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STRICTLY SINGULAR OPERATORS IN ASYMPTOTIC /,
BANACH SPACES

ANNA PELCZAR-BARWACZ

ABSTRACT. We present a condition on higher order asymptotic
behavior of basic sequences in a Banach space ensuring the ex-
istence of bounded noncompact strictly singular operators on a
subspace. Applications concern asymptotic £, spaces, 1 < p < oo,
in particular convexified mixed Tsirelson spaces and related as-
ymptotic ¢, HI spaces.

Introduction

The research on conditions ensuring the existence of nontrivial strictly sin-
gular operators on/in Banach spaces increased in the last years, in connection
with the famous “scalar-plus-compact” problem and following constructions
of spaces with “few operators.” The “scalar-plus-compact” problem asks if
there is an infinite dimensional Banach space on which any bounded oper-
ator is a compact perturbation of a multiple of the identity. An important
step towards solving this problem was made by Gowers and Maurey [17], who
constructed the first HI (hereditarily indecomposable) space, Xqm, that is,
a space without closed infinite dimensional subspaces which can be written
as a direct sum of a pair of further closed infinite dimensional subspaces.
Moreover, any operator on a subspace of Xq is a strictly singular perturba-
tion of an inclusion operator. An operator between Banach spaces is strictly
singular, if none of its restrictions to an infinite dimensional subspace is an
isomorphism. The construction of Xg\ was followed by a class of asymptotic
£1 HI spaces, started with Xsp by Argyros and Deliyanni [6], and by a class of
asymptotic £, HI spaces [2], [13]. However, Xgm was shown to admit bounded
strictly singular noncompact operators first on a subspace [18], and later—on
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the whole space [5]. Also [16], [11] gave some conditions on parameters of
the constructed asymptotic £, HI spaces, ensuring the existence of nontrivial
strictly singular operators on the space. Finally the “scalar-plus-compact”
problem was solved positively by Argyros and Haydon [9] in the celebrated
construction of an HI .Z,.-space with “very few operators.”

A hereditary version of the “scalar-plus-compact” problem, concerning op-
erators on infinite dimensional subspaces of a given space, remains open. Con-
struction of nontrivial strictly singular operators in a Banach space X is based
usually on different types of asymptotic behavior of basic sequences in X with
respect to an auxiliary basic sequence (e,,): local representation of (e,) in X,
provided for example by Krivine theorem in Lemberg’s version [20], on one
side, and “strong” domination of a spreading model of some basic sequence
in X by (e,) on the other [3], [24], [4], which ensures strict singularity of
the constructed operator. In case of (e,) equal to the usual basis of ¢; the
asymptotic “strong” domination appears whenever X contains a weakly null
basic sequence not generating ¢;-spreading model [3]. Construction of non-
trivial strictly singular operators based on the higher order representability of
¢1 in a space was studied in [24]. The operators on the whole space demands
specific asymptotic properties of basic sequences in the dual space [5], [16],
[11]. In the last two cases, strict singularity is related closely to the hereditary
indecomposability of the considered space.

We present in this paper a general criterion (Theorem 4.2) ensuring the
existence of nontrivial operators in a Banach space in terms of higher or-
der asymptotic behavior of basic sequences with respect to an auxiliary ba-
sic sequence with some regularity properties, under partial unconditionality
assumptions. To this end, we introduce and study a-strong domination, ex-
tending to higher order Schreier families the notion used in [24], [4]. Next, we
apply the general construction in case of any asymptotic ¢, space X (Corollary
4.4), providing, as a counterpart of Krivine theorem, “local” lower estimates
of basic sequences in X by the usual basis of the p-convexified Tsirelson-type
space T(P)[S},6] with 6 related to asymptotic constants of X (Theorem 2.2).
The further application brings nontrivial strictly singular operators on sub-
spaces of convexified mixed Tsirelson spaces and asymptotic ¢, HI spaces of
types constructed in [2], [13] under mild conditions on parameters defining
the spaces (Corollaries 4.4, 4.7).

The paper is organized as follows: in Section 1 we recall basic notions, in
Section 2 we focus on properties of asymptotic ¢, spaces, proving the “local”
lower Tsirelson-type estimates. Section 3 is devoted to the study of a-strong
domination, for limit o < wy, and in Section 4 we apply developed tools to
construct nontrivial operators in general setting and in asymptotic £,, spaces,
with application to convexified mixed Tsirelson spaces and HI spaces.
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1. Preliminaries

We recall the basic definitions and standard notation. By a tree we shall
mean a nonempty partially ordered set (7, =) such that any set of the form
{yeT:y=2z}, x €T, is linearly ordered and finite. If 7/ C T, then we say
that (77, =) is a subtree of (T,=). The smallest element of a tree (if it exists)
is called its root, the maximal elements are called terminal nodes of a tree.
A branch in a tree T is a maximal linearly ordered set in 7. The height of
a finite tree is the maximal length of its branches. The immediate successors
of t € T, denoted by succ(t), are all the nodes s € T such that ¢t < s but there
isno r €T with t <r <s. An order of a node t of the tree with a root is
defined as ord(t) = #{s€ T : s < t}.

We write E < F, for E, F CN, if max E <min F. For any J C N by [J]<>
we denote the family of finite subsets of J. A family F C [N]<* is regular, if
it is hereditary, that is, for any G C F, F' € F also G € F, spreading, that is,
for any integers n; < --- <mng and mq < --- <my with n;, <m;, i=1,...,k,
if {n1,...,ni} € F then also {mq,...,my} € F, and compact in the product
topology of 2N.

Let F be a compact family of finite subset of N endowed with the prod-
uct topology of 2N, We let F° = F, for any ordinal a we set Fot! =
{F € F: F—a limit point of F*} and for any limit ordinal o we set F* =
Np<a FB. The Cantor-Bendixson index of F, denoted by CB(F), is defined
as the least « for which F¢ = ().

Schreier families (Sa)a<w,, introduced in [1], are defined by induction:

So = {{k} : ke N} U{0},
Saq1={FAU---UF,:k<F<---<Fp,,F1,....F, €S,}, a<uw.
If « is a limit ordinal, choose a,, /* « and set
So={F:FeS,, and n<F for some n € N}.
It is well known that the Schreier families S,, a < wi, are regular and
CB(S,) =w*+1, a <w; (cf. [1]). For any regular family F let
Si(F)={RU---UF,:k<F,...,F, € F,F1,...,Fy pairwise disjoint}.

By an easy adaptation of the argument in Lemma 2.1 [21], one can show that

S1(80) = Sat1, a <wip (cf. also [8]). We say that a sequence Fn,...,Ej of
subsets of N is S,-admissible, « < wy, if E; < - < E) and (min E;)*_, € S,,.

DEFINITION 1.1 (S;-admissible tree). We call Si-admissible tree of finite
subsets of N any collection (Ey)ie7, indexed by a finite tree 7 with a root
0, such that for any nonterminal node ¢ € 7 the sequence (E)scsucc(r) 1S
S1-admissible and F; = E,.

sesucc(t)

REMARK 1.2. Any S;-admissible tree is a tree ordered by inclusion. By
the definition of families (S,,) for any Sys-admissible sequence (Ej )y of finite
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subsets of N, M € N, there is an Sj-admissible tree (F;)ier of height at most
M with EO = Uk Ek and (Et)tET,tterminal - (Ek)k-

Given a Banach space X by Bx denote the closed unit ball of X. Let now
X be a Banach space with a basis (e;). The support of a vector x =", z;e;
is the set suppz ={i € N: z; #0}. We write z <y for vectors z,y € X, if
suppz < suppy. Any sequence (z,) C X with 1 < z9 < --- is called a block
sequence, a closed subspace spanned by an infinite block sequence () is
called a block subspace and denoted by [z,]. We say that a sequence (z,)
is seminormalized, if 0 < inf, ||z,| < sup,||z.|| < co. A basic sequence (x;,)
C-dominates a basic sequence (yy,), C > 1, if for any (ay) € coo we have

E AnYn § AnpTn
n n

Two basic sequences (z,) and (y,) are C-equivalent, C > 1, if (z,) C-domi-
nates (y,) and (y,) C-dominates (x,,). We shall use also the following notion
of partial unconditionality [14] and equivalence of basic sequences.

<]

DEFINITION 1.3. Let F be a family of finite subsets of N.

[14] A basic sequence (x;) is F-unconditional, if |3, p ase;|| < O[>, azeq||
for any (a;) € co, any F' € F for some universal C > 1.

We say that basic sequences (z;) and (y;) are F-equivalent, if (x;);cr and
(yi)icr are C-equivalent for any F' € F for some universal C' > 1.

In the language above a basic sequence (x;) generates a spreading model
(e;) [12], iff for any € > 0 for some n € N sequences (€;);>n and (z;);>n are
Si-equivalent with constant 1+ e. A basic sequence (z;) generates an £$-
spreading model, a < w; [7], iff it is Sy-equivalent to the unit vector basis
(abbreviated in the sequel as the u.v.b.) of ¢;.

We recall that a Banach space X with a basis is £,-asymptotic, 1 < p < oo,
if any normalized block sequence n < z; < --- < x, is C-equivalent to the
u.v.b. of £7, for any n € N for some universal C' > 1.

Finally, we say that a sequence x; < -+ < x, is So-admissible, a < w1, if
(supp ;) is S,-admissible.

DEFINITION 1.4 (p-convexified mixed Tsirelson space). [13] Fix 1 <p < oo,
a set N C N and scalars (0,)nen C (0,1). Define a norm ||-|| on ¢op as the
unique norm on cgg satisfying the equation

1/p
lz|l = max{ ||x||oo,sup{9}/p (ZEJV’) : (E;) Sp-admissible,n € N} }

The p-convezified mized Tsirelson space T®[(S,,0,)nen] is the completion
of (coo, [-11)-

Take 1 < ¢ < oo with % + é =1. It is standard to verify that [jz| =
sup{f(z): f € K}, x € ¢op, where K C cqp is the smallest set such that
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(K1) (£ef)i C K,
(K2) for any S,-admissible (f;) C K, n € N, and any (v;) € By, we have
9}/1) Zz vifi € K.

In case p =1, we obtain the classical mixed Tsirelson space T'[(Sy,0n)nen],
introduced in [6]. Notice that for any p > 1 the space T")[(S,, 0, )nen] is the
p-convexification of T[(Sy,0n)nen] [13] and is £,-asymptotic. It follows im-
mediately by the definition of the space that the u.v.b. (e, ) is 1-unconditional
in TP (S, 0n)nen]-

If N ={n}, we obtain the classical p-convexified Tsirelson-type space
T®W)[S,,0]. The space T[S;,1/2] is the famous Tsirelson space. For § =1,
we have T®) [Sn,1] =¢,. We will shorten the notation by denoting any space
T[Sy, 6] by Te(p). We recall Lemma 4.13 [23]: for any sequence (6,,) C (0, 1],

with 0,10 > 0,0, n,m €N, lim,, 0/™ exists and is equal to sup,, gL/m

NOTATION 1.5. A space T®)[(S,,,0,)nen] with 6, \ 0 and 6,4 > 0,0,
is called a regular space. In this case we define 6 = lim,, 0}/" € (0,1].

REMARK 1.6. It follows straightforward that any convexified mixed Tsirel-
son space TP)[(S,,, 0, ) nen], with infinite N € N and 6,, — 0, is isometric to a
regular space T [(S,,, 0, )nen], with 0,, = sup{Hé:1 O, Zi:l n; >mn,n,...,
n € N}, neN.

The following notion provides a useful tool for estimating norms in convex-
ified mixed Tsirelson spaces.

DEFINITION 1.7 (The tree-analysis of a norming functional). Let f € K,
where K is the norming set of a convexified mixed Tsirelson space T®)[(S,,,
0n)nen]. By a tree-analysis of f we mean a finite family (f;):e7 indexed by
a tree 7 with a unique root 0 € T satisfying the following:

(1) fo=fand fye K forallteT,

(2) t €T is terminal if and only if f; € (£ef),

(3) for any nonterminal ¢ € 7 there is some n € N such that (fs)sesuce(r)
is an S,-admissible sequence and f; = 971/ P (Zsesucc(t) vsfs) for some
(Vs)sesuce(t) € Be, \ {0}. In such a case the character of f; is defined
as char(f;) =n.

The character order of a node f;, t € T, is defined as the sum of characters of

all nodes preceding f;. The set the character order of fy to be equal 0.

Notice that any f € K admits a tree-analysis, not necessarily unique.

2. Lower Tsirelson-type estimate in asymptotic ¢, spaces

Throughout this section, we assume that X is an asymptotic ¢, space,
1 <p < o0, with a basis.
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For any n € N define the lower asymptotic constant 6,, = 6,,(X) € (0,1] (in
case p=1 cf. [23]) as the biggest constant such that for any S,-admissible
block sequence n <z < --- <z € X we have ||x1 + - + x||P > 0, (||z1||P +
oo+ ||k ||P)- It follows easily that 6,4, > 6,,0,,, n,m € N. Let 6 = lim,, 9,1/” IS
(0,1]. We will not make at this point the standard stabilization of the con-
stants over block subspaces, or tail subspaces, as it will be done later to satisfy
more restrictive conditions.

The model space for the above situation is a regular convexified mixed
Tsirelson space TP)[(S,,0n)nen]. Indeed, by the Fact 2.1 below and the
definition of the space (6,,) is the sequence of its lower asymptotic constants.

FacT 2.1. Let Z = TWP[(S,,,0,)nen] be a reqular p-convexified mived Tsirel-
son space. Then for any n € N and € >0 there is a vector x =3, p a;e; with

F eS8, such that ||z|| < (05" 4 €)(X ;e |ai|P) /2.
Proof. By Lemma 1.6 [6] for any n € N and ¢ > 0 there is (b;);cr C (0,1),
FeS8,, such that 7, pb;=1and ), ,b; < for any G€ S, 1. Let =

Eier;/pei. Take a norming functional f € K with a tree-analysis (f;)ier
and let G be the set of all terminal nodes of 7 with character order smaller
than n. Then G € §,,—1 and by Holder inequality and regularity of (6,,)

f<w>:f( > bi“"a-) +f( > bi%)

i€GNF i€F\G
1/p 1/p
< < > bi> + oL (Z bi) <8P 4 gl/p.
ieGNF F\G
Taking § = eP we finish the proof. O

In the sequel, we will generalize some of the estimates known for Z [19]
to the case of arbitrary asymptotic £, space X. The following theorem gen-
eralizes Lemma 2.14 [19] (in case of mixed Tsirelson spaces) and Proposition
3.3 [7] (in case of § = 1), providing also block sequences with supports of uni-
formly bounded admissibility. One can view this result in context of Krivine
theorem in Lemberg’s version [20], stating that for any basic sequence (x;)
there is some 1 < p < oo, such that for any M € N and § > 0 there is a block
sequence (IE")) such that any its subsequence of length M is (1+ §)-equivalent
to the u.v.b. of £,. In case of asymptotic £, spaces we increase the order of
sequences uniformly “representing” (more precisely dominating) the u.v.b. of
some T(P)[S;, 6] from sequences of fixed length to Syr-admissible.

THEOREM 2.2. Let X be an asymptotic £, space, 1 <p < oo, with lower

asymptotic constants (0,). Let § =lim, 0711/”. Then for every M € N and
0 > 0, there is a normalized block sequence (x;) C X satisfying for any G € Sy
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and scalars (a;)ica

E ;g

> %(1 —0)
i€G

5 Q3 €minsupp x;

i€G

Te(p)

Moreover (x;) can be chosen to satisfy suppx; € S, for all i, for some r € N.

7

In order to achieve the “Moreover...” statement in the above proposi-
tion, we introduce more precise lower asymptotic constants measuring the
asymptoticity on block sequences with supports of the same admissibility.

For any normalized block sequence x = (z;) C X and any n € N let 7,,(x) €
(0,1] be the biggest constant such that for any S,-admissible block subse-
quence x;, < --- < x;, and any scalars (a;)¥_, we have ||a1z;, +- - +apz;, ||P >
Tn(X)(Jar|P + -+ + |ax|?). Then let

M (X) = Sup 7y, ((-Ti)iZk)
keN

and finally for any n € N let
Ny = inf{n,(x) : x = (z;)—a normalized block sequence

with suppz; € Sy, for all ¢, for some ry € N}.

It is clear that n,4m > Nnfm, n,m € N. Let n =1lim,, 77,1/" €(0,1). Asn, >0,
for any n € N we have also n > 6, therefore it will be sufficient to prove the
estimate in Theorem 2.2 for T,gp) instead of Te(p).

The proof of Theorem 2.2 is based on the following facts.

LEMMA 2.3. For any M € N there is a block sequence (x;) C X such that for
any 1 < j < M there is some S;j-admissible (Ey) with ||z;||P <207 >, || By ||?,
1 €N, and suppz; € S, for all i, for some r € N.

Proof. Notice first that for any M € N we have

(/7)™ < %/ < X/
thus limy, 00 /M0m = n™. Fix M € N and by the above pick m € N such that
21/mn7ln/ﬁ < 29]1\//[m77M. By definition of 7,5 pick a block sequence (y;) C X
with [y ||” < 20mar D4 || Fryil|P for some Sy, ar-admissible (Fj) and suppy; €
S, for some r € N.

Fix 1 € N, let y =y; and assume that for any z € X with suppz C suppy
there is some 1 < j < M such that ||z||? > 2n? 3", || Ejz||? for any S;-admissible
(Ex). Notice that if we arrive to contradiction, as ¢ € N is arbitrary, we will
finish the proof of the lemma.

Take an Sj-admissible tree (F});c7 associated to (Fy)r as in Remark 1.2.
We will choose inductively some subtree R C 7 with the same root such that

(1) ordr(t) > (m —1)M for any terminal ¢ € R,
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(2) if t € R is nonterminal, then for some 1 < j; < M the sequence
(Fs)sesucer () 18 Sj,-admissible and || Fyy||P > 2nt ZsEsuccR(t)HFsyup'
Notice first that the length of the branch linking any terminal node ¢ of R
and the root is at least m and |[Fyyl|P > O0ar D p 5, |1 FRylP as (Fi)rocr, is

SimM—ordy (+)-admissible and thus also Sys-admissible by (1). Therefore,

20mnr Y N FryllP > [yl =27 Y O FyP

k tER,t terminal
>2m > g Ohy Y| Fyl?
teER,t terminal FyCF:
> 20" M0y || Fryll”,
k

hence 21,17 > 2™03n™M which contradicts the choice of m.

We proceed to define the tree R. By our assumption on y, considering
z =y we have [ly[|? > 2% 2 seT ord(s)—jo IFsyll? for some 1 < jo < M. Let
succr (0) = {s € T,ordr(s) = jo}. Assume we have defined ¢ € R with order
< (m—1)M. By our assumption on y, considering z = F;y, we can pick some
1 <j: <M with HFtpr 2 277% ZsET,ordT(s):ordT(t)+jt,FsCFt”Fsy”p' Let
succr (t) = {s € T,ordr(s) = ordr(t) + j:, Fs C F;} and thus we finish the
construction of R. O

FActT 2.4. For any G € Sy and any z = ZiEG cie; € Tép) there is an Si-
admissible tree R of height at most M, with terminal nodes {i}, i € F' for some
F C G, of orders (I;)ier C{L,...,M} satisfying HzH;(p) <23 el

n

Proof. Take a norming functional g =}, 4 nFi/Pyier with (vi)ieq € By,
and tree-analysis (g;)ie7 satisfying g(z) = |||l ;. Let I ={i€ G : k; < M}.
n
Let g; be the restriction of g to I and go =g — g1. If g1(2) > g2(2), then

/p
9(2) <201 (= <2an/”|%cz|<2<2n ) :
el

i€l

and we take the tree R = (suppg: N I)ier. If g1(2) < g2(2), compute

1/p
9(z) < 2ga(2) <2pM/P > |’7ici|<277M/p<Z|Ci|p) :

i€G\I i€G
and we take a tree R associated to Spr-admissible ({i});c¢ by Remark 1.2. O

Proof of Theorem 2.2. The proof follows the idea of the proof of Lemma
2.14 [19]. Assume the contrary. As in the proof of Lemma 2.3 for any M €

N, we have lim,, oo %/Marm = n™. Pick m € N such that nl/m 21/m(1

5)Pn™M. Take a block sequence (z?); according to Lemma 2.3 for mM € N,

K2

with (suppa?) C S, for some 7 € N.
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Since the assertion fails there is an infinite sequence (G})i of successive
elements of Sy; and coefficients (a,})iegi,k such that

1
Z ajzd|| < 5(1 —0) Z a; |27 || emo X for each k € N,
ieG} i€Gy,
where m? = minsupp z? for each i. For any k € N set z}, = ZieG}c atx? and by

Fact 2.4 take an Si-admissible tree R,ﬁ with the root F; kl - G,lC and terminal
nodes ({i});cp1, Fl c G}, of orders (lzl)ieF,}, c{1,..., M} satisfying

p
> alllatlens| <2 3

i€GE i€F}

ai "2

Assume that we have defined (xi_l)k and (Ri_l)k with terminal nodes of

orders (1] _1)i eI\ k for some j <'m. Then the failure of the assertion implies

the existence of a sequence (Gj,)), of successive elements of Sy; and a sequence
J .

(ai)ieG;,k such that for any k € N

Ja-1 J||..0—1 )
E alx] (1 —9) g a?|«] Hemgfl )’
e i€Gy T
J=1 _ s J= b
where m? " = minsuppa? " for each i. For any k € N set xk = EzeGi a;w;

and by Fact 2.4 take an S;-admissible tree ’Ri with terminal nodes ({i})
F,ﬁ C G , of orders (1), ierj C {1,..., M} satisfying

HZ ]ij 1|e - pp <2pzny

i€GY,
The inductive construction ends once we get sequences (z}"), and (R}")s.
By the construction for any 1 <j <m,k € N, we have

(2.1) Hxi”p<(1—5)p Z 77[{ a

ieGy,

i€F])

] 1|| for each k€ N.

j—lHl)
i .

Put Gy = Ukm_lerl UkmfzeGﬁ;,ll -~-Uk1€Gi2 G}Cl, and analogously define
Fy, for each k € N. Fix k € N and inductively, beginning from R}’ pro-
duce an &;1-admissible tree Ry, by substituting each terminal node {i} of Rij,
j=1,...,m, by the tree RI™". Let ({i})icr, be the collection of terminal
nodes of Ry, with orders (I;);er,. Notice that I; <mM for any i € Fj, as each
ZZ < M. We compute the norm of z}*, which is of the form

m __ m 1,0 _ 0
SRR VD N Vb D REEES o

km 1 €GL kyp_peGy ! k€G3, i€GE, i€Gy,
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By the choice of (2?), for any i € N there is an S,,5/—;,-admissible sequence
(E1)ier, with [|l2?||P <2pmM=tiys || Ead P
For each k € N, we have on one hand by repeated use of (2.1)

i |” < (1= dyrm > miebf ||

1€EFY
< (1 _ 5)pm2 Z nlibfan_li Z HElx?Hp
i€ Fy, leL;
= @opmay™ Sy Ead
i€F,  leL,

On the other hand for each k € N the sequence (E})cr; icF, i8 Sma-admissible
by the definition of Ry. Consider the block sequence (Elm?)leLmeFk’keN and
notice that E; Nsuppz? € S, for each | € L;,i € Fy,k € N, by the choice of
(29). Thus by definition of 7,,5s for some ko € N we have

ek I” = mne 3 82 3 [1Bia?)

i€Fy, lE€L;

p
)

which brings 1,2 < (1—6)P™2n™M | a contradiction with the choice of m. 0O

REMARK 2.5. In case of {}-asymptotic spaces, 1 <p < oo, a <w;, where
all normalized S,-admissible sequences are uniformly equivalent to the u.v.b.
of ¢, of suitable size, one can define lower asymptotic constants tested on Sq,-
admissible sequences (in case p =1 studied in [23]). In this setting, one obtains
analogous results with Tsirelson-type spaces T'?) [Sa,0]. Since the reasoning
in this general case follows exactly the argument in case a =1 above, just by
replacing families (S,,) by (San), for simplicity we present only this last case.

3. a-strong domination

We examine in this section properties of a-strong domination, a higher
order counterpart of “strong domination” in [24] or “domination on small
coefficients” in [4]. Throughout this section, we fix a limit ordinal o < w;.

For a pair of seminormalized basic sequences (z;), (y;) consider condi-
tions:

(%) there are regular families (F,) on N with F,, C Fp41, n € N, and
CB(F,) /' w®, such that Ay < oo and A,, — 0, where for any n € N

An—sup{’ Zail’i Zaiyi Sl,(ai)ECOO}.

(A) there are regular families (F,,) on N with F,, C F,11, n € N, and
CB(F,) / w®, such that for some (d,,) with d,, \,0

‘ E ATy
i

. Imax

1
<,
FeF, 2n

a;Y;
el

for any (a;) € cgo.

<maxd, max E a;y;
~ neN " n<FeF, ||4 i
i€l
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REMARK 3.1. Take (a,) used to define S,. By Proposition 3.10 [23] for
any F with CB(F) < w® there are infinite J C N and n € N with FN[J]<>® C
Sa,,- Therefore, (%) and (A) imply that for some infinite J = (j,) C N and
(kn) C N, subsequences (z;)ics and (y;);cs satisfy analogous properties with
families (Sa,, N[(J1)i>n] <)

DEFINITION 3.2. Fix two seminormalized basic sequences (x;), (y;). We
say that (y;) a-strongly dominates (x;) if (y;) is Sa-unconditional, [y;] does
not contain ¢g and the pair (z;), (y;) satisfies (¥).

As Fy is hereditary and spreading, it contains So N {k,k+ 1,...} for some
k and thus a-strong domination, by Ag < 0o, implies domination. The next
observation provides a suitable setting for the above definition by Remark 3.1.

Fact 3.3. Let (y;) be a seminormalized S,-unconditional basic sequence
with [y;] not containing co. Then for any B < a and € > 0, every block subspace
W C [y:] contains a vector w =", a;yy; with maxpes,||d ;e p £aiyil| <ellw|.

Proof. We show the fact by induction on S < a, following the idea of
Lemma 3.6 [23]. Assume that (y;) is Sy-unconditional with constant 1. For
n = 0 the statement is obvious. Assume the statement holds for v < 5 for
fixed B < a.

If 8 is limit, take (8,) used to define Sg and pick a normalized block
sequence (z) CW, 2z, = > a;y;, k € N, such that

i€l
E + < 1 < Ip_1,keN
max Q. Yill S = nsmaxigp_1 .
GESﬁn,GCIk e ’Ly’L 2k7 i
3

Pick any F € Sg, then n < F € Sg,, for some n. Let kg =min{k e N: I;; N
F # (} and compute, using n < maxsupp zx, and the S,-unconditionality
(provided min I; is big enough to ensure F'N Iy, € S,),

Ziaiyi Z Fa;yi|| + Z Z +a;y;

i€F i€F NIy, k>ko li€FNI},

1
< §1+Z2—k§2.

k>ko

Consider the family A ={}, ., +zx: L € [N]<*}. As [y;] does not contain
Co, SUPe4llw|| = 0o and thus some w € A satisfies the desired estimate.

If 5=+ 1, pick a normalized block sequence (zx) C W, z, = Zielk a;Y;,
k € N, such that

< 1/(2k max]k,l), keN.

> tay;

i€G

max
GES.,,GCIy
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Pick any F' € Sg, write F'as F=F;U---UF,,, forsome m < F; <--- < F,, €
S, let kg =min{k € N: I N F' # (0} and compute, using the S,-uncondition-
ality (provided minI; is big enough to ensure F'N Iy, € Sy)

Ziaiyi Z +a;y; +ZZ Z +a;y; S1+Z2iké2

ieF i€F NIy, k>ko j=1VieF;nIy k>ko

As in the previous case, we obtain a suitable w € W and finish the proof. O

However the a-strong domination appears to be a stronger notion than
domination without equivalence, in case of ¢; the situation is simpler.

LEMMA 3.4. Let (x;) be a normalized Sq-unconditional basic sequence.
Then either some subsequence of (x;) is Sa-equivalent to the u.v.b. of 1 or
some subsequence of (x;) is a-strongly dominated by the u.v.b. of ¢;.

Proof. Let (z;) be Sy-unconditional with constant 1. Pick (ay,) used to
define S,. Assume none of subsequences of (z;) is a-strongly dominated
by the u.v.b. of #;. Then there are § > 0 and infinite L C N such that for
any infinite J C L and any n € N there is k, > n and (a;) € coo(J) such that
maxpes,, 12 epns aill < 1/2%n 35" |a;) < 1and ||Y; a;z;| > 26. Notice that
for any n >4 with n/2" <& we have |3, ;. a;;|| < ky/2F» < 6. Thus, for
any such n and J C L there is k,, >n and (a;) € coo(J N {kp + 1,k +2,...})
with maxpes,, 1> icrny all <1/2% 3 Ja;| <1 and ||, aix|| > 6. By
Sq-unconditionality of (x;) we may assume that (a;) C [0,1].

Let (z}) be the biorthogonal functionals to (x;). Pick (a;) as above. Take
(b;) C [0,1] with >, b;a; >0 and [|>, b;af||=1. Let Go={i € J :i>kp,b; >
2}. Notice that Go ¢ Sav, » otherwise we arrive to contradiction by the fol-

lowing
5<Zba1§Zbaz+Zbaz, 1

i€Go i€Go
Pick any G1 C Gy with Gy € S, \ Sa,, - For any (ci)icq, C [0,1], we
have ||ZieG1 cizi|| > Zz‘ecl bic; > gzz‘eGl ¢;, thus by S,-unconditionality
(zi)ieq, is 4/d-equivalent to the u.v.b. of ffGl.

Let G be the collection of all finite G C L such that (z;);c¢ is 4/6-equivalent
to the u.v.b. of E?&G. Obviously G is hereditary. By the above G N [J]<>° ¢
Sa, for any infinite J C L and any n € N. Therefore by dichotomy [15],
there are LD Jyp D J1 D -+ with S, N[J,]<*° C G, n €N. It follows that

the subsequence (z;);cn, where N = (min J,), is S,-equivalent to the u.v.b.
of 51 . O

l\DIOq

A typical example of w-strong domination is formed by convexified mixed
Tsirelson spaces and Tsirelson-type spaces, as the following observation shows.
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LEMMA 3.5. Assume Z =T®)[(S,,,0,)nen] s a reqular p-convexified mized

Tsirelson space with 0,,/0™ — 0, where 6 = lim,, 0711/”. Then the u.v.b. of Te(p)
w-strongly dominates the u.v.b. of Z.

Proof. As Te(p) is reflexive, if 6 <1 or p > 1, and Tl(l) =/, in all cases Te(p)
does not contain ¢y. To prove condition (%), notice first that by definition
lz|lz < ||:E||T9<p) for any x € coo. Pick (a;) € coo with ||>_, aiei||T9<p) =1 and

1
1> icr aiei||T9<p) < 5 for any F €S,,. Let |, aiesllz = dier(; 9li{f)%|ai|

for some (I;;) CN and (v;) € By,. Let l;=3_,1;;, for any i € I, and K =
{i €1:1; <n}, notice that K € S,, and compute, by regularity of Z,

Zazez <D ae| + 3 0/vladl
iel icK Z  jel\K
1 91 1/p L/
_ _ i/ P |-
< on + <1'ln>3;3( 01) Z 0 72|az|
i€e\NK
1 1/p
Son T <5“>X 9l) Z o

which by assumption on (6,,) shows condition (%) for (e;) in Z and (e;) in
TP with families (S,,). O

Next, two lemmas provide characterization of a-strong domination and its
invariance (up to taking subsequences) under S,-equivalence. Their proofs
follow the reasoning of Proposition 2.3 and Lemma 2.4 [24], however additional
technique is needed in order to deal with higher order families.

LEMMA 3.6. Fiz two seminormalized basic sequences (x;), (y;), with (y;)
unconditional. Then
(1) if the pair (z;), (y;) satisfies (A), then it also satisfies (%),
(2) if [y;] does not contain uniformly cf’s, and the pair (x;), (y;) satisfies
(%), then for some infinite J C N the pair (x;)icy, (yi)ics satisfies (A)
with §, =1/4™ neN.

Proof. (1) We can assume that (y;) is 1-unconditional. Fix ng € N, take
(a;) € cop with |3, aiyill =1 and ||, p aiyil| < 555 for any F € F,, and
compute by the condition (A)

Zaixi Zazyz
i
Zalyz

< maxd, maX
n

}<max{ L ,5n0}
27L

< max{ max
FeFn,

Z a;Y;

i€EF

0 max
n>
Fer,
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(2) We can assume that (y;) is 1-unconditional and 1-dominates (x;). Pick
(kn) CN, k,, > 3(n+2), such that Ay, < 1/8"F n €N, where (A,,),, satisfies
the condition (%) for (z;) and (y;).

Define a seminormalized basic sequence (wl) by the formula

It is clear that (w;) dominates (x;), (y;) 2-dominates (wl) (as (y;) 1-dominates
(x;) and is 1-unconditional by the assumption at the beginning of the proof)
and the pair (w;), (y;) satisfies () with (S1(F,)) and (A,) = (An + 5¢)-
Hence, it is enough to show the implication in (2) for sequences (w;) and (y;).

As (y;) is unconditional and its span does not contain uniformly c’s, we
have [,, < oo for any n € N, where [,, is the supremum of all [ € N such that for
some (21,...,2) € [y;] with pairwise disjoint supports we have | z;|| > 1/2-8%»,
j=1,...,0, and ||z + -+ z| <2". It follows by definition of (w;) that for
any n the constant 4[,, dominates the supremum of all [ € N such that for some
vector w € [w;] with ||w]| =1 and some pairwise disjoint (E4,..., E;) C F, we
have |[Ejwl|| > 1/8%, j=1,...,L.

Let j, = max{k, +1,4l,}, n € N, and J = {j, : n € N}. Take (a;) € coo(J),
with [|>°, a;w;|| =1. We define inductively a partition of J into pairwise
disjoint (F,) such that for any n € N
(F1) FoN{jnsdntis--- €S1(Fr,),

(F2) |Xicq aws|| < 1/8%=1 for any G C F,, with G € Fy,_,,
(F3) if F,, #0, then F,, contains some F € Fy,, with ||, pa;w;| > 1/8%,
(F4) |3 ;e aiws]| <1/8% for any F N (FyU---UF,) =0 with F € Fp,.

The first inductive step is similar to the general step, thus we present only
the general case. Assume we have Fi,...,F,_; satisfying the above. From
J\(F1U---UF,_1), we pick a maximal family of pairwise disjoint sets (F?); C
Fr,, With [|37, pi awil| > 1/8% for each j. Let F, =J; Fjj. Tt follows that
conditions (F3) and (F4) are satisfied. As there can be at most 4,, < j,, many
(F7)’s we obtain (F1). Finally, the condition (F4) for n — 1 implies (F2) for
n, which ends the inductive construction. Compute, using (F2)

;(M’UM SZ Z |ai\+z Z a;w;

n i€ Fn,i<jn n EF, i>]n

< 8’::*1 -I-Z Z a;wi||.

n NiEF, 1>]n

+ max — max

i 2" FeS1(Fn )

It follows that 1/2<3%" [I3,cp

n,i2Jn

E a; Wy

1€ Frgi>jng

a;w;|| and thus for some ng we have

2 27’L0+1 .
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As (y;) 2-dominates (w;) we have 1/2Fn0-1 < ”ZianO,Djno a;yi]l. On the

other hand by (F2) and definition of (w;) we have ||>, . a;ys|| < 1/4km0—1
for any G C F,, with G € Fy, _,. Thus by (%) for (w;) and (y;), we ob-

tain
Z a;W; Z aiY;i

i€ Fng i >jing 1€ Py 1> g

<Ay .

ng—1

Putting the estimates together, by the choice of (k) and (F1) we obtain

’ E a;W; g a;W; E a;Yq
i

i€ Fng,i>jng i€ Fng,i>jng

Z aiYi

i€eFNJ

1
<
= T

=1< gno+1

1
< max
4%0 no<FES; (]:kno)

which yields (A) for (z;)ic; and (y;)ies with families (Sy(Fg,) N [J]<).
(]

REMARK 3.7. Notice that by a simple modification of the above proof in
(2) we can obtain the condition (A) with arbitrary (d,), d, \(0.

LEMMA 3.8. Consider seminormalized basic sequences (x;), (zi), (y;) with
(y;) unconditional and [y;] not containing uniformly cj’s.

Assume (x;) and (z;) are Sy -equivalent. Then if the pair (z;),(y;) satisfies
(%), then for some infinite J CN also (z;)ic, (yi)ics satisfies (¥).

Proof. We can assume that the basic sequence (z;) is bimonotone and (y;)
is l-unconditional. Let C' > 1 be the S,-equivalence of (x;),(z;) constant.
Take (o) used to define S,. Take (A,) satisfying the condition (%) for
(2i), (ys) and pick (ky), kn >n, such that > A , <oco. By Remark 3.1,
there is (t,,) C N such that Fy, N[(t;)isn] <> C Sa,, for each n e N.

Since [y;] does not contain uniformly cf}’s, for any n we have [, < oo,
where [,, is the supremum of all [ € N such that for some disjointly supported
21,00, 21 € [yi] with ||z;]| > 1/2F, j=1,...,1, we have ||z; +--- + 2z < 1.

Pick J ={j, : n € N} C {¢t,} with 7, > max{k, +1,l,,t, +1}, n € N. Take
(a;) € coo(J), with ||>°, a;u:]| = 1. As in the proof of Lemma 3.6, we define
inductively a partition of J into pairwise disjoint (F,) such that for any
neN

(Fl) F,n {jﬂvjnJrlv cee } € Sl(fkn) - Satn+17

(F2) |>Xicqaiyill < 1/2F=1 for any G C F,, with G € Fy,_,,

(F3) if F, # 0, then F,, contains some F € Fy,, with ||Y,cpasys|| > 1/2%,
(F4) I3,craiyil <1/2F for any FN(FyU---UF,)=0 with F € Fy,,.
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Now compute

zi:az’xi < Z Z la;| + Z Z a;z;

n:Fp#Q i€ Fr,i<jn n:Fp#£0 i€ F, >0,
n
<D G tC D | > || by (F2) and (F1)
n:Fn7#0 niFy#D € Fn i>jn
n
< Y G +C DD Ak, by (F2) and ().
n:Fn #0 n:Fp#0

Fix ng € N and assume additionally that ||,z ayil| < 1/2%0 for any F €
Fk,,- Then by (F3), (F4) and the above computation

[San|< ¥ o X an

n>ng n>no
thus (%) for (x;)icr, (yi)ics is satisfied with families (Fy, N[J]<>). O

4. Strictly singular noncompact operators

In this section, we apply tools developed in the previous part to give suffi-
cient conditions for the existence of nontrivial strictly singular operators. We
note first a version of Theorem 1.1 [24] in S,-unconditional setting.

PROPOSITION 4.1. Let (z;) and (y;) be two seminormalized basic sequences
such that (y;) a-strongly dominates (x;), for some limit o < wy.

Then the map y; — x; extends to a bounded noncompact strictly singular
operator between [y;] and [x;].

Proof. As (y;) dominates (z;), the map y; — x; extends to a bounded
noncompact operator T between [z;] and [y;]. To prove the strict singularity,
use (%) and Fact 3.3 with Remark 3.1. O

The next theorem will serve as a base for further applications. We build
an operator using block sequences with different asymptotic behavior with
respect to an auxiliary basic sequence (e;). However the situation is analogous
to the results in [3], [4], [19], we work on (S,, )-admissible sequences instead
of (A, )-admissible sequences, that is, sequences of length n, n € N. The
sequence (e;) plays the role of a spreading model in [3], [4], [19], in our setting
we require domination of (e;) by all its subsequences instead of subsymmetry.

THEOREM 4.2. Let X be a Banach space with an S, -unconditional basis,
for limit « <wy. Let E be a Banach space with an unconditional basis (e;)
dominated by all its subsequences, not containing uniformly cf’s. Assume
that

(1) X has a normalized basic sequence (xz;) a-strongly dominated by (e;),
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(2) for any B < o there exists a normalized block sequence (xf)l with

(supp xf)l CS,,, for somerg €N, such that (xf)iep C-dominates (e;)icr
for any F € Sg and universal C > 1.
Then X admits a bounded strictly singular noncompact operator on a subspace.

REMARK 4.3. In case F =/{; theorem above follows by Theorem 1.4, [24],
as (1) and (2) imply (a) and (b) in Theorem 1.4. In case of E = {; partial
unconditionality of suitable sequences follows by [10]. Comparing to Theorem
1.4 [24], theorem above can be regarded as an extension of Theorem 1.4 in
replacing the u.v.b. of /1 by other basic sequence, however with the price
paid on additional assumptions related to partial unconditionality. Recall
that by [22] any normalized weakly null sequence admits an S;-unconditional
subsequence, and the result was extended in [4] to special arrays of vectors,
but analogous statement does not hold for S, with a > 1.

In the proof the lack of full unconditionality is substituted by S,-uncondi-
tionality and uniform bound on admissibility of supports of each of block
sequences (sr:gn))z in (2). It follows that projections on [(2?);cp] are bounded
uniformly on F' € Sg provided min F' is big enough and 8 < @. We produce a
block sequence (y;) from sequences (mf ) in the standard way and show that
some subsequences (z;)ies and (y;)ies satisfy (%) passing through Lemma
3.6. Since we cannot assure even S,-unconditionality of (y;), we need to prove

strict singularity of the operator carrying (y;)ics to (;);cs by hand.

Proof of Theorem 4.2. Take (a,) used to define S,. We can assume that
X does not contain ¢y and its basis is Sy-unconditional with constant 1. As
(en) is dominated by all its subsequences, it is also uniformly dominated by
its subsequences, and we assume that the uniform domination constant is 1.
By Lemma 3.6 and Remark 3.1, for some infinite J C N, (k,) C N, we have,
letting F,, = S, ,

‘ E aiZ;
i

Given (z7™); C X, n €N, as in (2) let ygn) =z*" for any i,n € N. By the

assumption on (e;), passing to subsequences we can assume that y%l) < yél) <
(2) ( 2) (3)

, (ai) € coo(J).

1
<max-— max
neN 4" n<FeF,

§ ;€4

ieFnJ

2 < y31) < yé <ys <---and 1o, +k, < yz(n) for any i > n. Then
(4.1) SuppZygn) €S, foranyn<FeF,neN.
ieF

By choice of (yl(n))l , we have for any (a;) € coo(J)

‘Zaifﬂi Z aiy§”) .

i€eFNJ

C
<max-— max
neN 4" n<FeF,
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Let y; = 22:1 %yf") for any 7 € I. Obviously (y;) is a seminormalized block

sequence. Fix now ng € N and continue the above estimation

1 ,

E a;x;|| < Cmaxq max g aiyl(n) , max g ay:yg”)
- n<ng ||, 40 n>ng ||

7 " i€eFNJ n<FeF, i€eFNJ
1
< (Cmax]{ max max E aiygn) s E a;Yi|| (s

n<non<FEFn,||. 2mo || &
i€eFNJ i

where the last inequality follows by (4.1) and S,-unconditionality of the basis
of X. Thus, the following claim holds true.

CrLAM (A). For any ng € N and (a;) € coo(J) with ||, a;ys|| =1 we have
n 1
‘Zaixi Z aiyﬁ ) 7270}-
7

i€FNJ
Taking ng = 0, we obtain that (y;);cs dominates (z;);ecs, thus the mapping
y; — x; extends to a bounded noncompact operator T : [(y;)ics] = [(zi)ics]-
However, we obtained also (%) for the pair (z;)ics, (¥i)ics, without S,-
unconditionality of (y;) we need to prove the strict singularity of T' by hand.
First, we adapt Fact 3.3 to our setting.

< (Cmax{ max max
n<ngn<FeF,

CrLAamM (B). Given any n € N and € >0, any block subspace W C [y;] con-
tains a further block subspace V' such that any w=">",a;y; €V satisfies

Za,»yE")H <<l
1eF

To prove Claim (B), we first show that for any e >0, n €N, § < ay,, any
block subspace W C [y;] contains a vector w. = >, a;y; satisfying

max
FeF,

maxFegﬁ||Zi€Faiy£n)|| < gllwe]]. The proof of this statement follows step
by step the proof of Fact 3.3, as we assumed at the beginning that X does
not contain cg. We assume that W >n, estimate ||3_, p j:a,'yg”) || instead of
1> icr Faiy:| and use (4.1) to obtain |3, aiygn)H <> ieq aiyil| for any
n < G € F,. Once we have this statement, to complete the proof of Claim
(B) let V= [ws/gi].

With the above two claims, we are ready to prove the strict singularity
of T. Fix ng € N, take any block subspace W C [y;] and using Claim (B) pick
inductively block subspaces W D V,,, D V,,—1 D --- DV such that for any
w=Y,a;y; € Vo we have maxpcr, ZieFaiyz(n) < sisllw| for any n < ng.
Claim (A) ends the proof. O

The model space E in Theorem 4.2 is the p-convexified Tsirelson-type

space Te(p), for 1 <p<oo and 6 € (0,1]. As Theorem 2.2 yields condition
(2) of Theorem 4.2 in case a =w for any asymptotic ¢, space X with lower
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asymptotic constants (6,,) and E = Te(p ) where 6 = lim,, 05/, we obtain the
following.

COROLLARY 4.4. Let X be an asymptotic £, Banach space, 1 < p < 00,
with lower asymptotic constants (8,) and an S, -unconditional basis.

Assume X contains a normalized basic sequence (x;) w-strongly dominated
by the u.v.b. of Te(p)7 where 0 = lim,, 65/

Then X admits a bounded strictly singular noncompact operator on a sub-
space.

By Lemma 3.5, the typical space X for the above situation is a regular
p-convexified mixed Tsirelson space TW)[(S,,0,),] with 6,/6™ — 0, where
6 =sup,, 9./ However, as conditions (1) and (2) of Theorem 4.2 are invari-
ant under S,,-equivalence up to taking subsequences (for (1) use Lemma 3.8), a
stronger result, requiring only S,,-representation of the regular mixed Tsirelson
space, holds true.

COROLLARY 4.5. Let X be a Banach space with an S, -unconditional basis
(@i).

Assume the basis (x;) is S,,-equivalent to the u.v.b. of a regular p-convezified
mized Tsirelson space TP [(S,,0,)n]. Assume also that 6,/0™ — 0, where
6 =1lim,, 6,/".

Then X admits a bounded strictly singular noncompact operator on a sub-
space.

REMARK 4.6. By Remark 2.5 above, the corollaries hold for any a <
wi, in terms of f;-asymptotic spaces, convexified mixed Tsirelson spaces
T®)[(San,0n)] and convexified Tsirelson-type spaces T[Sy, 6].

We will recall now construction of spaces based on mixed Tsirelson spaces,
initiated in [6], used for building classes of HI asymptotic ¢, spaces with
different types of properties, see also [8], [2], [13].

Fix 1 <p<oo,let 1 < g<oosatisfy 1/p+1/¢g=1. Fix infinite sets N, L C
N (not necessarily disjoint) and scalars (6,)nen, (p1)icr C (0,1) with 6,, —
0, p — 0. Assume that 971/1) €Q for any ne N and p'/? € Q for any [ €
L. Assume also the regularity of (6,), that is, that 6, > Hézl 0, for any
n,ny,...,n; € N with 22:1”1 >n.

Set coo(Q) = coo N QY. Let W= {(f1,.--,fx): fr <--- < fx € coo(Q) N
By,,k € N} and fix an injective function o: W — N. For any D C cyo(Q),
define

k
D, = {G:L/pzfylf’t : fl,. . .,fk € D,(fl,. . .,fk) is Sn—admissible,

i=1

(vi) € By, ﬂcoo(Q),keN}, neN,
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k
DY = {pll/pZ%Efi C i €D (f1, .-, fr) is (0,8))-admissible,
=1

(7:) € By, Ncoo(Q), E C N interval, k € N}, le L,

where a block sequence (f1,..., fx) is (0,S8;)-admissible, if (fi1,..., fr) is Si-
admissible, fi € J,cn Dn and fiy1 € Dyy,,... 5, for any i <k.

Consider a symmetric set D C coo(Q) such that
(D1) (£e;)n C D,

(D2) DCU,eny DnUlUer, DY,

(D3) D,, C D for any n€ N.

Define a norm on cqop by ||z||p =sup{f(z): f € D}, x € ¢y, denote by Xp
the completion of (coo, ||||p). Obviously the u.v.b. (e,) is a basis for Xp.

It follows that D C Kyyur, where Kpyyp is the norming set of the p-
convexified mixed Tsirelson space defined by all pairs (Sy, 05 )nen U (S, p1)icr,
thus each functional in D admits a tree-analysis (Definition 1.7). By (D3) also
D D K, where K is the norming set of T(p)[(Sn, Or)nen]-

COROLLARY 4.7. Let Xp be defined as above. Assume

lim  6,/0" =0, where§=sup 6/,
neN,n—oo neN
Then Xp admits a bounded noncompact strictly singular operator on a sub-
space.

Proof. Tt is enough to show that for some (i,,), C N the following hold

(1) sequence (e;,) C Xp is S,-unconditional,
(2) sequences (e;,) C Xp, (ei,) C TP [(Sp,0,)nen] are S,-equivalent.

Indeed, recall that T®)[(S,,,0,)nen] is isomorphic to a regular space given
by T®[(S,,0,)nen], with (f,) defined as in Remark 1.6. By the regularity
of (0,)nen, we have 6, =0, for any n € N. Therefore, the subspace [e;, ] by
Lemma 3.5 satisfies the assumption of Corollary 4.5, which ends the proof.
Now we pick (i), C N with desired properties. Let Z =T®[(S,,0,)nen]-

We denote by (e;) the u.v.b. both in Xp and Z. We will show the following.

CLAIM. For anyn €N there is i, € N such that for any (a;)icr with F € S,
and F > i, we have ||}, paieil|p < 4D, cpaieill z-

First, notice that claim implies (1) and (2) for (e;, ). Indeed, (2) follows
straightforward, as ||>°, aieil|p > ||>_, aieil|z for any (a;) € coo by the prop-
erty K C D. Also by claim for any (a;);cr with i, <F € S, n €N, there is
a norming functional f € Z*, therefore also f € X7j,, with supp f C F', such
that ||, paiei|lp <4f(>,cpaiei) in Xp. Thus, we obtain (1) for (e;, ).
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We proceed to proof of claim. Fix n € N. Pick j, such that 6; < 2%971 for
any j, <je€ N and p; < 2%071 for any j, <j € L. By injectivity of o there is
in such that o(f) > j, for any f €W with maxsupp f > i,.

Take now any (a;)ier, in < F €S, with |3, paiei]|[p = 1. Tt follows by
(D1) and (D3) that 0,, ) ;. p|ai|’ < 1. Take a norming functional f € D with
a tree-analysis (f;)ie7 satisfying f(D_,cpaiei;) = 1. Let

I={i€F: char(f;) <jy, for any t € T with f(e;) #0}.
Then by Hélder inequality and choice of j,

i, Ve

§ o V| < Zpl/p § ’ P -

‘f< azez) - 29” ( |all‘ ) S 2
1€F\I

ieF
Thus, f(>,c;aie;) > 4. Let 1 ={i€l:a;>0,f(e;) >0} and I, = {i €
I:a; <0,f(e;) <0}. Then either f(3,c; aie;) > 1 or f(X;cp, aies) > 1.
Assume the first case holds and let z = Zie 1, @ie;. Take any t € T with
fi(z) #0 and f, € DY for some | € L. Then by choice of i,, and I there is at
most one s; € succe(t) with supp fs, N 1 # 0.

Given any nonterminal ¢t € T, with f; = H}L{p Zsesucc(t) vsfs let |fi] =

071,{” Zsesuec(t) |vs|fs- Construct a functional g replacing in the tree-analysis

(fe)teT each f; € D7 by |fs,|. Then g € K as every node of the tree-analysis
of g belongs to |J,, D»,. For h defined as the restriction of g to I we have h € K
and h(}, . aie;) = h(x) > f(x) > 1, which ends the proof of claim. O

REMARK 4.8. Notice that in case § =1 the sequence (f,,) defined in Re-
mark 1.6 also satisfies # = 1, thus the assumption of Corollary 4.5 are sat-
isfied. Therefore, in this case we do not need the regularity of (6,,)nen in
Corollary 4.7.

COROLLARY 4.9. Each one of the HI asymptotic {5 Banach space Xup
constructed in [2] and the HI asymptotic £, Banach spaces X, 1 <p < 00,
constructed in [13] admit bounded strictly singular noncompact operators on
a subspace.

Proof. To show the corollary notice that spaces Xap and X, are of the
form Xp with N = (ng;), L= (n2i+1), On,; = #@? 1 € N, for suitably chosen

1/mn2;

(n;), (m;), satisfying 05> — 1. In case of Xap we have pp,,,, = —2

o2
M2i4+1

. The remark above ends the proof. [

in
case of X(,) we have p,,,, = T
REMARK 4.10. Comparing to [11], we obtain here a nontrivial strictly sin-
gular operator only on a subspace of considered HI asymptotic ¢, spaces,
nevertheless—thanks to the applied method—with much less restrictions on
sets N, L and parameters (6,,), (p;) used in the construction of the spaces.
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Notice that the HI space in [8] also admits a bounded strictly singular
noncompact operators on a subspace by Theorem 1.4 [24], Proposition 3.3 [7]
and the fact that its basis does not generate an /,,-spreading model.
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