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MEASURE OF CURVES IN GRADED GROUPS

RIIKKA KORTE AND VALENTINO MAGNANI

Abstract. We consider continuously differentiable curves em-
bedded in graded groups, along with the points of these curves

that have the maximal transversality with respect to the grading

of the group. We prove a blow-up theorem at these points and

we show that the remaining points are negligible with respect to

the Hausdorff measure whose dimension equals the Hausdorff di-
mension of the curve. This leads us to an area-type formula for

the intrinsic spherical Hausdorff measure of any of these curves
embedded in an arbitrary graded group.

1. Introduction

In the seminal paper by M. Gromov [4], an interesting formula for the Haus-
dorff dimension of submanifolds in arbitrary Carnot–Carathéodory spaces can
be found, see Section 0.6 B. Once we have the Hausdorff dimension, the subse-
quent question is to investigate whether the corresponding Hausdorff measure
restricted to the submanifold is positive, locally finite and can be computed
by an integral formula.

This is exactly the case, when a suitable “negligibility condition” is assumed
to be satisfied by the single submanifold, according to the results of [7]. In
fact, here an area-type formula for Sq �Σ is established, where q is the degree
of the submanifold Σ contained in a graded group G and Sq represents the
spherical Hausdorff measure with respect to the fixed homogeneous distance
of the group. Notice that 0.6 B of [4] joined with Remark 4.2 of [9] shows
that the degree of Σ coincides with its Hausdorff dimension. In short, the
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validity of an area type formula for Sq(Σ) is a consequence of the validity of
the negligibility condition, that we recall in the following definition.

Definition 1 (Negligibility condition). Let Σ⊂G be an embedded sub-
manifold of degree q, where G is a stratified group. We say that Σ satisfies
the negligibility condition if we have

(1) Hq
({

x ∈Σ : dΣ(x)< q
})

= 0.

In the sequel, we always consider curves as one dimensional C1 smooth
embedded submanifolds. The notion of pointwise degree dΣ(·) for curves is
given in Definition 2.

For instance, in Heisenberg groups Hn any horizontal vector field has degree
one and the vertical vector field, belonging to the second layer, has degree two.
Horizontal curves in Heisenberg groups are characterized by the condition of
having pointwise degree equal to one eveywhere. This remark clearly extends
to all stratified groups. If the velocity vector of a curve in H

n has at some
point a nonvanishing component in the direction of degree two, then it has
degree two at that point. The degree of a curve is defined as the maximum
among all pointwise degrees, hence it takes somehow into account the global
behaviour of the curve. Clearly, the negligibility condition becomes trivial
for all smooth horizontal curves in H

n and more generally for all horizontal
submanifolds in stratified groups, since these manifolds have all degree equal
to one.

Let us consider a curve Σ in H
n that is the C1 smooth union of some hor-

izontal curves and some curves tangent to the vertical vector field. Clearly Σ
has degree two and the fact that horizontal curves have finite one dimensional
Hausdorff measure makes the negligibility condition obviously satisfied. In a
general stratified group, one can consider smooth curves that are made by
joining smooth pieces of different degrees and easily realize that the piece of
highest degree determines the Hausdorff measure of the curve, making the
remaining pieces negligible. The technical difficulty in the study of the negli-
gibility condition is that in an arbitrary C1 smooth curve, and more generally
in a smooth submanifold, the closed subset {x ∈Σ : dΣ(x)≤ q− 1} might be
very far from having this structure, namely, it might be very little regular.
We wish to point out that the validity of (1) for arbitrary submanifolds in
arbitrary stratified groups is still an intriguing open question, where the reg-
ularity of the submanifold is an important parameter to be fixed and that
depends on both the dimension of the submanifold and on the step of the
group. On the other hand, condition (1) holds for C1 smooth non-horizontal
submanifolds, [6], [8], for C1,1 smooth submanifolds of two step groups, [9],
and for C1,1 smooth submanifolds of the Engel group, [5]. The proofs in these
different cases rely on different approaches.
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The present work continues this program, following the recent approach
of [5]. Precisely, we show that (1) also holds for all C1 smooth curves of an
arbitrary graded group, namely, we have the following theorem.

Theorem 1.1 (Negligibility). Every curve contained in a graded group
satisfies the negligibility condition.

As it is clear from [5], proving negligibility requires some ad hoc arguments
to treat the blow-up of different types of “singular points”, that can occur
in the study of the single submanifold. This singular behaviour is somehow
given by the interplay between the degree of the submanifold d(Σ) and the
pointwise degree at the singular point dΣ(x). In particular, this implies a
precise differential contraint on the local Taylor expansion of the submanifold
near the singular point. In other terms, we show that all possible singularities
of curves can be handled through a single argument by induction, that only
requires C1 regularity.

Notice that regularity is important, since the precision needed in the local
description of the submanifold depends on its “local transversality”. Loosely
speaking, in submanifolds of higher dimension, low regularity allows for a
larger size of the set of points with low degree. This fact has been carefully
studied in Heisenberg groups by Z. M. Balogh [1].

As mentioned above, the negligibility condition implies an integral formula
for the spherical Hausdorff measure of the submanifold. This in turn follows by
an intrinsic blow-up at each point of maximum degree, [7]. However, this blow-
up requires C1,1 smoothness, so that Theorem 1.1 would only lead us to an
area-type formula for curves of class C1,1. This stronger regularity somehow
conflicts with the C1 smoothness needed for the negligibility condition.

In fact, the second issue of this paper concerns the possibility to perform an
intrinsic blow-up of curves at points of maximum degree, under C1 regularity.
The main point of the approach in [7] is that of finding a local reparametriza-
tion of the submanifold, using a family of curves on right neighbourhoods of
the origin that solve a Lipschitz ODEs on the submanifold. For C1 smooth
submanifolds this approach fails, since the solutions of the same continuous
ODEs are no longer unique. Clearly, in the case of curves, two of these so-
lutions are enough to parametrize a neighbourhood of the point of maximum
degree. This suggests to find a suitable blow-up reparametrization of the
curve around its point of maximum degree. This yields the correct blow-
up estimates, according to Proposition 3.1, and it allows us to establish the
following theorem.

Theorem 1.2. Let g̃ be any Riemannian metric on G and let Σ be a C1

smooth curve such that d(Σ) = q. If x ∈Σ and dΣ(x) = q, then

(2) lim
r→0+

μ̃1(Σ∩Bx,r)

rq
=

θ(τ qΣ(x))

|τ qΣ(x)|
,
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where μ̃1 is the Riemannian measure on Σ with respect to the metric g̃.

Joining Theorem 1.1 with Theorem 1.2, by standard differentiability theo-
rems on measures, see [3], we get the following corollary.

Corollary 1.1. Let g̃ be a fixed Riemannian metric on G. If Σ is a C1

curve such that d(Σ) = q, then

(3)

∫
Σ

θ
(
τ qΣ(x)

)
dSq(x) =

∫
Σ

∣∣τ qΣ(x)∣∣dμ̃1(x).

The possible anisotropy of the homogeneous distance d makes the metric
factor θ(τ qΣ(x)) a function that depends on the direction τ qΣ(x), see Defini-
tion 4. Recall that, according to Section 2.1, the stratified group G can be
decomposed into the direct sum of linear subspaces Hj of degree j, where
j = 1, . . . , ι. Using this notation, we say that the distance d has a symmetry
of degree q if for all τ ∈Hq we have

cq = θ(τ) =H1
|·|

(
span{τ} ∩B1

)
,(4)

then under this assumption the integral formula (3) becomes

(5) cqSq(Σ) =

∫
Σ

∣∣τdΣ(x)∣∣dμ̃1(x).

In connection with Gromov’s dimension comparison problem studied in [2],
we wish to regard our work from a different perspective. If G is a stratified
group of step ι, then for any integer q = 1, . . . , ι, one easily observes that
the subgroup Lq spanned by an element ei of degree di = q has Hausdorff
dimension equal to q. A consequence of our results is that these integers
are the only possible Hausdorff dimensions of C1 smooth curves. In addition,
each of these curves has an area-type formula (3) that computes their spherical
Hausdorff measure.

2. Definitions and standard facts

A graded group G with topological dimension n is a simply connected
nilpotent Lie group with Lie algebra G having the grading G = V1 ⊕ · · · ⊕ Vι,
that satisfies the conditions [Vi, Vj ] ⊂ Vi+j for all i, j ≥ 1, where Vj = {0}
whenever j > ι. The integer ι is called the step of G. Recall that the family
of graded groups strictly contains the well-known family of stratified groups.
The grading allows for defining dilations δr : G → G as follows δr(

∑ι
j=1 vj) =∑ι

j=1 r
jvj , for all r > 0, where we have set v =

∑ι
j=1 vj and vj ∈ Vj . Note

that simply connected nilpotent Lie groups are diffeomorphic to their Lie
algebra through the exponential mapping exp : G → G, hence dilations are
automatically defined as group isomorphisms of G and will be denoted by the
same symbol δr.
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We say that ρ is a homogeneous distance on G if it is a continuous distance
of G satisfying the following conditions:

d(zx, zy) = d(x, y) and d
(
δr(x), δr(y)

)
= r d(x, y) for all x, y, z ∈G, r > 0.

We denote by Hq and Sq the q-dimensional Hausdorff and spherical Hausdorff
measures induced by a fixed homogeneous distance ρ, respectively. Open balls
with center at x and radius r > 0 with respect to d will be denoted by Bx,r

and the corresponding closed balls will be denoted by Dx,r.

2.1. Graded groups as vector spaces. The fact that the exponential
mapping exp : G −→ G is a diffeomorphism allows us to identify G with its
Lie algebra as follows. We set Hj = expVj for all j = 1, . . . , ι and equip G

with a structure of graded vector space satisfying G =H1 ⊕ · · · ⊕Hι. This
direct sum has the corresponding canonical projections

pj : G−→Hj , pj

(
ι∑

l=1

xl

)
= xj , where xl ∈Hl for all l= 1, . . . , ι.

The group operation

(6) x · y = x+ y+Q(x, y)

has a polynomial form, where Q is given by the Baker–Campbell–Hausdorff

formula. We define the integers m0 = 0 and mj =
∑j

l=1 dimHl for any j =
1, . . . , ι. A basis (e1, . . . , en) of G is graded if

(emj−1+1, . . . , emj ) is a basis of Hj

for all j = 1, . . . , ι. In the sequel, a graded basis will be understood whenever
G is identified with R

n. Declaring this basis orthonormal, we have fixed both
a scalar product on G and a left invariant metric g on G with respect to the
group operation. With slight abuse of notation, we use the same notation
to denote both the length |v| of a vector v ∈ TyG with respect to g and to
denote the norm |x| of an element x of G. Notice that the metric g at the
origin exactly coincides with the fixed scalar product of G, since g is defined
as the unique left invariant Riemannian metric on G with this property. All
the graded bases we consider are understood to be orthonormal with respect
to the underlying scalar product g.

The basis (el) along with its coordinates (xl) automatically inherit a degree
from the layers Hj , namely,

dj = k if and only if ej ∈Hk.

Elements of Hk have degree k and any coordinate xj of an element∑n
j=1 xjej ∈G has degree dj . Taking into account this notion, dilations on G
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can be written as

(7) δr

(
n∑

l=1

xlel

)
=

n∑
l=1

rdlxlel.

Notice that a change of system of graded coordinates is a linear isomor-
phism, hence the class of polynomials on G is well defined. In fact, a polyno-
mial on G is simply a standard polynomial on R

n when some fixed graded co-
ordinates are fixed on G. Let us stress that a linear isomorphism I : Rn −→R

n

arising from a change of graded coordinates automatically preserves the de-
grees of all coordinates, namely,

I(ej) ∈ span{el : l=mdj−1 + 1, . . . ,mdj} for all mdj−1 + 1≤ j ≤mdj .

For any α ∈N
n, we define the monomial

xα := xα1
1 xα2

2 · · ·xαn
n where d(α) :=

n∑
i=1

djαj

is the homogeneous degree of xα. By (7), we have

(δrx)
α = rd(α)

n∏
j=1

xj ,

where α= (α1, . . . , αn). A polynomial is d-homogeneous if it is a linear com-
bination of monomials of homogeneous degree equal to d. Thus, a polynomial
P is d-homogeneous if and only if P (δrx) = rdP (x) for all x ∈ R

n and r > 0.
In this case, we also say that the homogeneous degree of P is d.

The degree transmits itself to the unique left invariant vector fields Xj of G
such that Xj(0) = ej . It follows that Xj has degree dj and has the polynomial
form

(8) Xj(x) = ∂xj +
∑

l:dl>dj

alj(x)∂xl

with respect to the understood graded coordinates (xj). The polynomails alj
in the previous formula are (dl − dj)-homogeneous. If (X1, . . . ,Xn) is a frame
of left invariant vector fields generated by a graded basis (e1, . . . , en) of G,
then we will say that this frame is also graded.

Next, we introduce the notion of degree of curves in a graded group. We
address the reader to the original work, [7], for more details and the more
general notion of degree of a submanifold.

Definition 2 (Degree of curves). Let Σ be a curve of a graded group G

and let x ∈ Σ. Let τ ∈ TxΣ \ {0} and let τ =
∑n

j=1 λjXj(x). The pointwise

degree of Σ at x is the integer dΣ(x) = max{dj : λj 	= 0}. The degree of Σ is
the integer d(Σ) =maxx∈Σ dΣ(x).

The left translations of the group are denoted by lx : G−→G, lx(y) = x ·y.
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Definition 3. Let g̃ be a Riemannian metric in G, let Σ be a curve
of G and let γ : (a, b) −→ G be a C1 smooth local parametrization of Σ,
with t ∈ (a, b) and x = γ(t). We define the unit tangent vector of Σ at x
as τΣ(x) = γ̇(t)/|γ̇(t)|g̃ ∈ TxΣ. If pj : G −→ Hj , 1 ≤ j ≤ ι is the canonical
projection of G, and we have identified G with T0G, then we define the j-
projection of τΣ(x) by

(9) τ jΣ(x) = dlx
(
pj

(
dlx−1

(
τΣ(x)

)))
∈ TxG∩ dlx(Hj).

Definition 4 (Metric factor). Let x ∈G, let τ ∈ TxG and set τ0 = dlx−1τ ∈
T0G. The metric factor is defined by

θ(τ) =H1
|·|

(
span{τ0} ∩B1

)
,(10)

where | · | is the fixed scalar product on G and B1 is the open unit ball with
respect to the fixed homogeneous distance d.

Clearly, the metric factor is constant on directions of a left invariant vector
field.

2.2. Some density estimates of geometric measure theory. Our ar-
guments are based on the following elementary fact, see for instance 2.10.19
of [3].

Lemma 1. Let X be a metric space, let μ be a Borel measure on X , let
a > 0 and let {Vi}i∈N be an open covering of X such that μ(Vi) < ∞. If
Z ⊂X is any Borel set and limsupr→0+ r−aμ(Dx,r)≥ κ > 0 whenever x ∈ Z,
then μ(Z)≥ κSa(Z).

The symbol Sa in the previous lemma denotes the a-dimensional spherical
Hausdorff measure constructed by the size function ζa(Dx,r) = ra and Dx,r is
the closed ball of center x and radius r. We have the following corollary.

Corollary 2.1. Let a > 0 be any positive number and let Σ be C1 curve
of a graded group G. Let μ be the left invariant Riemannian measure of G re-
stricted to Σ and let Z be a Borel set of Σ such that limsupr→0+ r−aμ(Dz,r) =
+∞, whenever z ∈ Z. This implies that Sa(Z) = 0.

We are going to apply this corollary when a is the degree of the curve Σ.

3. Blow-ups and negligibility

This section is devoted to the proofs of our main results.

Proposition 3.1. Let γ : (−1,1) −→ G be C1 smooth embedding, let Σ
be its image and fix d(Σ) = q. If γ(0) = 0 and dΣ(0) = q, then there exists a
graded basis (e1, . . . , en) such that for all j = 1,2, . . . , n we have

(11) γi(t) = o
(
tdi/q

)
whenever i 	= i0 =mq−1 + 1.
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Proof. The grading G = H1 ⊕ · · · ⊕Hι has the associated canonical pro-
jections pj : G−→Hj , hence pq(γ̇(0)) 	= 0. We set ei0 = pq(γ̇(0))/|pq(γ̇(0))|.
We complete this vector to a graded basis (e1, . . . , en) of G and consider the
corresponding frame of left invariant vector fields (X1, . . . ,Xn). We have

γ̇(t) =
n∑

s=1

Cs
(
γ(t)

)
Xs

(
γ(t)

)
,

where the functions t→Cs(γ(t)) are continuous, vanish on a neighbourhood
of 0 whenever ds > q, Ci0(0) 	= 0 and for all s such that i0 < s ≤ mq we
have Cs(0) = 0. Let us introduce the homeomorphism η : R−→R defined as
η(t) = (|t|q sgn(t))/q. We consider the reparametrized curve σ(t) = γ(η(t)),
hence

σ′(t) = |t|q−1
∑

s:ds≤q

Cs
(
σ(t)

)
Xs

(
σ(t)

)
.

Thus, clearly σ′
i(t) = o(tdi−1) for all i such that di < q. Due to (8), setting

ais ≡ δis when di = ds and ais ≡ 0 when di < ds, we can write

Xj(x) = ∂xj +

n∑
l=1

alj(x)∂xl
.

We consider the cases di ≥ q, where the previous formula gives

(12) σ′
i(t) = |t|q−1

∑
s:ds≤q

Cs
(
σ(t)

)
ais

(
σ(t)

)
.

We first consider all i’s such that di = q, therefore

σ′
i(t) = |t|q−1

∑
s:ds≤q

Cs
(
σ(t)

)
ais

(
σ(t)

)
= |t|q−1Ci

(
σ(t)

)
+ |t|q−1

∑
s:ds<q

Cs
(
σ(t)

)
ais

(
σ(t)

)
.

The polynomials ais(x) are (q − ds)-homogeneous, hence they only depend
on the components xl with dl < q, for which γl(t) = o(tdl). Thus, ais(σ(t)) =
o(tq−ds) and

σ′
i(t) = |t|q−1Ci

(
σ(t)

)
+ o

(
tq−1

)
.

In the case i 	= i0 and di = q, we have Ci(0) = 0, therefore σ′
i(t) = o(tq−1).

This is not true for i= i0, since Ci0(0) 	= 0.
Now, we consider all i’s such that di = q+1. We split (12) into two addends,

getting

σ′
i(t) = |t|q−1

∑
s:ds=q

Cs
(
σ(t)

)
ais

(
σ(t)

)
+ |t|q−1

∑
s:ds<q

Cs
(
σ(t)

)
ais

(
σ(t)

)
.
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In the second addend, the homogeneous degree of ais is less than or equal to
q, hence we can only conclude that ais(γ(t)) = O(tq+1−ds) = o(t). It follows
that

σ′
i(t) = |t|q−1

∑
s:ds=q

Cs
(
σ(t)

)
ais

(
σ(t)

)
+ o

(
tq

)
.

Furthermore, Cs(σ(t)) = o(1) whenever s 	= i0 and ds = q and ais(σ(t)) =O(t).
We have then established

(13) σ′
i(t) = |t|q−1Ci0

(
σ(t)

)
aii0

(
σ(t)

)
+ o

(
tq

)
.

Now, by definition of left invariant vector fields, and representing Q(x, y) of
(6) as

∑n
i=1Qi(x, y)ei, we have a

i
s(x) = ∂ysQi(x,0) whenever di > ds. Clearly

span{Xi0} is a subalgebra of G, then we can apply Lemma 2.5 of [7], that
gives

Qi(x, y) =
∑

l �=i0,dl<di

xlR
i
l(x, y) + ylS

i
l (x, y)

whenever i 	= i0. In particular, we are lead to

(14) aii0(x) =
∑

l �=i0,dl<di

xl ∂i0R
i
l(x,0).

In the previous steps, we have proved that σl(t) = o(tdl) for each l such that
dl ≤ q and l 	= i0, hence the previous formula yields

aii0
(
σ(t)

)
=

∑
l �=i0,dl<di

σl(t)∂i0R
i
l

(
σ(t),0

)
= o

(
tdi−di0

)
,

where we have taken into account that ∂i0R
i
l(σ(t),0) =O(tdi−d0−dl) for di −

di0 − dl ≥ 0 and ∂i0R
i
l(σ(t),0)≡ 0 otherwise. In view of (13), we have proved

that σ′
i(t) = o(tq).

To complete the proof, we argue by induction, assuming that σ′
i(t) =

o(tdi−1) whenever i satisfies 1 + q ≤ di ≤ k − 1 and k ≥ 2. We consider the
cases di = k. The next steps essentially repeat the previous argument. In fact,
we now consider

σ′
i(t) = |t|q−1

∑
s:ds=q

Cs
(
σ(t)

)
ais

(
σ(t)

)
+ |t|q−1

∑
s:ds<q

Cs
(
σ(t)

)
ais

(
σ(t)

)
.

The homogeneous degree of ais is less than or equal to k− 1, hence ais(γ(t)) =
O(tdi−ds). It follows that

σ′
i(t) = |t|q−1

∑
s:ds=q

Cs
(
σ(t)

)
ais

(
σ(t)

)
+ o

(
tdi−1

)
.

Since Cs(0) = 0 for ds = q and s 	= i0, we have

Cs
(
σ(t)

)
ais

(
σ(t)

)
= o(1)O

(
tdi−ds

)
= o

(
tdi−ds

)
.
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It follows that σ′
i(t) = |t|q−1Ci0(σ(t))aii0(σ(t)) + o(tdi−1). Using formula (14)

and the induction hypothesis, we also get aii0(σ(t)) = o(tdi−di0 ), leading us to

σ′
i(t) = o(tdi−1), that concludes the proof. �

The previous proposition is the basic ingredient to establish the blow-up
at points of maximum degree.

Proof of Theorem 1.2. For any sufficiently small r > 0, we have

μ̃1(Σ∩Bx,r)

rq
=

1

rq

∫
Γ−1(Bx,r)

∣∣Γ̇(t)∣∣
g̃
dt(15)

=

∫
Ax,r

∣∣Γ̇(
rqt

)∣∣
g̃
dt,

where Γ : (−1,1) −→ G is a local chart of Σ, Γ(0) = x and Σ ∩ Bx,r =
Γ(Γ−1(Bx,r)). We have also set Ax,r = {t ∈ (−1,1) : Γ(trq) ∈ Bx,r}. Let us
consider the curve γ(t) = x−1 ·Γ(t) and observe that it parametrizes the trans-
lated submanifold x−1Σ, that has same degree q, and γ(0) = 0. We have

Ax,r =

{
t ∈

(
−r−q, r−q

)
:

n∑
i=1

γi(tr
q)

rdi
ei ∈B1

}

and Proposition 3.1 yields a graded basis (e1, . . . , en) with respect to which we
have γi(t) = o(|t|di/q), whenever i 	= i0 and i0 =mq−1 + 1. For these integers

γi(tr
q)

rdi
=

o(| trq |di/q)

rq
−→ 0 as r→ 0+

and clearly γi0(tr
q)r−q → γ′

i0
(0)t, where these limits are uniform with respect

to t that varies on compact sets of R. In particular, we have the L1
loc conver-

gence of the characteristic functions

1Ax,r −→ 1 1
γ′
i0

(0)
S0
, where S0 = {t ∈R : tei0 ∈B1}

and 1Ax,r ≤ 1[−M0,M0] for some M0 > 0 and any r > 0 small. By Lebesgue’s
theorem,

(16) lim
r→0+

μ̃1(Σ∩Bx,r)

rq
=

∣∣Γ̇(0)∣∣L1

(
1

γ̇i0(0)
S0

)
=

|Γ̇(0)|
|γ̇i0(0)|

L1(S0).

We first observe that |ei0 |= 1 gives L1(S0) =H1
|·|(B1 ∩ span{ei0}) = θ(τ qΣ(x)).

We also observe that

γ̇i0ei0
|Γ̇(0)|g̃

=
pq(dlx−1 Γ̇(0))

|Γ̇(0)|g̃

= dlx−1

(
dlx(pq(dlx−1 Γ̇(0)))

|Γ̇(0)|g̃

)
= dlx−1

(
τ qΣ(x)

)
,
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hence we have ∣∣τ qΣ(x)∣∣ = ∣∣dlx−1

(
τ qΣ(x)

)∣∣= ∣∣∣∣ γ̇i0ei0|Γ̇(0)|g̃

∣∣∣∣= |γ̇i0 |
|Γ̇(0)|g̃

.

The last equalities joined with (16) lead us to (2), concluding the proof. �

Proposition 3.2. Let γ : (−1,1)−→G be C1 parametrization of a curve
Σ, that is the image of γ. We also assume that γ(0) = 0 and dΣ(0)< d(Σ). If
(e1, . . . , en) is any graded basis with γ =

∑n
j=1 γjej , then we have a constant

σ > 0 along with nonnegative functions εj : (0, σ)−→ R such that for all t ∈
(−σ,σ) and j = 1,2, . . . , n, we have

(17)
∣∣γj(t)∣∣ ≤ εj

(
|t|

)
|t|pj ,

where pj = dj/d(Σ) and εj(r)→ 0+ as r→ 0+.

Proof. There exists a neighbourhood I ⊂R of 0 such that

(18) γ̇(t) =

n∑
j=1

λj(t)Xj

(
γ(t)

)
=

n∑
j=1

γ̇j(t)∂xj .

We observe that the second equality and the C1 smoothness of γ imply that
all λj are continuous. Let us first consider the case dj ≤ dΣ(0). Here we
have pj < 1 and C1 continuity of γj yields |γ̇j(t)| < max{2|γ̇j(0)|,1} for |t|
small enough. Therefore, as γj(0) = 0, we have |γj(t)| <max{2|γ̇j(0)|,1}|t|.
This proves the validity of (17), where one sets εj(r) =max{2|γ̇j(0)|,1}r1−pj .
If dΣ(0) < dj ≤ d(Σ), then we must have γ̇j(0) = 0. Thus, introducing the
nondecreasing function fj(r) := max|s|≤r |γ̇j(s)| we have

lim
r→0+

fj(r) = 0 and
∣∣γ̇j(t)∣∣ ≤ fj(t).

Therefore |γj(t)| ≤ fj(|t|)|t|=εj(|t|)|t|pj , where we have set εj(r) = fj(r)r
1−pj .

Now, to prove the validity of (17) for all j = 1, . . . , n, we use the following
induction argument. Suppose that for every n-dimensional stratified group
G and every Σ and γ satisfying our assumptions, the claim (17) holds for all
j = 1,2, . . . , k − 1, where k ≤ n. We have to show that this yields (17) for
j = k.

If k ∈N is such that dk ≤ d(Σ), then (17) holds, due to the previous argu-
ments. Let us consider the case dk > d(Σ). Joining (8) with (18), we have

γ̇k(t) = λk(t) +
∑

dj<dk

λj(t)a
k
j

(
γ(t)

)
.

By definition of degree, if dj > d(Σ), then λj everywhere vanishes. Therefore
it remains to estimate akj ◦ γ whenever dj ≤ d(Σ). It follows that

γ̇k(t) =
∑

j:dj≤d(Σ)

λj(t)a
k
j

(
γ(t)

)
.
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Recall that akj is a polynomial (dk − dj)-homogeneous. Thus, it only depends

on variables xl’s with dl < dk. Since l→ dl is nondecreasing, a
k
j only depends

on the variables xl with l < k. It follows that akj can be written as∑
d(α)=dk−dj

cαx
α =

∑
d(α)=dk−dj

cαx
α1
1 · · ·xαk−1

k−1 .

Taking into account the induction hypothesis, we get∣∣∣∣ ∑
d(α)=dk−dj

cαγ(t)
α

∣∣∣∣≤
( ∑

d(α)=dk−dj

cα

k−1∏
l=1

εj(t)
αl

)
|t|

∑k−1
l=1 plαl .

We also observe that

k−1∑
l=1

plαl =

k−1∑
l=1

dl
d(Σ)

αl =
dk − dj
d(Σ)

≥ pk − 1.

It follows that∣∣∣∣ ∑
d(α)=dk−dj

cαγ(t)
α

∣∣∣∣≤
( ∑

d(α)=dk−dj

cα

k−1∏
l=1

εj
(
|t|

)αl

)
|t|pk−1.

Thus, we can find a nonnegative and nondecreasing function εk(r) for r ≥ 0
sufficiently small, only depending on all polynomials akj and all εj for j ≤ k−1
such that ∣∣γ̇k(t)∣∣ ≤ εk

(
|t|

)
|t|pk−1 and lim

r→0+
εk(r) = 0.

This immediately leads us to the validity of (17) for j = k and completes the
proof. �

Proposition 3.3. Let Σ be a C1 smooth curve in a graded group G. Let μ
be the Riemannian measure induced on Σ by to the fixed left invariant metric
g. We have that for every x ∈Σ such that dΣ(x)< d(Σ), there holds

(19) lim
r→0+

μ(Σ∩Dx,r)

rd(Σ)
=+∞.

Proof. For each j = 1, . . . , n, we define the orthogonal projection pj : G−→
span{ej} associated to the graded basis (e1, . . . , en) of G. We define the box

Boxr =
{
x ∈G :

∣∣pj(x)∣∣ ≤ rdj
}
.

Since δr(Box1) = Boxr for all r > 0 and Boxλ ⊂D1 ⊂Boxλ−1 for a fixed λ > 0,
we get

(20) Boxrλ ⊂Dr ⊂Boxr/λ .
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Let γ : (−1,1)−→G be a C1 smooth embedding such that γ(0) = 0 and whose
image is contained in the translated submanifold x−1 · Σ. Let q = d(Σ) and
consider

μ(Σ∩Dx,r)

rq
=

μ((x−1 ·Σ)∩Dr)

rq
≥ μ((x−1 ·Σ)∩Boxλr)

rq
.

It follows that for r > 0 sufficiently small, we have

(21)
μ(Σ∩Dx,r)

rq
≥ 1

rq

∫
Ix,r

∣∣γ̇(t)∣∣dt.
In the previous inequality we have set Ix,r = γ−1(Boxλr) =

⋂n
j=1Aj(x, r),

where

Aj(x, r) =
{
t ∈ (−1,1) :

∣∣γj(t)∣∣ ≤ (λr)dj
}
.

Let 0 < h < 1 be arbitrarily fixed and let 0 < αj < min{1, σ} be such that
εj(|t|)< h whenever |t| ≤ αj , where εj and σ are as in Proposition 3.2. This
proposition gives{

t ∈ (−αj , αj) : h|t|dj/q ≤ (λr)dj
}
⊂Aj(x, r)

for all j = 1, . . . , n. Now, we define the numbers

0< σ0 <min{αj : j = 1, . . . , n} and σ1 =max{αj : j = 1, . . . , n},

where σ0 is chosen such that |γ̇(t)|> |γ̇(0)|/2 for any t ∈ (−σ0, σ0). Thus, we
introduce the set

Sr =
{
t ∈ (−σ0, σ0) : |t| ≤

(
λqrq

)
/hq/σ1

}
.

We observe that Sr ⊂Aj(x, r) for every j = 1, . . . , n and for r > 0 sufficiently
small

μ(Σ∩Dx,r)

rq
≥ |γ̇(0)|

2rq
|Sr|=

|γ̇(0)|
2

λq

hq/σ1
.

Taking into account the arbitrary choice of h, we have reached our claim. �

Proof of Theorem 1.1. By Proposition 3.3, for each point x ∈ {y ∈ Σ :
dΣ(y)< d(Σ)} the limit (19) holds. As a consequence, applying Corollary 2.1
with a= d(Σ) our claim follows. �
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