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MEASURE OF CURVES IN GRADED GROUPS

RIIKKA KORTE AND VALENTINO MAGNANI

ABSTRACT. We consider continuously differentiable curves em-
bedded in graded groups, along with the points of these curves
that have the maximal transversality with respect to the grading
of the group. We prove a blow-up theorem at these points and
we show that the remaining points are negligible with respect to
the Hausdorff measure whose dimension equals the Hausdorff di-
mension of the curve. This leads us to an area-type formula for
the intrinsic spherical Hausdorfl measure of any of these curves
embedded in an arbitrary graded group.

1. Introduction

In the seminal paper by M. Gromov [4], an interesting formula for the Haus-
dorff dimension of submanifolds in arbitrary Carnot—Carathéodory spaces can
be found, see Section 0.6 B. Once we have the Hausdorff dimension, the subse-
quent question is to investigate whether the corresponding Hausdorff measure
restricted to the submanifold is positive, locally finite and can be computed
by an integral formula.

This is exactly the case, when a suitable “negligibility condition” is assumed
to be satisfied by the single submanifold, according to the results of [7]. In
fact, here an area-type formula for S?L_ ¥ is established, where ¢ is the degree
of the submanifold ¥ contained in a graded group G and S9 represents the
spherical Hausdorff measure with respect to the fixed homogeneous distance
of the group. Notice that 0.6 B of [4] joined with Remark 4.2 of [9] shows
that the degree of ¥ coincides with its Hausdorff dimension. In short, the
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validity of an area type formula for S?(X) is a consequence of the validity of
the negligibility condition, that we recall in the following definition.

DEFINITION 1 (Negligibility condition). Let ¥ C G be an embedded sub-
manifold of degree ¢, where G is a stratified group. We say that X satisfies
the negligibility condition if we have

(1) HI({zeX: ds(z)<q})

0.

In the sequel, we always consider curves as one dimensional C'! smooth
embedded submanifolds. The notion of pointwise degree dx(-) for curves is
given in Definition 2.

For instance, in Heisenberg groups H™ any horizontal vector field has degree
one and the vertical vector field, belonging to the second layer, has degree two.
Horizontal curves in Heisenberg groups are characterized by the condition of
having pointwise degree equal to one eveywhere. This remark clearly extends
to all stratified groups. If the velocity vector of a curve in H” has at some
point a nonvanishing component in the direction of degree two, then it has
degree two at that point. The degree of a curve is defined as the maximum
among all pointwise degrees, hence it takes somehow into account the global
behaviour of the curve. Clearly, the negligibility condition becomes trivial
for all smooth horizontal curves in H" and more generally for all horizontal
submanifolds in stratified groups, since these manifolds have all degree equal
to one.

Let us consider a curve ¥ in H" that is the C* smooth union of some hor-
izontal curves and some curves tangent to the vertical vector field. Clearly ¥
has degree two and the fact that horizontal curves have finite one dimensional
Hausdorff measure makes the negligibility condition obviously satisfied. In a
general stratified group, one can consider smooth curves that are made by
joining smooth pieces of different degrees and easily realize that the piece of
highest degree determines the Hausdorff measure of the curve, making the
remaining pieces negligible. The technical difficulty in the study of the negli-
gibility condition is that in an arbitrary C' smooth curve, and more generally
in a smooth submanifold, the closed subset {z € ¥ : dx(z) < g — 1} might be
very far from having this structure, namely, it might be very little regular.
We wish to point out that the validity of (1) for arbitrary submanifolds in
arbitrary stratified groups is still an intriguing open question, where the reg-
ularity of the submanifold is an important parameter to be fixed and that
depends on both the dimension of the submanifold and on the step of the
group. On the other hand, condition (1) holds for C* smooth non-horizontal
submanifolds, [6], [8], for C*! smooth submanifolds of two step groups, [9],
and for C*! smooth submanifolds of the Engel group, [5]. The proofs in these
different cases rely on different approaches.
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The present work continues this program, following the recent approach
of [5]. Precisely, we show that (1) also holds for all C' smooth curves of an
arbitrary graded group, namely, we have the following theorem.

THEOREM 1.1 (Negligibility). Every curve contained in a graded group
satisfies the negligibility condition.

As it is clear from [5], proving negligibility requires some ad hoc arguments
to treat the blow-up of different types of “singular points”, that can occur
in the study of the single submanifold. This singular behaviour is somehow
given by the interplay between the degree of the submanifold d(X) and the
pointwise degree at the singular point ds(x). In particular, this implies a
precise differential contraint on the local Taylor expansion of the submanifold
near the singular point. In other terms, we show that all possible singularities
of curves can be handled through a single argument by induction, that only
requires C! regularity.

Notice that regularity is important, since the precision needed in the local
description of the submanifold depends on its “local transversality”. Loosely
speaking, in submanifolds of higher dimension, low regularity allows for a
larger size of the set of points with low degree. This fact has been carefully
studied in Heisenberg groups by Z. M. Balogh [1].

As mentioned above, the negligibility condition implies an integral formula
for the spherical Hausdorff measure of the submanifold. This in turn follows by
an intrinsic blow-up at each point of maximum degree, [7]. However, this blow-
up requires C1'! smoothness, so that Theorem 1.1 would only lead us to an
area-type formula for curves of class C1''. This stronger regularity somehow
conflicts with the C! smoothness needed for the negligibility condition.

In fact, the second issue of this paper concerns the possibility to perform an
intrinsic blow-up of curves at points of maximum degree, under C! regularity.
The main point of the approach in [7] is that of finding a local reparametriza-
tion of the submanifold, using a family of curves on right neighbourhoods of
the origin that solve a Lipschitz ODEs on the submanifold. For C! smooth
submanifolds this approach fails, since the solutions of the same continuous
ODEs are no longer unique. Clearly, in the case of curves, two of these so-
lutions are enough to parametrize a neighbourhood of the point of maximum
degree. This suggests to find a suitable blow-up reparametrization of the
curve around its point of maximum degree. This yields the correct blow-
up estimates, according to Proposition 3.1, and it allows us to establish the
following theorem.

THEOREM 1.2. Let § be any Riemannian metric on G and let ¥ be a C*
smooth curve such that d(X)=gq. If x € ¥ and ds(x) = q, then

oy MENB.,) _ 0(r(2))
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where fi1 is the Riemannian measure on X with respect to the metric g.

Joining Theorem 1.1 with Theorem 1.2, by standard differentiability theo-
rems on measures, see [3], we get the following corollary.

COROLLARY 1.1. Let § be a fized Riemannian metric on G. If ¥ is a C*
curve such that d(X) =g, then

(3) / 6(rd(x)) dSY(x) = / 7 (2)| dja ().

The possible anisotropy of the homogeneous distance d makes the metric
factor 6(7i(z)) a function that depends on the direction 7 (), see Defini-
tion 4. Recall that, according to Section 2.1, the stratified group G can be
decomposed into the direct sum of linear subspaces H; of degree j, where

j=1,...,t. Using this notation, we say that the distance d has a symmetry
of degree q if for all 7 € H, we have
(4) cg=10(1) = ’H‘l_‘ (span{r} N By),

then under this assumption the integral formula (3) becomes

(5) £, S1(%) = / |7 ()| i (2).

In connection with Gromov’s dimension comparison problem studied in [2],
we wish to regard our work from a different perspective. If G is a stratified
group of step ¢, then for any integer ¢ = 1,...,t, one easily observes that
the subgroup L, spanned by an element e; of degree d; = ¢ has Hausdorft
dimension equal to ¢q. A consequence of our results is that these integers
are the only possible Hausdorff dimensions of C! smooth curves. In addition,
each of these curves has an area-type formula (3) that computes their spherical
Hausdortff measure.

2. Definitions and standard facts

A graded group G with topological dimension n is a simply connected
nilpotent Lie group with Lie algebra G having the grading G =V, & --- ®V,,
that satisfies the conditions [V;,V;] C V;y4; for all 4,5 > 1, where V; = {0}
whenever j > 1. The integer ¢ is called the step of G. Recall that the family
of graded groups strictly contains the well-known family of stratified groups.
The grading allows for defining dilations d, : G — G as follows 6,,(22.:1 vj) =
> iy vy, for all 7> 0, where we have set v =37"_, v; and v; € V;. Note
that simply connected nilpotent Lie groups are diffeomorphic to their Lie
algebra through the exponential mapping exp: G — G, hence dilations are
automatically defined as group isomorphisms of G and will be denoted by the
same symbol §,.
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We say that p is a homogeneous distance on G if it is a continuous distance
of G satisfying the following conditions:

d(za,zy) =d(z,y) and d(6,(x),0,(y)) =rd(z,y) forall z,y,z€G,r>0.

We denote by H9 and S7 the g-dimensional Hausdorff and spherical Hausdorff
measures induced by a fixed homogeneous distance p, respectively. Open balls
with center at  and radius r > 0 with respect to d will be denoted by B, ,
and the corresponding closed balls will be denoted by D ..

2.1. Graded groups as vector spaces. The fact that the exponential
mapping exp: G — G is a diffeomorphism allows us to identify G with its
Lie algebra as follows. We set H; =expVj for all j =1,...,¢ and equip G
with a structure of graded vector space satisfying G=H; ®--- @ H,. This
direct sum has the corresponding canonical projections

pj: G— Hj, pj<2xl>xj, where ;€ Hy for all [ =1,...,..
=1

The group operation
(6) vy=z+y+Q(z,y)

has a polynomial form, where @ is given by the Baker—Campbell-Hausdorff
formula. We define the integers mo =0 and m; = Zizl dim H; for any j =
1,...,t. A basis (e1,...,e,) of G is graded if

(€m;_141,--+1€m,) is a basis of H;

for all 7 =1,...,¢. In the sequel, a graded basis will be understood whenever
G is identified with R™. Declaring this basis orthonormal, we have fixed both
a scalar product on G and a left invariant metric g on G with respect to the
group operation. With slight abuse of notation, we use the same notation
to denote both the length |v| of a vector v € T,,G with respect to g and to
denote the norm |z| of an element z of G. Notice that the metric g at the
origin exactly coincides with the fixed scalar product of G, since g is defined
as the unique left invariant Riemannian metric on G with this property. All
the graded bases we consider are understood to be orthonormal with respect
to the underlying scalar product g.

The basis (e;) along with its coordinates (z;) automatically inherit a degree
from the layers H;, namely,

d; =k if and only if e; € Hy.

Elements of Hj; have degree k£ and any coordinate z; of an element

Z;Zl z;e; € G has degree d;. Taking into account this notion, dilations on G
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can be written as

(7) Or (ZM@) :Zrdlxlel.
1=1 =1

Notice that a change of system of graded coordinates is a linear isomor-
phism, hence the class of polynomials on G is well defined. In fact, a polyno-
mial on G is simply a standard polynomial on R™ when some fixed graded co-
ordinates are fixed on G. Let us stress that a linear isomorphism I : R» — R"
arising from a change of graded coordinates automatically preserves the de-
grees of all coordinates, namely,

I(ej) €span{e;: l=mg; 1 +1,...,mq;} forall mg, 1 +1<j<mg;.

For any o € N", we define the monomial
n
¥ =zt eg? -zt where d(a) = Zdjaj
i=1
is the homogeneous degree of x*. By (7), we have

(6,2) = rd) H xj,
j=1

where = (a1,...,ay). A polynomial is d-homogeneous if it is a linear com-
bination of monomials of homogeneous degree equal to d. Thus, a polynomial
P is d-homogeneous if and only if P(,x) =r?P(x) for all z € R" and r > 0.
In this case, we also say that the homogeneous degree of P is d.

The degree transmits itself to the unique left invariant vector fields X; of G
such that X, (0) =e;. It follows that X, has degree d; and has the polynomial
form

(8> Xj (33) = 81]' + Z aé’ ({,E) 8Iz
l:dy >d,

with respect to the understood graded coordinates (z;). The polynomails aé»
in the previous formula are (d; — d;)-homogeneous. If (X1,...,X,) is a frame
of left invariant vector fields generated by a graded basis (e1,...,e,) of G,
then we will say that this frame is also graded.

Next, we introduce the notion of degree of curves in a graded group. We
address the reader to the original work, [7], for more details and the more
general notion of degree of a submanifold.

DEFINITION 2 (Degree of curves). Let X be a curve of a graded group G
and let x € ¥. Let 7€ T, X\ {0} and let 7 = 27:1 AjX;(z). The pointwise
degree of ¥ at x is the integer ds;(z) = max{d; : \; # 0}. The degree of ¥ is
the integer d(X) = max,eyx ds(z).

The left translations of the group are denoted by I, : G — G, I, (y) =z - y.
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DEFINITION 3. Let g be a Riemannian metric in G, let ¥ be a curve
of G and let v: (a,b) — G be a C' smooth local parametrization of X,
with t € (a,b) and x = y(t). We define the unit tangent vector of ¥ at x
as s(z) =5)/|7(#)|g € TuX. If pj: G— H;, 1 <j <. is the canonical
projection of G, and we have identified G with TyG, then we define the j-
projection of ts(x) by

(9) 73(x) = dly (pj (dl—1 (s2(2)))) € TG N dl,(H;).

DEFINITION 4 (Metric factor). Let € G, let 7 € T,G and set 79 = dl, 17 €
ToG. The metric factor is defined by
(10) 0(t) :Hll,‘(span{To}ﬁBl),

where | | is the fixed scalar product on G and By is the open unit ball with
respect to the fixed homogeneous distance d.

Clearly, the metric factor is constant on directions of a left invariant vector
field.

2.2. Some density estimates of geometric measure theory. Our ar-
guments are based on the following elementary fact, see for instance 2.10.19
of [3].

LEMMA 1. Let X be a metric space, let p be a Borel measure on X, let
a>0 and let {V;}ien be an open covering of X such that p(V;) < oco. If
Z C X is any Borel set and limsup,_,q+ r~*u(Dy,r) > & >0 whenever x € Z,
then uw(2) > kS*(Z).

The symbol S§® in the previous lemma denotes the a-dimensional spherical
Hausdorft measure constructed by the size function (,(D; ) =% and D, , is
the closed ball of center x and radius r. We have the following corollary.

COROLLARY 2.1. Let a >0 be any positive number and let ¥ be C' curve
of a graded group G. Let p be the left invariant Riemannian measure of G re-
stricted to ¥ and let Z be a Borel set of ¥ such that limsup,_,g+ 7~ %u(D, ) =
+oo, whenever z € Z. This implies that S*(Z) = 0.

We are going to apply this corollary when a is the degree of the curve 3.

3. Blow-ups and negligibility
This section is devoted to the proofs of our main results.

PROPOSITION 3.1. Let v: (—1,1) — G be C' smooth embedding, let ¥
be its image and fix d(X) =q. If v(0) =0 and ds(0) = q, then there exists a
graded basis (eq,...,ey,) such that for all j=1,2,...,n we have

(11) ~i(t) :O(tdi/q) whenever i # ig = mg—1 + 1.
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Proof. The grading G = H; ® --- @ H, has the associated canonical pro-

jections p; : G — Hj, hence p,(3(0)) # 0. We set i, = p,(3(0))/Ipg(3(0))]:
We complete this vector to a graded basis (ey,...,e,) of G and consider the
corresponding frame of left invariant vector fields (X7, ..., X,). We have

3t =D 0 (1) X (1(1),

where the functions t — C*(y(t)) are continuous, vanish on a neighbourhood
of 0 whenever ds > g, C(0) #0 and for all s such that ig < s < m, we
have C?(0) =0. Let us introduce the homeomorphism 7 : R — R defined as
n(t) = (|t|2sgn(t))/q. We consider the reparametrized curve o(t) = v(n(t)),
hence

o) =t Y C(o(t) Xs(o(t)).

s:ds<q

Thus, clearly o/(t) = o(t%~1) for all i such that d; < g. Due to (8), setting
a’ =6! when d; = d, and a’ =0 when d; < d, we can write

n
Xj(x) = 0p; + Zaé(x) O, -
1=1
We consider the cases d; > ¢, where the previous formula gives
(12) oi(t) =1t Y C*(a(t))ai(o(1)).
s:ds<q
We first consider all i’s such that d; = ¢, therefore
oi(t) =t} Y C*(o(t))ai(o(t))
s:ds<q

=[t|7'C (o (t)) +[t]7 Z C*(o(t))al(a(t)).

s:ds<q

The polynomials a’(z) are (¢ — ds)-homogeneous, hence they only depend
on the components x; with d; < ¢, for which v;(t) = o(t%). Thus, a’(c(t)) =
o(t1%) and

al(t) =[t]971C (a(t)) +o(t?1).
In the case i # iy and d; = ¢, we have C*(0) = 0, therefore o/(t) = o(t?71).
This is not true for i = ig, since C(0) # 0.

Now, we consider all i’s such that d; = ¢+ 1. We split (12) into two addends,
getting

o) =1t Y C(ot)al (o) + [t D C(o(t))ak(o(t).

s:ds=q s:ds<q
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In the second addend, the homogeneous degree of a' is less than or equal to
q, hence we can only conclude that a’(y(t)) = O(t971=%) = o(t). It follows
that
o) =1t Y C*(o(t))al (o)) +o(t?).
s:ds=q
Furthermore, C*(o(t)) = o(1) whenever s # iy and ds = ¢ and a’(o(t)) = O(t).
We have then established

(13) ol(t)=[t|77C (o(t))al, (o(t)) +o(t9).

io
Now, by definition of left invariant vector fields, and representing Q(z,y) of
(6) as >_1, Qi(x,y)e;, we have a’(z) = d,,Q;(x,0) whenever d; > d,. Clearly
span{X;,} is a subalgebra of G, then we can apply Lemma 2.5 of [7], that
gives
Qi($7y): Z le;(xvy)_FylSlZ(x’y)
I#i0,di<d;

whenever ¢ # ig. In particular, we are lead to

(14) al ()= > 20;,R](x,0).

l#io,d; <d;

In the previous steps, we have proved that o;(t) = o(t%) for each [ such that
d; < q and [ # ig, hence the previous formula yields

ai ()= > oi(t)9i,Ri(o(t),0) = ot o),
I£ig,dy <d;
where we have taken into account that 8, Ri(o(t),0) = O(t4i~d~) for d; —
d;, —d; >0 and 8;, R!(o(t),0) =0 otherwise. In view of (13), we have proved
that of(t) = o(t7).

To complete the proof, we argue by induction, assuming that o}(t) =
o(t%~1) whenever i satisfies 1+ ¢ <d; <k —1 and k> 2. We consider the
cases d; = k. The next steps essentially repeat the previous argument. In fact,
we now consider

o) =1t Y C(o®)al (o) + [t D C(o(t))ak(o(t).
s:ds=q s:ds<q

The homogeneous degree of a’ is less than or equal to k — 1, hence a’(y(t)) =
O(t%=4s). Tt follows that

oi(t) = |t|91 Z CS(U(t))ai (o(t)) Jro(tdiﬂ)_
s:ds=q

Since C*(0) =0 for ds = q and s # ig, we have
C*(o(t))al (o(t) = o(1)O(t% %) = o(t" ).
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It follows that oj(t) = [t|]2*C" (o (t))ai, (o ( )) + o(t%~1). Using formula (14)
and the induction hypothesis, we also get a! (o(t)) = o(t%~%0), leading us to
ol (t) = o(t?~1), that concludes the proof. O

2

The previous proposition is the basic ingredient to establish the blow-up
at points of maximum degree.

Proof of Theorem 1.2. For any sufficiently small r > 0, we have

i1 (XN B 1 .
(15) M:_/ D(1)] . dt
~1(Bg.r) g

rd rd

=A!WWM%

x,r

where I': (—1,1) — G is a local chart of ¥, I'(0) =2 and ¥ N B, , =
[(T~Y(Bs)). We have also set A, ,={t€ (-1,1): ['(tr?) € B, ,}. Let us
consider the curve v(t) = x =1 -T'(t) and observe that it parametrizes the trans-
lated submanifold z~'%, that has same degree ¢, and «(0) = 0. We have

Agr = {t S (—rfq,rfq) : Z %S;q)ei € Bl}

i=1

and Proposition 3.1 yields a graded basis (e, ..., e,) with respect to which we
have ~;(t) = o( ), whenever i # i and ig = mg—1 + 1. For these integers
~i(tr?) o] tre]%/9)

T = —0 asr—0"
rai rd

and clearly v;, (tr?)r~7 — 7] (0)t, where these limits are uniform with respect
to t that varies on compact sets of R. In particular, we have the L}
gence of the characteristic functions

14, —1 o> where So ={t €R: te;, € By}

x 7
’ ’ylo(

joc COMVET-

and 14, < 1[_p, 0] for some Mg >0 and any r > 0 small. By Lebesgue’s
theorem,

. ﬂl(EmBz,r) o 1 . |F(0)| 1
ae) i PETER < F02! () = Gt o)

We first observe that |e;,| = 1 gives £1(Sp) = ”H‘l_l(Bl Nspan{e;, }) = 0(1x(x)).
We also observe that

"}/ioeio — pq(dl$7lr‘(0))

IT(0)l5 IT(0)l5

_ g (Ul DO g
dlz< RO ) e (),
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hence we have
o |’Y70| )
I1'(0)l5

The last equalities joined with (16) lead us to (2), concluding the proof. O

|T§;($)| = |dlz71 (TE )| — 71067‘0
g

PROPOSITION 3.2. Let v: (—=1,1) — G be C' parametrization of a curve
Y, that is the image of v. We also assume that v(0) =0 and dx(0) < d(X). If
(e1,...,en) is any graded basis with v= Z?Zl vj€e;, then we have a constant
o >0 along with nonnegative functions €; : (0,0) — R such that for all t €
(—=0,0) and j=1,2,...,n, we have

(17) @) <e; ([t
where p; =d;/d(X) and €;(r) — 0% as r —07.

Proof. There exists a neighbourhood I C R of 0 such that
(18) A=Y N0X;(v(1) =D 4;(6)d
j=1 j=1

We observe that the second equality and the C'' smoothness of v imply that
all \; are continuous. Let us first consider the case d; < dx(0). Here we
have p; < 1 and C' continuity of v; yields |y;(¢)| < max{2|y;(0)|,1} for |¢
small enough. Therefore, as ;(0) =0, we have |v;(t)| < max{2|y;(0)|,1}|¢].
This proves the validity of (17), where one sets ¢;(r) = max{2|y;(0)|, 1}r! =i,
If ds(0) <d; < d(X), then we must have 7;(0) = 0. Thus, introducing the
nondecreasing function f;(r) := maxjs <, [7;(s)| we have

Tim () =0 and - |5;(0)] < £5(0).

Therefore |y, (t)| < f;([t])[t|=¢;(|t])|t[P7, where we have set £;(r) = f;(r)r! =i,
Now, to prove the validity of (17) for all j =1,...,n, we use the following
induction argument. Suppose that for every n-dimensional stratified group
G and every ¥ and « satisfying our assumptions, the claim (17) holds for all
j=1,2,...,k — 1, where kK <n. We have to show that this yields (17) for
j=k.

If k € N is such that dy < d(X), then (17) holds, due to the previous argu-
ments. Let us consider the case di > d(X). Joining (8) with (18), we have

Ve(t Z A
dj<dp

By definition of degree, if d; > d(X), then A; everywhere vanishes. Therefore
it remains to estimate aé? oy whenever d; < d(X). It follows that

Tty = D Ak ().

Jid; <d(3)
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Recall that a? is a polynomial (dj — d;)-homogeneous. Thus, it only depends
on variables x;’s with d; < di. Since [ — d; is nondecreasing, af only depends
on the variables x; with [ < k. It follows that a? can be written as

D = > canilooily
d(a)=dj,—d; d(a)=d),—d;
Taking into account the induction hypothesis, we get

k—1
Z Ca'V(t)a‘ < ( Z Ca H gj(t)al> |t|Zf;11 prou

d(a)=dy,—d, d(a)=dp—d; 1=1

‘We also observe that
k—1

k—1
d, dy, — d
g = > - 1-
;lelal ;:1 d(Z) g d(E) = Pk

It follows that

Z cay(t)”

d()=dy—d;

g( > caﬁsj(t|)“‘>|t|pkl.

d(a)=d,—d; 1=1

Thus, we can find a nonnegative and nondecreasing function e (r) for r >0
sufficiently small, only depending on all polynomials af and all ; for j <k—1
such that

”'yk(t)lgak(|t|)|t|p’“_l and 7nl_i)r(r)lJrak(r):O.

This immediately leads us to the validity of (17) for j = k and completes the
proof. O

PROPOSITION 3.3. Let ¥ be a C! smooth curve in a graded group G. Let
be the Riemannian measure induced on X by to the fixed left invariant metric
g. We have that for every x € ¥ such that ds(x) < d(X), there holds

(19) im A0 Dar)

TR R

Proof. For each j=1,...,n, we define the orthogonal projection p; : G —
span{e;} associated to the graded basis (e1,...,e,) of G. We define the box

Box, = {z€G: |p;(z)| §rdj}.

Since 4, (Boxy ) = Box, for all r > 0 and Box) C D; C Box,-1 for a fixed A > 0,
we get

(20) Box,.» C D, C BOXT/)\ .
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Let v: (—1,1) — G be a C'! smooth embedding such that v(0) = 0 and whose
image is contained in the translated submanifold x=!-¥. Let ¢ =d(X) and
consider

wENDy ;) M((x_l -X)N D) ,u((x_l -¥) N Boxy)

= > .
rd rd - rd

It follows that for r > 0 sufficiently small, we have

(21) MEODer) s 2 [ o).

rd —rd

x,r

In the previous inequality we have set I, =y !(Boxy,) = 0?21 Aj(z,r),
where

Aj(z,r)={te(=1,1): |y t)] < ()%}

Let 0 < h <1 be arbitrarily fixed and let 0 < o; < min{1,0} be such that
g;(|t]) < h whenever |t| < a;, where ¢; and o are as in Proposition 3.2. This
proposition gives

{t e (—aj,a;): ht|B/1< (Ar)4} C Aj(x,r)
for all j=1,...,n. Now, we define the numbers
0<op<min{e;:j=1,...,n} and oy =max{e;:j=1,...,n},

where o¢ is chosen such that |¥(t)| > |¥(0)|/2 for any t € (—o¢,0¢). Thus, we
introduce the set

S, ={te(—0a0,00): |t| < ()\qrq)/hq/‘” }.

We observe that S, C A;j(z,r) for every j=1,...,n and for r > 0 sufficiently
small

g [H(O)] A1
‘ST‘|7 2 hq/zn'

Taking into account the arbitrary choice of h, we have reached our claim. [

w(XnN Dr,r) > 17(0)

rd - 2rd

Proof of Theorem 1.1. By Proposition 3.3, for each point z € {y € ¥:
dx(y) < d(X)} the limit (19) holds. As a consequence, applying Corollary 2.1
with a = d(X) our claim follows. O
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