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GLOBAL RANGE ESTIMATES FOR MAXIMAL
OSCILLATORY INTEGRALS WITH RADIAL

TEST FUNCTIONS

BJÖRN G. WALTHER

Abstract. We consider the maximal function of oscillatory inte-

grals Saf where (Saf)(t)̂ (ξ) = exp(it|ξ|a)f̂(ξ) and a ∈ ]0,1[. For

a fixed n≥ 2 we prove the global estimate∥∥Saf
∥∥
L2(Rn,L∞(−1,1))

≤C‖f‖Hs(Rn), s > a/4

with C independent of the radial function f . We also prove that
this result is almost sharp with respect to the Sobolev regular-
ity s. This extends work of Sjölin who proved these result for
a > 1.

1. Introduction

1.1. In this paper, we consider global range estimates for maximal functions
of oscillatory integrals. More specifically we consider L2(Rn)-estimates of

(1)
∥∥(Saf

)
[x]

∥∥
L∞(B)

= sup
|t|<1

∣∣∣∣ 1

(2π)n

∫
Rn

ei(xξ+t|ξ|a)f̂(ξ)dξ

∣∣∣∣, a > 0

for fixed n ≥ 2. We will refer to x as the range variable. f̂ is the Fourier
transform of f ,

(2) f̂(ξ) =

∫
Rn

eixξf(x)dx.

The test function f will be radial. We obtain a linear estimate where the
global range norm is controlled by a Hs(Rn)-norm (Sobolev norm), and our
result is almost sharp within the class of radial functions.

1.2. To obtain pointwise convergence results for oscillatory integrals of the
type considered, it is enough to consider local range estimates for maximal
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functions. However, global range estimates are of independent interest since
they reveal global regularity properties of our oscillatory integrals. Global
range estimates are also of interest when we for a= 2 consider the equivalence
between local and global estimates due to Rogers [18, Theorem 3, p. 2108].
See Theorem 3.2 on p. 525. We will suggest a generalization of this result to
other values of a.

1.3. Earlier results. The problem treated in this paper was for a= 2 intro-
duced by Carleson [6] and has been studied by many authors during the last
couple of decades. See, e.g., Ben-Artzi and Devinatz [2], Bourgain [4], Cho,
Lee and Shim [7], Dahlberg and Kenig [10], Gigante and Soria [11], Kenig,
Ponce and Vega [12], Kolasa [13], Lee [15], Moyua, Vargas and Vega [14],
Prestini [16], Rogers [18], Rogers and Villarroya [19], Sjölin [20], [23], [24],
Tao and Vargas [28], Walther [32], [33], S. Wang [38] and the papers cited
there. In some of these papers (e.g., [12], [19], [23] and [33]), Lq-estimates
are considered for some q �= 2. We will however restrict ourselves to the case
q = 2.

Estimates which are sharp or almost sharp with respect to the number
of derivatives s have been obtained in the cases n = 1 and a = 1 only. See
Sections 1.3.3 and 1.3.4 for a discussion on these estimates. Some of these
results will be used as tools in our proofs.

1.3.1. Some best known local range results. The best known local range result
for a = n = 2 is due to Lee [15] where it is proved that s > 3/8 is sufficient
for a norm inequality. For n= 2 and for fixed a > 1 it is known that s > 2/5
is sufficient. See Barceló, Bennett, Carbery and Rogers [1]. The best known
local range result for fixed n≥ 3 and for fixed a > 1 is that s > 1/2 is sufficient
for a norm inequality. This result is due to Sjölin [20] and Vega [29]. See also
S. L. Wang [37], [32] and [35, Example 4.1, p. 331]. For fixed n≥ 2 Soljanik
has proved a local range estimate with s > 1/2 as sufficient condition where
m(t, ρ) = exp(itρa) may be replaced by a function m which is assumed to be
bounded only. See [31, Theorem 14.3, p. 219].

1.3.2. Some best known global range results. The best known global range
result for a = n = 2 is that s > 3/4 is sufficient for a norm inequality. This
follows from the local range result of Lee [15] and from the equivalence result
of Rogers [18] mentioned in Section 1.2. The best known global range result
for fixed n ≥ 2 and for fixed a > 0 is that s > a/2 is sufficient for a norm
inequality. See Carbery [5] and the references cited in Theorem 4.2 on p. 525.

1.3.3. Sharp and almost sharp results for n= 1. Consider first the case a < 1.
If s > a/4, then ‖(Saf)[x]‖L∞(B) can be estimated globally. See Theorem 4.4

on p. 526. (Recall that we consider L2-estimates only.) On the other hand,
if s < a/4 then ‖(Saf)[x]‖L∞(B) cannot be estimated even locally. See [30,
Theorem 1.2(b), p. 486]. The interval ]a/4,∞[ is thus the largest open interval
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of admissible regularities s in the local as well as in the global case. When
s= a/4 the existence of an estimate is an open problem in the local as well
as in the global case.

Consider now the case a > 1. If s = 1/4, then ‖(Saf)[x]‖L∞(B) can be
estimated locally. See Sjölin [20, Theorem 3, p. 700]. If s > a/4, then
‖(Saf)[x]‖L∞(B) can be estimated globally. See Theorem 4.4 on p. 526. On
the other hand, if s < 1/4 then ‖(Saf)[x]‖L∞(B) cannot be estimated locally
([20, Theorem 4, p. 700]), and if s < a/4 then ‖(Saf)[x]‖L∞(B) cannot be es-
timated globally ([21, p. 106]). Thus, the interval ]1/4,∞[ is the largest open
interval of admissible regularities in the local case, and the interval ]a/4,∞[
is the largest open interval of admissible regularities in the global case. When
s= a/4 the existence of an estimate is an open problem in the global case.

1.3.4. Sharp results for a= 1. Fix n≥ 1. If s > 1/2, then ‖(Saf)[x]‖L∞(B) can
be estimated globally. See Theorem 4.2 on p. 525. This result is well known.
On the other hand, if s = 1/2 then ‖(Saf)[x]‖L∞(B) cannot be estimated
even locally. See [31, Theorem 14.2, p. 216]. Thus, the interval ]1/2,∞[ is the
largest open interval of admissible regularities in the local as well as in the
global case.

1.4. The plan of this paper. In Section 2, we introduce notation and state
our results. The problem we study is in part motivated by the equivalence
between local and global range estimates in a special case. A brief discussion
on this equivalence is found in Section 3. In Section 4, we have collected
results needed in our proofs and in Section 5 we prove our result.

2. Notation and results

2.1. In this section, we introduce some notation used in this paper and
formulate our result which is almost sharp within the class of radial functions.

Unless otherwise explicitly stated, all functions f belong to C∞
0 (Rn \ 0).

2.2. Oscillatory integrals, Fourier transforms and inhomogeneous
Sobolev spaces. For the range variable x ∈Rn and t ∈R, we define

(3)
(
Saf

)
[x](t) =

1

(2π)n

∫
Rn

ei(xξ+t|ξ|a)f̂(ξ)dξ.

Here f̂ is the Fourier transform of f ,

(4) f̂(ξ) =

∫
Rn

e−ixξf(x)dx.

We also introduce inhomogeneous fractional L2(Rn)-based Sobolev spaces

(5) Hs
(
Rn

)
=

{
f ∈ S ′(Rn

)
:

∫
Rn

(
1 + |ξ|2

)s∣∣f̂(ξ)∣∣2 dξ <∞
}
.
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2.3. Auxiliary notation. Bn denotes the open unit ball in Rn. We write
B1 =B. Throughout this paper, we will use auxiliary functions χ and ψ such
that χ ∈ C∞

0 (R) is even,

(6) χ(R \ 2B) = {0}, χ(R)⊆ [0,1], χ(B) = {1}

and ψ = 1−χ. From χ, we obtain a family of functions as follows: for a fixed
m> 1 set χm(ξ) = χ(ξ/m).

Numbers denoted by C (sometimes with subscripts) may be different at
each occurrence.

2.4. Theorem A. Let a ∈ R+ \ 1, n ≥ 2 and s > a/4. Then there is a
number C independent of f in the class of radial functions such that

(7)
∥∥Saf

∥∥
L2(Rn,L∞(B))

≤C‖f‖Hs(Rn).

2.5. Remark. Fix a > 1. If s > a/4, then

(8) q >
4(a− 1)n

4s+ a(2n− 1)− 2n
=

4n(a− 1)

4s− a+ 2n(a− 1)

for q = 2. Hence Theorem A in the case a > 1 follows from the sufficiency part
of Sjölin [23, Theorem 4, p. 37]. We have chosen to include the case a > 1
here since the proof uses a reduction to the case n= 1, and hence we can use
Theorem 4.4 on p. 526. This reduction follows the same pattern regardless of
the choice of a.

2.6. Theorem B. Let a ∈R+ \ 1 and n≥ 2. Assume that there is a number
C independent of f in the class of radial functions such that

(9)
∥∥Saf

∥∥
L2(Rn,L∞(B))

≤C‖f‖Hs(Rn).

Then s≥ a/4.

2.7. Remark. Consider again the case a > 1. If

(10) q <
4(a− 1)n

4s+ a(2n− 1)− 2n

for q = 2, that is, if

(11) 2<
4n(a− 1)

4s− a+ 2n(a− 1)

then −2n(a−1)< 4s−a < 0. Conversely, if −2n(a−1)< 4s−a < 0 then (11)
holds. Hence, Theorem B in the case a > 1 follows from the necessity part of
Sjölin [23, Theorem 4, p. 37].
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3. A brief discussion on equivalence between local and global
range estimates

3.1. Let us say that the open interval I is locally admissible if s ∈ I implies
that there is a number C independent of f such that

(12)
∥∥Saf

∥∥
L2(Bn,L∞(B))

≤C‖f‖Hs(Rn).

If instead this estimate holds with Bn replaced by Rn, then we say that I is
globally admissible. With this terminology we have e.g. that I = ]a/4,∞[ is
locally and globally admissible when a < 1 = n. Moreover, I is maximal with
this property. See Section 1.3.3 on p. 522.

3.2. Theorem (Rogers [18, Theorem 3, p. 2108]). Let a = 2 and let
n≥ 1 be fixed. Then the interval ]σ,∞[ is locally admissible if and only if the
interval ]2σ,∞[ is globally admissible.

3.3. Note that Theorem 3.2 is consistent with results explained in Sec-
tion 1.3.3 starting on p. 522 where maximal admissible intervals are given.
One may conjecture that for a fixed a > 1 and for a fixed n≥ 1 the interval
]σ,∞[ is locally admissible if and only if the interval ]aσ,∞[ is globally ad-
missible. For n= 1 that conjecture holds true (see Section 1.3.3 starting on
p. 522) and is consistent with the following conjectures which hold true for the
subclass of radial test functions (cf. Theorem A on p. 524 and Theorem 4.7
on p. 527).

3.4. Conjecture 1. Let a < 1. Then the interval ]a/4,∞[ is globally admis-
sible.

3.5. Conjecture 2. Let a > 1. Then the interval ]1/4,∞[ is locally admis-
sible, and the interval ]a/4,∞[ is globally admissible.

3.6. We end this brief discussion on equivalence between local and global
range estimates by noting that the maximal intervals which are locally and
globally admissible coincide if a < 1 = n or if a= 1.

4. Preparation

4.1. In this section, we collect results needed to give proofs of the theorems
stated in Section 2.

4.2. Theorem (Cf. Cowling [8], Cowling and Mauceri [9], Rubio de
Francia [17], Sogge and Stein [25], Stein [26, Section XI.4.1, p. 511]
and [31, Theorem 14.1, p. 215].). Assume that the functions w1 and w2

belong to L2(R) and that the function m satisfies the following assumption:
there is a number C independent of (t, ξ) such that

(13)
∣∣m(t, ξ)

∣∣≤Cw1(t),
∣∣[∂1m](t, ξ)

∣∣≤C
(
w1(t) +w2(t)|ξ|a

)
, a > 0.
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If s > a/2, then there is a number C independent of f such that

(14)

(∫
Rn

sup
t∈B

∣∣∣∣
∫
Rn

eixξm(t, ξ)f̂(ξ)dξ

∣∣∣∣2 dx
)1/2

≤C‖f‖Hs(Rn).

4.3. Corollary. Assume that m fulfills the same assumptions as in Theo-
rem 4.2. Then there is a number C independent of f such that(∫

Rn

sup
t∈B

∣∣∣∣
∫
Rn

eixξm(t, ξ)f̂(ξ)dξ

∣∣∣∣2dx
)1/2

≤C‖f‖L2(Rn),(15)

supp f̂ ⊆ 2Bn.

4.4. Theorem (Cf. [34, Theorem 2.5, p. 159] for a < 1 and Sjölin [21,
p. 106] for a > 1.). Let a ∈R+ \ 1 and s > a/4. Then there is a number C
independent of f such that

(16)
∥∥Saf

∥∥
L2(R,L∞(B))

≤C‖f‖Hs(R).

4.5. Remarks on the proof . In the case a < 1 the proof is found in [34,
Section 4, pp. 161–164] and in the case a > 1 the proof is found in Sjölin [21,
pp. 107–112]. An important tool in both cases is the smooth decomposition of
Littlewood and Paley. More precisely, if N is a dyadic integer and η ∈ C∞

0 (R)
is an even function such that

(17) η
(
R+ \ [1/2,2]

)
= {0}, η(R)⊆ [0,1]

and

(18)
∑
N>1

η(Nξ) +
∑
N

η(ξ/N) = 1, ξ �= 0

(cf. Bergh, Löfström [3, Lemma 6.1.7, pp. 135–136]) then there are positive
numbers C1 and C2 independent of f such that

(19) C1‖f‖2Hs(R) ≤
∫
R

(
χ(ξ) +

∑
N

N2sη(ξ/N)

)∣∣f̂(ξ)∣∣2 dx≤C2‖f‖2Hs(R).

We denote the expression within the brackets by γ2s(ξ). Further elaboration
(Parseval’s formula, approximation of operators using cutoff functions, passing
to the adjoint, Fatou’s lemma, and Fubini’s theorem) leads to deriving a mμ-
uniform L1(R)-estimate for the kernel

(20) Kmμ(x) = χm(x) sup
t∈2B

∣∣∣∣
∫
R

eixξeit|ξ|
a

γ−2s(ξ)χμ(ξ)
2 dξ

∣∣∣∣.
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Here the low and high frequency contributions are analyzed separately. Con-
sidering γ−2s, the low frequency contribution corresponds to the term χ and
the high frequency contribution to the infinite sum over the dyadic integers.

4.5.1. It is useful to note that we may avoid analyzing the low frequency
contribution in the way done in [34, Lemma 3.2, p. 160] and Sjölin [21, pp. 109–
110]. More precisely, after having linearized the maximal operator so as to
obtain the operator

(21) [Rtf ](x) =

∫
R

eixξeit(x)|ξ|
a

γ−2s(ξ)
1/2f(ξ)dξ

we may define

(22) Rt,ζf =Rt(ζf), ζ ∈ {χ,ψ}.

(As usual, t is any measurable function such that t(R)⊆ B and we want to
find estimates independent of t.) Then we use Corollary 4.3 on p. 526 to
estimate Rt,χf . The high frequency contribution in Kmμ is used to estimate
Rt,ψf .

The use of Rt,ζ for a fixed ζ ∈ {χ,ψ} of course corresponds to the decom-
position

(23) f̂ = χf̂ +ψf̂.

4.6. Theorem (Cf. [33, Theorem C, p. 190].). Let a < 1, n ≥ 2 and
s > a/4. Then there is a number C independent of f in the class of radial
functions such that

(24)
∥∥Saf

∥∥
L2(Bn,L∞(B))

≤C‖f‖Hs(Rn).

4.7. Theorem (Cf. Sjölin [22, Theorem 1, p. 135].). Let a > 1 and
n ≥ 2. Then there is a number C independent of f in the class of radial
functions such that

(25)
∥∥Saf

∥∥
L2(Bn,L∞(B))

≤C‖f‖H1/4(Rn).

4.8. Theorem (Cf. e.g., Stein and Weiss [27, Theorem 3.10,
p. 158].). Let f be radial. Then

(26) f̂(ξ) = (2π)n/2|ξ|−n/2+1

∫ ∞

0

f0(r)Jn/2−1

(
r|ξ|

)
rn/2 dr,

where f(x) = f0(|x|) and Jλ is the Bessel function of the first kind of order λ.
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4.9. Theorem (Cf. e.g., Stein and Weiss [27, Lemma 3.11, p. 158].).
If λ >−1/2, then there is a number Cλ independent of ρ > 1 such that

(27)

∣∣∣∣Jλ(ρ)−
(
2

π

)1/2

ρ−1/2 cos

(
ρ− λπ

2
− π

4

)∣∣∣∣≤Cλρ
−3/2.

4.10. Theorem ([36, Theorem 2.6, p. 3644]). Define fy by

(28) f̂y(ξ) = eiy|ξ|f̂(ξ), y ∈B.

Assume that n ≥ 2, a < 1 and that there is a number C independent of the
radial function f such that

(29)

∫
B

∥∥Safy
∥∥2
L2(Bn,L∞(B))

dy ≤C‖f‖2Hs(Rn).

Then s≥ a/4.

5. Proofs

5.1. Proof of Theorem A in Section 2.4 on p. 524. Assume that
s > a/4. Define

(30)
(
S̃af

)
[x](t) =

∫
Rn

ei(xξ+t|x|a)(1 + ξ2
)−s/2

f(ξ)dξ.

To prove the theorem, it is according to Parseval’s formula enough to prove
that there is a number C independent of the radial function f such that

(31)
∥∥S̃af

∥∥
L2(Rn,L∞(B))

≤C‖f‖L2(Rn).

Define

(32)
(
S̃a
ζ f

)
[x](t) =

∫
Rn

ei(xξ+t|x|a)(1 + ξ2
)−s/2

ζ
(
|ξ|

)
f(ξ)dξ, ζ ∈ {χ,ψ}.

It is then sufficient to prove the estimate (31) with S̃a replaced by S̃a
ζ for all

ζ ∈ {χ,ψ}.
The estimate for S̃a

χ follows from Corollary 4.3 on p. 526. Hence, it remains

to prove the estimate for S̃a
ψ .

Define

(33)
(
ζ̃Sa

ψf
)
[x] = ζ

(
|x|

)(
S̃a
ψf

)
[x].

It is then sufficient to prove the estimate (31) with S̃a replaced by ζ̃Sa
ψ for all

ζ ∈ {χ,ψ}.
The estimate for χ̃Sa

ψ follows from Theorem 4.6 on p. 527 in the case a < 1
and from Theorem 4.7 on p. 527 in the case a > 1. Hence, it remains to prove
the estimate for ψ̃Sa

ψ .
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There is a function f0 ∈ C∞
0 (R+) such that

(34) f(ξ) = |ξ|−n/2+1/2f0
(
|ξ|

)
.

According to Theorem 4.8 on p. 527(
ψ̃Sa

ψf
)
[x](t) = (2π)n/2r−n/2+1ψ(r)(35)

×
∫ ∞

0

ρ1/2Jn/2−1(rρ)e
itρa(

1 + ρ2
)−s/2

ψ(ρ)f0(ρ)dρ,

where r = |x|. Let t be any measurable function such that t(R+) ⊆ B and
define

(36) [Rtf ](r) =

∫ ∞

0

ψ(r)(rρ)1/2Jn/2−1(rρ)e
it(r)ρa

ρ−sψ(ρ)f(ρ)dρ

for f ∈ C∞
0 (R+). To prove the estimate for ψ̃Sa

ψ , it is sufficient to prove that
there is a number C independent of f and t such that

(37) ‖Rtf‖L2(R+) ≤C‖f‖L2(R+).

Define

(38) [Rt,1f ](r) =

(
2

π

)1/2 ∫ ∞

0

ψ(r) cos

(
rρ− λπ

2
− π

4

)
eit(r)ρ

a

ρ−sψ(ρ)f(ρ)dρ

and Rt,2 =Rt −Rt,1 where f ∈ C∞
0 (R+).

5.1.1. Due to the cosine factor, there are numbers C1 and C2 independent
of r, f and t such that

[Rt,1f ](r) = C1

∫ ∞

0

ψ(r)ei(rρ+t(r)ρa)ρ−sψ(ρ)f(ρ)dρ

+C2

∫ ∞

0

ψ(r)ei(−rρ+t(r)ρa)ρ−sψ(ρ)f(ρ)dρ.

Here we apply Theorem 4.4 on p. 526 to each term in the right-hand side. We
get that there is a number C independent of f and t such that

(39) ‖Rt,1f‖L2(R+) ≤C‖f‖L2(R+).

5.1.2. It only remains to prove that there is a number C independent of f
and t such that

(40) ‖Rt,2f‖L2(R+) ≤C‖f‖L2(R+).

According to Theorem 4.9 on p. 528 there is a number C independent of f
such that

(41)
∣∣[Rt,2f ](r)

∣∣≤ Cψ(r)

r

∫ ∞

0

ρ−1−s
∣∣f(ρ)∣∣ψ(ρ)dρ.
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We use Cauchy–Schwarz inequality to get

(42)
∣∣[Rt,2f ](r)

∣∣≤ Cψ(r)

r

(∫ ∞

0

ρ−2−2sψ(ρ)dρ

)1/2

‖f‖L2(R+).

Squaring and integrating with respect to r gives that there is a number C
independent of f such that

(43) ‖Rt,2f‖2L2(R+) ≤C

(∫ ∞

0

ψ(r)2 dr

r2

)
‖f‖2L2(R+).

5.2. Proof of Theorem B in Section 2.6 on p. 524 in the case a < 1.
Assume that there is a number C independent of f in the class of radial
functions such that

(44)
∥∥Saf

∥∥
L2(Rn,L∞(B))

≤C‖f‖Hs(Rn).

In particular, we have

(45)
∥∥Safy

∥∥
L2(Rn,L∞(B))

≤C‖fy‖Hs(Rn) =C‖f‖Hs(Rn),

where

(46) f̂y(ξ) = eiy|ξ|f̂(ξ), y ∈B.

Squaring (45) and integrating with respect to y gives that there is a number
C independent of f such that

(47)

∫
B

∥∥Safy
∥∥2
L2(Rn,L∞(B))

dy ≤C‖f‖2Hs(Rn),

and the inequality remains valid when we replace Rn in the left-hand side by
Bn. The conclusion sought for now follows from Theorem 4.10 on p. 528.

5.3. Proof of Theorem B in Section 2.6 on p. 524 in the case a > 1.
See Remark 2.7 on p. 524.
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[22] P. Sjölin, Radial functions and maximal estimates for solutions to the Schrödinger

equation, J. Aust. Math. Soc. Ser. A 59 (1995), 134–142. MR 1336457
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