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METRIC CHARACTERIZATIONS II

DAVID P. BLECHER AND MATTHEW NEAL

Dedicated to the memory of William B. Arveson

Abstract. The present paper is a sequel to our paper “Metric
characterization of isometries and of unital operator spaces and

systems.” We characterize certain common objects in the theory

of operator spaces (unitaries, unital operator spaces, operator

systems, operator algebras, and so on), in terms which are purely

linear-metric, by which we mean that they only use the vector

space structure of the space and its matrix norms. In the last

part, we give some characterizations of operator algebras (which
are not linear-metric in our strict sense described in the paper).

1. Introduction

The present paper is a sequel to our paper “Metric characterization of
isometries and of unital operator spaces and systems” [14]. The goal of both
papers is to characterize certain common objects in the theory of operator
spaces (unitaries, unital operator spaces, operator systems, operator algebras,
and so on), in terms which are purely linear-metric, by which we mean that
they only use the vector space structure of the space and its matrix norms, in
the spirit of Ruan’s matrix norm characterization of operator spaces [26], not
mentioning products, involutions, or any kind of function such as linear maps
on the space. In the present paper, we give new linear-metric characteriza-
tions of unital operator spaces (or equivalently, of ‘unitaries’ in an operator
space). Some of our characterizations should be useful in future. Others may
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look cumbersome, but their virtue is that it is nice to know that such char-
acterizations exist (only using the norm and/or vector space structure). An
example of one of our new characterizations is the following theorem.

Theorem 1.1. If X is an operator space and u ∈ X with ‖u‖ = 1 then
(X,u) is a unital operator space (or equivalently, u is a unitary in X) iff

max
{∥∥un + ikx

∥∥ : k = 0,1,2,3
}
≥
√

1 + ‖x‖, n ∈N, x ∈Mn(X).

Here un is the diagonal matrix u⊗ In in Mn(X) with u in each diagonal
entry. Indeed in this result one only needs x of ‘small norm,’ where ‘small’ can
differ for each n. Thus, only local information near each un is necessary in
order to determine if u is unitary; and the above shows how this may be done.
Another advantage of this approach is that it avoids ‘matrices of matrices,’ in
contrast to our characterizations in [14]. We will give a convincing illustration
of the use of this criterion after its proof (after Theorem 3.2 below).

We also give several other assorted results and observations, most of these
being complements to various results in [14]. The structure of our paper is
as follows: In Section 2, we present some matrix norm formulae that will be
used later in the paper. In Section 3 (resp., Section 4), we give new linear-
metric characterizations of unital operator spaces (resp., operator systems).
In Section 3 we also relate unital operator spaces to our previous paper [15], by
characterizing compact projections in a C∗-algebra in terms of unital operator
spaces. In the remaining sections, we characterize operator algebra structures
on operator spaces in various ways. For example, we give new variants of
the characterization of operator algebras due to the first author with Ruan
and Sinclair [17]. In various remarks scattered through our paper, we indicate
where a result may be strengthened, or give counterexamples ruling out certain
directions of enquiry.

Turning to definitions, all vector spaces are over the complex field C. The
letters H,K are usually reserved for Hilbert spaces. We write Ball(X) = {x ∈
X : ‖x‖ ≤ 1}. We write Mn(X) for the space of n× n matrices with entries
in X . As always in operator space theory, Mn(X) has a canonical norm which
we write as ‖x‖n or simply ‖x‖. A given cone in a space X will sometimes
be written as X+, and Xsa = {x ∈ X : x = x∗} assuming that there is an
involution ∗ around. The reader may consult [9], or one of the other books
on operator spaces, for more information if needed below. All normed (or
operator) spaces are assumed to be complete. A unital operator space is a
subspace of a unital C∗-algebra containing the identity [3]. More abstractly,
a unital operator space is a pair (X,u) consisting of an operator space X
containing a fixed element u such that there exists a Hilbert space H and a
complete isometry T : X → B(H) with T (u) = IH . In this case, we also say
that u is a unitary in X . An operator system is a selfadjoint subspace of a
unital C∗-algebra containing the identity. More abstractly, a unital operator
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space (X,u) for which there exists a linear complete isometry T : X →B(H)
with T (u) = IH and T (X) selfadjoint. An operator algebra is an operator
space A which is an algebra such that there exists a completely isometric
homomorphism from A into a C∗-algebra. An operator algebra is unital if it
has an identity of norm 1.

A TRO (ternary ring of operators) is a closed subspace Z of a C∗-algebra,
or of B(K,H), such that ZZ∗Z ⊂ Z. We refer to, for example, [19], [9] for
the basic theory of TROs. A ternary morphism on a TRO Z is a linear map
T such that T (xy∗z) = T (x)T (y)∗T (z) for all x, y, z ∈ Z. We write ZZ∗ for
the closure of the linear span of products zw∗ with z,w ∈ Z, and similarly
for Z∗Z. These are C∗-algebras. The ternary envelope of an operator space
X is a pair (T (X), j) consisting of a TRO T (X) and a completely isometric
linear map j : X → T (X), such that T (X) is generated by j(X) as a TRO
(i.e., there is no closed subTRO containing j(X)), and which has the fol-
lowing property: given any completely isometric linear map i from X into a
TRO Z which is generated by i(X), there exists a (necessarily unique and
surjective) ternary morphism θ : Z →T (X) such that θ ◦ i= j. If (X,u) is a
unital operator space then its ternary envelope may be taken to be the C∗-
envelope of, for example, [9, Section 4.3]; this is a C∗-algebra C∗

e (X) with
identity u. If X is an operator system then X is a selfadjoint unital subspace
of C∗

e (X).
An element u in an operator space X is called a coisometry (resp., isome-

try) in X , if X may be linearly completely isometrically embedded in a TRO
Z such that uu∗ = 1ZZ∗ (resp., u∗u = 1Z∗Z). In this case Z may be taken
to be the ternary envelope of X , or it may be taken to be B(K,H) and the
1 in the last line replaced by the identity operator on the Hilbert space H
(resp., K). Coisometries and isometries in X were characterized purely linear-
metrically in [14] (see also Theorem 3.4 below). Also, u is a unitary in X iff
it is both a coisometry and an isometry in X (see [14, Lemma 2.3]).

2. Some matrix norm formulae

We collect several known formulae for matrix norms that we use later in
the paper.

Lemma 2.1. Let A be a C∗-algebra (or operator space). We have

(2.1)

∥∥∥∥
[
a b
b a

]∥∥∥∥=max
{
‖a+ b‖,‖a− b‖

}
, a, b ∈A.

Proof. This is well known: the map taking the 2 × 2 matrix above to
(a + b, a − b), is a faithful ∗-homomorphism, from the C∗-algebra of such
matrices into A⊕∞ A. �
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Lemma 2.2. Let A be a C∗-algebra (or operator space). We have

(2.2)

∥∥∥∥
[
a −b
b a

]∥∥∥∥=max
{
‖a+ ib‖,‖a− ib‖

}
, a, b ∈A.

Proof. To see this, apply (2.1) with b replaced by ib, then multiply, first,
the second row by −i, and second, the second column by i. �

Let X be an operator space, and v ∈X . If n ∈N and x ∈Mn(X), we write

tvx =

[
vn x
0 vn

]
.

If (X,v) is a unital operator space, and we identify v = 1, then we write tvx as
tx.

Lemma 2.3. If X is a unital operator space, then

(2.3) ‖tx‖2 =
1

2

[
2 + ‖x‖2 + ‖x‖

√
‖x‖2 + 4

]
≥ 1 + ‖x‖, n ∈N, x ∈Mn(X).

Thus ‖tx‖ ≥
√

1 + ‖x‖.

Proof. This is, for example, a consequence of the more general formula
(2.1) in [11]. �

We will see in Theorem 3.1 that (the matricial version of) this condition
characterizes unital operator spaces.

LetX be an operator space possessing a conjugate linear involution ∗ : X →
X , and suppose that v ∈X . If n ∈N and x= [xij ] ∈Mn(X) define x∗ = [x∗

ji],
and

svx =

[
vn x
x∗ vn

]
, rvx =

[
vn x
−x∗ vn

]
.

If (X,v) is a unital operator space, and we identify v = 1, then we write svx as
sx and rvx as rx.

Lemma 2.4. If X is an operator system, then

(2.4) ‖sx‖= 1+ ‖x‖, n ∈N, x ∈Mn(X)

and

(2.5) ‖rx‖=
√
1 + ‖x‖2, n ∈N, x ∈Mn(X).

Proof. The first is well known (and an easy exercise). The second is from
[14], and is a simple application of the C∗-identity. �

In Proposition 4.2, we show that formula (2.5) characterizes operator sys-
tems.
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3. New metric-linear characterizations of unital operator spaces

We now show that the inequality in Lemma 2.3 characterizes unital oper-
ator spaces. Before we prove this, note that ‖tvx‖ ≥

√
1 + ‖x‖ for all x ∈X

iff ∥∥∥∥
[
λvn x
0 λvn

]∥∥∥∥≥
√
|λ|2 + |λ|‖x‖

for all λ ∈ C and x ∈ Mn(X). In fact it is enough to take λ > 0 here, and
‖x‖= 1.

Theorem 3.1. If v ∈ Ball(X) then (X,v) is a unital operator space iff

‖tvx‖ ≥
√
1 + ‖x‖ for all x ∈Mn(X) of small norm, and all n ∈N.

Proof. The one direction is Lemma 2.3. If the norm condition holds, then
for all x ∈Ball(Mn(X)) (of small norm)

1 + ‖x‖ ≤ ‖tx‖2 = ‖t∗xtx‖ ≤ 1 + ‖x‖2 + ‖v∗x‖,
where we are writing vn as v and tvx as tx for brevity. Write x= cy where c > 0
and ‖y‖ = 1, then c ≤ c2 + c‖v∗y‖, so that 1 ≤ c+ ‖v∗y‖. Hence, 1 ≤ ‖v∗y‖
if ‖y‖= 1 (letting c↘ 0). This implies that ‖v∗x‖= ‖x‖ for all x ∈Mn(X).
Similarly, by using txt

∗
x in the calculation above, we have ‖xv∗‖= ‖x‖. Now

by the proof of Theorem 2.4 in [14], we see that v is a unitary in X . �

Remark. It is not enough that ‖tvx‖ ≥
√
2 if ‖x‖n = 1; this does not char-

acterize unital operator spaces. To see this take X = Hc, Hilbert column
space.

Theorem 3.2. If X is an operator space and v ∈ Ball(X) then (X,v) is

a unital operator space iff max{‖vn + ikx‖ : k = 0,1,2,3} ≥
√

1 + ‖x‖ for all
x ∈Mn(X) of small norm, and all n ∈N.

Proof. (⇐) Apply Theorem 3.1, replacing x two lines above by the 2× 2
matrix with x in the 1–2 corner and zeroes elsewhere, and vn there by v2n,
noting that ‖tvikx‖= ‖tvx‖.

(⇒) Write v as 1 and 2v as 2. By (2.1) and (2.3), we have∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

1 x 1 x
x 1 −x 1
1 x 1 x
−x 1 x 1

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
=max

{∥∥∥∥
[
2 2x
0 2

]∥∥∥∥ ,
∥∥∥∥
[
0 0
2x 0

]∥∥∥∥
}
≥ 2

√
1 + ‖x‖.

However the norm of the big matrix here is also

≤
∥∥∥∥
[
1 x
x 1

]∥∥∥∥+
∥∥∥∥
[

1 x
−x 1

]∥∥∥∥≤ 2max
{∥∥vn + ikx

∥∥ : k = 0,1,2,3
}
,

by (2.1) and (2.2). �
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Remark. One may replace ik in the theorem by the set of unimodular
complex scalars (the proof is unchanged). There is also an equivalent rewriting
of the ‘max’ condition in the last theorem in terms of the cone FX highlighted
in [16]. If z ∈ FMn(X), let ck(z) = vn + ik(vn − z) ∈ FMn(X), k = 0,1,2,3. The

condition then becomes: max{‖ck(z)‖ : k = 0,1,2,3} ≥
√
1 + ‖vn − z‖, for all

z ∈ FMn(X).

We give some illustrations of the use of this criterion in practice.

Example 1. To see immediately that c0 is not a unital operator space:
For any norm 1 element �x ∈ c0, if |xn| is small enough then clearly ‖�x +

ik�en‖ does not dominate
√
2 for any k (here (�en) is the standard basis). So

by Theorem 1.1, c0 is not a unital operator space (with any operator space
structure {‖ · ‖n}n≥2).

Example 2. A convincing and more nontrivial example is S1
2 , namely M2

with the trace norm. This example is also interesting because its ‘commu-
tative variant’ �12 is well known to be a unital operator space, as indeed also
is �1 and more generally various ‘Fourier algebras’ B(G) and their noncom-
mutative variants (see [12, Section 3] and its methods). Suppose a ∈ M2

with trace(|a|) = 1. Then there exist unitaries u, v with a = udv, where d
is a diagonal matrix with non-negative entries α,β with α + β = 1. Let
x = tue21v, where e21 is the usual matrix unit, and t is a scalar. Then
‖a+ ikx‖1 = ‖d+ ikte21‖1. Let b= d+ ikte21, and by way of contradiction,
assume trace(|b|) ≥

√
1 + t for some k and some small t > 0. Let c = b∗b,

and suppose that the eigenvalues of c are r, s. Then trace(c) = r + s, and
trace(|b|) =√

r+
√
s. Since trace(|b|)≥

√
1 + t we have r+ s+ 2

√
rs≥ 1 + t.

However, since c has rows (α2+ t2, iktβ) and (iktβ, β2), we see that trace(c) =
r+ s= α2 + β2 + t2, and det(c) = rs= (αβ)2. Thus,

1 + t≤ α2 + β2 + t2 + 2αβ = (α+ β)2 + t2 = 1+ t2,

a contradiction if 0< t < 1. By Theorem 3.2, a is not unitary, and so S1
2 is

not a unital operator space (with any operator space structure {‖ · ‖n}n≥2).
This example also illustrates one great advantage of this characterization over
other ones: the criterion involves a linear combination of u and x rather than
a matrix with these as entries. Indeed, we only needed 1× 1 matrices in the
computation above.

Example 3. By the same argument, the 3 dimensional subspace L1
2 of

lower triangular matrices in S1
2 , and its two dimensional subspace with the

diagonal scalar repeated, are not unital operator spaces. Note that L1
2 and

S1
2 , contain a two dimensional unital operator space, namely the diagonal,

which is a copy of �12 (a unital operator space as we said above). This gives
a glimpse of the delicacy of the process of adding an element or two to an
operator space and trying to keep the space unital.
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Proposition 3.3. Let X be an operator space with element e ∈ Ball(X).

Inside M2(X) consider the set Ue(X) of matrices
(
λe
0

x
λe

)
for x ∈X , and λ

scalar. Then (X,e) is a unital operator space iff (Ue(X), e⊗ I2) is a unital
operator space, and iff (Ue(X), e ⊗ I2) is a unital operator algebra with the
canonical product.

Proof. Suppose that (Ue(X), e ⊗ I2) is a unital operator space. If x ∈
X,‖x‖= 1, then

√
2 =

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣
e 0
0 e
0 x
0 0

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
=

∥∥∥∥
[
e
x

]∥∥∥∥ .

This is similarly true for matrices, and so by the main theorem in [14], e is
an isometry. Similarly e is a coisometry, so (X,e) is a unital operator space.
The rest is obvious. �

Another characterization of unital operator spaces that is not linear-metric
in the sense of our paper can be found in [20].

As pointed out in [14], any theorem characterizing unital operator spaces
‘linear-metrically,’ is also a characterization of unitaries in X , that is, of ele-
ments of X that are a unitary in some TRO containing X . We give a slight
refinement of the main result in [14], which we will need later.

Theorem 3.4. Let X be an operator space, and fix m,n ∈ N. An ele-
ment u ∈Mmn(X) is a coisometry (resp., an isometry) in Mmn(X) (in the
sense defined at the end of the introduction) iff ‖[uk x]‖2 = 1 + ‖x‖2 (resp.,
‖[uk x]t‖2 = 1 + ‖x‖2) for all k ∈ N and x ∈Mkm(X) (resp., x ∈Mkn(X)).
Indeed, it suffices to consider norm one matrices x here.

Proof. We just sketch this, since it is similar to the proof of the main
theorem in [14], which the reader might follow along with. It also uses facts
about the ternary envelope ofMmn(X) from, for example, [19] or [4, Appendix
A.13(ii)], such as if Z is the ternary envelope of X , then Mmn(Z) is the
ternary envelope of Mmn(X). We just prove the coisometry case, the other is

similar. Let c = (uu∗)
1
2 ∈Mm(Z∗Z). Then ‖cx‖= ‖u∗x‖ = 1 if x ∈Mm(X)

with ‖x‖= 1, as in the proof of Theorem 2.4 in [14], which we are following.
As in that proof, left multiplication by c on Mm(Z) is an isometry, since it
restricts to an isometry on Mm(X). By [14, Theorem 2.1], c is a coisometry
in Mm(Z∗Z). Since c≥ 0 and uu∗ ≥ 0, by the unicity of positive square roots
we must have c= I , and uu∗ = I . Thus, u is a coisometry. �

We next relate unital operator spaces to our previous paper [15], by char-
acterizing compact projections in a C∗-algebra in terms of unital operator
spaces. We first mention some background facts from [23]. Let p be an open
projection in the sense of Akemann [1], [2] or [7], in the bidual of an ap-
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proximately unital operator algebra A, and let q = 1 − p. We recall that q
is compact iff q = aq for some a ∈ Ball(A) (in fact it is enough that a ∈ A).
We write Ap = {a ∈ A : a= ap} and pA= {a ∈ A : a= pa}. It is easy to see
that the bidual of X = A/(pA + Ap) is the unital operator algebra qA∗∗q.
Indeed consider the complete quotient map x �→ qxq from A∗∗ onto qA∗∗q.
Its kernel is easily seen to be pA∗∗ + A∗∗p. In particular, the latter space
is weak* closed. Thus A∗∗/(pA∗∗ +A∗∗p) ∼= qA∗∗q completely isometrically.
Next, note that the weak* closure of pA+Ap equals pA∗∗ +A∗∗p (using the
fact that the latter space is weak* closed). Thus, we have(

A/(pA+Ap)
)∗∗ ∼=A∗∗/

(
pA∗∗ +A∗∗p

)∼= qA∗∗q

completely isometrically.

Proposition 3.5. Suppose that B is a C∗-algebra, and that q = 1− p is a
closed projection in B∗∗. Then q is compact if and only if X =B/(pB +Bp)
is a unital operator space (i.e., iff it possesses a unitary in X in the sense of
the introduction).

Proof. Let i : X → qB∗∗q be the canonical complete isometry induced by
the canonical map from X into its bidual, and the identification in the last
centered line above the proposition. Explicitly, i([a]) = qaq for a ∈A.

For one direction of the result, if q is compact, so that q = aq for an a ∈
Ball(A), let e = [a] = a + (pA + Ap) ∈ X , and note that i(e) is the identity
qaq = q of qA∗∗q. So X is a unital operator space.

For the other direction, by [7, Lemma 5.3], the TRO Z generated by i(X)
inside qB∗∗q is a ternary envelope of X , so that i(v) is a coisometry in Z by
[14, Lemma 2.3], where v is the identity of X . Thus, i(v) is a partial isometry
in qB∗∗q. Also, i(v)i(v)∗i(x) = i(x) since i(x) ∈ Z and i(v) is a coisometry
in Z. By weak* density of i(X) in qB∗∗q, we have i(v)i(v)∗ = q. Next note
that by a result of Kirchberg (see the remark after Corollary 1.3 of [23]), there
exists a ∈Ball(B) with a+ (pB +Bp) = v. Then qaq = i(v) so that

i
([
a∗a

])
= qa∗aq = qa∗qaq+ qa∗(1− q)aq = q+ qa∗(1− q)aq.

Taking norms, 1 ≥ 1 + ‖qa∗(1 − q)aq‖, so that qa∗(1 − q)aq = 0. Hence
i([a∗a]) = qa∗aq = q, from which it is clear that q is compact. �

Remark. One may weaken the condition that X is unital, to that X
possesses an isometry or coisometry in the sense of the introduction. The
proof above still works. We also suspect that the result is also true for general
operator algebras (using the compact projections of [15]).

4. Characterizations of operator systems and C∗-algebras

This section can be viewed as some remarks that naturally belong with the
sections on operator systems in [14]. We begin with a characterization of the
‘positive’ part of a unital operator space:
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Lemma 4.1. If A is a unital operator space or approximately unital operator
algebra, then an element x ∈ Ball(A) is in the positive cone of A ∩ A∗ iff
‖1− zx‖ ≤ 1 for all z ∈C with |1− z| ≤ 1.

Proof. This follows from the argument for Lemma 8.5 in [16]. �
The last result easily leads to a metric-linear characterization of operator

systems: they are the unital operator spaces X spanned by the positive cone
of A∩A∗, the latter characterized in Lemma 4.1. We now give another metric-
linear characterization of operator systems which should have been stated in
[14]. We use the notation above Lemma 2.4.

Proposition 4.2. If X is an operator space possessing a conjugate linear
involution ∗ : X → X , and an element v ∈ Ball(X) with v = v∗, then there
exists a ∗-linear complete isometry T : X → Y onto an operator system Y
with T (v) = 1, iff ∥∥rvnx ∥∥=

√
1 + ‖x‖2, n ∈N, x ∈Mn(X).

Proof. The one direction follows from (2.5). For the other, first note that

we have for any x ∈X that ‖x∗‖ ≤ ‖rvx‖=
√

1 + ‖x‖2. Replacing x by tx for

a positive scalar t, we obtain ‖x∗‖ ≤
√

1
t2 + ‖x‖2. Letting t→∞ shows that

∗ is contractive, hence isometric since ∗ has period 2. Similarly, ‖x∗‖= ‖x‖ if
x ∈Mn(X), so that X is a selfadjoint operator space by the discussion a few
paragraphs above Proposition 1.1 in [8].

If ‖x‖= 1, and we write the first row of rvx as a, and the second of rvx as b,

then the norm of each of these is ≤
√
2. However,

4≤ ‖rx‖2 =
∥∥a∗a+ b∗b

∥∥≤ ‖a‖2 + ‖b‖2 ≤ 4.

Thus ‖a‖=
√
2. Similarly, the second column of rvx has norm

√
2. This works

analogously at the matrix level, and we may now appeal to the main theorem
in [14] to see that (X,v) is a unital operator space. Finally, we appeal to 3 (c)
of [14, Remark 3.5] to see that (X,v) is an operator system. �

Remarks. (1) The following discussion rules out a possible simplification
of the last characterization of operator systems. In [14], we proved that if X
is a ‘selfadjoint function space’ with a selfadjoint ‘unitary’ u, then (X,u) is
a ‘function system’ (the ‘commutative’ variant of an operator system). The
analogous thing for operator systems is not true. Indeed consider the selfad-
joint operator space X = {[xij ] ∈ M2 : x11 = 0, x12 = x21}. It is easy to see
that X generates M2, so that M2 is the ternary envelope of X . However
if u = E21 + E12 then uX∗u = uXu is not contained in X . It follows from
the discussion at the start of Section 4 in [14] that (X,u) is not an opera-
tor system. This example also shows that a selfadjoint operator space which
is completely isometric to a unital operator algebra, need not be completely
isometric to a C∗-algebra.
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(2) One may ask if the equation (2.4) characterizes operator systems. That
is, if u is a selfadjoint unitary in a selfadjoint subspace X ⊂B(H), then does
the condition ‖sux‖= 1+ ‖x‖ for all n ∈N and x ∈Mn(X), force (X,u) to be
an operator system? Indeed a variant of the proof of Proposition 4.2 shows
that the equation ‖sux‖= 1+ ‖x‖ above forces (X,u) to be a unital operator
space. We leave this question to the interested reader, suspecting that it is not
hard to find a counterexample, and that it is also not hard to find other simple
conditions to add to (2.4) to yield a characterization of operator systems.

The following is a new metric-linear characterization of unital C∗-algebras
among the operator systems, up to complete isometry. The metric-linear
characterizations of C∗-algebras in [14] referred to unitaries being spanning,
which is avoided here. The result is certainly not best possible, but the point
again is that it is nice to know that formulae exist that essentially only refer
to the norm.

Theorem 4.3. An operator system A has a product with respect to which
it is a C∗-algebra (with the same operator space structure) if and only if for
all x, y ∈A, there exist elements b, z ∈A such that

M+ =

[
y 0 1 x b z
x b z y 0 1

]
∥∥∥∥
[
y 0 1 x b z
x b z y 0 1

]∥∥∥∥
, M− =

[
y 0 1 x b z
x b z −y 0 −1

]
∥∥∥∥
[
y 0 1 x b z
x b z −y 0 −1

]∥∥∥∥
satisfy ‖[M+ ⊗ Im,w]‖=

√
2 and ‖[M− ⊗ Im,w]‖=

√
2, for all m ∈N and all

contractions w ∈M2m(A).

Proof. Suppose the condition involving M+ and M− holds for all x, y ∈A
and let S denote the C∗-envelope of A. Abusing notation, consider A as
canonically embedded in S. By Theorem 3.4 the above condition guarantees
thatM+ andM− are coisometries in the ternary envelopeM2,6(S) ofM2,6(A).
This implies that (xy∗ + z)± (yx∗ + z∗) = 0 in S, so that z =−xy∗ lies in S.
Hence A is a subalgebra of its C∗-envelope, and hence A coincides with its
C∗-envelope.

Conversely, suppose A is linearly completely isometric to a C∗-algebra B
via a map Ψ : A→B. Then v =Ψ(1) is a unitary in B in the ordinary sense
(as follows from, e.g., [14, Theorem 2.1]. Also B with product xv∗y and
involution vx∗v is a C∗-algebra with identity v which is unitally completely
order isomorphic to A. Thus, A with its original identity has a product with
respect to which it is a C∗-algebra. In this C∗-algebra, let z =−xy∗ and let
b =

√
‖xx∗ + yy∗ + zz∗‖ · 1− xx∗ − yy∗ − zz∗. It is now easy to check that

M+ and M− are coisometries. The result then follows from Theorem 3.4. �
Remark. An operator system linearly completely isometric to a TRO or

unital operator algebra has a product with respect to which it is a C∗-algebra
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(with the same operator system structure as the original one). Indeed, the
last theorem is true if we replace ‘C∗-algebra’ in the statement with ‘TRO,’
or ‘unital operator algebra,’ or ‘unital C∗-algebra’ or ‘unital C∗-algebra with
1 mapping to 1.’ The proofs of these are usually the same as the proof of
4.3, except in the ‘unital operator algebra’ case where one should also use [14,
Proposition 4.2].

It is not true however that an operator system which is linearly completely
isometric to an operator algebra, needs to be completely isometric to a C∗-
algebra. Thus, one cannot characterize C∗-algebras as operator systems with
a general operator algebra product. For a counterexample, consider the oper-
ator system in [10, Proposition 2.1], which by that result and Sakai’s theorem
cannot be completely isometric to a C∗-algebra. However the multiplication
(x, y) �→ xky for a fixed contraction k in the image of the compact operators
in X , makes X an operator algebra by Remark 2 on p. 194 of [17].

5. Characterizations of operator algebra products

In the last sections of our paper, we will consider characterizations of oper-
ator algebras. The first point to be made is that although we have not found
one as yet, there ought to be a purely linear-metric characterization of unital
operator algebras. Indeed, we know from the noncommutative Banach–Stone
theorem that the identity in a unital operator algebra A determines the prod-
uct (this is true even if the identity is one-sided [5, Corollary 5.3]). Moreover,
if we have forgotten the product on a unital operator algebra A it can be
recovered from the unital operator space structure by the methods of, for
example, [6, Section 6]. These methods certainly yield a characterization of
unital operator algebras using only the ‘unital operator space data,’ but they
are not quite ‘linear-metric’ in our strict sense, since they refer to certain
linear maps on A, for example. The second point is that it is still open as to
whether there is a truly metric condition on a bilinear map m : X×X →X on
an operator space X characterizing when m is a (nonunital) operator algebra
product. We offer in the remainder of the paper two partial contributions to
these subjects. In most of the present section, we focus on this second point
in the case that X posseses an isometry or coisometry (which need not be
even a one-sided identity for the ensuing operator algebra product). Thus,
we are giving variants and extensions of the characterization of operator al-
gebras from [17]. In Section 6, we address the first point with a linear-metric
characterization of operator algebras which does use elements of a contain-
ing C∗-algebra. In [25] a holomorphic characterization of operator algebras
is given (generalizing the holomorphic characterization of C∗-algebras from
[24]).

Lemma 5.1. If an operator algebra A contains a left identity u of norm 1,
then u is a coisometry in A in the sense of the introduction.
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Proof. This follows from, for example, [21] or the considerations involved
in [5, Theorem 4.4], but we give a quick proof of it using the main theorem in
[14] (or Theorem 3.4 above), as a nice application of that result. Note that u
is a projection in any containing C∗-algebra, and so if x= ux ∈A has norm
1 then∥∥[ux]∥∥2 = ∥∥uu∗ + xx∗∥∥=

∥∥u+ uxx∗u
∥∥= 1+ ‖ux‖2 = 1+ ‖x‖2 = 2.

Similarly for matrices, so that u is a coisometry in A by Theorem 3.4. �

For some of the characterizations of operator algebras below, we will use
the quasimultiplier formulation of operator algebras [22]. For the readers
convenience, we include a simple unpublished proof of this that was in a pre-
liminary version of [9], and which was presented, for example, at the Banach
Algebras 2007 conference. Here I(X) is the injective envelope of X , which is
a TRO containing the ternary envelope of X as a subTRO (see, e.g., [19] or
[9, Section 4]).

Theorem 5.2 (Kaneda–Paulsen). Let X be an operator space. The algebra
products on X for which there exists a completely isometric homomorphism
from X onto an operator algebra, are in a bijective correspondence with the
elements z ∈ Ball(I(X)) such that Xz∗X ⊂ X . For such z the associated
operator algebra product on X is xz∗y.

Proof. The one direction, and the last statement, follows from Remark 2
on p. 194 of [17], viewing I(X) as a TRO in B(H), and V = z∗. For the other
direction, if X is a subalgebra of B(H) say, then by the theory of the injective
envelope (see, e.g., [19] or [9, Section 4]) we can view X ⊂ I(X)⊂B(H), and
there exists a completely contractive projection P from B(H) onto I(X). Set
z = P (1). For x, y ∈X we have xy = P (x1∗y) = P (xP (1)∗y), by Youngson’s
theorem [9, Theorem 4.4.9], the proof of which asserts that the last quantity is
the ternary product xz∗y in I(X) = Ran(P ). The bijectivity follows from, for
example, [9, Proposition 4.4.12] and its ‘right-hand version’: if Xz∗X = (0)
then Xz∗ = (0) =Xz∗z, so z∗z = 0= z. �

If the operator space has more structure, then one can say more (see [21]).

Corollary 5.3. Let (X,u) be a unital operator space. The algebra prod-
ucts on X for which there exists a completely isometric homomorphism from
X onto an operator algebra, are in a bijective correspondence with the elements
w ∈ Ball(X) such that XwX ⊂ X (multiplication taken in the C∗-envelope
C∗

e ((X,u))). For such w the associated operator algebra product on X is xwy.

Proof. This follows immediately from Theorem 5.2, since in this setting
I(X) may be taken to be a C∗-algebra, containing C∗

e (X) as a C∗-subalgebra,
with common identity u. If z is as in Theorem 5.2, then w = z∗ = uz∗u ∈
Xz∗X ⊂X . �
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Remark. The elements w in the unital operator space X in the corollary
constitute the unit ball of the operator algebra D = {a ∈C∗

e (X) : XaX ⊂X},
which is a subalgebra of C∗

e (X). Thus, D could justly be called the operator
algebra of operator algebra products on X . It would be quite desirable to find
a linear-metric characterization of D as a subset of X .

We recall the spaces M�(X) and Mr(X), of left and right multipliers of
X , which were introduced in [4]. Such multipliers of X were ‘metric-linearly’
characterized by the first author, Effros and Zarikian (see [9, Theorem 4.5.2]).
For example, if T : X →X is linear, then T ∈Ball(M�(X)) iff∥∥∥∥

[
T (aij)
bij

]∥∥∥∥≤
∥∥∥∥
[
aij
bij

]∥∥∥∥ , [aij ], [bij ] ∈Mn(X), n ∈N.

Lemma 5.4. If u is a coisometry in an operator space X , then the map
θ : M�(X) → X defined by T �→ T (u), is a complete isometry from M�(X)
into X . Indeed if T ∈ M�(X) then the M�(X) norm of T equals ‖T‖cb =
‖T‖= ‖T (u)‖. The range of θ is the set X�(u) defined to be {x ∈X : xu∗X ⊂
X,x= xu∗u}, product taken in a ternary envelope Z of X , and M�(X) may
be identified with {xu∗ ∈ ZZ∗ : x ∈X�(u)}. If u is a unitary and Z is the C∗-
envelope C∗

e (X) of (X,u), then M�(X) is identified with {a ∈X : aX ⊂X}
(product taken in C∗

e (X)).

Proof. If u is a coisometry, so that uu∗ = 1ZZ∗ , then by the theory of one-
sided multipliers of operator spaces we may view M�(X)⊂ ZZ∗ (see, e.g., the
5th and 6th last lines of p. 302 in [4]). Then θ is simply right multiplication
by u. It follows that θ is a complete isometry, since it is a complete contraction
with completely contractive left inverse x �→ xu∗. Since it is well known that
the M�(X) norm of T dominates ‖T‖cb, the asserted norm equalities hold.
Clearly M�(X) = {xu∗ ∈ ZZ∗ : x ∈ Ran(θ)}. If T ∈M�(X) then Tuu∗X =
TX ⊂X , so θ(T ) ∈X�(u). Conversely, if x ∈X�(u), then xu∗ ∈M�(X) so
that x= xu∗u ∈Ran(θ). Hence, Ran(θ) =X�(u). The rest is obvious. �

Remark. Write Z2(u) for the Pierce 2-space of u, this is a C∗-algebra in
the natural ‘Pierce’ product (see, e.g., p. 230–231 in [13], or [18]). The set
X�(u) above equals the set of elements z ∈ Z2(u) such that left multiplication
in the Pierce product by z maps X into X (i.e., zu∗X ⊂X). It is easy to
see that X�(u) is a unital subalgebra of the C∗-algebra Z2(u) in the Pierce
product.

Theorem 5.5. Let u be a coisometry in an operator space X . Suppose that
m : X ×X →X is a bilinear map such that m(x, ·) ∈M�(X) for all x ∈X .
We also suppose that m(·, u) ∈Ball(Mr(X)) (resp., m(·, u) ∈Mr(X)). Then
m (resp., m multiplied by some positive scalar) is an associative product such
that X with this product is an operator algebra (i.e., there exists a completely
isometric homomorphism from X onto an operator algebra). Conversely, ev-
ery operator algebra product m on X satisfies all the conditions above.
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Proof. In the respective case, we can multiply m by a positive scalar to
ensure that m(·, u) ∈ Ball(Mr(X)). Let Z be the ternary envelope of X ,
and view X ⊂ Z and M�(X) ⊂ ZZ∗ as in the proof of Lemma 5.4. Define
v(x) =m(x, ·) ∈ ZZ∗, so that m(x, y) = v(x)y. Similarly, we can view m(·, u)
as a contractive right multiplier of Z∗Z, hence as a contraction R in (Z∗Z)∗∗.
Thus

m(x, y) = v(x)y = v(x)uu∗y =m(x,u)u∗y = x
(
Ru∗)y, x, y ∈X.

Now the result follows from Remark 2 on p. 194 of [17]. �

Remarks. (1) In the previous theorem, the element u need not be related
to any identity, or one-sided identity, for the ensuing operator algebra product.

(2) Theorem 5.5 answers the last question in [22] for operator spaces con-
taining a coisometry or isometry, and in fact in this case gives a stronger result
than the one discussed there.

(3) If u is a unitary in X , then the ‘respectively’ assertion of Theorem 5.5 is
true with the positive scalar mentioned there equal to 1, if we also ask that m
be contractive as a bilinear map. This follows from a slight modification of the
proof, using the other-handed version of Lemma 5.4 (indeed, the multiplier
norm of a right multiplier T of a unital operator space (X,u) equals ‖T (u)‖).

Corollary 5.6. Let u be a coisometry in an operator space X . Sup-
pose that m : X ×X →X is a bilinear map such that m(x, ·) ∈M�(X) for all
x ∈X . We also suppose that m(x,u) = x for all x ∈X . Then m is an associa-
tive product, and X with this product is completely isometrically isomorphic to
an operator algebra with a two-sided identity (namely, u). Conversely, every
unital operator algebra satisfies all the conditions above.

Proof. By the theorem, X with product m is an operator algebra. Since u
is a right identity it is an isometry by the ‘other-handed’ variant of Lemma 5.1.
By [14, Lemma 2.3], u is a unitary in A, hence is a unitary in the ternary
envelope Z. Then Z is a C∗-algebra with product xu∗y. In the proof of
the last theorem, R = 1, and m(x, y) = xu∗y, and now it is clear that u is a
two-sided identity for m. �

Corollary 5.6 takes longer to state than the characterization of unital op-
erator algebras from [17]. However the latter characterization is in terms of a
product of two large matrices, whereas the condition that m(x, ·) ∈M�(X) in
Corollary 5.6, is as discussed above Lemma 5.4, essentially the requirement
that ∥∥∥∥

[
m(x,aij)

bij

]∥∥∥∥≤
∥∥∥∥
[
aij
bij

]∥∥∥∥ , [aij ], [bij ] ∈Mn(X),

for n ∈N and x ∈Ball(X). We emphasize that this uses a small (1×1) matrix
(namely x) and one large n× (2n) matrix, and in particular uses at most one
operation in each entry of the matrix, as opposed to the many operations
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(sums and products) that appear in the entries of a product of two large
matrices. And, of course, it is worth repeating that the requirement that u
be a coisometry in Corollary 5.6 (and the results before it), is equivalent to

the metric condition ‖[un x]‖=
√
2 for n ∈N and every matrix x ∈Mn(X) of

norm 1.

6. Metric characterizations of operator algebras referencing a
containing C∗-algebra

In 3(c) of [14, Remark 3.5] the authors gave a metric-linear characterization,
related to our norm formulae for rx above, of the adjoint x∗ of any operator x
in an operator system X . (In particular, if x and z are contractive operators
then z = x∗ if and only if for all t ∈R∥∥∥∥

[
t · 1 x
−z t · 1

]∥∥∥∥≤
√
1 + t2.)

Knowing this, we may freely reference adjoints in the following metric char-
acterization of operator algebras. The notation 2 in the matrices below (and
in the next corollary) refers to 2 times the identity of B.

Theorem 6.1. Suppose A is a subspace of a unital C∗-algebra B. Then A
is closed under multiplication if and only if for each pair of elements x ∈ A
and y ∈A∗ with ‖y‖ ≤ 1, there exists an element z ∈A such that for all b ∈B,∥∥∥∥

[
0 y 1 0
2 x z b

]∥∥∥∥=
∥∥[2, x, z, b]∥∥.

Proof. If A is closed under multiplication, we may choose z =−xy∗. Mul-
tiplying the above matrix by its adjoint we see that the condition holds. Con-
versely, suppose the condition holds. Let b =

√
‖xx∗ + zz∗‖ · 1− xx∗ − zz∗.

Multiplying the above matrix by its adjoint we see that∥∥∥∥
[
yy∗ + 1 yx∗ + z∗

xy∗ + z (4 + ‖xx∗ + zz∗‖) · 1

]∥∥∥∥=
∥∥[2 · 1, x, z, b]∥∥2 = 4+

∥∥xx∗ + zz∗
∥∥.

This implies that√∥∥xy∗ + z
∥∥2 + (

4 +
∥∥xx∗ + zz∗

∥∥)2 ≤ 4 +
∥∥xx∗ + zz∗

∥∥,
hence ‖xy∗ + z‖= 0 and xy∗ =−z ∈A. �

Clearly many other algebraic conditions A might satisfy can be character-
ized by a variant of this theorem. For example, a pair x, y ∈A satisfies xy = 1
if and only for all b ∈B, the displayed condition is satisfied with z = 1. Or-
thogonality, commutivity, normality and any other algebraic condition may
be similarly characterized. We emphasize the following corollary.

Corollary 6.2. Suppose that A is a subspace of a unital C∗-algebra B.
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(1) If x ∈ A, then xA⊂ A if and only if for all y ∈ Ball(A∗) there exists an
element z ∈A such that for all b ∈B,∥∥∥∥

[
0 y 1 0
2 x z b

]∥∥∥∥=
∥∥[2, x, z, b]∥∥.

(2) If y ∈ Ball(A), then Ay ⊂ A if and only if for all x ∈ A there exists an
element z ∈A such that for all b ∈B,∥∥∥∥

[
0 y∗ 1 0
2 x z b

]∥∥∥∥=
∥∥[2, x, z, b]∥∥.

(3) If x ∈A, then AxA⊂A if and only if for all y ∈Ball(A∗) there exists an
element z ∈ {b ∈ B : Ab ⊂ A} such that for all b ∈ B, the equality in (1)
holds.

Note that A is a unital operator space and B its C∗-envelope, for example,
then the last result characterizes left, right, and quasi-multipliers of A (see
the last assertion of Lemma 5.4 and Corollary 5.3).
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