD̄εψ

−1
t(4.24)

= ψtg
−1
ε ψ−1

t

×

∣∣∣∣∣∣
P 1

2ω(W,hW )P +O(t−
1
2+

2
2 ) O(t−

1
2+

2
2 ) 0

O(t−
1
2+

2
a ) Tε,t +O(t−

1
2+

2
a ) 0

0 0 PεDtPε

∣∣∣∣∣∣
×ψtgεψ

−1
t

and

D̄2
ε,t = tψtD̄

2
εψ

−1
t(4.25)

= ψtg
−1
ε ψ−1

t

×

∣∣∣∣∣∣
(P 1

2ω(W,hW )P )2 +O(t−γ) 0 0

0 T 2
ε,t +O(t

2
a ) 0

0 0 (PεDtPε)
2

∣∣∣∣∣∣
×ψtgεψ

−1
t .

Proposition 4.10 ([11, Proposition 2.9]). We may assume that ψtgεψ
−1
t =

I = ψtg
−1
ε ψ−1

t , that means ψtgεψ
−1
t and ψtg

−1
ε ψ−1

t do not contribute to the
limit.

Proof. By the definition of TrG,s and [11, Proposition 2.9], the proposition
follows. �

Note the abuse of notation here. We are really working on subspaces of W ,
and so should use

P

(
P
1

2
ω
(
W,hW

)
P +O

(
t−

1
2+

2
a

))
P exp

((
P
1

2
ω
(
W,hW

)
P

)2

+O
(
t−γ

))
P

in place of(
P
1

2
ω
(
W,hW

)
P +O

(
t−

1
2+

2
a

))
exp

((
P
1

2
ω
(
W,hW

)
P

)2

+O
(
t−γ

))
,

and similarly for the other terms.
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The off diagonal terms in D̄ε,t play no role in computing the supertrace,
so we may replace them by 0. Doing that, we have

TrG,s

[
f(D̄ε,t)

]
(4.26)

= TrG,s

((
P
1

2
ω
(
W,hW

)
P +O

(
t−

1
2+

2
a

))
× exp

((
P
1

2
ω
(
W,hW

)
P

)2

+O
(
t−γ

)))
+TrG,s

((
Tε,t +O

(
t−

1
2+

2
a

))
exp

(
T 2
ε,t +O

(
t

2
a

)))
+TrG,s

[
f(PεDtPε)

]
.

Using the technique above, we get

TrG,s

((
P
1

2
ω
(
W,hW

)
P +O

(
t−

1
2+

2
a

))
(4.27)

× exp

((
P
1

2
ω
(
W,hW

)
P

)2

+O
(
t−γ

)))
=TrG,s

[
f

(
P
1

2
ω
(
W,hW

)
P

)]
+O

(
t−γ

)
.

Thus,

TrG,s

[
f(D̄ε,t)

]
= TrG,s

[
f

(
P
1

2
ω
(
W,hW

)
P

)]
+O

(
t−γ

)
(4.28)

+TrG,s

((
Tε,t +O

(
t−

1
2+

2
a

))
exp

(
T 2
ε,t +O

(
t

2
a

)))
+TrG,s

[
f(PεDtPε)

]
.

Proposition 4.11. For any γ > 0, as t→∞,

TrG,s

((
Tε,t +O

(
t−

1
2+

2
a

))
exp

(
T 2
ε,t +O

(
t

2
a

)))
=O

(
t−γ

)
.

Proof. First we note that by the same proof of [11, Proposition 2.11], we
can get (

Tε,t +O
(
t−

1
2+

2
a

))
exp

(
T 2
ε,t +O

(
t

2
a

))
is t−m+m

a + n
2a times a bounded smoothing operator whose −s, s norm is bound-

ed independently of t and so by the definition of the G-trace, we have at worst

TrG,s

((
Tε,t +O

(
t−

1
2+

2
a

))
exp

(
T 2
ε,t +O

(
t

2
a

)))
=O

(
t−m+m

a + n
2a

)
.

Since n is fixed, a≥ 6 and m is arbitrarily large, we get the proposition. �
This completes the proof of Theorem 4.7 in the case that Pε = 0 for some

positive ε, since D̄ε,t =Dt in that case and we have shown that there is γ > 0
so that as t→∞,

TrG,s

(
f(D̄ε,t)

)
=TrG,s

(
f

(
P
1

2
ω
(
W,hW

)
P

))
+TrG,s

(
f(PεDtPε)

)
+O

(
t−γ

)
.
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The general case.
Set

γ =
β

a
− q

2
and recall that 6< a< 2β/q, so γ > 0.

Proposition 4.12. As t→∞, TrG,s(f(PεDtPε)) =O(t−γ).

Proof. Since we have

TrG,s

(
f(PεDtPε)

)
=TrG(APε),

where A= τPεDtPεe
(PεDtPε)

2

.

Lemma 4.13. t−
q
2 ‖A‖ is bounded independently of t for t large.

Proof. Note that

PεDtPε = Pε

√
t

2
V Pε +C1 and (PεDtPε)

2 = Pε
t

4
V 2Pε +C2,

where C1 and t−
1
2C2 are nilpotent and bounded independently of t. Now

writing the Volterra series for ePε
t
4V

2Pε+C2 , we have

(4.29) A= τPεDtPε

∑
k

∫
Δk

eσ0Pε
t
4V

2PεC2e
σ1Pε

t
4V

2Pε · · ·C2e
σkPε

t
4V

2Pε dσ.

Since C2 is a section of ∧∗T ∗
HM ⊗ End(W ) and ∧q+1T ∗

HM = 0, we see that
the number of C2 in each integrand of (4.29) is at most q. In particular, the
sum in (4.29) is finite.

As in the proof of [11, Proposition 2.11], we write the integrand of (4.29)
as

τPεDtPεe
σ0Pε

t
4V

2Pεt−
1
2C2e

σ1Pε
t
4V

2Pε · · · t− 1
2C2e

σkPε
t
4V

2Pεt
k
2 dσ.

At each point in Δk there is at least one xi ≥ 1/(k+1). We may assume that
i = k + 1, since the general case is handled in the same way. We may also

assume that all xi > 0. Then by PεDtPε = Pε

√
t

2 V Pε +C1, C1 and t−
1
2C2 are

bounded independently of t, and the proof of [11, Proposition 2.11], we get
the lemma. �

Now

TrG,s

(
f(PεDtPε)

)
=TrG(APε) = TrG(PεAPε),

as Pε = P 2
ε and Pε commutes with τ . Let ω1, . . . , ωJ be a base of ΛT ∗

z B, for z
fixed on B. A is a family of operators and Az acts on C∞(Mz, Fz)⊗ΛT ∗

z B.
Write Az =

∑
j ωj ⊗Aj , then

TrG(PεAPε) =
∑
j

ωj ⊗TrG(PεAjPε).
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Let δvi be a base of L2(Mz, Fz), then∣∣〈PεAjPε(δvi), δvi
〉∣∣ = ∣∣〈AjPε(δvi), Pε(δvi)

〉∣∣≤ ∥∥AjPε(δvi)
∥∥∥∥Pε(δvi)

∥∥(4.30)

≤ ‖Aj‖
∥∥Pε(δvi)

∥∥2 ≤ ‖A‖
∥∥Pε(δvi)

∥∥2.
Let Kε be the Schwartz kernel of Pε, we have∑

i

∥∥Pε(δvi)
∥∥2 =∑

i

〈
Pε(δvi), Pε(δvi)

〉
=
∑
i

〈
P 2
ε (δvi), δvi

〉
(4.31)

=
∑
i

〈
Pε(δvi), δvi

〉
=
∑
i

Kε(vi, vi) = Tr
(
Kε(x,x)

)
.

Denote the Schwartz kernel of PεAPε by Hε, then we have

TrG(PεAPε) =

∫
Z

c(x)Tr
(
Hε(x,x)

)
dx(4.32)

=

∫
Z

c(x)
∑
i,j

ωj ⊗
〈
PεAjPε(δvi), δvi

〉
dx.

Now ∣∣∣∣∫
Z

c(x)
∑
i

〈
PεAjPε(δvi), δvi

〉
dx

∣∣∣∣(4.33)

≤
∫
Z

c(x)
∑
i

∣∣〈PεAjPε(δvi), δvi
〉∣∣dx

≤
∫
Z

c(x)
∑
i

‖A‖
∥∥Pε(δvi)

∥∥2 = ‖A‖
∫
Z

c(x)Tr
(
Kε(x,x)

)
dx

= ‖A‖TrG(Pε).

Then by the assumption (4.16) and ε= t−
1
a , since t−

β
a = t−γ− q

2 and t−
q
2 ‖A‖

is bounded, we get the proposition. �

Thus, we have shown that as t→∞

TrG,s

(
f(D̄ε,t)

)
=TrG,s

(
f

(
P
1

2
ω
(
W,hW

)
P

))
+O

(
t−γ

)
.

Proposition 4.14 (cf. [11, Proposition 2.4]). As t→∞,

TrG,s

(
Dte

D2
t
)
=TrG,s

(
D̄ε,te

D̄2
ε,t
)
+O

(
t−γ

)
.

Proof. Now

TrG,s

(
D̄ε,te

D̄2
ε,t
)
−TrG,s

(
Dte

D2
t
)

(4.34)

= TrG,s

(
Dt

(
eD̄

2
ε,t − eD

2
t
))

−TrG,s

(
Aε,te

D̄2
ε,t
)
.

Note that

eD̄
2
ε,t = (P +Qε)e

((P+Qε)Dt(P+Qε))
2

(P +Qε) + Pεe
(PεDtPε)

2

Pε



ANALYTIC TORSION UNDER LOCALLY COMPACT GROUP ACTIONS 187

and that

Aε,t = (P +Qε)

(
1

2
ω
(
W,hW

)
+

1

2
√
t
ĉ

)
Pε(4.35)

+ Pε

(
1

2
ω
(
W,hW

)
+

1

2
√
t

)
(P +Qε).

From the trace property, we see that TrG,s(Aε,te
D̄2

ε,t) = 0.
For 0≤ z ≤ 1, set Dt(z) = zDt + (1− z)D̄ε,t = D̄ε,t + zAε,t. Then we have

d

dz
eD

2
t (z) =−

∫ 1

0

[
e(1−s)D2

t (z)
]d(D2

t (z))

dz
esD

2
t (z) ds.

Thus the first term on the right-hand side of equation (4.34) is given by

(4.36)

∫ 1

0

∫ 1

0

TrG
(
τDte

(1−s)D2
t (z)

(
Dt(z)Aε,t +Aε,tDt(z)

)
esD

2
t (z)

)
dsdz,

where τ is the grading operator. As ω(W,hW ) commutes and V and ĉ anti-
commute with τ , τDt =−Dtτ +τω(W,hW ). Recalling that Dt =Dt(z)+(1−
z)Aε,t, (4.36) equals

TrG

(
Aε,t

∫ 1

0

∫ 1

0

f(s, z)dsdz

)
≡TrG

(
Aε,tF (s, z)

)
,

where

f(s, z) =Dt(z)e
sD2

t (z)τDt(z)e
(1−s)D2

t (z)(4.37)

+ e(1−s)D2
t (z)Aε,tDt(z)e

sD2
t (z)τ(1− z)

− esD
2
t (z)Dt(z)τe

(1−s)D2
t (z)Dt(z)

− τe(1−s)D2
t (z)Dt(z)Aε,te

sD2
t (z)(1− z)

+ esD
2
t (z)τω

(
W,hW

)
e(1−s)D2

t (z)Dt(z).

We write

Dt(z) =

√
t

2
V +C1 and D2

t (z) =
t

4
V 2 +C2,

where C1 and t−
1
2C2 are nilpotent and bounded independently of t. Then by

the proof of Lemma 4.13, t−
q
2 ‖F (s, z)‖ is bounded independently of t. Since

TrG
(
Aε,tF (s, z)

)
= TrG

([
(P +Qε)

(
1

2
ω
(
W,hW

)
+

1

2
√
t
ĉ

)
Pε(4.38)

+ Pε

(
1

2
ω
(
W,hW

)
+

1

2
√
t
ĉ

)
(P +Qε)

]
F (s, z)

)
= TrG

(
PεF (s, z)(P +Qε)

(
1

2
ω
(
W,hW

)
+

1

2
√
t
ĉ

)
× Pε

(
1

2
ω
(
W,hW

)
+

1

2
√
t

)
(P +Qε)F (s, z)

)
.
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As

t−
q
2

[
F (s, z)(P +Qε)

(
1

2
ω
(
W,hW

)
+

1

2
√
t
ĉ

)
(4.39)

+

(
1

2
ω
(
W,hW

)
+

1

2
√
t
ĉ

)
(P +Qε)F (s, z)

]
is bounded independently of t for t large, then as the proof of Proposition 4.12
we get the proposition. �

�
For t > 0, set

f∧(C ′
t, h

W
)
= ϕTrG,s

(
N

2
f ′(Dt)

)
= ϕTrG,s

(
N

2

(
1 + 2D2

t

)
eD

2
t

)
,

and

χ′
G(Z;F |Z) = TrG,s

(
N

2
f ′
(
P
1

2
ω
(
W,hW

)
P

))
∈Ω∗(B).

Theorem 4.15. As t→ 0

f∧(C ′
t, h

W
)

(4.40)

=

{
1
4 dimZ rk(F )

∫
Z
c(x)e(TZ,∇TZ) +O(t), if dimF is even,

O(
√
t), if dimF is odd.

Under the condition (*), there is γ > 0 so that as t→∞

(4.41) f∧(C ′
t, h

W
)
=

1

2
χ′
G(Z;F |Z) +O

(
t−γ

)
.

Proof. We use the proof of [3, Theorem 3.21]. Put M̂ = M × R∗
+ and

B̂ =B×R
∗
+. Denote π̂ : M̂ → B̂ by π̂(x, s) = (π(x), s). Let ρ be the projection

M̂ →M and let ρ′ be the projection M̂ →R
∗
+.

Let Ẑ be the fiber of π̂. Then TẐ = ρ∗TZ. Let gTẐ be the metric on T Ẑ
which restricts to ρ∗gTZ/s on M × {s}. Put
(4.42) THM̂ = ρ∗THM ⊕ ρ′∗TR∗

+.

One can show that ∇TẐ = ρ∗∇TZ + ds( ∂
∂s −

1
2s ) and RTẐ = ρ∗RTZ . In par-

ticular, RTẐ( ∂
∂s , ·) = 0. Clearly (ρ∗F,ρ∗∇F ) is a flat vector bundle on M̂ .

Using the product structure on M̂ , we can write

dM̂ = dM + ds∂s,(
dM̂

)∗
= s−(N−dim(Z)/2)

(
dM + ds∂s

)
sN−dim(Z)/2.

Then (
dM̂

)∗
=
(
dM

)∗
s
+ ds

(
∂s +

1

s

(
N − dim(Z)

2

))
.
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Put

X̂ =
1

2

((
dM̂

)∗ − dM̂
)
=Xs +

ds

2s

(
N − dim(Z)

2

)
,

and

D̂t = s−N/2Dsts
N/2 +

ds

2s

(
N − dim(Z)

2

)
.

We deduce that

f
(
Ĉ ′

t, h
Ŵ
)

(4.43)

= f
(
C ′

st, h
W
)
+

ds

s
f∧(C ′

st, h
W
)
− dim(Z)

4s
dsϕTrG,s

[
f ′(Dst)

]
.

Since f ′(a) is even function implies that ϕTrG,s[f
′(Dt)] is independent of t,

and the method of (4.18) shows that it equal rk(F )
∫
Z
c(x)e(TZ,∇TZ). Thus,

f
(
Ĉ ′

t, h
Ŵ
)
= f

(
C ′

st, h
W
)
+

ds

s
f∧(C ′

st, h
W
)

(4.44)

− ds
dim(Z)

4s
rk(F )

∫
Z

c(x)e
(
TZ,∇TZ

)
.

Equation (4.17) gives the t→ 0 asymptotic of the left-hand side of (4.44). In
particular, using the fact that t→ 0 limit of the left-hand side of (4.44) has
no ds term. Then equation (4.40) follows from (4.17) and (4.44).

Let σ : B̂ → B be the projection on the first factor. Let N now be the
number operator of H(2)(Z;F |Z), we have

H(2)

(
Ẑ;ρ∗F |Ẑ

)
= σ∗H(2)(Z;F |Z),

P̂ ω̂
(
Ŵ ,hŴ

)
P̂ = Pω

(
W,hW

)
P +

ds

s

(
N − dim(Z)

2

)
.

Thus, we have

f
(
∇H(2)(Ẑ;ρ∗F |

Ẑ
), hH2(Ẑ;ρ∗F |

Ẑ
)
)

(4.45)

= f
(
∇H(2)(Z;F |Z), hH(2)(Z;F |Z)

)
+

ds

2s

(
χ′
G(Z;F )− dim(Z)

2
rk(F )

∫
Z

c(x)e
(
TZ,∇TZ

))
.

Equation (4.18) gives the t→∞ asymptotic of the left-hand side of (4.44). In
particular, the t→∞ limit equals the right-hand side of (4.45). Comparing
the ds-term, (4.41) follows. �

Set

χG(Z) =

∫
Z

c(x)e
(
TZ,∇TZ

)
.
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Definition 4.16. Under the condition (*), by Theorem 4.15, we define the
torsion form T (Z;F ) ∈Ω∗(B) by

T (Z;F ) = −
∫ ∞

0

[
f∧(C ′

t, h
W
)
− 1

2
χ′
G(Z;F )(4.46)

+

(
1

2
χ′
G(Z;F )− dimZ

4
rk(F )χG(Z)

)
f ′
(
i
√
t

2

)]
dt

t
.

Theorem 4.17. The order zero term of T (Z;F ), denoted T (0)(Z;F ) sat-
isfies

T (0)(Z;F ) = logT .

Proof. Set

(4.47) c=
1

2
dimZ rk(F )

∫
Z

c(x)e(TZ)−χ′
G(Z;F ) and g(a) = (1+2a)ea.

Then

T (0)(Z;F ) =

∫ ∞

0

h(t)
dt

t
,

where

h(t) =−
[
TrG,s

(
N

2
g

(
−tD2

F

4

))
− χ′

G(Z;F )

2
− c

2
g

(
− t

4

)]
.

Using the fact that h(t) is at least O(
√
t) as t→ 0 we have that for any ε > 0,

(4.48)

∫ ∞

0

h(t)
dt

t
=

d

ds

∣∣∣∣
s=0

[
1

Γ(s)

∫ ε

0

h(t)ts−1 dt+ s

∫ ∞

ε

h(t)
dt

t

]
.

Now

TrG,s

(
N

2
g

(
−tD2

F

4

)∣∣∣∣
kerD2

F

)
(4.49)

= TrG,s

(
N

2
g(0)

)
=TrG,s

(
N

2
P

)
=

1

2
χ′
G(Z;F ).

Set e−tD′2
F = e−tD2

F − P . We have that (4.48) is equal to

− d

ds

∣∣∣∣
s=0

[
1

Γ(s)

∫ ε

0

ts−1

(
TrG,s

(
N

2
e−tD′2

F

)
(4.50)

+ t
d

dt
TrG,s

(
Ne−tD′2

F
)
− c

2
g(−t)

dt

t

)
dt

+ s

∫ ∞

ε

TrG,s

(
N

2
e−tD′2

F

)
+ t

d

dt
TrG,s

(
Ne−tD′2

F
)
− c

2
g(−t)

dt

t

]
.

Set

ζ(s) =
1

Γ(s)

∫ ∞

0

TrG,s

(
Ne−tD′2

F
)
dt.
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We claim that (4.50) is equal to

d

ds

∣∣∣∣
s=0

[
−1

2
ζ(s) + sζ(s)

]
− c.

Using g(−t) = (1− 2t)e−t, by direct computation, we get

d

ds

∣∣∣∣
s=0

[
1

Γ(s)

∫ ∞

0

ts−1g(−t)dt

]
=−2.

Then we see that the claim follows from the following lemma.

Lemma 4.18.

− d

ds

∣∣∣∣
s=0

[
1

Γ(s)

∫ ε

0

ts
d

dt
TrG,s

(
Ne−tD′2

F
)
dt(4.51)

+ s

∫ ∞

ε

d

dt
TrG,s

(
Ne−tD′2

F
)
dt

]
=

d

ds

∣∣∣∣
s=0

(
sζ(s)

)
.

Proof. Integrating by parts, we have

− d

ds

∣∣∣∣
s=0

[
1

Γ(s)

∫ ε

0

ts
d

dt
TrG,s

(
Ne−tD′2

F
)
dt(4.52)

+ s

∫ ∞

ε

d

dt
TrG,s

(
Ne−tD′2

F
)
dt

]
=− d

ds

∣∣∣∣
s=0

[
1

Γ(s)

∫ ε

0

−sts−1TrG,s

(
Ne−tD′2

F
)
dt

+
1

Γ(s)
tsTrG,s

(
Ne−tD′2

F
)∣∣ε

0
+ sTrG,s

(
Ne−tD′2

F
)∣∣∞

ε

]
=

d

ds

∣∣∣∣
s=0

[
s

1

Γ(s)

∫ ε

0

ts−1TrG,s

(
Ne−tD′2

F
)
dt

+ s2
∫ ∞

ε

t−1TrG,s

(
Ne−tD′2

F
)
dt

−TrG,s

(
Ne−εD′2

F
)( εs

Γ(s)
− s

)]
,

and

d

ds

∣∣∣∣
s=0

(
εs

Γ(s)
− s

)
= 0. �

Lemma 4.19.

ζ(0) = c.
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Proof. First we have that as t→ 0,

TrG,s

(
Ne−tD2

F
)

(4.53)

=

{
1
2 dim(Z) rkF

∫
Z
c(x)e(TZ,∇TZ) +O(t), if dimZ is even,

c1/
√
t+O(

√
t), if dimZ is odd,

for some constant c1. Since TrG,s(NP ) = χ′
G(Z;F ) we have

ζ(s) =
1

Γ(s)

∫ ε

0

ts−1
[
TrG,s

(
Ne−tD2

F
)
− χ′

G(Z;F )
]
dt(4.54)

+ s

∫ ∞

ε

t−1TrG,s

(
N
(
e−tD2

F − P
))

dt.

If dimZ is even, the first term equals

s

Γ(s+ 1)

∫ ε

0

ts−1
[
c+O(t)

]
dt=

cεs

Γ(s+ 1)
+

s

Γ(s+ 1)

∫ ε

0

ts−1O(t)dt.

If dimZ is odd,
∫
Z
c(x)e(TZ,∇TZ) = 0 and we get

s

Γ(s+ 1)

∫ ε

0

ts−1

[
c+

c1√
t
+O(

√
t)

]
dt(4.55)

=
cεs

Γ(s+ 1)
+

sc1ε
s− 1

2

(s− 1
2 )Γ(s+ 1)

+
s

Γ(s+ 1)

∫ ε

0

ts−1O(
√
t)dt.

In both cases,
ζ(s) = c+ sA(s)

where the function A is holomorphic around s= 0. �

�
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