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GROUP ACTIONS ON LABELED GRAPHS AND THEIR
C∗-ALGEBRAS

TERESA BATES, DAVID PASK AND PAULETTE WILLIS

Abstract. We introduce the notion of the action of a group on a
labeled graph and the quotient object, also a labeled graph. We

define a skew product labeled graph and use it to prove a version

of the Gross–Tucker theorem for labeled graphs. We then apply

these results to the C∗-algebra associated to a labeled graph and
provide some applications in non-Abelian duality.

1. Introduction

A labeled graph (E,L) is a directed graph E = (E0,E1, r, s) together with
a function L : E1 →A where A is called the alphabet. Labeled graphs are
a model for studying symbolic dynamical systems; the labeled path space
is a shift space whose properties may be inferred from the labeled graph
presentation (cf. [12]). Labeled graph algebras were introduced in [2], [3],
their theory has been developed in [1], [7], [8] and has found applications in
mirror quantum spheres in [16].

The main purpose of this paper is to introduce the notion of a group ac-
tion on a labeled graph and study the crossed products formed by the induced
action on the associated C∗-algebra. Before we do this, we update the defini-
tion of the C∗-algebra associated to a labeled graph. In order to circumvent
a technical error in the literature, we add a new condition to ensure that the
resulting C∗-algebra satisfies a version of the gauge-invariant uniqueness the-
orem. Since a directed graph is a labeled graph where L is injective, we will
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be generalizing a suite of results for directed graphs and their C∗-algebras
(see [5], [11], [9]). This is not as straightforward as it may seem since two
distinct edges may carry the same label, so new techniques will be needed to
prove our results.

An action of a group G on a labeled graph (E,L) is an action of G on
E together with a compatible action of G on A so that we may sensibly
define the quotient object (E/G,L/G) as a labeled graph. In [6], Gross and
Tucker introduce the notion of a skew product graph E ×c G formed from
a map c : E1 →G and show that G acts freely on E ×c G with quotient E.
The Gross–Tucker theorem [6, Theorem 2.1.2] takes a free action of G on E
and recovers (up to equivariant isomorphism) the original graph and action
from the quotient graph E/G. One might speculate that a similar result
holds for free actions on labeled graphs. In Section 4, we describe a skew
product construction for labeled graphs and prove a version of the Gross–
Tucker theorem for free actions on labeled graphs (Theorem 5.10). Since
a group action on a labeled graph is a pair of compatible actions, a new
approach is needed: In Definition 4.1, we define a skew product labeled graph
(E ×c G,Ld) to be a skew-product graph E ×c G together with a labeling
Ld : (E ×c G)1 →A×G which is defined using a new function d : E1 → G.
The purpose of the new function d is to accommodate the possibility that two
edges carry the same label. In Remark 5.11, we discuss the importance of d.

We then turn our attention to applications of our results on labeled graph
actions to the C∗-algebras, C∗(E,L) we have associated to labeled graphs.

A function c : E1 →G on a directed graph gives rise to a coaction δ of G
on C∗(E) such that C∗(E)×δG∼=C∗(E×cG) (cf. [9]). In Proposition 6.2, we
show that a skew product labeled graph (E×cG,Ld) gives rise to a coaction δ
of G on C∗(E,L) provided that c : E1 →G is consistent with the labeling map
L : E1 →A. Then in Theorem 6.7 we show that C∗(E,L)×δ G ∼= C∗(E ×c

G,L1) where 1 : E1 → G is given by 1(e) = 1G for all e ∈ E1. Since this
isomorphism is equivariant for the dual action of G on C∗(E,L)×δ G and the
action of G on C∗(E×cG,L1) induced by left translation of G on (E×cG,L1),
Takai duality then gives us

C∗(E ×c G,L1)×τ,r G∼=C∗(E,L)⊗K
(
�2(G)

)
in Corollary 6.8. Indeed if d is consistent with the labeling map L : E1 →
A, then C∗(E ×c G,Ld) is equivariantly isomorphic to C∗(E ×c G,L1) (see
Proposition 6.3).

For a directed graph E, a function c : E1 → Z given by c(e) = 1 for all
e ∈E1 gives rise to a skew product graph E ×c G whose C∗-algebra which is
strongly Morita equivalent to the fixed point algebra C∗(E)γ for the gauge
action. In the case of labelled graphs, if c, d : E1 → Z are given by c(e) = 1,
d(e) = 0 for all e ∈E1, then C∗(E ×c G,Ld) is strongly Morita equivalent to
C∗(E,L)γ (see Theorem 6.10).
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An action α of G on a directed graph E induces an action of G on C∗(E),
moreover if the action is free, then using the Gross–Tucker theorem we have

(1.1) C∗(E)×α,r G∼=C∗(E/G)⊗K
(
�2(G)

)
by [11, Corollary 3.10]. In Theorem 3.2, we show that an action of G on (E,L)
induces an action of G on C∗(E,L). If we wish to use the Gross–Tucker the-
orem for labeled graphs to prove the labeled graph analog (1.1), we need to
know when the maps c, d : (E/G)1 →G provided by Theorem 5.10 are consis-
tent with the quotient labeling L/G. The answer to this question is provided
by Theorem 7.3: It happens precisely when the action α has a fundamental
domain. Hence, if the free action of G on (E,L) has a fundamental domain,
then in Corollary 7.4 we show that

C∗(E,L)×α,r G∼=C∗(E/G,L/G)⊗K
(
�2(G)

)
.

2. Labeled graphs and their C∗-algebras

We begin with a collection of definitions, which are taken from [2]. A di-
rected graph E = (E0,E1, r, s) consists of a vertex set E0, an edge set E1,
and range and source maps r, s : E1 →E0. We shall assume throughout this
paper that E is row-finite and essential, that is

r−1(v) �= ∅ and 1≤#s−1(v)<∞
for all v ∈ E0. We let En denote the set of paths of length n and set E+ =⋃

n≥1E
n.

Definition 2.1. A labeled graph (E,L) over an alphabet A consists of a
directed graph E together with a labeling map L : E1 →A.

We may assume that L : E1 →A is surjective. Let A∗ be the collection
of all words in the symbols of A. For n ≥ 1, the map L extends naturally
to a map L : En →A∗: for λ= λ1 · · ·λn ∈ En we set L(λ) = L(λ1) · · ·L(λn)
and we say that λ is a representative of the labeled path L(λ). Let L(En)
denote the collection of all labeled paths in (E,L) of length n. Then L+(E) =⋃

n≥1L(En) denotes the collection of all labeled paths in (E,L), that is all
words in the alphabet A which may be represented by paths in E.

Examples 2.2.

(a) Every directed graph E gives rise to a labeled graph (E,Lτ ) over the
alphabet E1 where Lτ : E1 →E1 is the identity map.

(b) The directed graph E whose edges e, f, g have been labeled using the
alphabet {0,1} as shown below is an example of a labeled graph

(E,L) :=
. v . w1 e

0

f

0

g
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Let (E,L) be a labeled graph. Then for β ∈ L+(E) we set

r(β) =
{
r(λ) : L(λ) = β

}
, s(β) =

{
s(λ) : L(λ) = β

}
.

For A⊆E0 and β ∈ L+(E), the relative range of β with respect to A is

r(A,β) =
{
r(λ) : λ ∈E+,L(λ) = β, s(λ) ∈A

}
.

The labeled graph (E,L) is left-resolving, if for all v ∈ E0 the map L re-
stricted to r−1(v) is injective. The labeled graph (E,L) is weakly left-resolving
if for all A,B ⊆E0 and β ∈ L+(E) we have

r(A∩B,β) = r(A,β)∩ r(B,β).

If (E,L) is left-resolving, then it is weakly left-resolving. Examples 2.2(a) and
(b) are examples of left-resolving labeled graphs.

A collection B ⊆ 2E
0

of subsets of E0 is closed under relative ranges for
(E,L) if for all A ∈ B and β ∈ L+(E) we have r(A,β) ∈ B. If B is closed under
relative ranges for (E,L), contains r(β) for all β ∈ L+(E) and is also closed
under finite intersections and unions, then B is accommodating for (E,L)
and the triple (E,L,B) is called a labeled space. Let E0.− be the smallest
accommodating collection of subsets of E0 for (E,L).

Definition 2.3. For A⊆E0 and n≥ 1, let Ln
A := {β ∈ L(En) : A∩ s(β) �=

∅} denote those labeled paths of length n whose source intersects A nontriv-
ially.

Though E is row finite it is possible for L1
A to be infinite; for example if L

is trivial, then L1
E0 = E1, which is infinite if E1 is infinite. A labeled space

(E,L,B) is set-finite if L1
A is finite for all A ∈ B. The following definition is

given in [2].

Definition 2.4. A representation of a weakly left-resolving, set-finite la-
beled space (E,L,B) consists of projections {pA : A ∈ B} and partial isome-
tries {sa : a ∈A} such that

(i) If A,B ∈ B, then pApB = pA∩B and pA∪B = pA + pB − pA∩B , where
p∅ = 0.

(ii) If a ∈A and A ∈ B, then pAsa = sapr(A,a).
(iii) If a, b ∈A, then s∗asa = pr(a) and s∗asb = 0 unless a= b.
(iv) For A ∈ B, we have

pA =
∑
a∈L1

A

sapr(A,a)s
∗
a.

C∗(E,L,B) is the universal C∗-algebra generated by a representation of
(E,L,B). Let γ : T→AutC∗(E,L,B) be the gauge action determined by

γzpA = pA, γzsa = zsa for A ∈ B, a ∈A.
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Remark 2.5. The gauge invariant uniqueness theorem for C∗(E,L,B) as
stated in [2, Theorem 5.3] is incorrect. The authors are grateful to Gow for
pointing out the error. The problem arises in [2, Lemma 5.2(ii)] as it not
possible to prove that the projection r is nonzero under the hypotheses used
in [2]. We are also grateful to Jeong and Kim for pointing out an mistake in
the formula [3, Remark 3.5] and in [7, Example 2.4] which is a direct result
of the error discovered by Gow.

The problem in [2, Lemma 5.2(ii)] arises because, under the hypotheses on
a labeled space used in [2], it is possible to have A�B ∈ B with pA = pB in
C∗(E,L,B). To rectify this problem, we must assume that B is closed under
relative complements; that is if A,B ∈ B are such that A�B, then A\B ∈ B.
If B is closed under relative complements, then we also recover the formula in
[3, Remark 3.5].

Before stating the Gauge Invariant Uniqueness theorem, we give a corrected
version of [2, Lemma 5.2] using the new hypothesis.

Lemma 2.6. Let (E,L,B) be a weakly left-resolving, set-finite labeled space
where B is closed under relative complements and {sa, pA} be a representation
(E,L,B). Let Y = {sαipAis

∗
βi

: i= 1, . . . ,N} be a set of partial isometries in

C∗(E,L,B) which is closed under multiplication and taking adjoints. If q is
a minimal projection in C∗(Y ), then either

(i) q = sαipAis
∗
αi

for some 1≤ i≤N

(ii) q = sαipAis
∗
αi

− q′ where q′ =
∑m

l=1 sαk(l)
pAk(l)

s∗αk(l)
and 1≤ i≤N ; more-

over there is a nonzero r = sαiβpr(Ai,β)s
∗
αiβ

∈ C∗(E,L,B) such that

q′r = 0 and q ≥ r.

Proof. By [2, Lemma 4.4], any projection in C∗(Y ) may be written as
n∑

j=1

sαi(j)
pAi(j)

s∗αi(j)
−

m∑
l=1

sαk(l)
pAk(l)

s∗αk(l)
,

where the projections in each sum are mutually orthogonal and for each l
there is a unique j such that sαi(j)

pAi(j)
s∗αi(j)

≥ sαk(l)
pAk(l)

s∗αk(l)
.

If q =
∑n

j=1 sαi(j)
pAi(j)

s∗αi(j)
−

∑m
l=1 sαk(l)

pAk(l)
s∗αk(l)

is a minimal projection

in C∗(Y ), then we must have n = 1. If m = 0, then q = sαipAis
∗
αi

for some
1≤ i≤N . If m �= 0, then

q = sαipAis
∗
αi

−
m∑
�=1

sαk(�)
pAk(�)

s∗αk(�)
,

where Ai,Ak(�) ∈ B for 1≤ �≤m. If we apply Definition 2.4(iv), we may write

q =
n∑

j=1

sαiβjpr(Ai,βj)s
∗
αiβj

−
t∑

h=1

m∑
�=1

sαk(�)κh
pr(Ak(�),κh)s

∗
αk(�)κh

,
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where all αiβj and αk(�)κh have the same length. Since q is a nonzero pro-
jection there is 1 ≤ j ≤ n and Hj ⊆ {1, . . . , t} × {1, . . . ,m} such that αiβj =
αk(�)κh for all (h, �) ∈Hj and

Yj :=
⋃

(h,�)∈Hj

r(Ak(�), κh)� r(Ai, βj).

Since B is closed under finite unions we have Yj ∈ B. Then for this j define
Xj = r(Ai, βj) \ Yj �= ∅, then Xj ∈ B since B is closed under relative comple-
ments. Hence, the projection r = sαiβjpXjs

∗
αiβj

is nonzero and q ≥ r since

Xj ⊂ r(Ai, βj). If we set q′ = sαipAis
∗
αi

− q, then since Xj ∩ Yj = ∅ we have
q′r = 0 as required. �

Theorem 2.7 (Gauge invariant uniqueness theorem). Let (E,L,B) be a
weakly left-resolving, set-finite labeled space where B is closed under rela-
tive complements and {Sa, PA} be a representation (E,L,B) on Hilbert space.
Take πS,P to be the representation of C∗(E,L,B) satisfying πS,P (sa) = Sa

and πS,P (pA) = PA. Suppose that PA �= 0 for all ∅ �=A ∈ B and that there is
a strongly continuous action γ′ of T on C∗({Sa, PA}) such that for all z ∈ T,
γ′
z ◦ πS,P = πS,P ◦ γz . Then πS,P is faithful.

Proof. The proof is the same as given in [2, Theorem 5.3], using Lemma 2.6
instead of [2, Lemma 5.2]. �

Definition 2.8. Let (E,L) be a weakly left-resolving, set-finite labeled
graph, then we define E(r,L) to be the smallest accommodating collection of
subsets of E0 which is closed under relative complements.

Remark 2.9. Every A ∈ E0,− can be written as A=
⋃n

j=1Aj where Aj =⋂m(j)
i=1 r(βj

i ) and βj
i ∈ L+(E) for all i, j. Hence, by applications of de Morgan’s

laws we may show that every A ∈ E(r,L) can be written in the form A =⋃n
j=1Aj where Aj =

⋂m(j)
i=1 r(αj

i ) \ r(βj
i ) where r(αj

i ) � r(βj
i ) and αj

i , β
j
i ∈

L+(E) for all i, j

This remark motivates the following definition.

Definition 2.10. Let (E,L) be a weakly left-resolving, set-finite labeled
graph. A Cuntz–Krieger (E,L)-family consists of commuting projections
{pr(β) : β ∈ L+(E)} and partial isometries {sa : a ∈ A} with the properties
that:

(CK1a) For all β,ω ∈ L+(E), pr(β)pr(ω) = 0 if and only if r(β)∩ r(ω) = ∅.
(CK1b) For all β,ω,κ ∈ L+(E), if r(β)∩ r(ω) = r(κ), then pr(β)pr(ω) = pr(κ),

if r(β) ∪ r(ω) = r(κ), then pr(β) + pr(ω) − pr(β)pr(ω) = pr(κ) and if
r(β)� r(ω), then pr(β) − pr(ω) �= 0.

(CK2) If a ∈A and β ∈ L+(E), then pr(β)sa = sapr(βa).
(CK3) If a, b ∈A, then s∗asa = pr(a) and s∗asb = 0 unless a= b.
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(CK4) For β ∈ L+(E), if L1
r(β) is finite and nonempty, then we have

(2.1) pr(β) =
∑

a∈L1
r(β)

sapr(βa)s
∗
a.

Let C∗(E,L) be the universal C∗-algebra generated by a Cuntz–Krieger
(E,L)-family.

Let γ′ : T→AutC∗(E,L) be the gauge action determined by

γ′
zpr(β) = pr(β), γ′

zsa = zsa for β ∈ L+(E), a ∈A.

Theorem 2.11. Let (E,L) be a weakly left-resolving, set-finite labeled
graph. Then C∗(E,L) is isomorphic to C∗(E,L,E(r,L)); moreover

C∗(E,L) = span
{
sαpAs

∗
β : α,β ∈ L+(E),A ∈ E(r,L)

}
.

Proof. Let {sa, pr(β)} be a universal Cuntz–Krieger (E,L)-family and
{ta, qA} be a universal representation of the labeled space (E,L,E(r,L)). For
a ∈A, set Ta = sa.

By (CK1a), we may define Q∅ = 0. For α,β ∈ L+(E), we may define
Qr(α)∩r(β) = Qr(α)Qr(β) and Qr(α∪r(β) = Qr(α) + Qr(β) − Qr(α)∩r(β) in
C∗(E,L). If r(α)� r(β), then we may define Qr(α)\r(β) =Qr(α) −Qr(β) �= 0
in C∗(E,L). By Remark 2.9 and using the inclusion/exclusion law we may
define QA in C∗(E,L) for all A ∈ E(r,L).

It is a routine calculation to show that {Ta,QA} is a representation of
the labeled space (E,L,E(r,L)) in C∗(E,L). By the universal property of
C∗(E,L,E(r,L)) there exists a homomorphism Φ : C∗(E,L,E(r,L)) →
C∗(E,L) such that Φ(ta) = Ta and Φ(qA) =QA. It is straightforward to see
that γ′

z ◦ Φ = Φ ◦ γz for z ∈ T. The first statement then follows by Theo-
rem 2.7, and the final statement follows by applying Φ to an arbitrary element
of C∗(E,L,E(r,L)) (see [2, Lemma 4.4]). �

3. Automorphisms of labeled graphs and their C∗-algebras

We begin by defining what a labeled graph morphism is and use the def-
inition to define a labeled graph automorphism. Then in Theorem 3.2 we
show that a labeled graph automorphism of (E,L) induces an automorphism
of C∗(E,L).

Definition 3.1. Let (E,L) and (F,M) be labeled graphs over alpha-
bets AE and AF respectively. A labeled graph morphism is a triple φ :=
(φ0, φ1, φAE ) : (E,L)→ (F,M) such that

(a) for all e ∈E1 , we have φ0(r(e)) = r(φ1(e)) and φ0(s(e)) = s(φ1(e));
(b) φAE : AE →AF is a map such that M◦ φ1 = φAE ◦ L.
If the maps φ0, φ1, φAE are bijective, then the triple φ := (φ0, φ1, φAE ) is called
a labeled graph isomorphism. In the case that F =E, AE =AF and L=M,
we call (φ0, φ1, φA) a labeled graph automorphism.
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For a labeled graph morphism φ= (φ0, φ1, φAE ), we shall omit the super-
scripts on φ when the context in which it is being used is clear.

The set Aut(E,L) := {φ : φ is a labeled graph automorphism of (E,L)}
forms a group under composition. The following result follows easily from
the universal definition of C∗(E,L).

Theorem 3.2. Let φ be an automorphism of a weakly left-resolving, set-
finite labeled graph (E,L) and {sa, pr(β)} be a universal Cuntz–Krieger (E,L)-
family. The maps sa �→ sφ(a) and pr(β) �→ pφ(r(β)) induce an automorphism of
C∗(E,L).

4. Skew product labeled graphs and group actions

In this section, we shall define a skew product labeled graph and define
what it means for a group to act on a labeled graph.

Definition 4.1. Let (E,L) be a labeled graph and let c, d : E1 → G be
functions. The skew product labeled graph (E ×c G,Ld) over alphabet A×G
consists of the skew product graph (E0 ×G,E1 ×G,rc, sc) where

rc(e, g) =
(
r(e), gc(e)

)
, sc(e, g) =

(
s(e), g

)
together with the labeling Ld : (E ×c G)1 → A × G given by Ld(e, g) :=
(L(e), gd(e)).

Since the labels received by (v, g) ∈ (E ×c G)0 are in one-to-one corre-
spondence with the labels received by v ∈ E0 it follows that if (E,L) is left-
resolving, then so is (E ×c G,Ld).

Example 4.2. For the labeled graph (E,L) of Examples 2.2(b) let c, d :
E1 → Z be given by c(e) = 1 and d(e) = 0 for all e ∈E1. Then

(E ×c Z,Ld) :=

.
(v,0)

.
(w,0)

.
(v,1)

.
(w,1)

.
(v,2)

.
(w,2)

.
(v,3)

.
(w,3)

. . .

. . .

. . .

. . .

(1,0)

(0,0)

(0,0)

(1,1)

(0,1)

(0,1)

(1,2)

(0,2)

(0,2)

Remark 4.3. We shall use the following simpler description of the path
space of E ×c G. For v ∈ E0, e ∈ E1, g ∈ G set vg = (v, g), eg = (e, g). Then
for μ ∈En where n≥ 2 and g ∈G set

μg = (μ1, g)
(
μ2, gc(μ1)

)
· · ·

(
μn, gc

(
μ′)) ∈ (E ×G)n.

For μ ∈E∗ the map (μ, g) �→ μg identifies E∗ ×G with (E ×c G)∗. Then for
(μ, g) ∈E∗ ×G we have

(4.1) s(μ, g) =
(
s(μ), g

)
and r(μ, g) =

(
r(μ), gc(μ)

)
.
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Let (E,L) be a labeled graph over the alphabet A. A labeled graph action
of G on (E,L) is a triple ((E,L),G,φ) where φ : G→ Aut(E,L) is a group
homomorphism. In particular, for all e ∈E1 and g ∈G we have

(4.2) L
(
φg(e)

)
= φg

(
L(e)

)
.

If we ignore the label maps, a labeled graph action ((E,L),G,φ) restricts
to a graph action of G on E; we denote this restricted action by (E,G,φ).
The labeled graph action ((E,L),G,α) is free if φg(v) = v for some v ∈ E0,
then g = 1G and if φg(a) = a some a ∈A, then g = 1G.

The following lemma shows that skew product labeled graphs provide a
rich source of examples of free labeled graph actions. As the proof is routine,
we omit it.

Lemma 4.4. Let (E,L) be a labeled graph, c, d : E1 →G be functions and
(E ×c G,Ld) be the associated skew product labeled graph. Then

(i) For (x,h) ∈ (E ×c G)i, (a,h) ∈ A×G, g ∈ G and i = 0,1 let τ ig(x,h) =

(x, gh) and τAg (a,h) = (a, gh). Then τg = (τ0g , τ
1
g , τ

A
g ) is a labeled graph

automorphism.
(ii) The map τ = (τ0, τ1, τA) : G→ Aut(E ×c G,Ld) defined by g �→ τg is a

homomorphism.
(iii) The triple ((E ×c G,Ld),G, τ) is a free labeled graph action.

Definition 4.5. The map τ = (τ0, τ1, τA) : G→Aut(E×cG,Ld) as given
in Lemma 4.4(ii) is called the left labeled graph translation map, and the action
((E ×c G,Ld),G, τ) the left labeled graph translation action.

Two labeled graph actions ((E,L),G,φ) and ((F,M),G,ψ) are isomorphic
if there is a labeled graph isomorphism ϕ : (E,L)→ (F,M) which is equivari-
ant in the sense that ϕ ◦ φg = ψg ◦ϕ for all g ∈G.

Theorem 4.6. Let (E,L) be a weakly left-resolving, set-finite labeled graph,
and ((E,L),G,α) be a labeled graph action. Let {sa, pr(β)} be a universal
Cuntz–Krieger (E,L)-family. Then for h ∈G the maps

αhsa = sαha and αhpr(β) = pαhr(β)

determine an action of G on C∗(E,L). If ((E,L),G,φ) and ((F,M),G,ψ)
are isomorphic then C∗(E,L)×φ G∼=C∗(F,M)×ψ G.

Proof. Follows by a straightforward application of Theorem 3.2 and the
universal property of crossed products. �

5. Gross–Tucker theorem

In this section, we prove a version of the Gross–Tucker theorem for labeled
graphs. For directed graphs, the Gross–Tucker theorem says, roughly speak-
ing, that up to equivariant isomorphism, every free action α of a group G on
a directed graph E is a left translation automorphism τ on a skew product
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graph (E/G)×c G built from the quotient graph E/G. Our aim is to prove a
similar result for labeled graphs. The new ingredient is the map d : E1 →G
found in the definition of a skew product labeled graph for labeled graphs.
Before giving our main result, Theorem 5.10, we introduce some notation.

Definitions 5.1. Let ((E,L),G,α) be a labeled graph action. For i= 0,1
and x ∈Ei let Gx := {αi

g(x) : g ∈G} and (E/G)i = {Gx : x ∈Ei}. For a ∈A
let Ga= {αA

g (a) : g ∈G} and A/G= {Ga : a ∈A}.
The proof of the following lemma is straightforward, so we omit it.

Lemma 5.2. Let ((E,L),G,α) be a labeled graph action. The maps r, s :
(E/G)1 → (E/G)0 given by

(5.1) r(Ge) =Gr(e) and s(Ge) =Gs(e) for Ge ∈ (E/G)1

and the map L/G : (E/G)1 → A/G given by (L/G)(Ge) = GL(e) are well
defined. Consequently, (E/G,L/G) is a labeled graph over the alphabet A/G.

The map q = (q0, q1, qA) : (E,L)→ (E/G,L/G) given by qi(x) =Gx for i=
0,1, x ∈Ei and qA(a) =Ga for a ∈A is a surjective labeled graph morphism.

Definition 5.3. Let ((E,L),G,α) be a labeled graph action. The quotient
labeled graph (E/G,L/G) is the labeled graph described in Lemma 5.2, the
map q : (E,L)→ (E/G,L/G) is the quotient labeled map.

The following Proposition is an analog of [6, Theorem 2.2.1] whose proof
is routine, and so we omit it.

Proposition 5.4. Let (E,L) be a labeled graph, c, d : E1 →G be functions
and (E ×c G,Ld) be the associated skew product labeled graph. Let ((E ×c

G,Ld),G, τ) be the left labeled graph translation action. Then(
(E ×c G)/G,Ld/G

) ∼= (E,L).
Example 5.5. Recall the labeled graphs (E,L) and (E ×c Z,Ld) from

Example 4.2. For the left labeled graph translation action ((E×cZ,Ld),Z, τ),
we have ((E ×c Z)/Z,Ld/Z)∼= (E,L) by Proposition 5.4.

The Gross–Tucker theorem is a converse to Proposition 5.4. It states that
if we have a free action of a group on a labeled graph, then we can recover
the original graph from the quotient via a skew product. Recall the following
definition for directed graphs.

Definition 5.6. Let F,E be directed graphs. A surjective graph morphism
p : F →E has the unique path lifting property if given u ∈ F 0 and e ∈E1 with
s(e) = p0(u) there is a unique edge f ∈ F 1 with s(f) = u and p1(f) = e.

Remark 5.7. Let (E,G,α) be a free graph action. Then the quotient map
q : E → E/G has the unique path lifting property (see [11, Section 5] or [6,
p. 67], for instance).
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Definitions 5.8. Let ((E,L),G,α) be a labeled graph action and q =
(q0, q1, qA) : (E,L)→ (E/G,L/G) be the quotient labeled map. A section for
qi is a map ηi : (E/G)i →Ei for i= 0,1 such that qi ◦ηi = id(E/G)i . A section

for qA is ηA : A/G→A such that qA ◦ ηA = idA/G.

Lemma 5.9. Let (E,G,α) be a graph action and q = (q0, q1) : E →E/G be
the quotient map. Given a section η0 for q0 there is a unique section η1 for
q1 such that

(5.2) s
(
η1(Ge)

)
= η0

(
s(Ge)

)
for all e ∈E1.

Proof. By Remark 5.7 the quotient map q : E →E/G has the unique path
lifting property. Hence if we fix Gv ∈ (E/G)0, then for each Ge ∈ (E/G)1 with
s(Ge) =Gv there is a unique f ∈E1 with q1(f) =Ge=Gf and s(f) = η0(Gv).
Put η1(Ge) = f , then η1 : (E/G)1 → E1 is well defined and the source map
on (E/G)1 is well defined. Since q1(η1(Ge)) = q1(f) =Ge it follows that η1

is a section satisfying (5.2). Uniqueness of η1 follows from the unique path
lifting property of q. �

The following is a version of the Gross–Tucker theorem (cf. [6, Theo-
rem 2.2.2]) for labeled graphs.

Theorem 5.10. Let ((E,L),G,α) be a free labeled graph action. Let η0, ηA

be sections for q0, qA respectively. There are functions c, d : (E/G)1 →G such
that ((E,L),G,α) is isomorphic to ((E/G×c G, (L/G)d),G, τ).

Proof. Fix a section η0 : (E/G)0 → E0 for q0. By Lemma 5.9, there is a
section η1 for q1satisfying (5.2). For Ge ∈ (E/G)1 set f = η1(Ge), then

q0
(
r
(
η1(Ge)

))
= q0

(
r(f)

)
=Gr(f) = r(Gf) = r(Ge) = q0

(
η0

(
r(Ge)

))
.

As (E,G,α) is free, there is a unique h ∈G such that α0
hη

0(r(Ge)) = r(η1(Ge))
and we may set c(Ge) = h. Define φ : E/G×c G→E by

φ0
c(Gv, g) = α0

gη
0(Gv) and φ1

c(Ge, g) = α1
gη

1(Ge)

for (Gv, g) ∈ (E/G ×c G)0 and (Ge, g) ∈ (E/G ×c G)1. One checks that
φc : (E/G×c G)→E is an isomorphism of directed graphs.

We claim that φc is equivariant. Notice that for all (Gv,h) ∈ (E/G×c G)0

and g ∈G we have

φ0
c

(
τ0g (Gv,h)

)
= φ0

c(Gv, gh) = α0
ghη

0(Gv) = α0
gα

0
hη

0(Gv) = α0
gφ

0
c(Gv,h)

and so φ0
c ◦ τ0g = α0

g ◦φ0
c for all g ∈G. The argument for φ1

c is similar and our
claim follows.

We now construct an equivariant bijection φ
A/G×G
d : A/G×G→A which

satisfies condition (b) of Definition 3.1. Fix a section ηA : A/G→A for qA.
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We now define a map d : (E/G)1 →G. Fix Ge ∈ (E/G)1 and set f = η1(Ge)
so that q1(f) =Ge. Since

qAηA
(
L/G(Ge)

)
= qAηA

(
GL(f)

)
= qALη1(Ge)

and the graph action ((E,L),G,α) is free, there is a unique k ∈G such that
αA
k η

A((L/G)(Ge)) = L(η1(Ge)) and we may define d(Ge) = k. The function
d : (E/G)1 →G described in this way is such that d(Ge) is the unique element
of G with the property that

(5.3) αA
d(Ge)η

A(
(L/G)(Ge)

)
= L

(
η1(Ge)

)
.

For each (Ga,g) ∈A/G×G we define φ
A/G×G
d : A/G×G→A by φ

A/G×G
d (Ga,

g) = αA
g η

A(Ga). We claim that φ
A/G×G
d satisfies φ

A/G×G
d ◦ (L/G)d = L ◦ φ1

c :

By (5.3) for all (Ge,h) ∈ (E/G×c G)1 we have

φ
A/G×G
d ◦ (L/G)d(Ge,h) = αA

h α
A
d(Ge)ηA

(
L/G(Ge)

)
= L

(
α1
hη

1(Ge)
)
= L ◦ φ1

c(Ge,h)

as required.

It is straightforward to see that φ
A/G×G
d is bijective. To see that φ

A/G×G
d

is equivariant notice that we have

φ
A/G×G
d

(
τA/G×G
g (Ge,h)

)
= φ

A/G×G
d (Ge, gh) = αA

g α
A
h η

A(Ge)

= αA
g φ

A/G×G
d (Ge,h)

for all (Ge,h) ∈ (E/G×G)1 and g ∈G. Thus φc,d = (φ0
c , φ

1
c , φ

A/G×G
d ) is the

required labeled graph isomorphism. �

Remark 5.11. The possibility that two edges in the quotient graph have
the same label means that we must choose a separate section ηA for qA. In
turn means that the function d given in the definition of a skew product
labeled graph plays a crucial role in the reconstruction of the labeled graph
action in Theorem 5.10.

Example 5.12. Recall from Example 5.5 the labeled graph (E ×c Z,Ld)
has a free action of Z such that the quotient labeled graph is (E,L). We use
this example to illustrate the point made in Remark 5.11:

Suppose we choose a section η0 : E0 → (E ×c Z)
0 such that η0(v) = (v,0)

and η0(w) = (w,2), then the section η1 : E1 → (E×cZ)
1 as defined in Lemma

5.9 is given by η1(e) = (e,0), η1(f) = (f,0), and η1(g) = (g,2) whose image in
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(E ×c Z,Ld) is as shown below.

.
(v,0)

.
(w,0)

.
(v,1)

.
(w,1)

.
(v,2)

.
(w,2)

.
(v,3)

.
(w,3)

. . .

. . .

. . .

. . .

(1,0)

(e,0)

(0,0)

(f,0) (0,2)

(g,2)

Note that c(e) = 1, c(f) =−1, and c(g) = 3.
Observe that f, g ∈E1 are such that L(f) = L(g) = 0 however,

L
(
η1(f)

)
= L(f,0) = (0,0) �= (0,2) = L(g,2) = L

(
η1(g)

)
.

The function d accounts for this difference. By Equation (5.3), we have d(g) =
2, since αA

2 (0,0) = (0,2), whereas d(f) = 0. Observe that d(g) �= d(f) even
though L(g) = L(f).

6. Coactions on labeled graph algebras

In [9] it is shown that a function c : E1 →G induces a coaction δ of G on
the graph algebra C∗(E) such that C∗(E)×δ G ∼= C∗(E ×c G). One should
expect, therefore, that the functions c, d : E1 → G would induce a coaction
δ of G on C∗(E,L) such that C∗(E,L)×δ G∼= C∗(E ×c G,Ld). However in
order to obtain such a result we must assume that both functions c, d are label
consistent (see Definition 6.1 below). For further information about coactions
of discrete groups see [15], amongst others.

Definition 6.1. Let (E,L) be a labeled graph over alphabet A. A function
c : E1 → G is label consistent if there is a function C : A → G such that
c=C ◦ L.

For any labeled graph (E,L) the function 1 : E1 →G given by 1(e) = 1G
for all e ∈ E1 is label consistent. First, we show that if c is label consistent
then there is a coaction of G on C(E,L).

Proposition 6.2. Let (E,L) be a weakly left-resolving, set-finite labeled
graph, G be a discrete group, and c : E1 → G be a label consistent function.
Then there is a maximal, normal coaction δ : C∗(E,L)→ C∗(E,L)⊗C∗(G)
such that

(6.1) δ(sa) = sa ⊗ uC(a) and δ(pr(β)) = pr(β) ⊗ u1G ,

where {sa, pr(β)} is a universal Cuntz–Krieger (E,L)-family and {ug : g ∈G}
are the canonical generators of C∗(G).
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Proof. The first part of the result follows by the same argument given
in [9, Lemma 3.2]. That the coaction δ is normal and maximal follows by
essentially the same arguments as the ones given in [5, Lemma 3.3] and [13,
Theorem 7.1(v)]. �

The next result shows that if d is label consistent then we may as well
assume that d= 1.

Proposition 6.3. Let (E,L) be a weakly left-resolving, set-finite labeled
graph and c : E1 →G a function. If d1, d2 : E

1 →G are label consistent func-
tions, then ((E ×c G,Ld1),G, τ) ∼= ((E ×c G,Ld2),G, τ) where τ is the left
translation action. Hence, if d : E1 → G is a label consistent function then
there is an isomorphism from C∗(E ×c G,Ld) to C∗(E ×c G,L1) which is
equivariant for the G-action induced by τ .

Proof. For the first statement, let φi : (E×cG)i → (E×cG)i be the identity
map for i= 0,1 and define φA×G : A×G→A×G by

φA×G(a, g) =
(
a, gD−1

1 (a)D2(a)
)
.

For (e, g) ∈ (E ×c G)1, after a short calculation we have

φA×GLd1(e, g) =
(
L(e), d2(e)

)
= Ld2(e, g).

It is then straightforward to check that φ= (φ0, φ1, φA×G) is a labeled graph
isomorphism. Since for all h ∈G we have

τh
(
φA×G(a, g)

)
=

(
a,hgD−1

1 (a)D2(a)
)
= φA×G

(
τh(a, g)

)
it follows that ((E ×c G,Ld1),G, τ)∼= ((E ×c G,Ld2),G, τ).

The final statement follows from Theorem 4.6. �
Remark 6.4. Thanks to Proposition 6.3 we may, without loss of generality,

assume that d= 1 when we are working with label consistent d-functions. On
the other hand it is not hard to see that a different choice of label consistent
functions c will yield non-isomorphic skew-product graphs.

Next, we shall show that if d = 1 then there is a natural identification
L+
1 (E ×c G), the labeled path space of (E ×c G,L1) with L+(E)×G.

Lemma 6.5. Let (E,L) be a labeled graph and c : E1 →G label consistent.
For μ ∈E+ and g ∈G the map

L1(μ, g) �→
(
L(μ), g

)
establishes a bijection from L+

1 (E ×c G) to L+(E)×G.

Proof. From Remark 4.3 it follows that for n≥ 1 every path in (E ×c G)n

has the form (μ, g) = (μ1, g)(μ2, gc(μ1)) · · · (μn, gc(μ
′)), for some μ ∈ En and

g ∈G. Then by definition we have

(6.2) L1(μ, g) =
(
L(μ1), g

)(
L(μ2), gc(μ1)

)
· · ·

(
L(μn), gc

(
μ′)).
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If we define the right-hand side of (6.2) to be (L(μ), g) the result follows. �
The following lemma indicates the behavior of the range map under the

identification of L+
1 (E ×c G) with L+(E)×G.

Lemma 6.6. Let (E,L) be a labeled graph and c : E1 →G be a label consis-
tent function. Let a ∈A, β ∈ L+(E), and g ∈G. Then under the identification
of L+(E)×G with L+

1 (E×cG) we have r(β, g) = (r(β), gC(β)) ∈ E(r,L)×G.

Proof. Observe that for (β, g) ∈ L+(E)×G, we have

r(β, g) = {r(μ, g) : (μ, g) ∈E∗ ×G,L(μ) = β} by (6.2)(6.3)

= {(r(μ), gC(β)) : L(μ) = β} by (4.1)

since the function c : E1 → G is label consistent. Hence, we may identify
r(β, g) with (r(β), gC(β)) ∈ E(r,L)×G. �

With the above identifications in mind, we turn our attention to the main
result of this section. By Theorem 4.6 the left labeled graph translation
action ((E×cG,L1),G, τ) defined in Definition 4.5 induces an action τ : G→
AutC∗(E ×c G,L1). When we identify L+

1 (E ×c G) with L+(E) × G this
action may be described on the generators of C∗(E ×c G,L1) as follows: For
h, g ∈G, a ∈A, and β ∈ L+(E) we have

(6.4) τh(s(a,g)) = s(a,hg) and τh(p(r(β),g)) = p(r(β),hg).

The method of proof for the next result closely follows that of [9, Theorem 2.4],
however we give some of the details as they rely heavily on the identification
we made in Lemma 6.6.

Theorem 6.7. Let (E,L) be a weakly left-resolving, set-finite labeled graph.
Suppose that G is a discrete group, c : E1 →G is a label consistent function,
and δ is the coaction from Proposition 6.2. Let jC∗(E,L), jG denote the canoni-
cal covariant homomorphisms of C∗(E,L) and C∗(G) into M(C∗(E,L)×δG)
and {s(a,g), p(r(β),g)} be the canonical generating set of C∗(E×cG,L1). Then
the map φ : C∗(E ×c G,L1)→C∗(E,L)×δ G given by

φ(s(a,g)) = jC∗(E,L)(sa)jG(χC(a)−1),

φ(p(r(β),g)) = jC∗(E,L)(pr(β))jG(χg−1)

is an isomorphism.

Sketch of proof. For each g ∈G, let C∗(E,L)g = {b ∈C∗(E,L) : δ(b) = b⊗
ug} denote the corresponding spectral subspace; we write bg to denote a
generic element of C∗(E,L)g . Then C∗(E,L)×δ G is densely spanned by the
set {(bg, h) : bg ∈ C∗(E,L)g and g,h ∈ G}, and the algebraic operations are
given on this set by

(bg, x)(bh, y) = (bgbh, y) if y = h−1x (and 0 if not), and

(bg, x)
∗ =

(
b∗g, gx

)
.
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If (jC∗(E,L), jG) denotes the canonical covariant homomorphism of C∗(E,L)
into the multiplier algebra of C∗(E,L) ×δ G, then (bg, x) is by definition
(jC∗(E,L)(bg)jG(χ{x})).

Using Lemma 6.6, we may show that for (a, g) ∈ A ×G, β ∈ L+(E) and
g ∈G

t(a,g) =
(
sa,C(a)−1g−1

)
and q(r(β),g) =

(
pr(β), g

−1
)

is a Cuntz–Krieger (E ×c G,L1)-family in C∗(E,L)×δ G.
By universality of C∗(E ×c G,L1) there is a homomorphism πt,q from

C∗(E ×c G,L1) to C∗(E,L) ×δ G such that πt,q(s(a,g)) = t(a,g) and
πt,q(p(r(β),g)) = q(r(β),g) which we may show is injective using the argument
from [9, Theorem 2.4] and Theorem 2.7.

Next, we show that πt,q is surjective. Observe that C∗(E,L)×δ G is gen-
erated by (sa, g) and (pr(β), h). Since πt,q(s(a,g−1C(a)−1)) = t(a,g−1C(a)−1) =

(sa,C(a)−1C(a)g), and πt,q(p(r(β),h−1)) = (pr(β), h) we see that πt,q is surjec-
tive. Hence, πt,q is the desired isomorphism.

We need to check that πt,q is equivariant for the G actions, that is πt,q ◦τg =
δ̂g ◦ πt,q for all g ∈G. It is enough to check on generators: Notice that for all
s(a,h) ∈C∗(E ×c G,L1)

πt,q ◦ τg(s(a,h)) = πt,q(s(a,gh)) =
(
sa,C(a)−1h−1g−1

)
= δ̂g

(
sa,C(a)−1h−1

)
= δ̂g ◦ πt,q(s(a,h))

and similarly πt,q ◦ τg(p(r(β),h)) = δ̂g ◦ πt,q(p(r(β),h)) for p(r(β),h) ∈ C∗(E ×c

G,L1).
We claim that πt,q is equivariant for the T actions, that is πt,q ◦ γz =

(γz ×G) ◦ πt,q for all z ∈ T. It is enough to check this on generators: Notice
that for all s(a,h) ∈C∗(E ×c G,L1) and z ∈ T we have

πt,q ◦ γz(s(a,h)) = πt,q(zs(a,h)) =
(
zsa,C(a)−1h−1

)
= (γz ×G)

(
sa,C(a)−1h−1

)
= (γz ×δ G) ◦ πt,q(s(a,h)).

Similarly, πt,q ◦ γz(p(r(β),h)) = (γz × G) ◦ πt,q(p(r(β),h)) for all p(r(β),h) ∈
C∗(E ×c G,L1). �

Corollary 6.8. Let (E,L) be a weakly left-resolving, set-finite labeled
graph. Suppose that G is a discrete group, c : E1 → G be a label consistent
function, and τ the induced action of G on C∗(E ×c G,L1). Then

C∗(E ×c G,L1)×τ,r G∼=C∗(E,L)⊗K
(
�2(G)

)
.

Proof. Since the isomorphism of C∗(E ×c G,L1) with C∗(E,L) ×δ G is

equivariant for the G-actions τ, δ̂, respectively, it follows that

C∗(E ×c G,L1)×τ,r G∼=C∗(E,L)×δ G×δ̂,r G.
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Following the argument in [9, Corollary 2.5], Katayama’s duality theorem [10]
gives us that C∗(E,L)×δ G×δ̂,r G is isomorphic to C∗(E,L)⊗K(�2(G)), as

required. �

In order to provide a version of Corollary 6.8 for group actions, we must
first characterise when the functions c, d in the Gross–Tucker Theorem 5.10
are label consistent maps. We will do this in the next section.

Recall from [15, p. 209] that a coaction δ of a discrete group G on a C∗-
algebra A is saturated if for each s ∈G we have AsA∗

s = Aδ where As is the
spectral subspace As = {b ∈A : δ(b) = b⊗us} and Aδ is the fixed point algebra
for δ

Aδ :=
{
b ∈A : δ(a) = a⊗ u1G

}
.

Lemma 6.9. Let (E,L) be a weakly left-resolving, set-finite labeled graph
and c : E1 → Z be given by c(e) = 1 for all e ∈E1. Then the coaction δ of Z
on C∗(E,L) induced by c is saturated.

Proof. The coaction δ of Z on C∗(E,L) defined in Proposition 6.2 is such
that the fixed point algebra C∗(E,L)δ is precisely the fixed point algebra
C∗(E,L)γ for the canonical gauge action of T on C∗(E,L) by the Fourier
transform (cf. [4, Corollary 4.9]). By an argument similar to that in [14,
Section 2], we have

C∗(E,L)γ = span
{
sαpAs

∗
β : α,β ∈ Ln(E),A ∈ E(r,L)

}
.

Since E has no sinks it follows by a similar argument to that in [14, Lemma
4.1.1] that C∗(E,L) is saturated. �

Theorem 6.10. Let (E,L) be a weakly left-resolving, set-finite labeled
graph. Then C∗(E,L)γ is strongly Morita equivalent to C∗(E×cZ,L1) where
c : E1 → Z is given by c(e) = 1 for all e ∈E1.

Proof. Since c is label consistent it follows by Theorem 6.7 that

C∗(E ×c Z,L1)∼=C∗(E,L)×δ Z.

By Lemma 6.9, the coaction is δ is saturated and since C∗(E,L)δ ∼=C∗(E,L)γ
the result follows. �

7. Free group actions on labeled graphs

In this section, we examine conditions on the free labeled graph action
((E,L),G,α) which ensure that the functions c, d from Theorem 5.10 are
label consistent.

Recall that a fundamental domain for a graph action (E,G,α) is a subset
T of E0 such that for every v ∈ E0 there exists g ∈ G and a unique w ∈ T
such that v = α0

gw. Every free graph action has a fundamental domain.
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Definition 7.1. Let ((E,L),G,α) be a free labeled graph action. A fun-
damental domain for ((E,L),G,α) is a fundamental domain T ⊆ E0 for the
restricted graph action such that for every e, f ∈E1 we have

(a) if r(e), r(f) ∈ T and GL(e) =GL(f), then L(e) = L(f) and
(b) if s(e), s(f) ∈ T and GL(e) =GL(f), then L(e) = L(f).

In Examples 7.2(i) below, we see that not every free action of a group on
a labeled graph has a fundamental domain.

Examples 7.2.

(i) Consider the following labeled graph

(E,L) :=

.
(v,−1)

.
(w,−1)

.
(v,0)

.
(w,0)

.
(v,1)

.
(w,1)

.
(v,2)

.
(w,2)

. . .

. . .

. . .

. . .

(1,−1)

(0,−1)

(0,−2)

(1,0)

f

(0,0)

(0,−1)

(1,1)

(0,1)

(0,0)

(1,1) (1,2) (1,3)
e

The group Z acts freely on (E,L) by addition in the second coordinate of
the vertices, edges and labels as indicated in the picture above; call this
action α. Let T = {(v,0), (w,1)}, then T is a fundamental domain for the
restricted graph action (E,Z, α). However when considering the labeled
graph action ((E,L),Z, α) the set T does not satisfy Definition 7.1(b).

Consider the edges e, f as shown above with L(e) = (1,3) and L(f) =
(1,0) respectively. We have s(e) = (w,1) ∈ T and s(f) = (v,0) ∈ T and
ZL(e) = ZL(f) = {(1, n) : n ∈ Z}, however L(e) = (1,3) �= (1,0) = L(f).
Indeed any fundamental domain for the restricted action (E,Z, α) will
also fail Definition 7.1(b).

(ii) Let c, d : E1 →G be label consistent functions and ((E×cG,Ld),G, τ) be
the associated left labeled graph translation action. Then one checks that
T = {(v,1G) : v ∈E0} is a fundamental domain for ((E ×c G,Ld),G, τ).

The following result shows that when we add the fundamental domain
hypothesis to the free labeled graph action, the functions c, d : (E/G)1 →G
in the labeled graph version of the Gross–Tucker theorem (Theorem 5.10) may
be chosen to be label consistent.

Theorem 7.3. Let ((E,L),G,α) be a free labeled graph action with a fun-
damental domain. Then there are label consistent functions c, d : (E/G)1 →G
such that ((E,L),G,α)∼= ((E/G)×c G, (L/G)d),G, τ).

Proof. Let T be a fundamental domain for ((E,L),G,α). For every Gv ∈
(E/G)0 there exists a unique w ∈ T such that Gw =Gv. Hence, if we define
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η0(Gv) = w, then η0 : (E/G)0 → T is a section for q0. Then we may define
η1, c, d, and ηA as in Theorem 5.10.

It suffices to show that c and d are label consistent. To see that d is label
consistent suppose Ge,Gf ∈ (E/G)1 are such that (L/G)(Ge) = (L/G)(Gf) =
Ga ∈A/G. Let b= ηA(Ga) ∈A, d(Ge) = k ∈G, and d(Gf) = l ∈G. Then by
the definition of d we have

L
(
η1(Ge)

)
= αA

k η
A(L/G)(Ge) = αA

k b,(7.1)

L
(
η1(Gf)

)
= αA

l η
A(L/G)(Gf) = αA

l b.(7.2)

This implies that GL(η1(Ge)) = Ga = GL(η1(Gf)) and so L(η1(Ge)) =
L(η1(Gf)) since s(η1(Ge)), s(η1(Gf)) ∈ T . From Equations (7.1) and (7.2)
we have αA

k b= αA
l b and so k = l since the G action on A is free. Therefore,

d is label consistent.
To see that c is label consistent suppose that Ge,Gf ∈ (E/G)1 are such that

(L/G)(Ge) = (L/G)(Gf) = Ga ∈ A/G, say. Let b = ηA(Ga) ∈ A, cη(Ge) =
k ∈G, and c(Gf) = l ∈G. Then by the definition of c we have

r
(
η1(Ge)

)
= α0

kη
0
(
r(Ge)

)
,(7.3)

r
(
η1(Gf)

)
= α0

l η
0
(
r(Gf)

)
.(7.4)

Then if we let e= α1
−k(η

1(Ge)) and f = α1
−l(η

1(Gf)) we have e, f ∈E1 with

r(e) = η0(r(Ge)), r(f) = η0(r(Gf)) ∈ T and GL(e) =GL(f). Since T is a fun-
damental domain, we have L(e) = L(f) and hence αA

−k(L(η1(Ge))) = L(e) =
L(f) = αA

−l(L(η1(Gf))). Since L(η1(Ge)) = L(η1(Gf)) we can conclude that
k = l as in the previous paragraph. Therefore, c is label consistent and our
result is established. �

Corollary 7.4. Let (E,L) be a weakly left-resolving, set-finite labeled
graph. Suppose that ((E,L),G,α) is a free labeled graph action which admits
a fundamental domain. Then

C∗(E,L)×α,r G∼=C∗(E/G,L/G)⊗K
(
�2(G)

)
.

Proof. By Theorem 7.3, there are label consistent functions c, d : E1/G→
G such that (

(E,L),G,α
)∼= ((

E/G×c G, (L/G)d
)
,G, τ

)
,

so we have

C∗(E,L)×α,r G∼=C∗(E/G×c G, (L/G)d
)
×τ,r G.

By Proposition 6.3 and Corollary 6.8, we have

C∗(E/G×c G, (L/G)d
)
×τ,r G ∼= C∗(E/G×c G, (L/G)1

)
×τ,r G

∼= C∗(E/G,L/G)⊗K
(
�2(G)

)
which gives the desired result. �
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