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CIRCLE DISCREPANCY FOR CHECKERBOARD MEASURES

MIHAIL N. KOLOUNTZAKIS AND IOANNIS PARISSIS

Abstract. Consider the plane as a union of congruent unit
squares in a checkerboard pattern, each square colored black or

white in an arbitrary manner. The discrepancy of a curve with

respect to a given coloring is the difference of its white length

minus its black length, in absolute value. We show that for ev-
ery radius t ≥ 1 there exists a full circle of radius either t or 2t

with discrepancy greater than c
√
t for some numerical constant

c > 0. We also show that for every t ≥ 1 there exists a circular

arc of radius exactly t with discrepancy greater than c
√
t. Fi-

nally, we investigate the corresponding problem for more general

curves and their interiors. These results answer questions posed
by Kolountzakis and Iosevich.

1. Introduction

In this note, we take up the investigation, initiated in [3] and continued
in [2], concerning the discrepancy of various geometrical shapes with respect
to non-atomic measures (colorings). In order to discuss the problems, we are
interested in we need to introduce some notation. As in [2], [3], we divide the
Euclidean plane R

2 into the unit cells

Qp
def
= [p1, p1 + 1)× [p2, p2 + 1), p= (p1, p2) ∈ Z

2,
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and color each one of the cells either black or white. Thus, a checkerboard
coloring f of the plane is a function

f : R2 →{−1,+1},
such that f is constant on each unit cell Qp. Now let S be a simple curve
lying in the checkerboard-plane and f be a coloring as before. We define the
discrepancy of S with respect to the given coloring f to be the difference of the
“white” length of S against the “black” length of S, in absolute value. In [3], it
was proved that for any checkerboard coloring there exist arbitrarily long line
segments I with discrepancy at least c

√
|I|, for some numerical constant c > 0.

On the other hand in [2], the authors proved that for arbitrarily large R> 0
there exists a circular arc of radius comparable to R which has discrepancy
at least c

√
R for some numerical constant c > 0. The authors in [2] also

ask whether there is a full circle C with large discrepancy. We answer this
question in a strong form by showing that for every radius t≥ 1 there exists
a full circle of radius either t or 2t with discrepancy at least c

√
t. Noting

by C(x, t) the circle of radius x ∈ R
2 and radius t > 0, we have the following

theorem.

Theorem 1.1. Let f be a checkerboard coloring of the plane as before and
let t≥ 1. There exists a x ∈R

2 such that

either

∣∣∣∣∫
C(x,t)

f

∣∣∣∣≥ ct
1
2 or

∣∣∣∣∫
C(x,2t)

f

∣∣∣∣≥ c(2t)
1
2 ,

for some numerical constant c > 0.

We also show that if we just care about finding arcs with large discrepancy,
then we can do so for any fixed radius t≥ 1.

Theorem 1.2. Let f be a checkerboard coloring of the plane as before and
let t≥ 1. There exists a circular arc K of radius t such that∣∣∣∣∫

K

f

∣∣∣∣≥ ct
1
2 ,

for some numerical constant c > 0.

The results in [2], [3] as well as Theorem 1.1 and Theorem 1.2, are direct
consequences of their finite counterparts. To make this precise, let N be a

positive integer and write QN for the square QN
def
= [0,N)2. We now consider

QN as a union of congruent unit cells in the form

Q(p)
def
= p+ [0,1)2, p= (p1, p2) ∈G,

where G is the part of the lattice Z2 that lies in QN , that is G
def
= {(p1, p2) : 0≤

p1, p2 ≤N − 1}. A coloring of QN will be a function of the form

fN : QN →{−1,+1}, fN constant in each cell Q(p).
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We extend fN to the whole plane R
2 by setting fN ≡ 0 outside QN . The

discrepancy of a circle C(x, t) with center x ∈ R
2 and radius t > 0 is defined

as

Dt(fN , x)
def
=

∫
C(x,t)

fN = (fN ∗ σt)(x),

where σt is the arc-length measure on a circle of center 0 and radius t. A prob-
lem that arises is that discrepancy of circles with respect to a finite coloring in
general only corresponds to discrepancy of arcs with respect to a coloring of
the whole plane. The reason of course is that a circle C(x, t) might intersect
QN , and even have large discrepancy with respect to the finite coloring of
QN , without necessarily lying entirely inside QN .

For example, Iosevich and the first author prove in [2, Theorem 1] that for
any coloring fN of QN , there exists a circular arc K of radius R, N/5<R<
N/4, with ∣∣∣∣∫

K

fN

∣∣∣∣≥ cN
1
2 ,

for some numerical constant c > 0. The authors are not able to conclude that
there is a full circle with large discrepancy since their main tool is to show
that the L2-type discrepancy

1

N3

∫ N/4

N/5

∫
R2

∣∣Dt(fN , x)
∣∣2 dxdt,

is large. However, the previous L2 integral takes into account arcs as well as
full circles. Furthermore, the averaging in the radial variable results to circles
or circular arcs of radius comparable to N instead of radius exactly N .

In this note we partially fix the previous two problems by avoiding the
radial averaging. We also show that circles that do not lie entirely inside QN

do not significantly contribute to the L2 norm ‖Dt(f, ·)‖2L2 + ‖D2t(f, ·)‖2L2

when N � t2. This results to a full circle of radius either t or 2t with large
discrepancy if t is small comparable to N .

Theorem 1.1 is an immediate consequence of the following theorem:

Theorem 1.3. Let t≥ 1 and for a positive integer N ≥ 100t2 consider any
finite coloring fN : QN →{−1,+1} of QN . There exists x ∈ R such that the
circle C(x,2t)⊂QN and

either

∣∣∣∣∫
C(x,t)

fN

∣∣∣∣≥ ct
1
2 or

∣∣∣∣∫
C(x,2t)

fN

∣∣∣∣≥ c(2t)
1
2 ,

where c > 0 is some numerical constant.

Similarly, Theorem 1.2 is a consequence of:
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Theorem 1.4. Let fN : QN → {−1,+1} be a finite coloring of QN and
N � t. There exists a circle C of radius t such that∣∣∣∣∫

C

fN

∣∣∣∣≥ c
√
t,

where c > 0 is some numerical constant.

Remark 1.1. Note that in Theorem 1.4 we cannot guarantee that the circle
C is contained in QN . Thus, Theorem 1.4 only results to an arc of radius t
in the infinite coloring of the plane with discrepancy ∼

√
t.

We note that discrepancies with respect to non-atomic colorings have been
considered by Rogers in [5], [6] and [7] where the author considers, among
other things, the discrepancy of lines and half spaces with respect to finite
colorings of the plane. Rogers proves lower bounds for the discrepancy of
these families of sets with respect to generalized colorings. His results do not
seem to be comparable to the results in this paper.

The rest of the paper is organized as follows. In Section 3 we use the classi-
cal asymptotic estimates for the Fourier transform of the arc-length measure
on the circle in order to prove Theorem 1.3. In Section 4 we prove Theo-
rem 1.4 by an appeal to the asymptotic estimates of the Fourier transform of
the arc-length measure together with an appropriate Poincaré-type inequality.
Finally in Section 5 we discuss the discrepancy of more general families of sets
with respect to a coloring of the plane. The corresponding lower bounds are
contained in Theorem 5.1. The main tool for these estimates are lower bounds
for the averages of Fourier transforms of indicator functions. For the sake of
completeness, we include these estimates and their proofs in Section 5.1.

2. Notations

Throughout the paper, c denotes a numerical positive constant which might
change even in the same line of text. We often suppress numerical constants
by using the symbol �. Thus, A�B means that A≤ cB for c as described.
Likewise the notation A�B means that A�B and A�B. We write B(x, r)
for the Euclidean disk of radius r > 0 centered at x ∈ R

2. We also write
C(x, r) = ∂B(x, r) for the circle of radius r > 0, centered at x ∈ R

2. For the
unit circle of R2 we also use the symbol S1 =C(0,1).

3. Full circles of large discrepancy

Recall that the discrepancy of a circle C(x, t) with respect to the coloring
fN of the square QN = [0,N)2 is defined as

Dt(fN )(x)
def
=

∫
C(x,t)

f = (f ∗ σt)(x),
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where σt is the arc-length measure on the circle C(0, t). Observe that the
function (fN ∗ σt)(x) has support in QN + B(0, t) in general. However in
Theorems 1.3 and 1.4 we only need to consider values t�N so the measure
of the support is comparable to N2. We thus study the L2 discrepancy

Dt(fN ,2)
def
=

(
1

N2

∫
R2

∣∣(fN ∗ σt)(x)
∣∣2 dx) 1

2

,

since we obviously have the bound

sup
x∈R2

∣∣Dt(fN )(x)
∣∣�Dt(fN ,2).

Furthermore, denoting by σ̂1 the Fourier transform of the measure dσ1,

σ̂1(ξ) =

∫
S1

e−2πix′·ξ dσ1

(
x′),

we have that

Dt(fN ,2)2 =
t2

N2

∫
R2

∣∣f̂N (ξ)
∣∣2∣∣σ̂1(tξ)

∣∣2 dξ.
The following lemma is the most essential part of the proof of Theorem 1.3.

Lemma 3.1. For all |ξ| ≥ 1
2π we have that∣∣σ̂1(ξ)

∣∣2 + ∣∣σ̂1(2ξ)
∣∣2 � 1

|ξ| .

Proof. Setting |ξ|= r we express the radial function σ̂1 by the well-known
formula

σ̂1(r) = 2πJ0(2πr),

where J0 is the 0th order Bessel function. We use the asymptotic estimate

J0(r)�
1√
r

(
cos

(
r− π

4

)
+ e(r)

)
,

where the error term satisfies ∣∣e(r)∣∣≤ 1

5r
,

for r ≥ 1. This is classical as r→+∞ but with a little more effort one can get
the validity of the previous estimate for all r ≥ 1. The previous asymptotic
estimate easily implies that∣∣σ̂1(r)

∣∣2 + ∣∣σ̂1(2r)
∣∣2 � 1

r
,

for all r ≥ 7
2π . For 1

2π ≤ r ≤ 7
2π one can just directly check the zeros of J0 to

see that there is no r so that J0(2πr) = J0(4πr) = 0. We refer the interested
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reader to [4, p. 113, Section 6.3] where an identical argument is used for the
derivation of a formula involving the 1st order Bessel function. �

Corollary 3.1. For any t≥ 1 and any positive integer N , we have that

Dt(fN ,2)2 +D2t(fN ,2)2 � t.

Proof. We use Plancherel’s theorem to write

Dt(fN ,2)2 +D2t(fN ,2)2 =
1

N2

∫
R2

∣∣f̂N (ξ)
∣∣2(∣∣σ̂t(ξ)

∣∣2 + ∣∣σ̂2t(ξ)
∣∣2)dξ

� 1

N2

∫
|ξ|≤ 1

2π

∣∣f̂N (ξ/t)
∣∣2(∣∣σ̂1(ξ)

∣∣2 + ∣∣σ̂1(2ξ)
∣∣2)dξ

+
1

N2

∫
|ξ|> 1

2π

∣∣f̂N (ξ/t)
∣∣2(∣∣σ̂1(ξ)

∣∣2 + ∣∣σ̂1(2ξ)
∣∣2)dξ

def
= I + II .

For I observe that J0(2π·) has no root in the range |ξ| ≤ 1
2π . We immediately

get

|I|� 1

N2

∫
|ξ|≤ 1

2π

∣∣f̂N (ξ/t)
∣∣2 dξ ≥ t2

N2

∫
|ξ|≤ 1

2πt

∣∣f̂N (ξ)
∣∣2 dξ.

For II , we use Lemma 3.1 to write

|II |� 1

N2

∫
|ξ|> 1

2π

∣∣f̂N (ξ/t)
∣∣2 1

|ξ| dξ �
t

N2

∫
[− 1

2 ,
1
2 ]

2\{|ξ|> 1
2πt}

∣∣f̂N (ξ)
∣∣2 dξ.

Combining the estimates and remembering that t≥ 1 we get

Dt(fN ,2)2 +D2t(fN ,2)2 � t

N2

∫
[− 1

2 ,
1
2 ]

2

∣∣f̂N (ξ)
∣∣2 dξ � t,

where we have used that∣∣f̂N (ξ)
∣∣2 = ∣∣∣∣∣ sin(πξ1)πξ1

sin(πξ2)

πξ2

N−1∑
j,k=0

zjke
2πi(jξ1+kξ2)

∣∣∣∣∣
2

(3.1)

�
∣∣∣∣∣
N−1∑
j,k=0

zjke
2πi(jξ1+kξ2)

∣∣∣∣∣
2

for ξ ∈ [− 1
2 ,

1
2 ]

2. This in turn is a consequence of the elementary estimate

| sin(πx)| ≥ 2|x| for |x| ≤ 1
2 . �

Proof of Theorem 1.3. Given t ≥ 1 let N ≥ Bt2 be a positive integer for
some numerical constant B > 0 to be determined later. By Corollary 3.1, we
have that

Ds(fN ,2)�
√
s,
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where s is equal to either t or 2t. Consider the cube Q1
def
= [s,N − s]2. We

have ∫
[s,N−s]2

∣∣Ds(fN )(x)
∣∣2 dx

=Ds(fN ,2)2 − 1

N2

∫
[−s,N+s]2\[s,N−s]2

∣∣fN ∗ dσs(x)
∣∣2 dx

� s
(
1− 24s2/N

)
� s,

if B is large enough, say B ≥ 100. Since all the circles with centers in [s,N−s]2

and radius s are contained in QN this proves Theorem 1.3. �

4. Single radius discrepancy for arcs

Theorem 1.3 solves the problem of finding a full circle with large discrep-
ancy. There is one element however that is not very satisfactory, namely the
fact that we cannot guarantee that for every radius t≥ 1 there corresponds
a circle of radius exactly t with large discrepancy. The problem is caused by
the roots of σ̂1(ξ) which allow the expression∫

R2

∣∣f̂(ξ)∣∣2∣∣σ̂t(ξ)
∣∣2 dξ

to become small. When N � t we can deal with this problem by essentially
throwing away small neighborhoods of the roots of σ̂1 and showing that we

don’t loose much of the L2 mass of the function f̂ .
We begin by analyzing the behavior of σ̂1(|ξ|). By standard estimates, we

have the asymptotic expansion

(4.1) σ̂1(ξ) = σ̂1

(
|ξ|

)
= 2|ξ|− 1

2 cos

(
2π|ξ| − π

4

)
+O

(
|ξ|− 3

2

)
, |ξ| →+∞;

see for example [8]. Observe that the cosine term in the asymptotic formula
above vanishes exactly when

|ξ|= βk
def
=

(
k

2
+

3

8

)
, k = 0,1,2, . . . .

For a small parameter 0<w < 1
8 , we define the neighborhoods

Aw(βk)
def
=

{
ξ ∈R

2 :
∣∣|ξ| − βk

∣∣<w
}
.

Observe that our choice of w implies that the Aw’s do not overlap. The
following lemma analyzes the behavior of σ̂1 away from the annuli Aw.

Lemma 4.1. For every sufficiently small w > 0 there exists a constant c(w)
such that ∣∣σ̂1

(
|ξ|

)∣∣2 �w

{
1
|ξ| , |ξ|> c(w), ξ /∈

⋃
kAw(βk),

1, |ξ| ≤ c(w), ξ /∈
⋃

kAw(γk),
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where γ1 < γ2 < · · ·< γM are the roots of σ̂1 in {|ξ|< c(w)}.

Proof. By (4.1) there exist constants c1, c2 > 0 such that for |ξ| > c1 we
have ∣∣σ̂1

(
|ξ|

)∣∣2 � 1

|ξ|

(∣∣∣∣cos(2π|ξ| − π

4

)∣∣∣∣2 − c2
|ξ|

)
.

Now the minimum of the cosine term in the region {|ξ|> c1} \
⋃

kAw(βk) is
obviously achieved when ||ξ| − βk|=w for some k. If w < 1

4 we have∣∣∣∣cos(2π|ξ| − π

4

)∣∣∣∣≥ 4
∣∣|ξ| − βk

∣∣= 4w.

We can thus estimate∣∣σ̂1

(
|ξ|

)∣∣2 � 1

|ξ|

(
16w2 − c2

|ξ|

)
�w

1

|ξ| ,

whenever |ξ|> c2
8w2

def
= c(w) and ξ /∈

⋃
kAw(βk).

Now there are finitely many roots of σ̂1(ξ) in the ball {|ξ| ≤ c(w)} and let us
denote them by γ1 < γ2 < · · ·< γM . By compactness we have that |σ̂1(ξ)|2 �w

1 whenever |ξ| ≤ c(w) and x /∈
⋃

kAw(γk). In order to make sure that all
the annuli are non-overlapping, we have to take w < min{1

8 ,
1
2 mink(γk+1 −

γk), β0 − γM} def
= wo. �

Lemma 4.1 can be used to obtain a favorable estimate for Dt(f,2) as fol-
lows. Adopting the notations of Lemma 4.1 and invoking Plancherel’s theo-
rem, we write for every w <wo small enough (remember t�N )

Dt(fN ,2)2 � 1

N2

∫
{|ξ|<c(w)}\

⋃
k Aw(γk)

∣∣f̂N (ξ/t)
∣∣2∣∣σ̂1

(
|ξ|

)∣∣2 dξ
+

1

N2

∫
{c(w)<|ξ|<t}\

⋃
k Aw(βk)

∣∣f̂N (ξ/t)
∣∣2∣∣σ̂1

(
|ξ|

)∣∣2 dξ
�w

1

N2

∫
{|ξ|<c(w)}\

⋃
k Aw(γk)

∣∣f̂N (ξ/t)
∣∣2 dξ

+
1

N2

∫
{c(w)<|ξ|<t}\

⋃
k Aw(βk)

∣∣f̂N (ξ/t)
∣∣2 1

|ξ| dξ.

Setting Ew
def
= (

⋃
kAw(γk)) ∪ (

⋃
kAw(βk)) and combining the previous esti-

mates we have

Dt(fN ,2)2 �w
1

tN2

∫
{|ξ|<t}\Ew

∣∣f̂N (ξ/t)
∣∣2 dξ(4.2)

=
t

N2

∫
B(0,1)\ 1

tEw

∣∣f̂N (ξ)
∣∣2 dξ.
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The following Poincaré-type inequality will allow us to show that the L2

norm of f̂N on B(0,1) \ 1
tEw is comparable to the full L2 norm of f̂N .

Proposition 4.1. For any positive integer d≥ 1, let B =B(0,R)⊂R
d be

a Euclidean ball in the d-dimensional Euclidean space, centered at the origin,

and g ∈C1(B). Suppose that 0< β1 < β2 < · · ·< βN <R. We set β0
def
= 0 and

βN+1
def
= R and

β
def
= min

1≤n≤N+1
(βn − βn−1).

For k = 1,2, . . . ,N , we set

Aw(βk)
def
=

{
ξ ∈R

d :
∣∣|ξ| − βk

∣∣<w
}
.

Then for 0<w < β/3 we have that∫
B

∣∣g(x)∣∣2 � ∫
B\(

⋃N
n=1 Aw(βn))

∣∣g(x)∣∣2 +w2

∫
B

∣∣∇g(x)
∣∣2.

Proof. We first focus on a single annulus As(βn) for some 1≤ n≤N and
some real parameter s in the interval [w,2w). For βn − s < r ≤ βn + s and
u ∈ Sd−1, we have that

g(ru) = g
(
(βn − s)u

)
+

∫ r

βn−s

∂t
(
g(tu)

)
dt.

Using the simple inequality 1
2 (a+b)2 ≤ a2+b2 for a, b ∈R, and the Cauchy–

Schwarz inequality we conclude that∣∣g(ru)∣∣2 � ∣∣g((βn − s)u
)∣∣2 + 2s

∫ βn+s

βn−s

∣∣∂t(g(tu))∣∣2 dt.
Multiplying by rd−1 and integrating for r ∈ [βn − s,βn + s) and u ∈ Sd−1,

we get∫
As(βn)

∣∣g(x)∣∣2 dx
�
∫ βn+s

βn−s

rd−1 dr

∫
Sd−1

∣∣g((βn − s)u
)∣∣2 dσ(d−1)

1 (u)

+ 2s

∫
Sd−1

(∫ βn+s

βn−s

(∫ βn+s

βn−s

∣∣∂t(g(tu))∣∣2 dt)rd−1 dr

)
dσ

(d−1)
1 (u).

Now observe that for w < s ≤ 2w and r, t ∈ [βn − s,βn + s), we have that
r � t� βn. Hence,∫

As(βn)

∣∣g(x)∣∣2 dx� sβd−1
n

∫
S1

∣∣g((βn − s)u
)∣∣2 du+ s2

∫
As(βn)

∣∣∇g(x)
∣∣2 dx.
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Integrating the left-hand side for s ∈ [w,2w), we see that∫ 2w

w

∫
As(βn)

∣∣g(x)∣∣2 dxds�w

∫
Aw(βn)

∣∣g(x)∣∣2 dx.
On the other hand

βd−1
n

∫ 2w

w

∫
S1

∣∣g((βn − s)u
)∣∣2sduds � w

∫
B(0,βn−w)\B(0,βn−2w)

∣∣g(x)∣∣2 dx
≤ w

∫
B(0,βn−w)\B(0,βn−1+w)

∣∣g(x)∣∣2 dx,
since w < β/3. Finally, we readily see that∫ 2w

w

s2
∫
As(βn)

∣∣∇g(x)
∣∣2 dxds�w3

∫
A2w(βn)

∣∣∇g(x)
∣∣2 dx.

Putting these estimates together get

w

∫
Aw(βn)

∣∣g(x)∣∣2 dx � w

∫
B(0,βn−w)\B(0,βn−1+w)

∣∣g(x)∣∣2 dx
+w3

∫
A2w(βn)

∣∣∇g(x)
∣∣2 dx.

Observe that we have
N⋃

n=1

B(0, βn −w) \B(0, βn−1 +w)⊆B
∖(

N⋃
n=1

Aw(βn)

)
and the unions on both sides of the inclusion above are disjoint. Summing in
n we thus get∫

⋃N
n=1 Aw(βn)

∣∣g(x)∣∣2 dx �
∫
B\

⋃N
n=1 Aw(βn)

∣∣g(x)∣∣2 dx
+w2

∫
⋃N

n=1 A2w(βn)

∣∣∇g(x)
∣∣2 dx.

Adding the term
∫
B\

⋃N
n=1 Aw(βn)

|g(x)|2 dx in both sides of the inequality com-

pletes the proof. �

Now Proposition 4.1 and estimate (4.2) will allow us to conclude the proof
of Theorem 1.4:

Proof of Theorem 1.4. Estimate (4.2) and Proposition 4.1 imply that

D2
t (fN ,2) =

1

t

∫
B(0,1)\ 1

t Ew

∣∣f̂N (ξ)
∣∣2 dξ(4.3)

�w
1

t

(∫
B(0,1)

∣∣f̂N (ξ)
∣∣2 dξ − w2

t2

∫
B(0,1)

∣∣∇f̂N (ξ)
∣∣2 dξ).
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Using the bounds∫
B(0,1)

∣∣f̂N (ξ)
∣∣2 dξ � ∫

[− 1
2 ,

1
2 ]

2

∣∣∣∣∣
N−1∑
j,k=0

zjke
2πi(jξ1+kξ2)

∣∣∣∣∣
2

dξ ≥N2

and ∫
B(0,1)

∣∣∇f̂N (ξ)
∣∣2 dξ ≤ ∫

R2

|x|2
∣∣fN (x)

∣∣2 dx�N4

in estimate (4.3) we get

D2
t (fN ,2)� 1

t

(
N2 − w2

t2
N4

)
� t

(
1− cw2

)
,

for some constant c > 0. If w is sufficiently small, we conclude that
Dt(fN ,2)�w

√
t as we wanted to prove. �

Remark 4.1. The calculations in this section show that

Dt(fN ,2)�
√
t,

for N � t. This alone is not enough to conclude the existence of a full circle
with large discrepancy ∼

√
t. Indeed, the argument used in the proof of

Theorem 1.3 requires the validity of the previous estimate for N � t2 while,
here, we only have it for N � t.

5. Discrepancy with respect to general sets

In this section we study the discrepancy of a coloring f of the plane with
respect to more general families of sets. To keep the exposition relatively
simple let us assume that S is a simple, closed, piecewise C1 curve in the
Euclidean plane and let K denote its interior. Let dσS denote the arc-length
measure on S. In the previous sections, we have studied the discrepancy of f
with respect to the family of all dilations and translations of the unit circle.
Here, the relevant families are{

x+ rτK : x ∈R
2, r > 0, τ ∈ SO(2)

}
and {

x+ rτS : x ∈R
2, r > 0, τ ∈ SO(2)

}
.

Note that we introduce rotations which was superfluous in the case of the
circle. Here however it is absolutely essential. Indeed, consider the standard
chessboard-like alternating coloring (i.e., adjacent squares have different col-
ors) and let K be the unit square with its sides parallel to the coordinate
axes. Obviously the discrepancy of this coloring with respect to the dilations
and translations of K (or ∂K) is ∼1 so the problem is trivial. Another option
would be to place certain assumptions on the curvature of ∂K but we will not
pursue this here.
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For x ∈R
2, r > 0 and τ ∈ SO(2), we define

DK(fN , x, τ, r)
def
= (f ∗ χrτK)(x)

and

DS(fN , x, τ, r)
def
= (f ∗ dσrτS)(x).

5.1. Average estimates for the Fourier transform. We will obtain lower
bounds on the discrepancies described above by studying their L2 averages.
The most important ingredient of this approach is the following lemma de-
scribing the average asymptotic behavior of the Fourier transform of dσS and
χK . These estimates are essentially contained in the proof of [4, Theorem 3,
Chapter 6].

Lemma 5.1. Let S be a simple, closed, piecewise C1 curve in the Euclidean
plane and denote by K its interior so that S = ∂K. There exist numerical
constants Ao > 1 and Ro > 0 such that, if R>Ro and A>Ao, then∫

R≤|ξ|≤AR

∣∣χ̂K(ξ)
∣∣2 dξ �A

|S|
R

and ∫
R≤|ξ|≤AR

∣∣d̂σS(ξ)
∣∣2 dξ �A |S|R.

Here |S| denotes the arc-length of S.

Proof. We follow Montgomery from [4, Theorem 3, Chapter 6]. For r > 0,
we set

g(r) =

∫
S1

∣∣χ̂K

(
rξ′

)∣∣2 dσ1

(
ξ′
)
.

Under our assumptions on K, Montgomery proves the asymptotic estimate∫ R

0

g(r)r5 dr � |S|R3,

as R→ +∞. This means that there exist numerical constants Ro, c1, c2 > 0
such that

c1|S|R3 ≤
∫ R

0

g(r)r5 dr ≤ c2|S|R3,

whenever R>Ro. For A> 1 and R>Ro we thus have∫ AR

R

g(r)r5 dr ≥ |S|R3
(
A3c1 − c2

)
� |S|R3

if A>Ao where Ao > 1 is a numerical constant. We conclude that∫
R≤|ξ|≤AR

∣∣χ̂K(ξ)
∣∣2 dξ = ∫ AR

R

g(r)r dr �A |S|/R,

whenever R>Ro and A>Ao. This proves the first estimate of the lemma.
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For the second, we modify the proof of [4, Theorem 3, Chapter 6]. With

h(x) = e−πR2|x|2 Montgomery shows that ‖χK ∗ ∇2h‖22 � |S|/R as R→+∞.
On the other hand, by Green’s theorem we have

χK ∗∇2h=

∫
S

∂h

∂n
(x− y)dσS(y).

Combining these two facts and using Plancherel’s theorem, we get

|S|
R

�
∫
R2

∣∣∣∣ ∂̂h∂n (ξ)

∣∣∣∣2∣∣d̂σS(ξ)
∣∣2 dξ = ∫

R2

|ξ · n|2
∣∣ĥ(ξ)∣∣2∣∣d̂σS(ξ)

∣∣2 dξ
=

∫ +∞

0

∣∣ĥ(r)∣∣2(∫
S1

∣∣ξ′ · n∣∣2∣∣d̂σS

(
rξ′

)∣∣2 dσ(ξ′))r3 dr,
where ĥ(r) = ĥ(|ξ|) =R−2e−πR−2r2 . Let us call

y(r)
def
=

∫
S1

∣∣ξ′ · n∣∣2∣∣ d̂σS

(
rξ′

)∣∣2 dσ(ξ′)≤ ∫
S1

∣∣d̂σS

(
rξ′

)∣∣2 dσ(ξ′).(5.1)

We have ∫ +∞

0

y(r)e−2πr2/R2

r3 dr � |S|R3.

As in Montgomery [4], we use the Hardy–Littlewood Tauberian theorem [1,
Theorem 108] to conclude that∫ R

0

y(r)r3 dr � |S|R3,

as R→+∞. Arguing as in the first part of the proof we conclude that there
exist numerical constants Ro and Ao > 1 such that∫ AR

R

y(r)r3 dr � |S|R3,

whenever R>Ro and A>Ao. By (5.1), we conclude that∫
R≤|ξ|≤AR

∣∣d̂σS(ξ)
∣∣2 dξ ≥ ∫ AR

R

y(r)r dr �A |S|R,

as we wanted to prove. �

5.2. Lower bounds for discrepancy with respect to general sets.
Using the average estimates for the Fourier transform of χK and dσS proved
in the previous paragraph we can now show the desired lower bounds for the
(average) discrepancy.

Theorem 5.1. Let S be a simple, closed, piecewise C1 curve and denote
by K its interior.
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(i) For every positive integer N there exists a x ∈QN , a dilation r �N and
a rotation τ ∈ SO(2) such that

DK(fN , x, r, τ)�K

√
N,

where the implied constant depends only on K.
(ii) For every positive integer N , there exists a x ∈QN , a dilation r �N and

a rotation τ ∈ SO(2) such that

DS(fN , x, r, τ)�K

√
N,

where the implied constant depends only on S = ∂K.

Remark 5.1. As in Theorem 1.4, we cannot guarantee that the sets x+
rτK, x + rτS of the previous theorem are fully contained in QN . Thus,
Theorem 5.1 only implies the existence of a segment of K or S which has
large discrepancy with respect the coloring of the whole plane f .

In order to prove Theorem 5.1, we will consider the average discrepancy

DK(fN ,2)2
def
=

1

N3

∫
SO(2)

∫ βN

aN

(∫
R2

DrτK(fN , x)2 dx

)
dr dτ,

where 0< a< β will be appropriate numerical constants. Similarly, define

DS(fN ,2)2
def
=

1

N3

∫
SO(2)

∫ βN

aN

(∫
R2

DrτS(fN , x)2 dx

)
dr dτ.

The factor 1/N3 is there to almost normalize the measure while dτ is the
normalized Haar measure on SO(2).

Proof of Theorem 5.1. The proofs of (i) and (ii) are essentially identical so
we will just prove (ii). Using Plancherel’s theorem, we have

DS(fN ,2)2

=
1

N3

∫
R2

∣∣f̂N (ξ)
∣∣2(∫ βN

aN

r2
∫
SO(2)

∣∣d̂σS

(
rτ−1ξ

)∣∣2 dτ dr)dξ

=
1

N3

∫
R2

∣∣f̂N (ξ)
∣∣2(∫ β|ξ|N

a|ξ|N

r2

|ξ|3
∫
SO(2)

∣∣d̂σS(rτeξ)
∣∣2 dτ dr)dξ

� 1

N2

∫
|ξ|<1

∣∣f̂N (ξ)
∣∣2 1

|ξ|2
(∫ β|ξ|N

a|ξ|N

∫
SO(2)

∣∣d̂σS(rτeξ)
∣∣2r dτ dr)dξ

=
1

N2

∫
|ξ|<1

∣∣f̂N (ξ)
∣∣2 1

|ξ|2
∫
{a|ξ|N<|y|<β|ξ|N}

∣∣d̂σS(y)
∣∣2 dy dξ

=
1

N2

∫
{a|ξ|N<M}

∣∣f̂N (ξ)
∣∣2 1

|ξ|2
(∫

{a|ξ|N<|y|<β|ξ|N}

∣∣d̂σS(y)
∣∣2)dξ
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+
1

N2

∫
{M<a|ξ|N<aN}

∣∣f̂N (ξ)
∣∣2 1

|ξ|2
∫
{a|ξ|N<|y|<β|ξ|N}

∣∣d̂σS(y)
∣∣2 dy dξ

def
= I + II .

Here we have set eξ =
ξ
|ξ| . Using Lemma 5.1 we get for M >Ro and β/a >Ao,

that

II � 1

N2

∫
{M<a|ξ|N<aN}

∣∣f̂N (ξ)
∣∣2N |S|

|ξ| dξ ≥ |S|
N

∫
{ M

aN <|ξ|<1}

∣∣f̂N (ξ)
∣∣2 dξ.

Now for small ε > 0, we write

I ≥
∫
{ ε

N <|ξ|< M
aN }

∣∣f̂N (ξ)
∣∣2 ∫

{a|ξ|N<|y|<β|ξ|N}

∣∣d̂σS(y)
∣∣2 dy dξ

�S

∫
{ ε

N <|ξ|< M
aN }

∣∣f̂N (ξ)
∣∣2 dξ.

The last estimate is justified since the region {a|ξ|N < |y| < β|ξ|N} is an

annulus inside B(0,Mβ/a), of width at least (β − a)ε, and d̂σS(y) does not
vanish identically on any annulus. Adding the estimates we conclude

DS(fN ,2)2 �S
1

N

∫
{ ε

N <|ξ|<1}

∣∣f̂N (ξ)
∣∣2 dξ

≥ 1

N

(∫
[− 1

2 ,
1
2 ]

2

∣∣f̂N (ξ)
∣∣2 dξ − ∫

|ξ|< ε
N

∣∣f̂N (ξ)
∣∣2 dξ).

Now using the trivial bound ‖f̂N‖2L∞(R2) ≤ ‖fN‖2L1(R2) =N4 and (3.1) we get

DS(fN ,2)2 � 1

N

(
N2 −N4 ε2

N2

)
�N,

if ε is small enough. �
Remark 5.2. By using the same ideas as in the proof of Theorem 1.3,

we can show a stronger result in the special case of the Euclidean ball. In
particular, we have that for every checkerboard coloring f of the whole plane
and every t≥ 1, there is a x ∈R

2 such that

either

∣∣∣∣∫
B(x,t)

f(y)dy

∣∣∣∣�√
t or

∣∣∣∣∫
B(x,2t)

f(y)dy

∣∣∣∣�√
2t.

Remark 5.3. The only limitation in the choice of the set K and the curve
S come from Lemma 5.1. Going back to Montgomery’s proof in [4] one see
that Lemma 5.1 remains valid if K is for example a multiply connected set
and S is replaced by ∂K. Furthermore, the C1 condition of the boundary can
be replaced by the weaker condition that the limit

lim
δ→0

|{x ∈R
2 : dist(x,S)< δ}|

δ
,

exists and is finite.
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