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REMARKS ON SUBCATEGORIES OF ARTINIAN MODULES

NAOYA HIRAMATSU

Abstract. We study two subcategories of the category of Ar-
tinian modules, a wide subcategory and a Serre subcategory. We

prove that all wide subcategories of Artinian modules are Serre

subcategories. We also provide the bijection between the set of

Serre subcategories and the set of specialization closed subsets

of the set of closed prime ideals of some completed ring. These

results are Artinian analogues of the theorems proved by Taka-
hashi.

1. Introduction

Classification theory of subcategories has been studied by many authors in
many areas [3], [4], [8], [14], [5], [13], [6]. In 1990s, Hopkins [4] and Neeman
[8] classify thick subcategories of the derived categories of perfect complexes
in terms of the ring spectra. Thomason [14] generalizes this result to quasi-
compact and quasi-separated schemes. Now the classification theorem by
them is known as the Hopkins–Neeman–Thomason theorem.

Let us recall the definitions of several subcategories of an Abelian category.
We say that a full subcategory is wide if it is closed under kernels, cokernels
and extensions. A Serre subcategory is defined to be a wide subcategory which
is closed under subobjects. Let R be a commutative noetherian ring and M
be an R-module. We denote by Mod(R) the category of R-modules and R-
homomorphisms and by mod(R) the full subcategory consisting of finitely
generated R-modules. We also denote by SpecR the set of prime ideals of R
and by AssRM the set of associated prime ideals of M .

Classifying subcategories of a module category also has been studied by
many authors. Classically, Gabriel [3] gives a bijection between the set of
Serre subcategories of mod(R) and the set of specialization closed subsets
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of SpecR. Recently, the following result was proved by Takahashi [13] and
Krause [6].

Theorem 1.1 ([13, Theorem 4.1], [6, Corollary 2.6]). Let R be a noetherian
ring. Then we have the following 1–1 correspondences;⎧⎨

⎩
subcategories of mod(R)

closed under
submodules and extensions

⎫⎬
⎭

Ψ−−−−→
←−−−−

Φ

{
subsets of SpecR

}

⏐⏐⊆


⏐⏐⊆

{
Serre subcategories

of mod(R)

} Ψ−−−−→
←−−−−

Φ

{
specialization closed
subsets of SpecR

}

where Ψ(M) =
⋃

M∈MAssRM and Φ(S) = {M ∈mod |AssRM ⊆ S}.
Krause [6] generalized the theorem to subcategories of Mod(R) which are

closed under submodules, extensions and direct unions after Takahashi [13]
proved it.

In addition, Takahashi [13] pointed out a property concerning wide sub-
categories of mod(R). Actually he proved the following theorem.

Theorem 1.2 ([13, Theorem 3.1], [Corollary 3.2]). Let R be a noether-
ian ring. Then every wide subcategory of mod(R) is a Serre subcategory of
mod(R).

It is worth nothing that Hovey [5] proved the theorem by using the Hopkins–
Neeman–Thomason theorem, but in the case when R is a quotient ring of a
coherent regular ring by a finitely generated ideal.

In the present paper, we want to consider the Artinian analogue of these
results.

In Section 2, we consider wide subcategories of Artinian modules. We shall
show that the Artinian analogue of Theorem 1.2 also holds.

Theorem 1.3 (Theorem 2.11). Let R be a noetherian ring. Then every
wide subcategory of Art(R) is a Serre subcategory of Art(R).

In Section 3, we propose to classify Serre subcategories of Artinian mod-
ules. We consider some completion of a ring (see Proposition 3.9), so that all
of Artinian modules can be regarded as modules over it. We classify Serre
subcategories in terms of a specialization closed subset of the set consisting
of closed prime ideals of the completed ring.

Theorem 1.4 (Theorem 3.19). Let R be a noetherian ring. Then one has
an inclusion preserving bijection

{subcategories of Art(R) closed under quotient modules and extensions}
∼= {subsets of the set consisting of closed prime ideals of R̂}.
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Moreover, this induces the bijection

{Serre subcategories of Art(R)}

∼=
{

specialization closed subsets of

the set consisting of closed prime ideals of R̂

}
.

In this paper, we always assume that R is a commutative ring with identity,
and by a subcategory we mean a nonempty full subcategory which is closed
under isomorphism.

2. Wide subcategories of Artinian modules

In this section, we investigate wide subcategories of Artinian modules.
First, we recall the definitions of the categories.

Definition 2.1. A subcategory of an Abelian category is said to be a wide
subcategory if it is closed under kernels, cokernels and extensions. We also
say that a subcategory is a Serre subcategory if it is a wide subcategory which
is closed under subobjects.

Let M be an Artinian R-module. We denote by Soc(M) the sum of simple
submodules of M . Since Soc(M) is also Artinian, there exist only finitely
many maximal ideals m of R for which Soc(M) has a submodule isomorphic
to R/m. Let the distinct such maximal ideals be m1, . . . ,ms. Set JM =

⋂s
i=1m

and R̂(JM ) = lim←−R/Jn
M .

Lemma 2.2 ([12, Lemma 2.2]). Each nonzero element m ∈M is annihilated
by some power of JM . Hence, M has the natural structure of a module over
R̂(JM ) in such a way that a subset of M is an R-submodule if and only if it
is an R̂(JM )-submodule.

Proof. Although a proof of the lemma is given in [12], we need in the present

paper how the R̂(JM )-module structure is defined for an Artinian module M .
For this reason, we briefly recall the proof of the lemma.

Since Soc(M) =
⊕s

i=1(R/mi)
ni , M can be embedded in

⊕s
i=1(ER(R/

mi))
ni where ER(R/m) is an injective hull of R/m. Note that an element

of ER(R/m) is annihilated by some power of m. Hence, one can show that
each element of M is annihilated by some power of m1 · · ·ms = JM .

Let x ∈M and r̂ = (rn + Jn
M )n∈N ∈ R̂(JM ). Suppose that Jk

Mx = 0. It is

straightforward to check that M has the structure of an R̂(JM )-module such
that r̂x= rkx. �

Remark 2.3. As shown in the proof of Lemma 2.2, M can be embedded
in

⊕s
i=1(ER(R/mi))

ni . Thus, the maximal ideals m1, . . . ,ms are just asso-
ciative prime ideals of M since AssR

⊕s
i=1(ER(R/mi))

ni = AssR Soc(M) =
{m1, . . . ,ms}.
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By virtue of Lemma 2.2, each Artinian R-module can be regarded as a
module over some complete semi-local ring. We note that the Matlis du-
ality theorem holds over a noetherian complete semi-local ring (cf. [9, The-
orem 1.6]). It is the strategy of the paper that we replace the categorical
property on a subcategory of finitely generated (namely, noetherian) modules
with that of Artinian modules by using Matlis duality. We denote by Art(R)
the subcategory consisting of Artinian R-modules.

Lemma 2.4. Let (R,m1, . . . ,ms) be a noetherian complete semi-local ring
and set E =

⊕s
i=1ER(R/mi). For each subcategory X of Mod(R), we de-

note by X∨ = {M∨|M ∈ X} where (−)∨ = HomR(−,E). Then the following
assertions hold.

(1) If X is a subcategory of Art(R) (resp. mod(R)) which is closed under
quotient modules (resp. submodules) and extensions, then X∨ is a subcat-
egory of mod(R) (resp. Art(R)) which is closed under submodules (resp.
quotient modules) and extensions.

(2) If X is a wide subcategory of Art(R) (resp. mod(R)), then X∨ is also a
wide subcategory of mod(R) (resp. Art(R)).

(3) If X is a Serre subcategory of Art(R) (resp. mod(R)), then X∨ is also a
Serre subcategory of mod(R) (resp. Art(R)).

Proof. Since the Matlis duality theorem holds over a noetherian complete
semi-local ring, the assertions hold by Matlis duality. �

Definition 2.5. Let M be an R-module. For a nonnegative integer n, we
inductively define a subcategory WidnR(M) of Mod(R) as follows:

(1) Set Wid0R(M) = {M}.
(2) For n ≥ 1, let WidnR(M) be a subcategory of Mod(R) consisting of all

R-modules X having an exact sequence of either of the following three
forms:

A→B →X → 0,
0→X →A→B,
0→A→X →B → 0,

where A,B ∈Widn−1
R (M).

Remark 2.6. Let M be an R-module and n be a nonnegative integer.
Then the following hold.

(1) There is an ascending chain {M} = Wid0R(M) ⊆ Wid1R(M) ⊆ · · · ⊆
WidnR(M)⊆ · · · ⊆WidR(M) of subcategories Mod(R). Here we denote by
WidR(M) the smallest wide subcategory of Mod(R) which contains M .

(2)
⋃

n≥0WidnR(M) is wide and the equality WidR(M) =
⋃

n≥0WidnR(M)
holds.
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Definition 2.7. Let J be an ideal of R. For each R-module M , we denote
by ΓJ(M) the set of elements of M which are annihilated by some power of J ,
namely ΓJ(M) =

⋃
n∈N

(0 :MJn). An R-module M is said to be J -torsion if
M =ΓJ(M). We denote by ModJ (R) the subcategory consisting of J -torsion
R-modules.

Lemma 2.8. For each object M in ModJ(R), M has the structure of an

R̂(J)-module where R̂(J) is a J-adic completion of R.

Remark 2.9. By using an inductive argument on n, we can show that if
M is Artinian (resp. J -torsion), then

⋃
n≥0WidnR(M), hence WidR(M), is a

subcategory of Art(R) (resp. ModJ(R)) since Art(R) (resp. ModJ (R)) is a
wide subcategory.

Corollary 2.10. Let M be an Artinian R-module. Then WidR(M) and

WidR̂(JM )(M) are equivalent as subcategories of Art(R̂(JM )).

Proof. As remarked above, since M is JM -torsion, we can naturally iden-
tify WidR(M) with a subcategory of ModJM

(R). It is also a subcategory of

Art(R̂(JM )) by Lemma 2.8. �
Theorem 2.11. Let R be a noetherian ring. Then every wide subcategory

of Art(R) is a Serre subcategory of Art(R).

Proof. Let X be a wide subcategory of Art(R). It is sufficiently to show
that X is closed under submodules. Assume that X is not closed under
submodules. Then there exists an R-module X in X and R-submodule M
of X such that M does not belong to X . Applying Lemma 2.2 to X , X
is a module over the complete semi-local ring R̂ := R̂(JX) and M is an R̂-
submodule of X . Now we consider the wide subcategory WidR(X). By virtue

of Corollary 2.10, WidR(X) = WidR̂(X) as a subcategory of Art(R̂). Since

R̂ is a complete semi-local ring, by Matlis duality, we have the equivalence
of the categories WidR̂(X) ∼= {WidR̂(X)∨}op ∼= WidR̂(X

∨)op where (−)∨ =

HomR̂(−,ER̂(R̂/JXR̂)). Since WidR̂(X
∨) is a wide subcategory of finitely

generated R̂-modules, it follows from Theorem 1.2 that WidR̂(X
∨) is a Serre

subcategory. ThusM∨ is contained in WidR̂(X
∨). Using Matlis duality again,

we conclude that M must be contained in WidR̂(X) =WidR(X), hence also
in X . This is a contradiction, so that X is closed under submodules. �

3. Classifying subcategories of Artinian modules

In this section, we shall give the Artinian analogue of the classification
theorem of subcategories of finitely generated modules (Theorem 3.19). First,
we state the notion and the basic properties of attached prime ideals which
play a key role of our theorem. For the detail, we recommend the reader to
look at [11], [12] and [7, Section 6 Appendix].
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Definition 3.1. Let M be an R-module. We say that M is secondary if
for each a ∈R the endomorphism of M defined by the multiplication map by
a is either surjective or nilpotent.

Remark 3.2. If M is secondary, then p=
√

annR(M) is a prime ideal and
M is said to be p-secondary.

Definition 3.3. M = S1+ · · ·+Sr is said to be a secondary representation
if Si is a secondary submodule of M for all i. And we also say that the
representation is minimal if the prime ideals pi =

√
annR(Si) are all distinct,

and none of the Si is redundant

Definition 3.4. A prime ideal p is said to be an attached prime ideal of
M if M has a p-secondary quotient. We denote by AttRM the set of the
attached prime ideals of M .

Remark 3.5. Let M be an R-module.

(1) If M = S1 + · · · + Sr is a minimal representation and pi =
√
annR(Si),

then AttRM = {p1, . . . ,pr}. See [7, Theorem 6.9].
(2) Let M be an R-module. Given a submodule N ⊆M , we have

AttRM/N ⊆AttRM ⊆AttR(N)∪AttRM/N.

See [7, Theorem 6.10].
(3) It is known that if M is Artinian then M has a secondary representation.

Thus it has a minimal one. See [7, Theorem 6.11].

Let (R,m) be a noetherian local ring and X a Serre subcategory of Art(R).

By virtue of Lemma 2.2, Art(R) is equivalent to Art(R̂) where R̂ is an m-adic

completion of R. Now we consider X as a subcategory of Art(R̂). Since X∨

is a Serre subcategory of mod(R̂) (Lemma 2.4), X∨, hence X , corresponds

to the specialization closed subset of Spec R̂ by Theorem 1.1. That is, there
is the bijection between the set of Serre subcategories of Art(R) and the set

of specialization closed subsets of Spec R̂. This observation tells us that we
should consider a larger set than SpecR to classify subcategories of Artinian
modules.

In the rest of this section, we always assume that R is a noetherian ring.
As mentioned in Lemma 2.2, we can determine some complete semi-local

rings for each Artinian module respectively, so that the Artinian module has
the module structure over such a completed ring. Now we attempt to treat all
the Artinian R-modules as modules over the same completed ring. For this,
we consider the following set of ideals of R:

T = {I|the length of R/I is finite}.
The set T forms a directed set ordered by inclusion. Then we can consider

the inverse system {R/I, fI,I′} where fI,I′ are natural surjections. That is,

I, I ′ ∈ T and I ′ ⊆ I ⇒ fI,I′ : R/I ′ →R/I.
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We denote lim←−I∈T R/I by R̂T .

Lemma 3.6. Every Artinian R-module has the structure of an R̂T -module
in such a way that a subset of an Artinian R-module M is an R-submodule if
and only if it is an R̂T -submodule. Consequently, we have an equivalence of
categories Art(R)∼=Art(R̂T ).

Proof. The proof of the first part of the lemma will go through similarly to
the proof of Lemma 2.2. The last part of the lemma holds from the definition
of the R̂T -module structure. �

We set another family of ideals of R as

J =
{
m

k1
1 · · ·mks

s |mi is a maximal ideal of R,ki ∈N
}
.

It is also a directed set ordered by inclusion and we denote by R̂J its inverse
limit on the system via natural surjections.

Proposition 3.7. There is an isomorphism of topological rings;

R̂T ∼= R̂J .

Proof. Let I be an ideal in T . Note that AssRR/I = {m1, . . . ,ms} for some
maximal ideals mi of R. Since mi are finitely generated, there exists a positive
integer k such that (m1 · · ·ms)

k ⊆ I . Thus, for each ideal I in T , we can take
some ideal J in J such that J ⊆ I . Hence, T and J give the same topology
on R, so that R̂T ∼= R̂J as topological rings. �

Now we consider a direct product of rings∏
n∈max(R)

R̂n,

where max(R) is the set of maximal ideals of R and R̂m is an m-adic comple-
tion of R. We regard the ring as a topological ring by a product topol-
ogy, namely the linear topology defined by ideals which are of the form
m

k1
1 R̂m1 × · · · ×mks

s R̂ms ×
∏

n�=m1,...,ms
R̂n for some mi ∈max(R) and ki ∈N.

Proposition 3.8 ([1, Section 2.13, Proposition 17]). There is an isomor-
phism of topological rings

R̂J ∼=
∏

n∈max(R)

R̂n.

Proof. Let J be an ideal in J and suppose that J =m
k1
1 · · ·mks

s . Note that

R/J is isomorphic to
∏s

i=1R/mki
i by Chinese remainder theorem. Let us set
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A=
∏

n∈max(R) R̂n. For all J ∈ J , we define mappings ϕJ : A→R/J by the

composition of the projections A→
∏s

i=1 R̂mi and
∏s

i=1 R̂mi →
∏s

i=1R/mk
i :

ϕJ : A→
s∏

i=1

R/mk
i
∼=R/J ; (âm)→ (ā

m
k1
1
, . . . , ā

m
ks
s
).

Here we denote (amk + mk) ∈ R̂m by âm and the image of âm in R/mk by

āmk . It is easy to see that ϕ = {ϕJ}J∈J is a morphism from A to R̂J .

Write pJ : R̂J → R/J for the projection. We note that the topology of R̂J
coincides with the linear topology defined by {KerpJ}J∈J (cf. [7, Section 8]).

Set VJ = kerpJ . For each VJ , we take the open set WJ = m
k1
1 R̂m1 × · · · ×

mks
s R̂ms ×

∏
n�=m1,...,ms

R̂n in A. Then pJ ◦ ϕ(WJ) = 0. Thus ϕ(WJ)⊆ VJ , so
that ϕ is continuous.

For each ideal J ∈ J , we take the ideal WJ of A as above. As mentioned
before, A has a linear topology defined by {WJ}J∈J , and lim←−A/WJ =A. We

define mappings ψJ : R̂J →A/WJ by

ψJ : R̂J →A/WJ
∼=

s∏
i=1

R/mk
i
∼=R/J ; (aJ + J)J∈J → āJ .

We also see that ψJ induces the morphism ψ = {ψJ}J∈J : R̂J →A which is
a continuous mapping. In fact, WJ is just a kernel of the natural projection
A→A/WJ and ψ(VJ) goes to 0 via the projections.

Finally, we shall show ϕ ◦ ψ = 1R̂J
and ψ ◦ ϕ= 1A, but this is clear from

the definition of ϕ and ψ. �

Combining Proposition 3.7 with Proposition 3.8, we can show the following.

Corollary 3.9. There are isomorphisms of topological rings

R̂T ∼= R̂J ∼=
∏

n∈max(R)

R̂n.

For closed prime ideals of
∏

n∈max(R) R̂n, we have the following result.

Proposition 3.10. Every proper closed prime ideal of
∏

n∈max(R) R̂n is of

the form p×
∏

n∈max(R),m �=n
R̂n for some prime ideal p ∈ Spec R̂m. Hence we

can identify the set of closed prime ideals of
∏

n∈max(R) R̂n with the disjoint

union of Spec R̂m, that is,
∐

n∈max(R) Spec R̂n.

Proof. Let us set A=
∏

n∈max(R) R̂n. We take an element êm = (êm,n) of A

defined by

êm,n =

{
1̂, if m= n,
0, otherwise.
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Let P be an arbitrary closed prime ideal of A. Since êl · êm = 0, we have
êl · êm ∈P. Thus if there is a maximal ideal m such that êm is not contained
in P, êl is in P whenever l is not equal to m.

Suppose that êm /∈ P. Then P contains êl for all maximal ideals l �= m.
First, we shall show the family (êl) where l runs through all maximal ideals of
R except m is summable in A. That is, the sum ε=

∑
êl is an element of A.

For each neighborhood WJ (of 0) in A, we can find a finite set of maximal
ideals HJ = {m1, . . . ,ms,m}. Then one can show that∑

l∈H

êl ∈WJ

for every finite set of maximal ideals H which does not intersect with HJ .
Thus our claim follows from Cauchy’s criterion ([2, Chapter 3, Section 5,
no. 2, Theorem 1]). Note that ε is contained in P since P is a closed ideal.

Thus εA= 0×
∏

n�=m
R̂n is an A-submodule of P. Then we have the sequence:

0→P/εA→A/εA∼= R̂m →A/P→ 0.

Since P/εA is a prime ideal of R̂m, we conclude that P is of the form p×∏
n∈max(R),m �=n

R̂n for some prime ideal p ∈ Spec R̂m.

Suppose that all of elements êm are contained in P. Then we can easily
show that P=A and this is a contradiction. �

We can equate the rings R̂T , R̂J and
∏

n∈max(R) R̂n by virtue of Corol-

lary 3.9. In the rest of this paper, we always denote them by R̂ and identify
the set of closed prime ideals of R̂ with

∐
n∈max(R) Spec R̂n.

Let M be an Artinian R-module. It follows from Lemma 3.6 that M is
also an Artinian R̂-module.

Proposition 3.11. Let M be an Artinian R-module. Then annR̂(M) is a

closed ideal of R̂.

Proof. We denote by UI a kernel of the natural projection R̂T →R/I for
each ideal I ∈ T . It suffices to prove that the inclusion

⋂
I∈T (annR̂(M) +

UI)⊆ annR̂(M) holds. Take an arbitrary element â ∈
⋂

I∈T (annR̂(M) +UI).

Then there exist some elements b̂I ∈ annR̂(M) and ĉI ∈ UI such that â =

b̂I + ĉI for all I . Let x be an element of M . Then there exists some ideal
I ∈ T such that Ix= 0. Thus

âx= (b̂I + ĉI)x= ĉIx= 0.

Hence, â is an annihilator of M . �

Remark 3.12. Under the same assumption in Proposition 3.11, the radical
of annR̂(M) is also a closed ideal. In fact, let â be an element of the closure

of
√
annR̂(M). Take x ∈M and suppose that Ix= 0 for some I ∈ T . Since
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b̂I ∈
√
annR̂(M), b̂kI ∈ annR̂(M). Hence, we see that âkx = (b̂I + ĉI)

kx = 0

holds, so that â ∈
√

annR̂(M). Consequently, AttR̂M is a subset of the set

of closed prime ideals of R̂.

Lemma 3.13 ([10, Exercise 8.49]). Let M be an Artinian R-module. As-
sume AssRM = {m1, . . . ,ms}. Then M is the direct sums of the submodules
Γmi(M), that is M =

⊕s
i=1 Γmi(M). Here we denote by Γmi(M) the mi-

torsion submodule of M .

Proof. It is clear that M contains
∑s

i=1Γmi(M).
For each element x ∈M , there is some positive integer k such that Jkx= 0

where J =m1 · · ·ms. Since m1, . . . ,ms are all distinct maximal ideals, we have

mk
1m

k
2 · · ·mk

s−1 +mk
1m

k
2 · · ·mk

s−2m
k
s + · · ·+mk

2m
k
3 · · ·mk

s =R.

Thus, there are elements ri ∈ mk
1 · · ·mk

i−1m
k
i+1 · · ·mk

s such that
∑s

i=1 ri = 1,
and we get the equality x=

∑s
i=1 rix. Then we can show that each rix is an

element of Γmi(M). In fact,

mk
i rix⊆mk

1m
k
2 · · ·mk

sx= 0.

Therefore, we obtain M =
∑s

i=1 Γmi(M).
It remains to show the sum above is a direct sum. This follows from the

facts that AssR(Γmi(M)) = {mi} and all mi are distinct. �

Let M be an m-torsion R-module. Then M has the structure of an R̂-
module and an R̂m-module. Note that the R̂m-module action onM is identical
with the action by means of the natural inclusion R̂m →

∏
n∈max(R) R̂n

∼= R̂.

We also note from Lemma 3.6 or Lemma 2.2 that N is an R̂-submodule (resp.

a quotient R̂-module) of M if and only if it is an R̂m-submodule (resp. a

quotient R̂m-module) of M .

Proposition 3.14. Let M be an m-torsion R-module. Then

AttR̂M =AttR̂m
M

as a subset of
∐

n∈max(R) Spec R̂n.

Proof. Let P ∈AttR̂M and W be a P-secondary quotient R̂-module of M .

Note that W is also a quotient R̂m-module of M . As noted in Remark 3.12,
P=

√
annR̂(W ) is a closed prime ideal. Thus, P is of the form p×

∏
l�=n

R̂n

where p is a prime ideal of R̂l for some maximal ideal l. First, we shall show
l=m. For this, we show ên = (ên,m) ∈P if n �=m (see Proposition 3.10 for the
definition ên). Let x be an element of W and suppose that mkx= 0. Then

r̂x= r̂mx for each r̂ = (r̂m) ∈ R̂. So we see that

ênx= ên,mx= 0x= 0.
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Thus, if n �= m, en is contained in annR̂(W ), so that in
√

annR̂(W ) = P.

Hence ênR̂= R̂n ⊆P whenever n �=m, so that l must be m. Consequently, p
is a prime ideal of R̂m.

Since the R̂m-action onW is the same as the action via the natural inclusion

R̂m → R̂, we have
√
annR̂(W )∩ R̂m =

√
annR̂m

(W ). Therefore, p ∈AttR̂m
M .

Conversely, let q be an attached prime ideal ofM as R̂m modules and V be a
q-secondary quotient R̂m-module of M . Then V is also an R̂-quotient module
of M , and Q= q×

∏
n�=m

R̂n is equal to
√

annR̂(V ). Hence, Q ∈AttR̂M . �
Combing Proposition 3.14 with Lemma 3.13, we have the following corol-

lary.

Corollary 3.15. Let M be an Artinian R-module. Then

AttR̂M =
∐

m∈AssR M

AttR̂m
Γm(M)

as a subset of
∐

n∈max(R) Spec R̂n.

Let us state the result which is a key to classify the subcategory of the
category of noetherian modules.

Theorem 3.16 ([13, Corollary 4.4], [6, Corollary 2.6]). Let M and N be
finitely generated R-modules. Then M can be generated from N via taking
submodules and extension if and only if AssRM ⊆AssRN .

The following lemma is due to Sharp [11].

Lemma 3.17 ([11, Paragraph 3.5]). Let (R,m1, . . . ,ms) be a commutative
noetherian complete semi-local ring and set E =

⊕s
i=1ER(R/mi). For an

Artinian R-module M , we have

AttRM =AssRHomR(M,E).

The next claim is reasonable as the Artinian analogue of Theorem 3.16.

Theorem 3.18. Let M and N be Artinian R-modules. Then M can be
generated from N via taking quotient modules and extensions as R-modules if
and only if AttR̂M ⊆AttR̂N .

Proof. Suppose that M is contained in quot-extR(N). It is clear from the
property of attached prime ideals (Remark 3.5) that AttR̂M ⊆AttR̂N holds.

Conversely, suppose that AttR̂M ⊆AttR̂N . First, we shall show that we
may assume thatM andN arem-torsionR-modules for some maximal idealm.
In fact, M (resp. N ) can be decomposed as M =

⊕
m∈AssR M Γm(M) (resp.

N =
⊕

n∈AssR N Γn(N)) and the assumption implies that AttR̂m
Γm(M) ⊆

AttR̂m
Γm(N) for all m ∈AssRM by Corollary 3.15. If we show that Γm(M) is

contained in quot-extR(Γm(N)), we can get the assertion since quot-extR(N)
is closed under direct sums and direct summands.
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Let M and N be m-torsion R-modules and E be an injective hull of
R̂m/mR̂m as an R̂m-module. Since M and N are also Artinian R̂m-modules,

M∨ and N∨ are finitely generated R̂m-modules by Matlis duality, where
(−)∨ =HomR̂m

(−,E). Since AttR̂m
M (resp. AttR̂m

N ) is equal to AssR̂m
M∨

(resp. AssR̂m
N∨) (Lemma 3.17), the inclusion

AssR̂m
M∨ ⊆AssR̂m

N∨

holds. By virtue of Theorem 3.16, we conclude thatM∨ can be generated from
N∨ via taking submodules and extensions, that is, M∨ ∈ sub-extR̂m

(N∨).
Hence, it follows from Matlis duality and Lemma 2.4 that

M∨∨ ∼=M ∈ sub-extR̂m

(
N∨)∨ = quot-extR̂m

(N).

Since Artinian R̂m-modules are also Artinian R-modules (cf. Lemma 2.2), we
conclude that M ∈ quot-extR(N). �

We define by Ψ the map sending a subcategory X of Art(R) to

AttX =
⋃

M∈X
AttR̂M

and by Φ the map sending a subset S of
∐

n∈max(R) Spec R̂n to{
M ∈Art(R)|AttR̂M ⊆ S

}
.

Note from Corollary 3.15 that Ψ(X ) is a subset of
∐

n∈max(R) Spec R̂n.

On the other hand, it follows from Remark 3.5(2) that Φ(S) is closed under
quotient modules and extensions.

Now we state the main theorem of this paper.

Theorem 3.19. Let R be a commutative noetherian ring. Then Ψ and
Φ induce an inclusion preserving bijection between the set of subcategories of
Art(R) which are closed under quotient modules and extensions and the set

of subsets of
∐

n∈max(R) Spec R̂n.

Moreover, they also induce an inclusion preserving bijection between the set
of Serre subcategories of Art(R) and the set of specialization closed subsets of∐

n∈max(R) Spec R̂n.

Proof. Let X be a subcategory of Art(R) which is closed under quotient
modules and extensions. The subcategory ΦΨ(X ) consists of all Artinian R-
modules M with AttR̂M ⊆

⋃
X∈X AttR̂X . It is clear that X is a subcategory

of ΦΨ(X ). Let M be an Artinian R-module with AttR̂M ⊆
⋃

X∈X AttR̂X .

For each ideal P ∈AttR̂M , there exists X(P) ∈ X such that P ∈AttR̂X(P).

Take the direct sums of such objects, that is X =
⊕

P∈AttR̂ M X(P). X is also

an object of X , since AttR̂M is a finite set and X is closed under finite direct
sums. It follows from the definition of X that AttR̂M ⊆ AttR̂X . By virtue
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of Theorem 3.18, M is contained in quot-extR(X), so that M in X . Hence,
we have the equality X =ΦΨ(X ).

Let S be a subset of
∐

n∈max(R) Spec R̂n. It is trivial that the set ΨΦ(S) is

contained in S. Let p be a prime ideal in S. Take a maximal ideal m so that
p is a prime ideal of R̂m. We consider an R̂m-module ER̂m/pR̂m

(R̂m/mR̂m).

Then we have the equality:

AttR̂m
ER̂m/pR̂m

(R̂m/mR̂m) = AssR̂m
R̂m/pR̂m = {p}.

Note that ER̂m
(R̂m/mR̂m) is Artinian as an R-module. Indeed, we have the

equality ER̂m
(R̂m/mR̂m) =ER(R/mR) as R-modules ([7, Theorem 18.6(iii)]).

Since ER̂m/pR̂m
(R̂m/mR̂m) is an R̂m-submodule (thus an R-submodule) of

ER̂m
(R̂m/mR̂m), it is an Artinian R-module. Hence, ER̂m/pR̂m

(R̂m/mR̂m)

is an Artinian R-module which is a p-secondary R̂m-module. Consequently,
ER̂m/pR̂m

(R̂m/mR̂m) belongs to Φ(S), so that p ∈ΨΦ(S).

Suppose that X is a Serre subcategory of Art(R). Let p be a prime ideal

of R̂m which is contained in Ψ(X ). Chose q ∈ Spec R̂m such that p⊆ q. Then

we have the inclusion of R̂m-modules (hence, of R-modules):

0→ER̂m/qR̂m
(R̂m/mR̂m)→ER̂m/pR̂m

(R̂m/mR̂m).

Since ER̂m/pR̂m
(R̂m/mR̂m) is an Artinian R-module which is a p-secondary

R̂m-module, ER̂m/pR̂m
(R̂m/mR̂m) is contained in X . Thus, ER̂m/qR̂m

(R̂m/

mR̂m) is also in X since X is closed under submodules. Hence, we have that
q ∈Ψ(X ), so that Ψ(X ) is closed under specialization.

Let S be a specialization closed subset of
∐

n∈max(R) Spec R̂n. We shall

show Φ(S) is a Serre subcategory. Since Φ(S) is closed under quotient mod-
ules and extensions, it is sufficient to show that it is closed under submodules.
Let M be in Φ(S) and N be an R-submodule of M . Set JM =

⋂
m∈AssR M m

and R̂(JM ) = lim←−R/Jn
M . Then M is an Artinian R̂(JM )-module and N is

also an Artinian R̂(JM )-submodule of M (Lemma 2.2). Since R̂(JM ) is a
complete semi-local ring, the Matlis duality theorem holds. By using Matlis
duality, we can show that N∨ is contained in the Serre subcategory gener-
ated by M∨, where (−)∨ = HomR̂(JM )(−,ER̂(JM )(R̂(JM )/JM R̂(JM ))). Thus,
by Theorem 1.1, AssR̂(JM ) N∨ is in

⋃
p∈Ass

R̂(JM ) M∨ V (p). Since we have the

equalities AttR̂N = AttR̂(JM ) N = AssR̂(JM ) N∨, and
⋃

p∈Ass
R̂(JM ) M∨ V (p) =⋃

p∈Att
R̂(JM ) M

V (p)⊆ S, AttR̂N is contained in S. Therefore, N is in Φ(S).
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