COMPLETELY (q, p)-MIXING MAPS

JAVIER ALEJANDRO CHÁVEZ-DOMÍNGUEZ

Abstract

Several important results for p-summing operators, such as Pietsch's composition formula and Grothendieck's theorem, share the following form: there is an operator T such that $S \circ T$ is p-summing whenever S is q-summing. Such operators were called (q, p)-mixing by Pietsch, who studied them systematically. In the operator space setting, G. Pisier's completely p summing maps correspond to the p-summing operators between Banach spaces. A natural modification of the definition yields the notion of completely (q, p)-mixing maps, already introduced by K. L. Yew, which is the subject of this paper. Some basic properties of these maps are proved, as well as a couple of characterizations. A generalization of Yew's operator space version of the Extrapolation theorem is obtained, via an interpolationstyle theorem relating different completely (q, p)-mixing norms. Finally, some composition theorems for completely p-summing maps are proved.

1. Introduction

The theory of (absolutely) p-summing operators traces its roots back to the works of A. Grothendieck in the 50s [Gro53], but it was not until the late 60s that A. Pietsch clearly defined such operators and started the study of their fundamental properties [Pie67]. Throughout the years, p-summing operators have rightfully earned their place as one of the cornerstones of modern Banach space theory. They have given rise to a wide array of results not only

Received November 22, 2011; received in final form March 26, 2012.
The author was partially supported by NSF grants DMS-0503688 and DMS-0852434. This work was started during the Workshop in Analysis and Probability 2011 at Texas A\&M University.

2010 Mathematics Subject Classification. Primary 46L07. Secondary 47L25, 47B10, 46L52, 47L20.
within the realm of Banach spaces, but also reaching into other areas like harmonic analysis, probability and operator theory. An excellent reference for the general theory of p-summing operators is the book [DJT95]. One of the fundamental properties of p-summing operators, already present in Pietsch's seminal paper [Pie67], is the composition theorem: whenever $p, q, r \in[1, \infty]$ satisfy $1 / p=1 / q+1 / r$, the composition of a q-summing operator followed by an r-summing operator is p-summing. Another celebrated theorem, due to A. Grothendieck, states that every continuous linear operator from L_{1} into a Hilbert space is 1 -summing; therefore, any 2 -summing operator with an L_{1} space as domain is 1-summing. More generally, by a theorem of B. Maurey, any 2 -summing operator defined on a cotype 2 space is 1 -summing. These results share a common theme: in each case we have an operator T (often the identity on a space) and certain values of p and q with the property that $S \circ T$ is p-summing whenever S is q-summing.

Inspired by ideas of Maurey [Mau74], Pietsch [Pie80, Chapter 20] systematically studied the situation described in the previous paragraph and called such operators (q, p)-mixing. Another exposition of the subject, with a more "tensorial" point of view, can be found in [DF93, Section 32]. An analogous study was done by the author in the setting of Lipschitz p-summing and Lipschitz (q, p)-mixing operators [CD].

In the theory of operator spaces, p-summing operators are replaced by the completely p-summing maps of Pisier [Pis98]. There is, of course, a natural notion of completely (q, p)-mixing maps that has already been introduced in [Yew08], but no systematic study of these maps was done there. The present paper aims to fill that void, and it is structured as follows. We start by recalling some basic notation and results from operator space theory, before formally introducing the definition of completely p-summing maps and proving some of their elementary properties. Afterwards, two different characterizations of completely (q, p)-mixing maps are presented. The first one is a "domination" result along the lines of the Pietsch domination theorem for completely p-summing maps due to Pisier [Pis98]. The second one does not clearly correspond to any of the characterizations in the classical case that can be found in [DF93, Section 32], but nevertheless it is used to prove an "interpolation" theorem relating different completely (q, p)-mixing norms which actually is inspired by the classical case. As a byproduct, a strengthening of Yew's quantized extrapolation theorem [Yew08, Thm. 8] is obtained. In the final section, several composition theorems are proved, culminating with a composition theorem for completely p-summing maps: if $1 / r=1 / p+1 / q$, then the composition of a completely p-summing map and a completely q-summing one is completely r-summing.

2. Notation and preliminaries

We only assume familiarity with the basic theory of operator spaces; Pisier's book [Pis03] is an excellent reference for that. We will follow very closely the Pisier's notation from [Pis98], [Pis03]. The letters E, F and G will always denote operator spaces. For an operator space E, a Hilbert space K and $1 \leq p \leq \infty$, let us define the spaces $S_{p}, S_{p}[E]$ and $S_{p}(K)$. For $1<p<\infty, S_{p}$ (resp. $S_{p}(K)$) denotes the space of Schatten class operators in ℓ_{2} (resp. on K). In the case $p=\infty$, we denote by $S_{\infty}\left(\right.$ resp. $\left.S_{p}(K)\right)$ the space of all compact operators on ℓ_{2} (resp. on K) with the operator space structure inherited from $B\left(\ell_{2}\right)$ (resp. $B(K)$). We define $S_{\infty}[E]$ as the minimal operator space tensor product of S_{∞} and E, and $S_{1}[E]$ as the operator space projective tensor product of S_{1} and E. In the case $1<p<\infty, S_{p}[E]$ is defined via complex interpolation between $S_{\infty}[E]$ and $S_{1}[E]$.

Let E, F be operator spaces and $u: E \rightarrow F$ a linear map. For $1 \leq p \leq \infty$, we will say that u is completely p-summing if the mapping

$$
I_{S_{p}} \otimes u: S_{p} \otimes_{\min } E \rightarrow S_{p}[F]
$$

is bounded, and we denote its norm by $\pi_{p}^{o}(u)$. By a result of Pisier [Pis98, Corollary 5.5], in the case $1 \leq p<\infty$ we in fact have that the cb-norm and the norm of the map $I_{S_{p}} \otimes u$ are equal. For notational convenience, we will use the convention $\pi_{\infty}^{o}(\cdot)=\|\cdot\|_{\mathrm{cb}}$. Completely p-summing maps satisfy the ideal property (that is, $\pi_{p}^{o}(u v w) \leq\|u\|_{\mathrm{cb}} \pi_{p}^{o}(v)\|w\|_{\mathrm{cb}}$ whenever the composition makes sense), and being completely p-summing is a local property: the completely p-summing norm of $u: E \rightarrow F$ is equal to the supremum of the completely p-summing norms of the restrictions of u to finite-dimensional operator subspaces of E. In fact,

$$
\pi_{p}^{o}(u: E \rightarrow F)=\sup \left\{\pi_{p}^{o}(u T): T: S_{p^{\prime}}^{n} \rightarrow E, n \geq 1,\|T\|_{\mathrm{cb}} \leq 1\right\}
$$

The following theorem, due to Pisier [Pis98, Thm. 5.1] is an important characterization of completely p-summing maps.

Theorem 2.1 (Pietsch domination). Assume $E \subseteq B(H)$. Let $u: E \rightarrow F$ be a completely p-summing map $(1 \leq p<\infty)$ and let $C=\pi_{p}^{o}(u)$. Then there is an ultrafilter \mathcal{U} over an index set I and families $\left(a_{\alpha}\right)_{\alpha \in I},\left(b_{\alpha}\right)_{\alpha \in I}$ in the unit ball of $S_{2 p}(H)$ such that for all $n \in \mathbb{N}$ and all $\left(x_{i j}\right)$ in $M_{n}(E)$ we have

$$
\begin{equation*}
\left\|\left[\left(u x_{i j}\right)\right]\right\|_{S_{p}^{n}[F]} \leq C \lim _{\mathcal{U}}\left\|\left[\left(a_{\alpha} x_{i j} b_{\alpha}\right)\right]\right\|_{S_{p}\left(\ell_{2}^{n} \otimes H\right)} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left[\left(u x_{i j}\right)\right]\right\|_{M_{n}[F]} \leq C \lim _{\mathcal{U}}\left\|\left[\left(a_{\alpha} x_{i j} b_{\alpha}\right)\right]\right\|_{M_{n}\left(S_{p}(H)\right)} \tag{2.2}
\end{equation*}
$$

Conversely, if an operator u satisfies either (2.1) or (2.2) then it is completely p-summing with $\pi_{p}^{o}(u) \leq C$.

One consequence of the domination theorem is the monotonicity of p summing norms: if $1 \leq p \leq q$ and u is completely p-summing, then u is completely q-summing and moreover $\pi_{q}^{o}(u) \leq \pi_{p}^{o}(u)$. The standard (although not canonical) example of a completely p-summing map is a multiplication map. To be precise, we have [Pis98, Prop. 5.6] the following theorem.

Theorem 2.2. Let K be any Hilbert space. Consider a, b in $S_{2 p}(K)$ and let $M(a, b): B(K) \rightarrow S_{p}(K)$ be the operator defined by $M(a, b) x=$ axb for all x in $B(K)$. Then $\pi_{p}^{o}(M(a, b)) \leq\|a\|_{S_{2 p}(K)}\|b\|_{S_{2 p}(K)}$.

Following [Jun96], we say that a linear map $u: E \rightarrow F$ is completely p nuclear (denoted $\left.u \in \mathcal{N}_{p}^{o}(E, F)\right)$ if there exists a factorization of u as

$$
E \xrightarrow{\alpha} S_{\infty} \xrightarrow{M(a, b)} S_{p} \xrightarrow{\beta} F
$$

with $a, b \in S_{2 p}$ and α, β completely bounded maps. The completely p-nuclear norm of u is defined as

$$
\nu_{p}^{o}(u)=\inf \left\{\|\alpha\|_{\mathrm{cb}}\|a\|_{S_{2 p}}\|b\|_{S_{2 p}}\|\beta\|_{\mathrm{cb}}\right\}
$$

where the infimum is taken over all factorizations of u as above.

3. Definition and elementary properties

Let $1 \leq p, q \leq \infty$. A map $u: E \rightarrow F$ is said to be completely (q, p)-mixing with constant K if for any operator space G and any completely q-summing map $v: F \rightarrow G$, the composition $v \circ u$ is a completely p-summing map and $\pi_{p}^{o}(v \circ u) \leq K \pi_{q}^{o}(v)$. The completely (q, p)-mixing norm of u is the smallest such K and will be denoted by $\mathfrak{m}_{q, p}^{o}(u)$. Note that it is indeed a norm.

This definition (albeit worded in a different way) appears in [Yew08], where several upper and lower bounds for the completely ($2, p$)-mixing norms of the identity on $O H_{n}$ are computed (for $1<p<2$). For an infinite-dimensional example of a completely mixing map, Junge and Parcet prove in [JP10, Corollary A2] that the identity map on the operator Hilbert space $O H$ is completely ($q, 1$)-mixing for any $1<q<2$ (in sharp contrast with the commutative case, Yew [Yew08] proved that this same map is not completely (2,1)-mixing). In fact Junge and Parcet proved a more general result, and in order to state it we will need some definitions. A map $u: E \rightarrow F$ is called completely $(q, 1)$ summing if

$$
\pi_{q, 1}^{\mathrm{cb}}(u):=\left\|i d \otimes u: \ell_{1} \otimes_{\min } E \rightarrow \ell_{q}(F)\right\|_{\mathrm{cb}}<\infty
$$

and it is said to have cb-cotype q if

$$
c_{q}^{\mathrm{cb}}(u)=\left\|\iota \otimes u: \operatorname{Rad}_{q}(E) \rightarrow \ell_{q}(F)\right\|_{\mathrm{cb}}<\infty
$$

with

$$
\operatorname{Rad}_{q}(E)=\left\{\sum_{j} \varepsilon_{j} x_{j}: x_{j} \in E\right\} \subset L_{q}(E)
$$

where the ε_{j} 's are independent ± 1 Bernoulli random variables, and $\iota\left(\varepsilon_{j}\right)=\delta_{j}$ where the δ_{j} 's form the canonical basis of ℓ_{q}. If a map u has cb-cotype q then it is completely $(q, 1)$-summing, and moreover $\pi_{q, 1}^{\mathrm{cb}}(u) \leq c_{q}^{\mathrm{cb}}(u)$ [JP10, Lemma 3.1]. The following result is a straightforward generalization of [JP10, Cor. 3.7].

Theorem 3.1. Let $p \geq 2$. If $u: E \rightarrow F$ is completely $(p, 1)$-summing (in particular, if u has cb-cotype p), then it is $\left(q^{\prime}, 1\right)$-mixing for any $q>p$. Moreover $\mathfrak{m}_{q^{\prime}, 1}^{o}(u) \leq c(p, q) \pi_{p, 1}^{\mathrm{cb}}(u)$, where $c(p, q)$ is a constant depending on p and q only.

Just from the definition, we obtain a trivial composition formula for completely (q, p)-mixing maps: regardless of the values of p, q and r in $[1, \infty]$, the composition of a completely (p, r)-mixing operator u followed by a completely (q, p)-mixing operator v is completely (q, r)-mixing and moreover $\mathfrak{m}_{q, r}^{o}(v u) \leq$ $\mathfrak{m}_{q, p}^{o}(v) \cdot \mathfrak{m}_{p, r}^{o}(u)$. Many of the properties of completely p-summing maps immediately give rise to corresponding properties of completely (q, p)-mixing maps. For starters, the domination characterization (in its factorization version, as in [Pis98, Rem. 5.7]) for completely p-summing maps implies that for any map $u, \mathfrak{m}_{q, p}^{o}(u)=\|u\|_{\mathrm{cb}}$ whenever $q \leq p$ and $\mathfrak{m}_{\infty, p}^{o}(u)=\pi_{p}^{o}(u)$, so only the case $1 \leq p<q<\infty$ gives something new. Moreover, completely (q, p)-mixing maps also satisfy the ideal property and $\mathfrak{m}_{q, p}^{o}(v \circ u \circ w) \leq\|v\|_{\mathrm{cb}} \cdot \mathfrak{m}_{q, p}^{o}(u) \cdot\|w\|_{\mathrm{cb}}$ whenever the composition makes sense. Additionally, the monotonicity of the completely p-summing norms implies a monotonicity condition for the completely (q, p)-mixing norms: whenever $p_{1} \leq p_{2}$ and $q_{2} \leq q_{1}, \mathfrak{m}_{q_{2}, p_{2}}^{o}(u) \leq$ $\mathfrak{m}_{q_{1}, p_{1}}^{o}(u)$ for any u. Finally, being completely (q, p)-mixing is a local concept. As in the proof of [Yew08, Prop. 5.(2)], for any map $u: E \rightarrow F$,

$$
\mathfrak{m}_{q, p}^{o}(u)=\sup \left\{\mathfrak{m}_{q, p}^{o}\left(\left.u\right|_{E_{0}}\right): E_{0} \subseteq E, \operatorname{dim}\left(E_{0}\right)<\infty\right\}
$$

4. Characterizations

4.1. Domination. The following theorem is the completely (q, p) mixing counterpart of the domination theorem for completely p-summing maps of Pisier.

Theorem 4.1. Let $E \subseteq B(H)$ and $F \subseteq B(K)$ be concrete operator spaces. Let $1 \leq p \leq q<\infty, u: E \rightarrow F$ a linear map and $C \geq 0$. The following are equivalent:
(a) u is completely (q, p)-mixing with $\mathfrak{m}_{q, p}^{o}(T) \leq C$.
(b) For any ultrafilter \mathcal{U} over an index set I and families $\left(a_{\alpha}\right)_{\alpha \in I},\left(b_{\alpha}\right)_{\alpha \in I}$ in the unit ball of $S_{2 q}(K)$ there exist an index set J, an ultrafilter \mathcal{V} over J and families $\left(c_{\beta}\right)_{\beta \in J},\left(d_{\beta}\right)_{\beta \in J}$ in the unit ball of $S_{2 p}(H)$ such that for all n and all $\left(x_{i j}\right)$ in $M_{n}(E)$ we have

$$
\lim _{\mathcal{U}}\left\|\left[\left(a_{\alpha}\left(u x_{i j}\right) b_{\alpha}\right)\right]\right\|_{M_{n}\left(S_{q}(K)\right)} \leq C \lim _{\mathcal{V}}\left\|\left[\left(c_{\beta} x_{i j} d_{\beta}\right)\right]\right\|_{M_{n}\left(S_{p}(H)\right)} .
$$

(c) For any ultrafilter \mathcal{U} over an index set I and families $\left(a_{\alpha}\right)_{\alpha \in I},\left(b_{\alpha}\right)_{\alpha \in I}$ in the unit ball of $S_{2 q}(K)$ there exist an index set J, an ultrafilter \mathcal{V} over J and families $\left(c_{\beta}\right)_{\beta \in J},\left(d_{\beta}\right)_{\beta \in J}$ in the unit ball of $S_{2 p}(H)$ such that for all n and all $\left(x_{i j}\right)$ in $M_{n}(E)$ we have

$$
\lim _{\mathcal{U}}\left\|\left[\left(a_{\alpha}\left(u x_{i j}\right) b_{\alpha}\right)\right]\right\|_{S_{p}^{n}\left[S_{q}(K)\right]} \leq C \lim _{\mathcal{V}}\left\|\left[\left(c_{\beta} x_{i j} d_{\beta}\right)\right]\right\|_{S_{p}\left(\ell_{2}^{n} \otimes H\right)}
$$

Proof. We only show that (a) and (b) are equivalent, the equivalence with (c) follows similarly (as in Pisier's [Pis98] proof of Theorem 2.1).
$(\mathrm{a}) \Rightarrow(\mathrm{b})$ Suppose that u is completely (q, p)-mixing, and let I be an index set, \mathcal{U} an ultrafilter over I and $\left(a_{\alpha}\right)_{\alpha \in I},\left(b_{\alpha}\right)_{\alpha \in I}$ families in the unit ball of $S_{2 q}(K)$. The ultraproduct m of the multiplication maps $M\left(a_{\alpha}, b_{\alpha}\right): B(K) \rightarrow$ $S_{q}(K)$ is completely q-summing with completely q-summing norm at most one and therefore, if j is the completely isometric injection of $B(K)$ into the ultrapower $B(K)^{\mathcal{U}}, m \circ j \circ u$ is completely p-summing with $\pi_{p}^{o}(m \circ j \circ u) \leq C$. By the domination theorem for completely p-summing maps (Theorem 2.1), there exists an ultrafilter \mathcal{V} over an index set J and families $\left(c_{\beta}\right)_{\beta \in J},\left(d_{\beta}\right)_{\beta \in J}$ in the unit ball of $S_{2 p}(H)$ such that for any $n \in \mathbb{N}$ and any $\left(x_{i j}\right)$ in $M_{n}(E)$,

$$
\left\|\left[\left((m j u) x_{i j}\right)\right]\right\|_{M_{n}\left[S_{q}(K)^{u}\right]} \leq C \lim _{\mathcal{V}}\left\|\left[\left(c_{\beta} x_{i j} d_{\beta}\right)\right]\right\|_{M_{n}\left(S_{p}(H)\right)}
$$

that is,

$$
\lim _{\mathcal{U}}\left\|\left[\left(a_{\alpha}\left(u x_{i j}\right) b_{\alpha}\right)\right]\right\|_{M_{n}\left(S_{q}(K)\right)} \leq C \lim _{\mathcal{V}}\left\|\left[\left(c_{\beta} x_{i j} d_{\beta}\right)\right]\right\|_{M_{n}\left(S_{p}(H)\right)}
$$

(b) \Rightarrow (a) Let $v: F \rightarrow G$ be a completely q-summing map. By the domination theorem for completely q-summing maps, there exists an ultrafilter \mathcal{U} over an index set I and families $\left(a_{\alpha}\right)_{\alpha \in I},\left(b_{\alpha}\right)_{\alpha \in I}$ in the unit ball of $S_{2 q}(K)$ such that for any $n \in \mathbb{N}$ and any $\left(y_{i j}\right)$ in $M_{n}(F)$,

$$
\left\|\left[\left(v y_{i j}\right)\right]\right\|_{M_{n}[G]} \leq \pi_{q}^{o}(v) \lim _{\mathcal{U}}\left\|\left[\left(a_{\alpha} y_{i j} b_{\alpha}\right)\right]\right\|_{M_{n}\left(S_{q}(K)\right)}
$$

By hypothesis, there exist an index set J, an ultrafilter \mathcal{V} over J and families $\left(c_{\beta}\right)_{\beta \in J},\left(d_{\beta}\right)_{\beta \in J}$ in the unit ball of $S_{2 p}(H)$ such that for all n and all $\left(x_{i j}\right)$ in $M_{n}(E)$ we have

$$
\lim _{\mathcal{U}}\left\|\left[\left(a_{\alpha}\left(u x_{i j}\right) b_{\alpha}\right)\right]\right\|_{M_{n}\left(S_{q}(K)\right)} \leq C \lim _{\mathcal{V}}\left\|\left[\left(c_{\beta} x_{i j} d_{\beta}\right)\right]\right\|_{M_{n}\left(S_{p}(H)\right)}
$$

The two previous inequalities put together give us

$$
\left\|\left[\left(v u x_{i j}\right)\right]\right\|_{M_{n}[G]} \leq C \pi_{q}^{o}(v) \lim _{\mathcal{V}}\left\|\left[\left(c_{\beta} x_{i j} d_{\beta}\right)\right]\right\|_{M_{n}\left(S_{p}(H)\right)}
$$

which means, by the domination theorem for completely p-summing maps, that $v \circ u$ is completely p-summing and $\pi_{p}^{o}(v \circ u) \leq C \pi_{q}^{o}(v)$, meaning that u is completely (q, p)-mixing with $\mathfrak{m}_{q, p}^{o}(u) \leq C$.
4.2. Mixed norms. We will now prove another characterization of completely (q, p)-summing maps, based on mixed S_{p}-norm inequalities (Theorem 4.3). First, we need the following lemma, which is a generalization of [Pis98, Theorem 1.5].

Lemma 4.2. Suppose $1 / p=1 / q+1 / r$. Let $X \in S_{p}[E]$ (resp. $X \in S_{p}^{n}[E]$) and let $\left(x_{i j}\right) \in M_{\infty}(E)$ (resp. $\left.\left(x_{i j}\right) \in M_{n}(E)\right)$ be the corresponding matrix with $x_{i j} \in E$. Then $\|X\|_{S_{p}[E]}$ (resp. $\|X\|_{S_{p}^{n}[E]}$) is equal to

$$
\inf \left\{\|A\|_{S_{2 r}}\|V\|_{S_{q}[E]}\|B\|_{S_{2 r}}\right\}
$$

where the infimum runs over all representations of the form

$$
\left(x_{i j}\right)=A \cdot V \cdot B
$$

with $A, B \in S_{2 r}$ and $V \in S_{q}[E]$ (resp. $A, B \in S_{2 r}^{n}$ and $V \in M_{n}(E)$).
Proof. If $\left(x_{i j}\right)=A \cdot V \cdot B$, then by [Pis98, Lemma 1.6.(ii)], we have that

$$
\left\|\left(x_{i j}\right)\right\|_{S_{p}[E]} \leq\|A\|_{S_{2 r}}\|V\|_{S_{q}[E]}\|B\|_{S_{2 r}},
$$

and hence

$$
\left\|\left(x_{i j}\right)\right\|_{S_{p}[E]} \leq \inf \left\{\|A\|_{S_{2 r}}\|V\|_{S_{q}[E]}\|B\|_{S_{2 r}}\right\} .
$$

For the opposite inequality, recall from [Pis98, Theorem 1.5] that

$$
\left\|\left(x_{i j}\right)\right\|_{S_{p}[E]}=\inf \left\{\|\mathbf{A}\|_{S_{2 p}}\|Y\|_{M_{\infty}[E]}\|\mathbf{B}\|_{S_{2_{p}}}:\left(x_{i j}\right)=\mathbf{A} \cdot Y \cdot \mathbf{B}\right\}
$$

Therefore, given $\varepsilon>0$ there exists a factorization $\left(x_{i j}\right)=\mathbf{A} \cdot Y \cdot \mathbf{B}$ such that

$$
\left\|\left(x_{i j}\right)\right\|_{S_{p}[E]}+\varepsilon \geq\|\mathbf{A}\|_{S_{2 p}}\|Y\|_{M_{\infty}[E]}\|\mathbf{B}\|_{S_{2 p}}
$$

By [DJT95, Thm. 6.3], we can choose $A^{\prime}, B^{\prime} \in S_{2 q}$ and $A^{\prime \prime}, B^{\prime \prime} \in S_{2 r}$ such that $\mathbf{A}=A^{\prime \prime} \cdot A^{\prime}$ and $\|\mathbf{A}\|_{S_{2 p}}$ is equal to $\left\|A^{\prime}\right\|_{S_{2 q}}\left\|A^{\prime \prime}\right\|_{S_{2 r}}$, and $\mathbf{B}=B^{\prime} \cdot B^{\prime \prime}$ and $\|\mathbf{B}\|_{S_{2 p}}$ is equal to $\left\|B^{\prime}\right\|_{S_{2 q}}\left\|B^{\prime \prime}\right\|_{S_{2 r}}$. Then using [Pis98, Theorem 1.5] again,

$$
\begin{aligned}
\|\mathbf{A}\|_{S_{2 p}}\|Y\|_{M_{\infty}[E]}\|\mathbf{B}\|_{S_{2 p}} & =\left\|A^{\prime \prime}\right\|_{S_{2 r}}\left\|A^{\prime}\right\|_{S_{2 q}}\|Y\|_{M_{\infty}[E]}\left\|B^{\prime}\right\|_{S_{2 q}}\left\|B^{\prime \prime}\right\|_{S_{2 r}} \\
& \geq\left\|A^{\prime \prime}\right\|_{S_{2 r}}\left\|A^{\prime} \cdot Y \cdot B^{\prime}\right\|_{S_{q}[E]}\left\|B^{\prime \prime}\right\|_{S_{2 r}} \\
& \geq \inf \left\{\|A\|_{S_{2 r}}\|V\|_{S_{q}[E]}\|B\|_{S_{2 r}}:\left(x_{i j}\right)=A \cdot V \cdot B\right\},
\end{aligned}
$$

where the last inequality follows from the fact that $A^{\prime \prime} \cdot A^{\prime} \cdot Y \cdot B^{\prime} \cdot B^{\prime \prime}=$ $\mathbf{A} \cdot Y \cdot \mathbf{B}=\left(x_{i j}\right)$. Letting ε go to zero, we get the desired inequality.

With this lemma, we can prove the announced characterization of completely (q, p)-mixing maps, one that has the advantage of not having any ultrafilters involved. As far as we can tell, it does not directly correspond to a known characterization of (q, p)-mixing operators (in the Banach space case).

Theorem 4.3. Let $E \subseteq B(H)$ and $F \subseteq B(K)$ be concrete operator spaces. Let $1 \leq p \leq q<\infty, u: E \rightarrow F$ a linear map and $C \geq 0$. The following are equivalent:
(a) u is completely (q, p)-mixing with $\mathfrak{m}_{q, p}^{o}(u) \leq C$.
(b) For all n and all $\left(x_{i j}\right)$ in $M_{n}(E)$ we have

$$
\sup \left\{\left\|\left(a\left(u x_{i j}\right) b\right)\right\|_{S_{p}\left[S_{q}(K)\right]}: a, b \in B_{S_{2 q}(K)}, a, b \geq 0\right\} \leq C\left\|\left(x_{i j}\right)\right\|_{S_{p} \otimes_{\min } E}
$$

Proof. (a) \Rightarrow (b) Suppose that u is completely (q, p)-mixing with $\mathfrak{m}_{q, p}^{o}(u) \leq C$. Let a, b be positive elements in the unit ball of $S_{2 q}(K)$. By [Pis98, Proposition 5.6], the multiplication map $M(a, b): B(K) \rightarrow S_{q}(K)$ is completely q-summing with constant at most one, and thus so is its restriction to F. Therefore, the composition $M(a, b) \circ u: E \rightarrow S_{q}(K)$ is completely p-summing with $\pi_{p}^{o}(M(a, b) \circ u) \leq C$, that is, the norm of the map

$$
I_{S_{p}} \otimes(M(a, b) \circ u): S_{p} \otimes_{\min } E \rightarrow S_{p}\left[S_{q}(K)\right]
$$

is at most C. This means that for any $\left(x_{i j}\right)$ in $M_{n}(E)$ we have

$$
\left\|\left(a\left(u x_{i j}\right) b\right)\right\|_{S_{p}\left[S_{q}(K)\right]} \leq C\left\|\left(x_{i j}\right)\right\|_{S_{p} \otimes_{\min } E}
$$

Taking the supremum over all a and b, we obtain the desired conclusion.
$(\mathrm{b}) \Rightarrow$ (a) Suppose that for all n and all $\left(x_{i j}\right)$ in $M_{n}(E)$ we have

$$
\begin{align*}
& \sup \left\{\left\|\left(a\left(u x_{i j}\right) b\right)\right\|_{S_{p}\left[S_{q}(K)\right]}: a, b \in B_{S_{2 p}(K)}, a, b \geq 0\right\} \tag{4.1}\\
& \quad \leq C\left\|\left(x_{i j}\right)\right\|_{S_{p} \otimes_{\min } E}
\end{align*}
$$

Let $v: F \rightarrow G$ be a completely q-summing map. By the domination theorem for completely q-summing maps (Theorem 2.1) and [Pis98, Theorem 1.9], there exist an ultrafilter \mathcal{U} over an index set I and families $\left(a_{\alpha}\right)_{\alpha \in I},\left(b_{\alpha}\right)_{\alpha \in I}$ in the unit ball of $S_{2 q}(K)$ such that for all $n \in \mathbb{N}$ and all $\left(y_{i j}\right)$ in $M_{n}(F)$ we have

$$
\begin{equation*}
\left\|\left(v y_{i j}\right)\right\|_{S_{q}^{n}[G]} \leq \pi_{q}^{o}(v) \lim _{\mathcal{U}}\left\|\left(a_{\alpha} y_{i j} b_{\alpha}\right)\right\|_{S_{q}^{n}\left[S_{q}(K)\right]} \tag{4.2}
\end{equation*}
$$

In particular, for every $\left(x_{i j}\right)$ in $M_{n}(E)$ we have

$$
\begin{equation*}
\left\|\left(v u x_{i j}\right)\right\|_{S_{q}^{n}[G]} \leq \pi_{q}^{o}(v) \lim _{\mathcal{U}}\left\|\left(a_{\alpha}\left(u x_{i j}\right) b_{\alpha}\right)\right\|_{S_{q}^{n}\left[S_{q}(K)\right]} . \tag{4.3}
\end{equation*}
$$

Let r be such that $1 / p=1 / q+1 / r$, and let $\varepsilon>0$. For each $\alpha \in I$, Lemma 4.2 implies the existence of A_{α} and B_{α} positive matrices in the unit sphere of $S_{2 r}^{n}$ such that

$$
\left\|A_{\alpha} \cdot\left(a_{\alpha}\left(u x_{i j}\right) b_{\alpha}\right) \cdot B_{\alpha}\right\|_{S_{q}^{n}\left[S_{q}(K)\right]} \leq(1+\varepsilon)\left\|\left(a_{\alpha}\left(u x_{i j}\right) b_{\alpha}\right)\right\|_{S_{p}^{n}\left[S_{q}(K)\right]}
$$

By compactness, the limits $A=\lim _{\mathcal{U}} A_{\alpha}$ and $B=\lim _{\mathcal{U}} B_{\alpha}$ exist in the positive part of the unit sphere of $S_{2 r}^{n}$. It follows then from the previous inequality that

$$
\begin{align*}
& \lim _{\mathcal{U}}\left\|A \cdot\left(a_{\alpha}\left(u x_{i j}\right) b_{\alpha}\right) \cdot B\right\|_{S_{q}^{n}\left[S_{q}(K)\right]} \tag{4.4}\\
& \quad \leq(1+\varepsilon) \lim _{\mathcal{U}}\left\|\left(a_{\alpha}\left(u x_{i j}\right) b_{\alpha}\right)\right\|_{S_{p}^{n}\left[S_{q}(K)\right]} .
\end{align*}
$$

Now, using Lemma 4.2 again together with (4.3), (4.4), (4.2) and (4.1) we have

$$
\begin{aligned}
\left\|\left(v u x_{i j}\right)\right\|_{S_{p}^{n}[G]} & \leq\left\|A \cdot\left(v u x_{i j}\right) \cdot B\right\|_{S_{q}^{n}[G]} \\
& \leq \pi_{q}^{o}(v) \lim _{\mathcal{U}}\left\|A \cdot\left(a_{\alpha}\left(u x_{i j}\right) b_{\alpha}\right) \cdot B\right\|_{S_{q}^{n}\left[S_{q}(K)\right]} \\
& \leq \pi_{q}^{o}(v)(1+\varepsilon) \lim _{\mathcal{U}}\left\|\left(a_{\alpha}\left(u x_{i j}\right) b_{\alpha}\right)\right\|_{S_{p}^{n}\left[S_{q}(K)\right]} \\
& \leq \pi_{q}^{o}(v)(1+\varepsilon) C\left\|\left(x_{i j}\right)\right\|_{S_{p} \otimes_{\min } E} .
\end{aligned}
$$

Letting ε go to zero, this shows that $v u$ is completely p-summing with $\pi_{p}^{o}(v u) \leq$ $C \pi_{q}^{o}(v)$. Therefore, $\mathfrak{m}_{q, p}^{o}(u) \leq C$.

5. The "interpolation" result

The main result of this section is the following operator space version of [Pie80, Prop. 20.1.13], which will imply an strengthening of Yew's quantized extrapolation theorem.

Theorem 5.1. Let $0<\theta<1$ and $1 \leq p \leq q_{0}, q_{1}<\infty$. Define $1 / q:=(1-$ $\theta) / q_{0}+\theta / q_{1}$. For a map $u: E \rightarrow F \subseteq B(K)$,

$$
\mathfrak{m}_{q, p}^{o}(u) \leq \mathfrak{m}_{q_{0}, p}^{o}(u)^{1-\theta} \mathfrak{m}_{q_{1}, p}^{o}(u)^{\theta} .
$$

Proof. Let $C_{0}=\mathfrak{m}_{q_{0}, p}^{o}(u)$ and $C_{1}=\mathfrak{m}_{q_{1}, p}^{o}(u)$. By Theorem 4.3,

$$
\begin{aligned}
& \sup \left\{\left\|\left(a\left(u x_{i j}\right) b\right)\right\|_{S_{p}\left[S_{q_{0}}(K)\right]}: a, b \in B_{S_{2 q_{0}}(K)}, a, b \geq 0\right\} \\
& \quad \leq C_{0}\left\|\left(x_{i j}\right)\right\|_{S_{p} \otimes_{\min } E}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sup \left\{\left\|\left(a\left(u x_{i j}\right) b\right)\right\|_{S_{p}\left[S_{q_{1}}(K)\right]}: a, b \in B_{S_{2 q_{1}}(K)}, a, b \geq 0\right\} \\
& \quad \leq C_{1}\left\|\left(x_{i j}\right)\right\|_{S_{p} \otimes_{\min } E} .
\end{aligned}
$$

Now, by [Yew08, Lemma 7] (or alternatively, as Yew himself says, by a typical application of the Generalized Hadamard three line theorem and the fact that the spaces $S_{p}(K)$ form an interpolation chain; see [Yew05, Lemma 3.5] for the detailed proof), for any positive a, b in $S_{1}(K)$ we have

$$
\begin{aligned}
& \left\|\left(a^{1 / 2 q}\left(u x_{i j}\right) b^{1 / 2 q}\right)\right\|_{S_{p}\left[S_{q}(K)\right]} \\
& \quad \leq\left\|\left(a^{1 / 2 q_{0}}\left(u x_{i j}\right) b^{1 / 2 q_{0}}\right)\right\|_{S_{p}\left[S_{q_{0}}(K)\right]}^{1-\theta}\left\|\left(a^{1 / 2 q_{1}}\left(u x_{i j}\right) b^{1 / 2 q_{1}}\right)\right\|_{S_{p}\left[S_{q_{1}}(K)\right]}^{\theta} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sup \left\{\left\|\left(a\left(u x_{i j}\right) b\right)\right\|_{S_{p}\left[S_{q}(K)\right]}: a, b \in B_{S_{2 q}(K)}, a, b \geq 0\right\} \\
& \quad \leq \sup \left\{\left\|\left(a\left(u x_{i j}\right) b\right)\right\|_{S_{p}\left[S_{q_{0}}(K)\right]}: a, b \in B_{S_{2 q_{0}}(K)}, a, b \geq 0\right\}^{1-\theta} \\
& \quad \cdot \sup \left\{\left\|\left(a\left(u x_{i j}\right) b\right)\right\|_{S_{p}\left[S_{q_{1}}(K)\right]}: a, b \in B_{S_{2 q_{1}}(K)}, a, b \geq 0\right\}^{\theta}
\end{aligned}
$$

and thus

$$
\begin{aligned}
& \sup \left\{\left\|\left(a\left(u x_{i j}\right) b\right)\right\|_{S_{p}\left[S_{q}(K)\right]}: a, b \in B_{S_{2 q}(K)}, a, b \geq 0\right\} \\
& \quad \leq C_{0}^{1-\theta} C_{1}^{\theta}\left\|\left(x_{i j}\right)\right\|_{S_{p} \otimes_{\min } E}
\end{aligned}
$$

Another appeal to Theorem 4.3 gives the desired conclusion.
Let E be an operator space and $1 \leq p_{0}<p_{1}<q$. In [Yew08, Thm. 8] it is shown that

$$
\mathfrak{m}_{q, p_{0}}^{o}\left(i d_{E}\right) \leq\left[2^{1 / p_{0}} \mathfrak{m}_{q, p_{1}}^{o}\left(i d_{E}\right)\right]^{1 / \theta}
$$

Our next corollary improves on this result by removing the power of 2 , while also emphasizing the fact that for identity maps being completely (q, p)-mixing $(q>p)$ is independent of p.

Corollary 5.2. Let E be an operator space and $1 \leq p_{0}<p_{1}<q$. Then $i d_{E}$ is $\left(q, p_{0}\right)$-mixing if and only if it is $\left(q, p_{1}\right)$-mixing. Moreover,

$$
\mathfrak{m}_{q, p_{1}}^{o}\left(i d_{E}\right) \leq \mathfrak{m}_{q, p_{0}}^{o}\left(i d_{E}\right) \leq \mathfrak{m}_{q, p_{1}}^{o}\left(i d_{E}\right)^{1 / \theta}
$$

where θ is defined by $1 / p_{1}=(1-\theta) / q+\theta / p_{0}$.
Proof. The monotonicity property for (q, p)-mixing constants from Section 3 gives $\mathfrak{m}_{q, p_{1}}^{o}\left(i d_{E}\right) \leq \mathfrak{m}_{q, p_{0}}^{o}\left(i d_{E}\right)$, whereas the composition property from the same section provides us with the inequality $\mathfrak{m}_{q, p_{0}}^{o}\left(i d_{E}\right) \leq \mathfrak{m}_{q, p_{1}}^{o}\left(i d_{E}\right)$. $\mathfrak{m}_{p_{1}, p_{0}}^{o}\left(i d_{E}\right)$. Now, from Theorem 5.1

$$
\mathfrak{m}_{p_{1}, p_{0}}^{o}\left(i d_{E}\right) \leq \mathfrak{m}_{q, p_{0}}^{o}\left(i d_{E}\right)^{1-\theta} \cdot \mathfrak{m}_{p_{0}, p_{0}}^{o}\left(i d_{E}\right)^{\theta}=\mathfrak{m}_{q, p_{0}}^{o}\left(i d_{E}\right)^{1-\theta} \cdot 1
$$

So we obtain

$$
\mathfrak{m}_{q, p_{0}}^{o}\left(i d_{E}\right) \leq \mathfrak{m}_{q, p_{1}}^{o}\left(i d_{E}\right) \cdot \mathfrak{m}_{q, p_{0}}^{o}\left(i d_{E}\right)^{1-\theta}
$$

from where the result follows.

6. Composition theorems

We now proceed to prove various composition theorems for completely p-summing and completely p-nuclear operators. Our starting point is the following duality due to M. Junge:

Theorem 6.1 ([Jun96, Cor. 3.1.3.9]). When E and F are operator spaces and $1 \leq p<\infty$, trace duality yields an isometric isomorphism between $\mathcal{N}_{p}^{o}(E, F)^{*}$ and $\Pi_{p^{\prime}}^{o}\left(F, E^{* *}\right)$. In the finite-dimensional case, the duality is also true for $p=\infty$.

From here we can deduce our first composition result, stating that in the finite dimensional setting, the composition of a completely p-summing map and a completely p^{\prime}-nuclear one is completely 1 -nuclear.

Theorem 6.2. Let $u: E \rightarrow F$ and $v: F \rightarrow G$ be linear maps between finite-dimensional operator spaces. Then $\nu_{1}^{o}(v u) \leq \nu_{p^{\prime}}^{o}(v) \pi_{p}^{o}(u)$ and $\nu_{1}^{o}(v u) \leq$ $\pi_{p}^{o}(v) \nu_{p^{\prime}}^{o}(u)$.

Proof. We only prove the first inequality, the second one may be obtained using an analogous argument. Consider a linear map $w: G \rightarrow E$. Then by Theorem 6.1,

$$
|\operatorname{tr}(w v u)| \leq \pi_{p}^{o}(u) \nu_{p^{\prime}}^{o}(w v) \leq \pi_{p}^{o}(u) \nu_{p^{\prime}}^{o}(v)\|w\|_{\mathrm{cb}}
$$

Taking the supremum over all w of cb-norm at most 1 , another appeal to Theorem 6.1 (recalling that completely ∞-summing is the same as completely bounded) shows that $\nu_{1}^{o}(v u) \leq \pi_{p}^{o}(u) \nu_{p^{\prime}}^{o}(v)$.

A proof very similar to that of Theorem 6.2, together with the fact that π_{2}^{o} is in trace duality with itself [Lee08, Lemma 2.5], allow us to prove the following.

Theorem 6.3. Let $u: E \rightarrow F$ and $v: F \rightarrow G$ be completely 2-summing maps. When the operator spaces are finite-dimensional, $\nu_{1}^{o}(v u) \leq \pi_{2}^{o}(v) \pi_{2}^{o}(u)$. In the infinite-dimensional case, localization gives $\pi_{1}^{o}(v u) \leq \pi_{2}^{o}(v) \pi_{2}^{o}(u)$.

The following lemma is at the heart of the proof of the composition theorem for completely p-summing operators with conjugate indices.

Lemma 6.4. Let $u: E \rightarrow F \subseteq B\left(\ell_{2}\right)$ be a completely p-summing map and a, b in $S_{2 p^{\prime}}$. Let $M:=M(a, b): B\left(\ell_{2}\right) \rightarrow S_{2 p^{\prime}}$ be a multiplication map induced by a and b. Then $\pi_{1}^{o}(M \circ u) \leq\|a\|_{2 p^{\prime}}\|b\|_{2 p^{\prime}} \pi_{p}^{o}(u)$.

Proof. Let $\varepsilon>0$. There exist orthonormal sequences $\left(e_{j}\right),\left(f_{j}\right)$ in ℓ_{2} and a sequence of nonnegative numbers $\left(\tau_{j}\right)$ such that $|a|=\sum_{j} \tau_{j} e_{j} \otimes f_{j}$, and $\left(\sum_{j} \tau_{j}^{2 p^{\prime}}\right)^{1 /\left(2 p^{\prime}\right)}=\|a\|_{2 p^{\prime}}$. Let $\left(\lambda_{j}\right)$ be a sequence of real numbers greater than one and increasing to infinity such that $\left(\sum_{j} \lambda_{j}^{2 p^{\prime}} \tau_{j}^{2 p^{\prime}}\right)^{1 /\left(2 p^{\prime}\right)} \leq(1+\varepsilon)\|a\|_{2 p^{\prime}}$. Define $a^{\prime}=\sum_{j} \lambda_{j} \tau_{j} e_{j} \otimes f_{j}$ and let k_{1} be the composition of the orthogonal projection onto the span of $\left(e_{j}\right)$ followed by the operator that sends e_{j} to $\lambda_{j}^{-1} e_{j}$. Then we have a decomposition $a=a^{\prime} k_{1}$ where k_{1} is compact with $\left\|k_{1}\right\| \leq 1$ and $\left\|a^{\prime}\right\|_{2 p^{\prime}} \leq(1+\varepsilon)\|a\|_{2 p^{\prime}}$. Similarly, we can find a decomposition $b=k_{2} b^{\prime}$ where k_{2} is compact with norm at most 1 and $\left\|b^{\prime}\right\|_{2 p^{\prime}} \leq(1+\varepsilon)\|b\|_{2 p^{\prime}}$. Therefore, we may factor $M \circ u=M^{\prime} \circ M^{\prime \prime} \circ u$, where $M^{\prime \prime}:=M\left(k_{1}, k_{2}\right): B\left(\ell_{2}\right) \rightarrow S_{\infty}$ and $M^{\prime}:=M\left(a^{\prime}, b^{\prime}\right): S_{\infty} \rightarrow S_{2 p^{\prime}}$. Note that M^{\prime} is completely p^{\prime}-nuclear, and $\nu_{p^{\prime}}^{o}\left(M^{\prime}\right) \leq\left\|a^{\prime}\right\|_{2 p^{\prime}}\left\|b^{\prime}\right\|_{2 p^{\prime}}$. From [Oik10], $\left\|M^{\prime \prime}\right\|_{\text {cb }} \leq\left\|k_{1}\right\|\left\|k_{2}\right\|$. By localization we may assume that E is finite-dimensional, and thus by the proof of Theorem 6.2, $\nu_{1}^{o}\left(M^{\prime} \circ M^{\prime \prime} \circ u\right) \leq \nu_{p^{\prime}}^{o}\left(M^{\prime}\right) \pi_{p}^{o}\left(M^{\prime \prime} \circ u\right)$. Since $\pi_{1}^{o}(M \circ u) \leq$ $\nu_{1}^{o}\left(M^{\prime} \circ M^{\prime \prime} \circ u\right)$, we have

$$
\begin{aligned}
\pi_{1}^{o}(M \circ u) & \leq\left\|a^{\prime}\right\|_{2 p^{\prime}}\left\|b^{\prime}\right\|_{2 p^{\prime}}\left\|M^{\prime \prime}\right\|_{\mathrm{cb}} \pi_{p}^{o}(u) \\
& \leq\left\|a^{\prime}\right\|_{2 p^{\prime}}\left\|b^{\prime}\right\|_{2 p^{\prime}}\left\|k_{1}\right\|\left\|k_{2}\right\| \pi_{p}^{o}(u) \leq(1+\varepsilon)^{2}\|a\|_{2 p^{\prime}}\|b\|_{2 p^{\prime}} \pi_{p}^{o}(u)
\end{aligned}
$$

Letting ε go to 0 , we get the desired result.
Now we can prove the composition theorem for completely p-summing operators in the case of conjugate indices.

THEOREM 6.5. Let $u: E \rightarrow F$ be completely p-summing and $v: F \rightarrow G$ be completely p^{\prime}-summing. Then $v u$ is completely 1 -summing, and moreover $\pi_{1}^{o}(v u) \leq \pi_{p^{\prime}}^{o}(v) \pi_{p}^{o}(u)$.

Proof. By localization, we can assume that the operator spaces are finitedimensional and thus $F \subset B\left(\ell_{2}\right)$. Hence, the result follows immediately from Theorem 4.3 and Lemma 6.4.

We will obtain the full composition theorem from the particular case of conjugate indices using interpolation. Before proceeding to the argument, let us recall [Pis03, Corollary 2.7.7], which states that

$$
\left(X \otimes_{\min } E_{0}, X \otimes_{\min } E_{1}\right)_{\theta}=X \otimes_{\min }\left(E_{0}, E_{1}\right)_{\theta}
$$

whenever X is a completely complemented subspace of S_{∞}.
Lemma 6.6. Let $1 \leq p, q, r \leq \infty$ with $1 / r=1 / p+1 / q$. For a completely p-summing map $u: S_{\infty} \rightarrow F$ and any completely q-summing map $v: F \rightarrow G$ we have $\pi_{r}^{o}(v u) \leq \pi_{q}^{o}(v) \pi_{p}^{o}(u)$.

Proof. If $r=1$ the result follows from Theorem 6.5, so we may assume $r>1$. Note that then $p^{\prime}<q$, so $\theta=p^{\prime} / q$ is in $(0,1)$. Consider a completely isometric embedding $J: F \rightarrow B(K)$. Define a multilinear map $\Phi:\left(S_{t}^{n} \otimes_{\min }\right.$ $\left.S_{\infty}\right) \times S_{2 s}(K) \times S_{2 s}(K) \rightarrow S_{t}^{n}\left[S_{s}(K)\right]$ by

$$
\Phi\left(\left(x_{i j}\right), a, b\right)=\left(a\left(J u x_{i j}\right) b\right)
$$

By Theorem 6.5, we have

$$
\left\|\Phi\left(\left(x_{i j}\right), a, b\right)\right\|_{S_{1}^{n}\left[S_{p^{\prime}}(K)\right]} \leq\left\|\left(x_{i j}\right)\right\|_{S_{1}^{n} \otimes_{\min } S_{\infty}}\|a\|_{S_{2 p^{\prime}}(K)}\|b\|_{S_{2 p^{\prime}}(K)}
$$

for any $\left(x_{i j}\right) \in S_{1}^{n} \otimes S_{\infty}$ and $a, b \in S_{2 p^{\prime}}(K)$, that is, Φ has norm at most 1 when $t=1$ and $s=p^{\prime}$. Similarly, by the ideal property for completely p summing operators Φ has norm at most 1 when $t=p, s=\infty$. Observe that $1 / q=(1-\theta) / \infty+\theta / p^{\prime}$ and $1 / r=(1-\theta) / p+\theta / 1$. Therefore, multilinear complex interpolation gives that Φ has norm ≤ 1 when $t=r$ and $s=q$. From Theorem 4.3, we obtain that u has completely (q, r)-mixing norm at most $\pi_{p}^{o}(u)$, the desired result.

Let us now apply the previous lemma to estimate the completely (q, r) mixing norm of completely p-nuclear operators.

Lemma 6.7. Let $1 \leq p, q, r \leq \infty$ with $1 / r=1 / p+1 / q$, and $u: E \rightarrow F$ be a completely p-nuclear map. Then $\mathfrak{m}_{q, r}^{o}(u) \leq \nu_{p}^{o}(u)$.

Proof. Consider a completely p-nuclear factorization of $u: E \rightarrow F$ as

$$
E \xrightarrow{\alpha} S_{\infty} \xrightarrow{M(a, b)} S_{p} \xrightarrow{\beta} F
$$

with $a, b \in S_{2 p}$, and let $v: F \rightarrow G$ be a completely q-summing map. By Lemma 6.6,

$$
\pi_{r}^{o}(v \beta M(a, b)) \leq \pi_{q}^{o}(v) \pi_{p}^{o}(\beta M(a, b)) \leq \pi_{q}^{o}(v)\|\beta\|_{\mathrm{cb}}\|a\|_{S_{2 p}}\|b\|_{S_{2 p}}
$$

Thus, by the ideal property for completely p-summing operators

$$
\pi_{r}^{o}(v u) \leq\|\alpha\|_{\mathrm{cb}} \pi_{r}^{o}(v \beta M(a, b)) \leq \pi_{q}^{o}(v)\|\alpha\|_{\mathrm{cb}}\|\beta\|_{\mathrm{cb}}\|a\|_{S_{2 p}}\|b\|_{S_{2 p}}
$$

Taking the infimum over all such representations of u, we obtain $\pi_{r}^{o}(v u) \leq$ $\pi_{q}^{o}(v) \nu_{p}^{o}(u)$ giving the desired result.

Together with the duality theorem, the previous lemmas will yield the full composition theorem.

Theorem 6.8. Let $1 \leq p, q, r \leq \infty$ with $1 / r=1 / p+1 / q$. Let $u: E \rightarrow F$ be completely p-summing and $v: F \rightarrow G$ be completely q-summing. Then $v u$ is completely r-summing, and moreover $\pi_{r}^{o}(v u) \leq \pi_{q}^{o}(v) \pi_{p}^{o}(u)$.

Proof. By localization, we may assume that all the operator spaces involved are finite-dimensional, so in particular we can assume $F \subseteq B\left(\ell_{2}\right)$. By Theorem 4.3 we may assume that v is of the form $M(a, b): B\left(\ell_{2}\right) \rightarrow S_{q}$ where a and b are in the unit ball of $S_{2 q}$, and thus $\nu_{q}^{o}(M(a, b)) \leq 1$. Let $w: S_{q} \rightarrow E$ be completely r^{\prime}-nuclear with $\nu_{r^{\prime}}^{o}(w) \leq 1$. By Theorem 6.1,

$$
|\operatorname{tr}(v u w)| \leq \nu_{q}^{o}(v) \pi_{q^{\prime}}^{o}(u w)
$$

Since $1 / q^{\prime}=1 / p+1 / r^{\prime}$, Lemma 6.7 implies that

$$
|\operatorname{tr}(v u w)| \leq \nu_{q}^{o}(v) \pi_{p}^{o}(u) \nu_{r^{\prime}}^{o}(w) \leq \pi_{p}^{o}(u) .
$$

Taking the supremum over all w with $\nu_{r^{\prime}}^{o}(w) \leq 1$, the duality theorem (Theorem 6.1) gives $\pi_{r}^{o}(v u) \leq \pi_{p}^{o}(u)$, and the result follows.

As an application, we now prove an operator space version of [DF93, 32.2.(3)], which in turn is part of a result of Saphar [Sap72].

Corollary 6.9. For an operator space E and $1 \leq q \leq \infty, i d_{E}$ is completely ($q, 1$)-mixing if and only if $C B\left(S_{\infty}, E\right)=\Pi_{q^{\prime}}^{o}\left(S_{\infty}, E\right)$.

Proof. First, suppose that $i d_{E}$ is completely ($q, 1$)-mixing. By localization, it suffices to prove that there is a constant C such that for all n and all $w: M_{n} \rightarrow E$ we have $\pi_{q^{\prime}}^{o}(w) \leq C\|w\|_{\mathrm{cb}}$.

We need to show that w is completely q^{\prime}-summing, so we might as well assume that E is finite-dimensional. Let $v: E \rightarrow M_{n}$ be a completely q nuclear map (hence completely q-summing). Since E is completely ($q, 1$)mixing, v is completely 1 -summing and moreover $\pi_{1}^{o}(v) \leq \nu_{q}^{o}(v) \mathfrak{m}_{q, 1}^{o}$. Applying
the duality theorem (Theorem 6.1) for two different pairs of conjugate indices (q and $q^{\prime}, 1$ and ∞) we have

$$
\begin{aligned}
\pi_{q^{\prime}}^{o}(w) & \leq \nu_{q^{\prime}}^{o}(w)=\sup \left\{|\operatorname{tr}(v w)|: \pi_{q}^{o}\left(v: E \rightarrow M_{n}\right) \leq 1\right\} \\
& \leq \mathfrak{m}_{q, 1}^{o}(E) \sup \left\{|\operatorname{tr}(v w)|: \pi_{1}^{o}\left(v: E \rightarrow M_{n}\right) \leq 1\right\} \\
& =\mathfrak{m}_{q, 1}^{o}(E) \nu_{\infty}^{o}(w) \leq \mathfrak{m}_{q, 1}^{o}(E)\|w\|_{\mathrm{cb}},
\end{aligned}
$$

where in the last step we have used that $\nu_{\infty}^{o}(w)=\|w\|_{\mathrm{cb}}$, obvious since w has domain M_{n}.

Now suppose that $C B\left(S_{\infty}, E\right)=\Pi_{q^{\prime}}^{o}\left(S_{\infty}, E\right)$. By the closed graph theorem, there exists a constant C such that for all $w: S_{\infty} \rightarrow E$ we have $\pi_{q^{\prime}}^{o}(w) \leq$ $C\|w\|_{\mathrm{cb}}$. Let $v: E \rightarrow F$ be a completely q-summing map. Let $n \in \mathbb{N}$ and $w: M_{n} \rightarrow E$ be a completely bounded map. By the assumption, $\pi_{q^{\prime}}^{o}(w) \leq$ $C\|w\|_{\mathrm{cb}}$. By the composition theorem (Theorem 6.8), $\pi_{1}^{o}(v w) \leq \pi_{q}^{o}(v) \pi_{q^{\prime}}^{o}(w) \leq$ $\pi_{q}^{o}(v) C\|w\|_{\mathrm{cb}}$. Taking the supremum over all n and all such maps w with cbnorm at most one, we find that $\pi_{1}^{o}(v) \leq C \pi_{q}^{o}(v)$. Therefore, $i d_{E}$ is completely ($q, 1$)-mixing with constant at most C.

We finish the paper with a natural open question. In the Banach space setting, there are other composition formulas for p-summing, p-nuclear and p-integral maps (see [PP69]). Do their operator space analogues hold? Specifically, do we have $\nu_{r}^{o}(v u) \leq \pi_{q}^{o}(v) \nu_{p}^{o}(u), \quad \nu_{r}^{o}(v u) \leq \nu_{q}^{o}(v) \pi_{p}^{o}(u), \quad \iota_{r}^{o}(v u) \leq$ $\pi_{q}^{o}(v) \iota_{p}^{o}(u), \iota_{r}^{o}(v u) \leq \iota_{q}^{o}(v) \pi_{p}^{o}(u)$ whenever the compositions make sense?

Acknowledgments. The author thanks Professors W. B. Johnson and G. Pisier for many helpful discussions and suggestions.

References

[CD] J. A. Chávez-Domínguez, Lipschitz (q, p)-mixing operators, Proc. Amer. Math. Soc. 140 (2012), 3101-3115. MR 2917083
[DF93] A. Defant and K. Floret, Tensor norms and operator ideals, North-Holland Mathematics Studies, vol. 176, North-Holland, Amsterdam, 1993. MR 1209438
[DJT95] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297
[Gro53] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1-79. MR 0094682
[JP10] M. Junge and J. Parcet, Maurey's factorization theory for operator spaces, Math. Ann. 347 (2010), no. 2, 299-338. MR 2606939
[Jun56] M. Junge, Factorization theory for spaces of operators, Habilitation thesis, Kiel, 1996.
[Lee08] H. H. Lee, Type and cotype of operator spaces, Studia Math. 185 (2008), no. 3, 219-247. MR 2391019
[Mau74] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L^{p}, Astérisque 11 (1974), 1-163. MR 0344931
[Oik10] T. Oikhberg, Completely bounded and ideal norms of multiplication operators and Schur multipliers, Integral Equations Operator Theory 66 (2010), no. 3, 425-440. MR 2601571
[Pie67] A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1966/1967), 333-353. MR 0216328
[Pie80] A. Pietsch, Operator ideals, North-Holland Mathematical Library, vol. 20, NorthHolland, Amsterdam, 1980. Translated from German by the author. MR 0582655
[Pis98] G. Pisier, Non-commutative vector valued L_{p}-spaces and completely p-summing maps, Astérisque 247 (1998), 1-131. MR 1648908
[Pis03] G. Pisier, Introduction to operator space theory, London Mathematical Society Lecture Note Series, vol. 294, Cambridge University Press, Cambridge, 2003. MR 2006539
[PP69] A. Persson and A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19-62. MR 0243323
[Sap72] P. Saphar, Applications p décomposantes et pabsolument sommantes, Israel J. Math. 11 (1972), 164-179. MR 0296720
[Yew05] K. L. Yew, On some classical Banach space concepts in operator space theory, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2005. MR 2708206
[Yew08] K. L. Yew, Completely p-summing maps on the operator Hilbert space $O H$, J. Funct. Anal. 255 (2008), no. 6, 1362-1402. MR 2565712

Javier Alejandro Chávez-Domínguez, Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA

E-mail address: jachavezd@math.utexas.edu

