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ON THE F -RATIONALITY AND COHOMOLOGICAL
PROPERTIES OF MATRIX SCHUBERT VARIETIES

JEN-CHIEH HSIAO

Abstract. We characterize complete intersection matrix Schu-
bert varieties, generalizing the classical result on one-sided lad-
der determinantal varieties. We also give a new proof of the

F -rationality of matrix Schubert varieties. Although it is known

that such varieties are F -regular (hence F -rational) by the global

F -regularity of Schubert varieties, our proof is of independent in-
terest since it does not require the Bott–Samelson resolution of

Schubert varieties. As a consequence, this provides an alternative

proof of the classical fact that Schubert varieties in flag varieties
are normal and have rational singularities.

1. Introduction

Matrix Schubert varieties (MSVs) were introduced by W. Fulton in his
theory of degeneracy loci of maps of flagged vector bundles [Ful92]. Such va-
rieties are reduced and irreducible. Classical (one-sided ladder) determinantal
varieties are special examples of MSVs (they are so-called vexillary MSVs).
Just like one-sided ladder determinantal varieties [GL00], [GM00], MSVs can
be identified (up to product of an affine space) as the opposite big cells of
the corresponding Schubert varieties. This observation in [Ful92] implies that
the MSVs are normal and Cohen–Macaulay, since Schubert varieties are (see
[Ram85]).

The Cohen–Macaulay property of MSVs was re-established by A. Knutson
and E. Miller [KM05] using the Gröbner basis theory, pipe dreams, and their
theory of subword complexes. Interestingly, this gives a new proof of the
Cohen–Macaulayness of Schubert varieties by the following principle.
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Theorem 1.1 ([KM05, Theorem 2.4.3]). Let C be a local condition that
holds for a variety X whenever it holds for the product of X with any vector
space. Then C holds for every Schubert variety in every flag variety if and
only if C holds for all MSVs.

1.1. F -rationality of MSVs. In the same spirit, the first part of this
paper is devoted to a new proof of F -rationality of MSVs. F -rationality is a
notion that arises from the theory of tight closure introduced by M. Hochster
and C. Huneke [Hun96] in positive characteristic. The results of [Smi97]
and [Har98] establish a connection between F -rationality and the notion of
rational singularity in characteristic 0: A normal variety in characteristic 0 has
at most rational singularities if and only if it is of F -rational type. Therefore,
by Theorem 1.1 the F -rationality of matrix Schubert varieties is equivalent to
the classical fact that Schubert varieties are normal and have at most rational
singularities (see, e.g., [Bri05] and [BK05] for the classical proofs of the later
statement using the Bott–Samelson resolution).

Two other notions in tight closure theory will also be used later: F -
regularity and F -injectivity. The relation between these properties is

regular =⇒ F -regular =⇒ F -rational =⇒ F -injective.

We remark that MSVs are in fact F -regular by Theorem 1.1 and the global
F -regularity of Schubert varieties [LRPT06] (again, this relies on the Bott–
Samelson resolution).

Our proof of F -rationality of MSVs utilizes the results of Schubert determi-
nantal ideals in [KM05] as well as the techniques developed in [CH97], where
A. Conca and J. Herzog prove that arbitrary (possibly two-sided) ladder de-
terminant varieties are F -rational. However, it is still unknown whether such
varieties are F -regular.

One of the key ingredients in our proof is the following theorem.

Theorem 1.2 ([CH97, Theorem 1.2]). Let R be a complete local Cohen–
Macaulay ring and c be a nonzero-divisor of R such that R[ 1c ] is F -rational
and R/cR is F -injective. Then R is F -rational.

After recalling several known facts in the theory of tight closure (Sec-
tion 3), we will see that the most essential step is to find c such that Rw[

1
c ] is

F -rational and that the initial ideal in<(〈c〉 + Iw) of 〈c〉 + Iw is Cohen–
Macaulay (where < is any antidiagonal term order, Rw and Iw is the co-
ordinate ring and the defining ideal of the MSV associated to the partial
permutation w as defined in Section 2). This goal is achieved by choosing
c = xi0,w(io) where i0 is the smallest number such that {(p, q) | p > i0, q >
w(i0)} ∩ E>0(w) �= ∅. See Section 2 for unexplained notation.

1.2. Complete intersection MSVs. Since MSVs are Cohen–Macaulay, it
is then natural to ask when such varieties are smooth, complete intersection,
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or Gorenstein. Classically, characterizations of Gorenstein ladder determi-
nantal varieties are obtained in [Con95], [Con96] and [GM00]. In one-sided
cases, the characterization can be generalized as the following. Recall that
there exists a characterization of smooth (respectively, Gorenstein) Schubert
varieties [LS90] (respectively, [WY06]). Since the singular (respectively, non-
Gorenstein) locus of a Schubert variety is closed and invariant under the
Borel subgroup action, the opposite big cell must be contained in the singular
(respectively, non-Gorenstein) locus. Hence, a Schubert variety is smooth (re-
spectively, Gorenstein) if and only if its corresponding MSV is so. Therefore,
one can deduce a criterion of smooth (respectively, Gorenstein) MSVs by the
corresponding result for Schubert varieties. See [WY06, Section 3.5] for more
details.

The second goal of this paper is to characterize complete intersection MSVs.
We explain the characterization as the following. See Sections 2 and 5 for
unexplained notation and more details.

Theorem (Theorem 5.2). The matrix Schubert variety Xw associated to
a permutation w is a complete intersection if and only if, for any (p, q) in the
diagram of w with rp,q(w)> 0, that is, (p, q) ∈D>0(w), w(p,q) is a permutation

matrix in GLrp,q(w) such that Xw(p,q)
is a complete intersection. Here, w(p,q)

is the connected (solid) square submatrix of size rp,q(w) whose southeast corner
lies at (p− 1, q− 1). In fact, in this case{

xp,q | (p, q) ∈D=0(w)
}
	
{
detX(p,q) | (p, q) ∈D>0(w)

}
is a set of generators of Iw with cardinality |D(w)|, the codimension of Xw in
Mn×n, where X(p,q) is the connected (solid) square submatrix of size rp,q(w)+

1 whose southeast corner lies at (p, q).

Theorem 5.2 generalizes a result in [GS95] for one-sided ladder determi-
nantal varieties. The proof of Theorem 5.2 uses Nakayama’s lemma and the
properties of Schubert determinantal ideals established in [KM05].

After this work is finished, A. Woo and H. Ulfarsson give a criterion of lo-
cally complete intersection Schubert varieties. Theorem 5.2 may be recovered
by their criterion (see [ÚW13, Corollary 6.3] and the comment after that).

1.3. This paper is organized as follows. We will recall some preliminary
facts about matrix Schubert varieties as well as tight closure theory in Sec-
tions 2 and 3, respectively. The proof of F -rationality of MSVs is in Section 4.
Section 5 is devoted to the characterization of complete intersection MSVs.

2. Matrix Schubert varieties

We recall some fundamental facts about matrix Schubert varieties (see
[Ful92], [KM05] and [MS05] for more information).
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Denote Ml×m the space of l×m matrices over a field K. An l×m matrix
w ∈ Ml×m is called a partial permutation if all entries of w are equal to 0
except for at most one entry equal to 1 in each row and column. If l=m and
w ∈GLl, then w is called a permutation. An element w in the permutation
group Sn will be identified as a permutation matrix (also denoted by w) in
GLn via

wi,j =

{
1 if w(i) = j,

0 otherwise.

Let K[X] be the coordinate ring of Ml×m where X= (xi,j) is the generic l×m
matrix of variables. For a matrix Z ∈Ml×m, denote Z[p,q] the upper-left p× q
submatrix of Z. Similarly, X[p,q] denotes the upper-left p× q submatrix of X.
The rank of Z[p,q] will be denoted by rank(Z[p,q]) := rp,q(Z).

Given a partial permutation w ∈Ml×m, the matrix Schubert variety Xw is
the subvariety

Xw =
{
Z ∈Ml×m | rp,q(Z)≤ rp,q(w) for all p, q

}
in Ml×m. The classical (one-sided ladder) determinantal varieties are special
examples of MSVs.

It is known that MSVs are reduced and irreducible. Denote

Rw =K[Xw] =K[X]/Iw

the coordinate ring of Xw. The defining ideal Iw of Xw (called Schubert
determinantal ideal) is generated by all minors of size rp,q(w) + 1 in X[p,q].
One can reduce the generating set of Iw as the following. Consider the diagram
of w

D(w) =
{
(i, j) ∈ [1, l]× [1,m] : w(i)> j and w−1(j)> i

}
,

that is, D(w) consists of elements that are neither due east nor due south of
a nonzero entry of w. The essential set of w is defined to be

E(w) =
{
(p, q) ∈D(w) : (p+ 1, q) /∈D(w) and (p, q+ 1) /∈D(w)

}
.

One can check that (see [Ful92, Lemma 3.10])

Iw =
〈
minors of size rp,q(w) + 1 in X[p,q] : (p, q) ∈D(w)

〉
(2.1)

=
〈
minors of size rp,q(w) + 1 in X[p,q] : (p, q) ∈ E(w)

〉
.

Also, the codimension of Xw in Ml×m is the cardinality |D(w)| of D(w) which
is actually the Coxeter length of w when w is a permutation. We often need to
consider certain subsets of D(w) or E(w). For that, we will put the conditions
as subscripts to indicate the constraints. For examples, D=0(w) = {(p, q) ∈
D(w) | rp,q(w) = 0} and D>0(w) = {(p, q) ∈D(w) | rp,q(w)> 0}.

Questions on Xw for a partial permutation w ∈ Ml×m is often reduced
to the cases where w is a permutation. More precisely, extend w to the
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permutation w̃ ∈ Sn, n= l+m via

w̃(i) =

⎧⎪⎨⎪⎩
j if wi,j = 1 for some j,

min{[m+ 1, n] \ {w̃(1), . . . , w̃(i− 1)}} if wi,j = 0 for all j,

min{[1, n] \ {w̃(1), . . . , w̃(i− 1)}} if i > l.

Then D(w) =D(w̃), E(w) = E(w̃), and the defining ideals Iw and Iw̃ share
the same set of generators. Therefore,

(2.2) Xw̃
∼=Xw ×Kn2−lm.

The following substantial results due to A. Knutson and E. Miller is in-
dispensable in the proofs of our main theorems. Recall that a term order
on K[X] is called antidiagonal if the initial term of every minor of X is its
antidiagonal term. We will fix an antidiagonal term order < and simply write
in(I), in(f) as the initial ideal of an ideal I and the leading term of an ele-
ment f , respectively. We will call an antidiagonal term of a minor of size r
an antidiagonal of size r.

Theorem 2.1 ([KM05]). Fix any antidiagonal term order. Then

(1) The generators of Iw in (2.1) constitute a Gröbner basis, that is,

in(Iw) =
〈
antidiagonals of size rp,q(w) + 1 in X[p,q] : (p, q) ∈ E(w)

〉
;

(2) in(Iw) is a Cohen–Macaulay square-free monomial ideal.

3. F -rationality and F -injectivity

Recall that in the theory of tight closure, a Noetherian ring is F -rational
if all its parameter ideals are tightly closed. There is a weaker notion called
F -injectivity. A Noetherian ring R is F -injective if for any maximal ideal m of
R the map on the local cohomology module Hi

m(R) induced by the Frobenius
map is injective for all i. We collect some facts concerning F -rationality and
F -injectivity. See [Hun96], or [BH93] for convenient resources.

Theorem 3.1. Let R be a Noetherian ring.

(1) R is F -rational if and only if Rm is F -rational for any maximal ideal m.
(2) If R is an F -rational ring that is a homorphic image of a Cohen–Macaulay

ring, then RS is F -rational for any multiplicative closed set S of R.

Theorem 3.2. Let (R,m) be a Noetherian local ring.

(1) R is F -injective if and only if R̂ is F -injective.

(2) Suppose in addition R is excellent, then R is F -rational if and only if R̂
is F -rational.

Theorem 3.3. Let R be a positive graded K-algebra, where K is a field of
positive characteristic. Let m be the unique maximal graded ideal of R.

(1) R is F -injective if and only if Rm is F -injective.
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(2) R is F -rational if and only if R[T ] is F -rational for any variable T over R.
(3) Suppose in addition that K is perfect. Then R is F -rational if and only

if Rm is F -rational.

4. Matrix Schubert varties are F -rational

Fix an antidiagonal term order. Denote Jw = in(Iw) the initial ideal of Iw.
In this section, the ground field K is perfect and of positive characteristic. As
mentioned in the Introduction, consider c := xi0,w(i0) where i0 is the smallest
number such that {(p, q) | p > i0, q > w(i0)} ∩ E>0(w) �= ∅. Note that such i0
exists exactly when E>0(w) �= ∅ (or equivalently Rw is not regular). We make
this assumption (existence of c) for Lemmas 4.1, 4.2, 4.3 and set (p0, q0) =
(i0,w(i0)). Note also that for this particular choice of i0,{

(p, q) �= (p0, q0) | p≤ p0, q ≤ q0
}
⊆
[{
(p, q) | p≤ p0

}
∩D(w)

]
(4.1)

⊆D=0(w).

In particular, the only nonzero entry in w[p0,q0] is (p0, q0).
In the following, we use the notation [p1, . . . , pt | q1, . . . , qt] to denote the

size t minor of the submatrix of X involving the rows of indices p1, . . . , pt and
the columns of indices q1, . . . , qt.

Lemma 4.1. Let Δ be any minor in X such that c | inΔ. Then Δ ∈ 〈c〉+Jw
and hence so is Δ− inΔ.

Proof. Write Δ= [pt, . . . , p1, p0, p
′
1, . . . , p

′
s | q′s, . . . , q′1, q0, q1, . . . , qt], so

inΔ=

(
s∏

i=1

xp′
i,q

′
i

)
· c ·
(

t∏
j=1

xpj ,qj

)
,

where p′s > · · ·> p′1 > p0 > p1 > · · ·> pt and q′s < · · ·< q′1 < q0 < q1 < · · ·< qt.
Use induction on t. When t= 0, then Δ = [p0, p

′
1, . . . , p

′
s | q′s, . . . , q′1, q0]. If

s = 0, Δ = c = inΔ is obviously in 〈c〉 + Jw. Suppose s > 0, expanding Δ
along the first row, we get

Δ = (−1)sc
[
p′1, . . . , p

′
s | q′s, . . . , q′1

]
+

s∑
i=1

(−1)i+1xp0,q′
i

[
p′1, . . . , p

′
s | q′s, . . . , q̂′i, . . . , q′1, q0

]
.

Since 0 = rp0,q′
1
(w) = · · · = rp0,q′

s
(w) by (4.1), 〈xp0,q′

1
, . . . , xp0,q′

s
〉 ⊆ Jw and

hence Δ ∈ 〈c〉+ Jw.
Suppose t > 0. For 1≤ i≤ t, set

Δi =
[
pt−1, . . . , p1, p0, p

′
1, . . . , p

′
s | q′s, . . . , q′1, q0, q1, . . . , q̂i, . . . , qt

]
.

Note that c | inΔi for 1≤ i≤ t, since c is on the antidiagonal of Δi (the row
deleted is above c and the column deleted is to the right of c). So 〈Δi | 1≤
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i≤ t〉 ⊆ 〈c〉+ Jw by the inductive hypothesis. Again, expanding Δ along the
first row, we see that

Δ ∈ 〈Δi | 1≤ i≤ t〉+ 〈xpt,q′
j
| j = 1, . . . , s〉+ 〈xpt,q0〉.

Once again [〈xpt,q′
j
| j = 1, . . . , s〉+ 〈xpt,q0〉] ⊆ Jw, since 0 = rpt,q′

1
(w) = · · · =

rpt,q′
s
(w) = rpt,q0(w) by (4.1). Therefore, Δ ∈ 〈c〉+ Jw as desired. �

Lemma 4.2. in(〈c〉+ Iw) = 〈c〉+ Jw.

Proof. The containment in(〈c〉 + Iw) ⊇ 〈c〉 + Jw is obvious. Conversely,
let cf − g ∈ 〈c〉+ Iw for some f ∈K[X] and g ∈ Iw. If in(cf) �= in(g), then
in(cf − g) = in(cf) or in(−g). In either case, in(cf − g) ∈ 〈c〉+ Jw.

So we may assume that in(cf) = in(g). Write g =m1Δ1 +m2Δ2 + · · ·+
muΔu where the mi’s are monomial elements in K[X] and the Δi’s are minors
in the generating set of Iw. If in(cf − g) is a term in cf , then in(cf − g) ∈ 〈c〉.
Also, if in(cf − g) = in(miΔi) for some i, then in(cf − g) =mi

˙in(Δi) ∈ Jw.
Therefore, we may assume that in(cf − g) is a term of mi0Δi0 for some i0
and that in(cf − g) is neither in(mi0Δi0) nor a term of cf . This implies that

in(mi0Δi0) is a term of cf and hence c | in(mi0Δi0) =mi0
˙in(Δi0). If c |mi0 ,

then in(cf −g) ∈ 〈c〉 since it is a term of mi0Δi0 . Otherwise, c | in(Δi0). Then
by Lemma 4.1, Δi0 − in(Δi0) ∈ 〈c〉+ Jw. Therefore, mi0Δi0 − in(mi0Δi0) ∈
〈c〉+ Jw. Now, since in(cf − g) is a term of mi0Δi0 − in(mi0Δi0) and since
〈c〉+ Jw is a monomial ideal, we conclude that in(cf − g) ∈ 〈c〉+ Jw. �

Lemma 4.3. Rw/cRw is F -injective.

Proof. By Theorem 2.1 in [CH97], it suffices to show thatK[X]/ in(〈c〉+Iw)
is Cohen–Macaulay and F -injective. By Lemma 4.2, in(〈c〉+ Iw) = 〈c〉+ Jw.
Also, by Theorem 2.1(2) Jw is a Cohen–Macaulay square-free monomial ideal.
So 〈c〉+ Jw is also a square-free monomial ideal, and hence K[X]/(〈c〉+ Jw)
is F -injective by the discussion in the paragraph before corollary of [CH97]
involving Fedder’s criterion. The Cohen–Macaulayness of K[X]/(〈c〉 + Jw)
follows from that fact the c is a nonzero-divisor on K[X]/Jw.

To see this, first note that c = xi0,w(i0) = xp0,q0 /∈ Jw. Suppose for some
z ∈K[X] we have cz ∈ Jw. We will show that z ∈ Jw. By Theorem 2.1, we
may assume z is a monomial and cz = rD for some monomial r ∈K[X] and
some antigonal D ∈ Jw. If c | r, then z = r

cD ∈ Jw. Therefore, we may assume

c � r. Then c |D. We finish the proof by showing that D
c ∈ Jw.

Write

D =

(
s∏

i=1

xp′
i,q

′
i

)
· c ·
(

t∏
j=1

xpj ,qj

)
,

where p1′ > p′2 > · · · > p′s > p0 > p1 > · · · > pt and q′1 < q′2 < · · · < q′s < q0 <
q1 < · · ·< qt. Since c= xp0,q0 /∈ Jw, either s > 0 or t > 0. Note also that D is



8 J.-C. HSIAO

of size (s+ t+1), so rp′
1,qt

(w)≤ s+ t by Theorem 2.1(1). On the other hand,
as mentioned before the only nonzero entry in w[p,q] is (p0, q0), so

{nonzero entries in w[p′
1,qt]

}
⊇
{
(p0, q0)

}
	 {nonzero entries in w[p1,qt]} 	 {nonzero entries in w[p′

1,q
′
s]
}.

Therefore, 1+rp1,qt(w)+rp′
1,q

′
s
(w)≤ rp′

1,qt
≤ s+ t and hence either rp1,qt(w)<

t or rp′
1,q

′
s
(w)< s. We conclude that either

∏s
i=1 xp′

i,q
′
i
∈ Jw or

∏t
i=1 xpi,qi ∈

Jw, so
D
c ∈ Jw. �

Theorem 4.4. Rw =K[X]/Iw is F -rational.

Proof. By (2.2) and Theorem 3.3(2), we may assume that w ∈ Sn is a
permutation. Use induction on n. If Rw is regular (this includes the cases
n= 1,2), then it is F -rational. Suppose n > 2 and Rw is not regular. Then the
element c= xp0,q0 described as above exists. By Lemma 4.3, Rw/cRw is F -

injective. Hence, R̂w/cR̂w is F -injective by Theorem 3.2(1) and 3.3(1). So by
Theorems 1.2, 3.2(2) and 3.3(3), it suffices to show that Rw[

1
c ] is F -rational.

For (p, q) /∈ Γ= {(p, q) | p= p0 or q = q0}, consider the change of variables

x′
p,q = xp,q − c−1xp,q0xp0,q.

Set X′ = (x′
p,q | (p, q) /∈ Γ). Then

K[X]

[
1

c

]
=K

[
X′][xp,q | (p, q) ∈ Γ

][1
c

]
in the field of fraction of K[X].

Let w′ be the permutation obtained by deleting the p0th row and the q0th
column of w and let Iw′ be the corresponding Schubert determinantal ideal
in K[X′]. Denote I = Iw ·K[X][ 1c ] the extended ideal of Iw and set

I ′ =
[
Iw′ +

〈
xp,q | (p, q) ∈ Γ, p < p0 or q < q0

〉]
·K
[
X′][xp,q | (p, q) ∈ Γ

][1
c

]
.

We claim that

(4.2) I = I ′.

It follows from (4.2) that

K[X]

Iw

[
1

c

]
=

K[X′]

Iw′

[
xp,q | (p, q) ∈ Γ, p≥ p0 and q ≥ q0

][1
c

]
.

By inductive hypothesis, K[X′]/Iw′ is F -rational. So Theorem 3.1(2) and
Theorem 3.3(2) imply that Rw[

1
c ] is F -rational. Therefore, it suffices to prove

(4.2).
We prove (4.2) by showing that the generators of I belongs to I ′ and

conversely. First observe that

(a) For (p, q) ∈ Γ satisfying p < p0 or q < q0, by (4.1) xp,q ∈ Iw.
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(b) Fix a (p, q) satisfying p < p0 or q < q0. Let Δ be an r-minor (r ≥ 1) of
X[p,q] that does not involve the p0th row and the q0th column. Denote
Δ′ the corresponding r-minor in X′

[p,q] (replace xp,q by x′
p,q). Then direct

computation shows

Δ−Δ′ ∈
〈
xp,q | (p, q) ∈ Γ, p < p0 or q < q0

〉
.

By (a), 〈xp,q | (p, q) ∈ Γ, p < p0 or q < q0〉 ⊆ I , so we see that Δ −Δ′ ∈
I ∩ I ′.

(c) Let Δ be any r-minor in X that involves Γ but does not involve c. Then
Δ=Δ′ where Δ′ is obtained from Δ by replacing xp,q((p, q) /∈ Γ) by x′

p,q .
(d) Let Δ be any r-minor in X that does not involve Γ and let Δ′ the cor-

responding r-minor in X′ (replace xp,q by x′
p,q). Denote Δ̃ and Δ̃′ the

(r + 1)-minors obtained by adding the p0th row and q0th column to Δ
and Δ′ , respectively. Then

cΔ= Δ̃′ and cΔ′ = Δ̃.

Now, we are ready to prove (4.2), I = I ′.
We first show that I ⊆ I ′. Fix (p, q) ∈D=0(w)∪ E>0(w). We need to show

that the following set{
xp,q | (p, q) ∈D=0(w)

}
∪
( ⋃

(p,q)∈E>0(w)

{(
rp,q(w) + 1

)
-minors in X[p,q]

})
is contained in I ′. Consider the following cases.

(i) (p, q) ∈D=0(w). We must have p < p0 or q < q0.
(i.1) If (p, q) ∈ Γ, then xp,q ∈ I ′ by construction.
(i.2) If (p, q) /∈ Γ, then (p, q) ∈D=0(w

′) and hence x′
p,q ∈ Iw′ ⊆ I ′. There-

fore, xp,q = x′
p,q + c−1xp0,qxp,q0 ∈ I ′, since either xp0,q or xp,q0 is in

I ′.
(ii) (p, q) ∈ E>0(w), say rp,q(w) = r. Let Δ be any (r+1)-minor in X[p,q]. In

this case, p > p0 by (4.1).
(ii.1) q < q0. In this case, (p, q) ∈ E=r(w

′). If Δ involves the p0th row,
expanding along this row we see that Δ ∈ 〈xp0,q | q < q0〉 ⊆ I ′. Oth-
erwise, let Δ′ be the corresponding (r + 1)-minor in X′

[p,q] and we

have Δ−Δ′ ∈ 〈xp0,q | q < q0〉 ⊆ I ′ by (b). But (p, q) ∈ E=r(w
′) im-

plies Δ′ ∈ Iw′ ⊆ I ′. So Δ ∈ I ′.
(ii.2) q > q0. In this case, (p, q) ∈ E=r−1(w

′).
(ii.2.1) If Δ involves c, then Δ = c(Δ \ [p0 | q0])′ by (d), where

Δ \ [p0 | q0] is the r-minor obtained from Δ by deleting the
row and the column involving c. But (p, q) ∈ E=r−1(w

′)
implies (Δ \ [p0 | q0])′ ∈ Iw′ ⊆ I ′. So Δ ∈ I ′.

(ii.2.2) If Δ involves Γ but does not involve c, then by (c) Δ =Δ′

where Δ′ is obtained from Δ by replacing xp,q((p, q) /∈ Γ) by
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x′
p,q . Expanding Δ′ along the row or column involving Γ, we

see that Δ′ ∈ 〈r-minors in X′
[p,q]〉. But (p, q) ∈ E=r−1(w

′)

implies 〈r-minors in X′
[p,q]〉 ⊆ Iw′ ⊆ I ′. So Δ=Δ′ ∈ I ′.

(ii.2.3) If Δ does not involve Γ, then cΔ = Δ̃′ by (d). Expand-

ing the (r + 2)-minor Δ̃′ along the row and the column

involving Γ, we see that Δ̃′ ∈ 〈r-minors in X′
[p,q]〉. Again,

〈r-minors in X′
[p,q]〉 ⊆ I ′ since (p, q) ∈ E=r−1(w

′). So Δ =

c−1Δ̃′ ∈ I ′.

Conversely, we show that I ′ ⊆ I . Fix (p, q) ∈D=0(w
′) ∪ E>0(w

′). Again,
we show that the set{

x′
p,q | (p, q) ∈D=0

(
w′)}∪( ⋃

(p,q)∈E>0(w′)

{(
rp,q
(
w′)+ 1

)
-minors in X′

[p,q]

})
is contained in I .

(i) (p, q) ∈D=0(w
′).

(i.1) If p < p0 or q < q0, then (p, q) ∈D=0(w) and hence xp,q ∈ I . By (a),
either xp0,q or xp,q0 is in I . Therefore,

x′
p,q = xp,q − c−1xp0,qxp,q0 ∈ I.

(i.2) If p < p0 and q > q0, then (p, q) ∈ E=1(w). Hence, the 2-minor
cx′

p,q = cxp,q − xp0,qxp,q0 ∈ Iw ⊆ I . So x′
p,q ∈ I .

(ii) (p, q) ∈ E>0(w
′). In this case, p > p0 by (4.1). Suppose rp,q(w

′) = r and
let Δ′ be any (r+ 1)-minor in X′

[p,q].

(ii.1) If q < q0, then (p, q) ∈ E=r(w). By (d), cΔ′ = Δ̃. Expanding

Δ̃ along the q0th column, we see Δ̃ ∈ 〈(r + 1)-minors in X[p,q]〉.
But (p, q) ∈ E=r(w) implies 〈(r + 1)-minors in X[p,q]〉 ⊆ I . So Δ′ =

c−1Δ̃ ∈ I .
(ii.2) If q > q0, then (p, q) ∈ E=r+1(w). Again, cΔ′ = Δ̃ by (d). This time

Δ̃ ∈ Iw ⊆ I since (p, q) ∈ E=r+1(w). Therefore, Δ
′ = c−1Δ̃ ∈ I . �

Example 4.5. Consider w = 35142 in S5. Use the same notation as in the
proof of Theorem 4.4. We have c= x13, Iw = 〈x11, x12, x21, x22, [12 | 34], [34 |
12]〉 and Iw′ = 〈x′

21, x
′
22, x

′
24, [34 | 12]′〉. Check that the following elements lie

in 〈x11, x12〉 and hence in I ∩ I ′:

x21 − x′
21, x22 − x′

22, [34 | 12]− [34 | 12]′, [12 | 34]− c−1x′
24.

Therefore, we see that I = I ′ and Rw[c
−1] =Rw′ [x11, x12, c

−1].
In the following diagram, the 1’s indicate the permutation and the dots

indicate the elements in D>0(w).
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1

• 1

1

• 1

1

5. Complete intersection matrix Schubert varieties

We want to characterize the complete intersection MSVs. By (2.2), we
may assume w ∈ Sn. Denote w(p,q) the rp,q(w) × rp,q(w) submatrix of w
involving the rows of indices p − rp,q(w), . . . , p − 1 and the columns of in-
dices q − rp,q(w), . . . , q − 1. Define the submatrix X(p,q) of X similarily.
Furthermore, denote X(p,q) the (rp,q(w) + 1) × (rp,q(w) + 1) submatrix of

X involving the rows of indices p − rp,q(w), . . . , p and the columns of in-
dices q − rp,q(w), . . . , q. If rp,q(w) = 0, X(p,q) = detX(p,q) = xp,q . However,

in order to make our proof more transparent, we will only use X(p,q) for

(p, q) ∈D>0(w).
Recall that the codimension of Xw in Mn×n is |D(w)|. So Xw is a complete

intersection if and only if Iw can be generated by |D(w)| many elements. We
need the following lemma.

Lemma 5.1. Let w be such that Xw is a complete intersection. Then for
any (p, q) ∈D>0(w) and any 1≤ i≤ rp,q(w),

(p− i, q) /∈D(w) and (p, q− i) /∈D(w).

In particular,

D>0(w)⊆ E(w), that is, D>0(w) = E>0(w).

Proof. We only have to prove the first statement. The second statement
follows by definition. Suppose the first statement does not hold, then by
symmetry we may assume that there exist (p0, q0) in D>0(w) and some 1≤
i0 ≤ rp0,q0(w) so that (p0 − i0, q0) ∈D(w) and (p0 − j, q0) /∈D(w) for all 1≤
j < i0.

Denote r := rp0,q0(w). Consider the (r+ 1)-minor

Δ= [p0 − r− 1, . . . , p̂0 − i0, . . . , p0 | q0 − r, . . . , q0]

in the (r + 2) × (r + 1) submatrix XΔ of X involving the rows of indices
p0 − r− 1, . . . , p0 and the columns of indices q0 − r, . . . , q0.

Consider the set

G=
{
xp,q | (p, q) ∈D=0(w)

}
	
{
detX(p,q) | (p, q) ∈D>0(w)

}
	 {Δ}.

Observe that the unions are disjoint and |G| = |D(w)| + 1. Denote m the
maximal graded ideal of K[X]. We claim that

the image of G in Iw/mIw form a(5.1)

K
(
=K[X]/m

)
-linearly independent set.
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By Nakayama’s lemma, Iw is generated by at least |D(w)|+1 elements. This
contradicts the assumption that Xw is a complete intersection.

It remains to show the claim (5.1). Suppose( ∑
(p,q)∈D=0(w)

cp,qxp,q

)
+

( ∑
(p,q)∈D>0(w)

cp,q detX(p,q)

)
+ cΔΔ ∈mIw,

where cp,q and cΔ are in K. Notice mIw is a homogeneous ideal whose gen-
erators are of degree at least 2. This implies cp,q = 0 for all (p, q) ∈D=0(w)
since otherwise we will have an element in mIw that has a nonzero degree 1
part. Therefore,

F :=

( ∑
(p,q)∈D>0(w)

cp,q detX(p,q)

)
+ cΔΔ ∈mIw.

Fix any antidiagonal term order on K[X]. Then in(F ) is the antidiagonal
term of one of the minors in{

detX(p,q) | (p, q) ∈D>0(w)
}
	 {Δ}.

So in(F ) is in the generating set of in(Iw) described in Theorem 2.1(1). On
the other hand, F ∈ mIw implies that there exists an antidiagonal δ in the
generating set of in(Iw) described in Theorem 2.1(1) such that δ is a factor
of in(F ) but δ �= in(F ). This means that δ ∈ in(Iw) is an antidiagonal in one
of the submatrices of the matrices in{

X(p,q) | (p, q) ∈D>0(w)
}
	 {XΔ},

and that δ is of size ≤ rp,q(w) (if δ is in X(p,q)) or of size ≤ rp0,q0(w) (if δ is in

XΔ). This is impossible in view of Theorem 2.1(1). Therefore, we conclude
that cp,q(w) = cΔ = 0 for all (p, q) ∈D(w) and the claim (5.1) is proved. �

Now we are ready for the following theorem.

Theorem 5.2. Let w ∈ Sn. The following conditions are equivalent:

(1) Xw is a complete intersection,
(2) for any (p, q) ∈ D>0(w), w(p,q) is a permutation in Srp,q(w) such that

Xw(p,q)
is a complete intersection.

In this case,{
xp,q | (p, q) ∈D=0(w)

}
	
{
detX(p,q) | (p, q) ∈D>0(w)

}
is a set of generators for Iw.

Proof. The conditions in (2) shows that for any (p, q) ∈D>0(w) the only
nonzero entries of w[p,q] appear in w(p,q), so all size (rp,q(w)+1) minors except
detX(p,q) belong to 〈xp,q | (p, q) ∈ D=0(w)〉. Therefore, the last statement

follows immediately from (2.1) and the equivalence of (1) and (2).
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We prove (2) implies (1). Let (p1, q1), . . . , (pt, qt) be all the elements in
D>0(w) satisfying {

(p, q) | p≥ pi, q ≥ qi
}
∩D>0(w) = ∅.

Denote ri = rpi,qi(w) and wi = w(pi,qi) ∈ Sri . By the assumptions in (2), the

diagram D(wi) of wi is contained in D(w). Also, the ideal Iwi of Xwi is
generated by |D(wi)| many elements, since Xwi is a complete intersection.
Note also that the conditions in (2) and the choice of (pi, qi) imply that D(w)
can be decomposed as{

(p, q)
∣∣∣ (p, q) ∈D=0(w)

∖ t⊔
i=1

D(wi)

}
	
(

t⊔
i=1

D(wi)

)
	
{
(pi, qi) | 1≤ i≤ t

}
,

where the unions are disjoint. Furthermore, by construction one can check
using (2.1) that

Iw =

〈
xp,q

∣∣∣ (p, q) ∈D=0(w)
∖ t⊔

i=1

D(wi)

〉
+

t∑
i=1

Iwi +

t∑
i=1

〈detX(pi,qi)
〉.

So Iw is generated by∣∣∣∣∣
{
(p, q) ∈D=0(w)

∣∣∣ (p, q) /∈ t⊔
i=1

D(wi)

}∣∣∣∣∣+
t∑

i=1

∣∣D(wi)
∣∣+ t=

∣∣D(w)
∣∣

many elements. Therefore, Xw is a complete intersection.
To prove (1) implies (2), let (p, q) ∈D>0(w) and use induction on rp,q(w).

When rp,q(w) = 1, we must have wp−1,q−1 = 1 since otherwise either (p −
1, q) ∈ D=1(w) or (p, q − 1) ∈ D=1(w) which contradicts Lemma 5.1. Also,
Xw(p,q)

is the affine line, so we are done for rp,q(w) = 1.

Suppose rp,q(w)> 1 and denote r = rp,q(w). By Lemma 5.1,

(p− i, q) /∈D(w) and (p, q− i) /∈D(w), for i= 1, . . . , r.

This implies that rank(w(p,q)) = r and w(p,q) ∈ Sr. Moreover, consider the
diagram D(w(p,q)). This is exactly the part of the diagram D(w) involving
the rows of indices p− r, . . . , p− 1 and the columns of indices q− r, . . . , q− 1.
For any (p′, q′) ∈ D>0(w(p,q)), rp′,q′(w(p,q)) = rp′,q′(w) < r. So by inductive
hypothesis, w(p,q) ∈ Sr satisfies the conditions in (2). Therefore, by the im-

plication of (2) ⇒ (1) we just proved, Xw(p,q)
is a complete intersection as

desired. �

Example 5.3. Consider w ∈ S6. Again, In the following diagrams the 1’s
indicate the permutation and the dots indicate the elements in D>0(w).

(1) If w = 361452, then Xw is not a complete intersection since D>0(w) =
{(2,4), (2,5), (4,2), (5,2)} but (2,5) /∈ E>0(w).
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1

• • 1

1

• 1

• 1

1

(2) If w = 352614, then D>0(w) = {(2,4), (4,4)} = E>0(w). But Xw is still
not a complete intersection since w(4,4) /∈ S2. So we see that the condition

D>0(w) = E>0(w) is not sufficient for Xw to be a complete intersection.

1

• 1

1

• 1

1

1

(3) If w = 462153, then Xw is a complete intersection, and Iw is generated
by {xi,j | 1≤ i≤ 2,1≤ j ≤ 3} ∪ {x31,detX(2,5),detX(5,3)}.

1

• 1

1

1

• 1

1
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85. MR 2143072

[CH97] A. Conca and J. Herzog, Ladder determinantal rings have rational singularities,
Adv. Math. 132 (1997), no. 1, 120–147. MR 1488240

[Con95] A. Conca, Ladder determinantal rings, J. Pure Appl. Algebra 98 (1995), no. 2,

119–134. MR 1319965

[Con96] A. Conca, Gorenstein ladder determinantal rings, J. Lond. Math. Soc. (2) 54
(1996), no. 3, 453–474. MR 1413891

[Ful92] W. Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal

formulas, Duke Math. J. 65 (1992), no. 3, 381–420. MR 1154177

http://www.ams.org/mathscinet-getitem?mr=1251956
http://www.ams.org/mathscinet-getitem?mr=2107324
http://www.ams.org/mathscinet-getitem?mr=2143072
http://www.ams.org/mathscinet-getitem?mr=1488240
http://www.ams.org/mathscinet-getitem?mr=1319965
http://www.ams.org/mathscinet-getitem?mr=1413891
http://www.ams.org/mathscinet-getitem?mr=1154177


ON MATRIX SCHUBERT VARIETIES 15

[GL00] N. Gonciulea and V. Lakshmibai, Singular loci of ladder determinantal varieties
and Schubert varieties, J. Algebra 229 (2000), no. 2, 463–497. MR 1769284

[GM00] N. Gonciulea and C. Miller, Mixed ladder determinantal varieties, J. Algebra
231 (2000), no. 1, 104–137. MR 1779595

[GS95] D. Glassbrenner and K. E. Smith, Singularities of certain ladder determinantal
varieties, J. Pure Appl. Algebra 101 (1995), no. 1, 59–75. MR 1346428

[Har98] N. Hara, A characterization of rational singularities in terms of injectivity of
Frobenius maps, Amer. J. Math. 120 (1998), no. 5, 981–996. MR 1646049

[Hun96] C. Huneke, Tight closure and its applications, CBMS Regional Conference
Series in Mathematics, vol. 88, published for the Conference Board of the
Mathematical Sciences, Washington, DC, 1996. With an appendix by Melvin

Hochster. MR 1377268
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