
Illinois Journal of Mathematics
Volume 55, Number 3, Fall 2011, Pages 1105–1118
S 0019-2082

APPROXIMATION BY POLYNOMIALS AND BLASCHKE
PRODUCTS HAVING ALL ZEROS ON A CIRCLE

DAVID W. FARMER AND PAMELA GORKIN

Abstract. We show that a nonvanishing analytic function on
a sub-disc of the unit disc can be approximated by (a scalar

multiple of) a Blaschke product whose zeros lie on a prescribed

circle enclosing the sub-disc. We also give a new proof of the

analogous classical result for polynomials. A connection is made
to universality results for the Riemann zeta function.

1. Introduction

While every analytic function on a disc can be approximated pointwise by
a polynomial, it is an interesting problem to determine where the zeros of
the polynomial may be chosen. When our attention is focused on bounded
analytic functions, there is another class of functions that can be used to
approximate: the set of Blaschke products. A finite Blaschke product is a
function of the form

(1.1) B(z) = λ
N∏

j=1

z − aj

1 − ajz
,

where |aj | < 1 for all j and |λ| = 1. Carathéodory’s theorem (see [4, p. 6],
for example) shows that if f is an analytic function defined on the open unit
disc, D, and f is bounded by 1 in modulus, then there is a sequence {Bk } of
finite Blaschke products converging to f pointwise on D. Again, it is certainly
interesting to ask where the zeros of the approximating Blaschke products may
lie.

Looking at more general domains, one natural question is the following:
Given a holomorphic function in a Jordan region, when can it be approxi-
mated by a polynomial with zeros lying on the boundary? This question was
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answered by G. MacLane [10] in 1949. Curiously, many texts dealing with the
study of polynomials or approximation by polynomials do not include refer-
ence to this work ([11], [13]), though three different proofs of this result are
given by Korevaar [6].

MacLane’s work focused on showing that a zero-free holomorphic function
can be approximated by a polynomial with zeros on the boundary, when the
boundary satisfies certain smoothness conditions. C. Chui [1], [2] looked at
the problem of bounded approximation of a zero-free bounded holomorphic
function by what he called C-polynomials. Chui showed that every zero-free
bounded holomorphic function defined on D can be boundedly approximated
by polynomials with zeros lying on the unit circle. In 1968, Z. Rubinstein
showed that given a zero-free holomorphic function with f(0) = 1, there exists
a sequence of C-polynomials mapping 0 to 1 that converges to f uniformly
on every compact set in D. In addition, when the function f is bounded, the
sequence converges boundedly. One natural approach, that of looking at the
zeros of the partial sums of a series, has been further studied by Korevaar and
others, see [7], [8], and [9].

Our main result (Corollary 2.3) is that given an analytic function g that
has no zeros in a neighborhood of {z : |z| ≤ r}, for all ε > 0 and δ > 0 there
exists a constant cB and a finite Blaschke product B with all zeros on the
circle {z : |z| = r} such that

(1.2)
∣∣g(z) − cBB(z)

∣∣ < ε on
{
z : |z| < r − δ

}
.

Our approach also provides a new and relatively simple proof of the fact
that a nonvanishing analytic function can be approximated uniformly on com-
pact subsets of a disc by polynomials having zeros on a prescribed circle.

The paper is organized as follows. In Section 2, we consider the special case
of discs centered at 0. Then in Section 3.1, we extend the special case to more
general sub-discs of the unit disc. In Section 4, we discuss the relationship
with universality results for the Riemann zeta function and its connection to
random matrix theory.

2. Approximation around 0

Here is a very simple proof that a polynomial p that does not vanish on a
neighborhood of the closure of the unit disc D can be approximated uniformly
on compact subsets of D by polynomials all of whose zeros are on the unit
circle:

Note that if the degree of p is m, then the polynomial p�(z) = zmp(1/z)
has all zeros inside the unit disc. Let

(2.1) B(z) = p�(z)/p(z).

Then B is analytic in D, continuous on the unit circle, maps D to itself, the
unit circle to itself, and the complement of the closed disc to itself. Therefore,
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B is a Blaschke product. Now for k ∈ N, the set of points in D for which
B(z) = z−k lie on the unit circle. Therefore, the polynomial

(2.2) p(z) − zkp�(z)

has all its zeros on the unit circle and approximates p on compact subsets
of D as k → ∞. This is, more or less, the proof given by Z. Rubinstein [12].
However, it does not seem possible to adapt this proof to the case of Blaschke
products. We present an alternate proof of this result in Sections 2.2 and 2.3.
Results on Blaschke products appear in Section 3 and as Corollary 2.3, below.

First, we consider the case of approximating on a disc centered at 0.

Theorem 2.1. Suppose f is analytic and nonvanishing in a neighborhood of
|z| ≤ r. Then there exist numbers |ξj | = |ηj | = 1, A ∈ C, and positive integers
ν(j) such that

(2.3) f(z) = A

∞∏
j=1

(
1 + ξjz

j
)ν(j)(1 + ηjz

j
)

for |z| < min{r,1}, with the convergence uniform on |z| < min{r,1} − δ for
any δ with 0 < δ < min{r,1}.

In particular, f can be approximated on |z| < min{r,1} − δ by polynomials
having all roots on the unit circle.

Theorem 2.2. Under the same conditions as Theorem 2.1, if R < 1 then

(2.4) f(z) = A

∞∏
j=1

(
1 + ξjz

j

1 + ξjRjzj

)ν(j) 1 + ηjz
j

1 + ηjRjzj

for |z| < min{r,1}, with the convergence uniform on |z| < min{r,1} − δ for
any δ with 0 < δ < min{r,1}.

The proofs of Theorem 2.1 and Theorem 2.2 will be presented in Sections
2.2 and 2.3, respectively. In the remaining portion of this section, we show
how the result on approximation by Blaschke products follows.

Corollary 2.3. Suppose g is analytic and nonvanishing in a neighborhood
of |z| ≤ r < 1. For all ε > 0 and δ > 0 there exists a constant cB and a Blaschke
product B having all zeros on |z| = r such that

(2.5)
∣∣g(z) − cBB(z)

∣∣ < ε

for |z| < r(1 − δ).

Proof. In Theorem 2.2, let R = r2 and set g(z) = f(z/r), so

g(rz) = f(z) = a0

∞∏
j=1

(
1 + ξjz

j

1 + ξjr2jzj

)ν(j) 1 + ηjz
j

1 + ηjr2jzj
.
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By Theorem 2.2, for each δ > 0 we may choose N so that

sup
|z|<1−δ

∣∣∣∣∣g(rz) − a0

N∏
j=1

(
1 + ξjz

j

1 + ξjr2jzj

)ν(j) 1 + ηjz
j

1 + ηjr2jzj

∣∣∣∣∣ < ε.

It remains to rearrange the above product to recognize it as a Blaschke
product. Letting w = rz we have

sup
|w|<r(1−δ)

∣∣∣∣∣g(w) − a0

N∏
j=1

(
1 + r−jξjw

j

1 + ξjrjwj

)ν(j) 1 + r−jηjw
j

1 + ηjrjwj

∣∣∣∣∣ < ε.

Thus,

sup
|w|<r(1−δ)

∣∣∣∣∣g(w) − a0

N∏
j=1

r−2jξjηj

(
rjξj + wj

1 + ξjrjwj

)ν(j)
rjηj + wj

1 + ηjrjwj

∣∣∣∣∣ < ε.

Letting αj = rjξj and βj = rjηj , we have

(2.6) sup
|w|<r(1−δ)

∣∣∣∣∣g(w) −
(

a0

N∏
j=1

r−2jξjηj

)
C(w)

∣∣∣∣∣ < ε,

where C(w) =
∏N

j=1(
αj+wj

1+αjwj )ν(j)( βj+wj

1+βjwj ). Since each factor of C is a Möbius

transformation composed with wj , each factor is a Blaschke product and
therefore C is a Blaschke product as well. �

Before giving the proof of Theorems 2.1 and 2.2, we describe the construc-
tion in a context that avoids the issue of convergence.

2.1. Formal power series as infinite products.

Corollary 2.4. Suppose f(z) =
∑∞

n=0 anzn is a formal power series with
an ∈ C and a0 �= 0. We can write

(2.7) f(z) = a0

∞∏
j=1

(
1 + ξjz

j
)ν(j)(1 + ηjz

j
)
,

where |ξj | = |ηj | = 1 and ν(j) is a nonnegative integer.

We will use Lemma 2.5 below to define the product representations induc-
tively, and then we provide a proof of Proposition 2.4. We thank the referee
for helping us give a clearer proof of the lemma.

Lemma 2.5. Let R0 > 0. Every w ∈ C can be written as w = mξ + η where
|ξ| = |η| = R0 and m is a positive integer. There are four such representations
if |w| > R0, two representations if 0 < |w| ≤ R0, and infinitely many if w = 0.
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Figure 1. In the figure, w is a complex number with |w| > 1,
and the larger circle has radius m = floor(|w|). The small
circle has radius 1 and center on the large circle. As we move
the small circle around the large circle, keeping the center
on the large circle, it hits the point w twice. The other two
representations can be seen by replacing m by m + 1. The
construction must be modified slightly if |w| is an integer.

Proof. We need only consider the case R0 = 1. Note that the problem is
equivalent to looking for η ∈ ∂D such that |w − η| ∈ N. If |w| > 1, then the
result follows from the fact that

(2.8) dist(w,∂D) ≤ |w − η| ≤ 2 + dist(w,∂D),

with each inequality being sharp for some η ∈ ∂D. If |w| ≤ 1, then we use the
fact that

(2.9) dist(w,∂D) ≤ |w − η| ≤ 2 − dist(w,∂D).

That there are four possible representations for |w| > 1 and two for 0 < |w| ≤ 1
can be seen from Figure 1. �

Proof of Proposition 2.4. We may assume a0 = 1. By Lemma 2.5 with
R0 = 1, we can choose ξ1, η1, and ν(1) so that a1 = ν(1)ξ1 + η1.

Set

(2.10) P1(z) = (1 + ξ1z)ν(1)(1 + η1z)

and note that P1(z) = 1 + a1z + O(z2). Therefore,

(2.11)
f(z)
P1(z)

=
∞∑

j=0

bjz
j ,
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where b0 = 1 and b1 = 0. Now choose ξ2, η2, and ν(2) so that b2 = ν(2)ξ2 +η2.
Setting

P2(z) =
(
1 + ξ2z

2
)ν(2)(1 + η2z

2
)

(2.12)

= 1 + b2z
2 + O

(
z3

)
we have

(2.13) P1(z)P2(z) = 1 + a1z + b2z
2 + O

(
z3

)
= 1 + a1z + a2z

2 + O
(
z3

)
.

Proceeding inductively, we obtain f(z) =
∏

j Pj(z). �

Corollary 2.6. Suppose

(2.14) f(z) =
∞∑

n=0

anzn

is a formal power series with an ∈ C and a0 �= 0, and let R < 1. We can write

(2.15) f(z) = a0

∞∏
j=1

(
1 + ξjz

j

1 + ξjRjzj

)ν(j) 1 + ηjz
j

1 + ηjRjzj
,

where |ξj | = |ηj | = 1 and ν(j) is a nonnegative integer.

Proof of Proposition 2.6. Note that

(2.16)
1 + ξjz

j

1 + ξjRjzj
= 1 +

(
1 − Rj

)
ξjz

j + O
(
z2j

)
.

So everything goes through in the previous proof, with the modification that
we apply Lemma 2.5 with R0 = 1 − Rj . �

Corollary 2.7. Suppose g is analytic in a neighborhood of 0 with g(0) �= 0,
and suppose 0 < r < 1. Then for all J > 0 there exists a constant cJ and a
Blaschke product BJ having all zeros on |z| = r such that

(2.17) g(z) − cJBJ(z) = O
(
zJ

)
,

as z → 0.

Proof. The proof of Corollary 2.7 is the same as the proof of Corollary 2.3.
�

The proofs given above are just formal calculations, and it is not clear what
convergence properties the infinite products might have. Even if f represents
an analytic function in a neighborhood of the origin, the products can only
converge where f does not vanish. The convergence of the products will
depend on the growth of the numbers ν(j), and the above constructions do
not appear to shed light on this. In the next section, we organize the proof in
a different way that may appear more cumbersome, but it gives information
about the analytic properties of the infinite product.
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2.2. Proof of Theorem 2.1. We will need one technical lemma before
turning to the proof of our main result.

Lemma 2.8. Suppose ν(j) ≥ 0 for j ≥ 0. If there exist κ > 1 and C > 0 so
that

(2.18) (n + 1)ν(n + 1) ≤ n2 + Cκn +
∑

j|(n+1)

1≤j≤n

jν(j)

for all n ≥ 1, then there exists C ′ so that nν(n) ≤ C ′κn for all n ≥ 1.

Proof. First, choose N so that

(2.19)
n

κ(n+1)/2
<

2
3

if n ≥ N . Then choose C ′ so that

(1) C ′ > 3C,
(2) n2 < 1

3C ′κn for all n, and
(3) nν(n) < C ′κn for n ≤ N .

Note that (2) uses only the fact that κ > 1, and (3) uses only that κ > 0 and
N is finite.

Now we prove the desired estimate by induction. Suppose nν(n) ≤ C ′κn for
n ≤ M , where M > N , and suppose n = M +1. Using the first two conditions
on C ′, the induction hypothesis, and the fact that all proper divisors of n + 1
are at most (n + 1)/2, we have

(n + 1)ν(n + 1) <
1
3
C ′κn +

1
3
C ′κn +

∑
j≤(n+1)/2

jν(j)(2.20)

≤ 2
3
C ′κn +

∑
j≤(n+1)/2

C ′κj

≤ 2
3
C ′κn +

n + 1
2

C ′κ(n+1)/2

=
2
3
C ′κn + C ′κn+1 n + 1

2κ(n+1)/2

≤ C ′κn+1.

The last inequality follows from n > N and the choice of N . That completes
the proof of Lemma 2.8. �

Proof of Theorem 2.1. Let

(2.21)
f ′

f
(z) =

∞∑
n=0

anzn.
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Since f ′/f is analytic in a disc slightly larger than |z| < r, there is a C > 0
and κ > 1/r so that

(2.22) |an| < Cκn

for all n. If r ≥ 1 we set κ = 1 + δ for some δ > 0. In particular, κ > 1.
Let

(2.23) g(z) = gJ(z) =
J∏

j=1

(
1 + ξjz

j
)ν(j)(1 + ηjz

j
)
,

where |ξj | = |ηj | = 1 and ν(j) is a non-negative integer. We will choose those
parameters so that the first J terms in the Taylor series for g′/g match those
of f ′/f .

We have

g′

g
(z) =

∑
1≤j≤J

(
jν(j)ξjz

j−1 1
1 + ξjzj

+ jηjz
j−1 1

1 + ηjzj

)
(2.24)

= −z−1
∑

1≤j≤J

j

∞∑
m=0

(
ν(j)(−1)m+1ξm+1

j zj(m+1)

+ (−1)m+1ηm+1
j zj(m+1)

)
= −

∞∑
k=0

zk
∑

1≤j≤J

j|(k+1)

(−1)
k+1

j j
(
ν(j)ξ

k+1
j

j + η
k+1

j

j

)

=
∞∑

k=0

bkzk,

say. On the third line we change the summation index k = j(m + 1) − 1, and
the notation n|m, read “n divides m,” means that m/n is an integer.

Now we show how to choose the parameters in g to match the Taylor series
coefficients of the logarithmic derivatives.

By Lemma 2.5, we can choose a non-negative integer ν(1) and complex
numbers |ξ1| = |η1| = 1 so that −a0 = ν(1)ξ1 + η1. Thus, b0 = a0, and we have
matched the first Taylor series coefficients of f ′/f and g′/g.

Since the only positive integer that divides 0 + 1 = 1 is 1, we will continue
to have b0 = a0 no matter what we later choose for ξj , ηj , and ν(j) for j ≥ 2.
Likewise, once we have chosen ξj , ηj , and ν(j) for j ≤ K so that aj = bj for
j ≤ K − 1, we will continue to have aj = bj for j ≤ K − 1 because if j|(k + 1)
then j ≤ k + 1.

To choose ξj , ηj , and ν(j) for j ≥ 2, we have to deal with the fact that
the j = 1 terms make a contribution to all of those coefficients. Similarly, the
j = 2 terms contribute to all of the later even-index coefficients, and so on.
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Breaking the sum defining bK into two parts, we find

bK = −
∑

1≤j≤K

j|(K+1)

(−1)
K+1

j j
(
ν(j)ξ

K+1
j

j + η
K+1

j

j

)
(2.25)

−
∑

K+1≤j≤J

j|(K+1)

(−1)
K+1

j j
(
ν(j)ξ

K+1
j

j + η
K+1

j

j

)

= −
∑

1≤j≤K

j|(K+1)

(−1)
K+1

j j
(
ν(j)ξ

K+1
j

j + η
K+1

j

j

)

+ (K + 1)
(
ν(K + 1)ξK+1 + ηK+1

)
.

The terms in the sum on the third line of (2.25) have already been chosen, so
we can use Lemma 2.5 to choose ν(K + 1), ξK+1, and ηK+1 so that bK = aK .

Proceeding in this way, we match the first J coefficients of the logarithmic
derivatives.

It remains to bound ν(j) so that we can bound the tail of (2.24).
By (2.25) and the fact that bK = aK we have

(2.26) (K + 1)ν(K + 1) ≤ K + 1 + |aK | +
∑

j|(K+1)

1≤j≤K

(
jν(j) + j

)
.

By Lemma 2.8, the above estimate implies that there exists C ′ so that
nν(n) ≤ C ′κn for all n ≥ 1. This is sufficient to estimate the tail for |z| < 1/κ
because the coefficient of zn in (2.24) is bounded by

(2.27) |bn| ≤
∑
j≤J

(
jν(j) + j

)
� J2κJ ,

where we use � to mean the quantity is bounded by a constant times J2κJ .
So

(2.28)
∑

n≥J+1

|bn|
∣∣zn

∣∣ � J2κJ
∑

n≥J+1

|z|n � J2

1 − |z| κ
J |z|J ,

which goes to 0 as J → ∞ because |z| < 1/κ < 1.
This shows that g′(z)/g(z) is close to f ′(z)/f(z) for |z| < 1/κ. We can

antidifferentiate using Cauchy’s theorem, so log(f) is close to log(gJ)+ cJ for
|z| < 1/κ, for some constant cJ . Now exponentiate to get that f(z) is close to
ecJ g(z). Since g(0) = 1, choose cJ = log(f(0)).

This completes the proof of Theorem 2.1. �
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2.3. Proof of Theorem 2.2. We describe how to modify the the proof of
Theorem 2.1 to give a proof of Theorem 2.2.

Proof of Theorem 2.2. Let

(2.29) h(z) =
J∏

j=1

(
1 + ξjz

j

1 + ξjRjzj

)ν(j) 1 + ηjz
j

1 + ηjRjzj
.

Note that

(2.30)
h′

h
(z) =

g′

g
(z) − R

g′

g
(Rz),

where g is the function (2.23) appearing in the proof of Theorem 2.1. Writing

(2.31)
h′

h
(z) =

∞∑
k=0

ckzk

we have

(2.32) ck =
(
1 − Rk+1

)
bk,

where bk are the Taylor series coefficients of g′/g given in (2.24).
Thus, when matching the coefficients of h′/h and f ′/f , everything goes as

before if in each equation we replace bk by ck and ak by ak/(1 − Rk+1). So the
choices of ξk, ηk, and ν(k) follow the same steps. The final step of bounding
ν(K) involves replacing inequality (2.26) by

(2.33) (K + 1)ν(K + 1) ≤ K + 1 +
|aK |

1 − RK+1
+

∑
j|(K+1)

1≤j≤K

jν(j) + j.

But that implies the bound we need on ν(j) because the only fact we used
about ak is |ak | ≤ Cκk for some C > 0.

This completes the proof of Theorem 2.2. �

3. Corollaries of Theorem 2.1

We deduce some corollaries about approximation on general sub-discs of
the unit disc. We will obtain our results by using the relationship between
Euclidean discs and the so-called pseudohyperbolic discs in the open unit disc
D. Once we have clarified this relationship, we can use Möbius transformations
to map one disc to one centered at the origin. In this way, we reduce our results
to the previously solved problem.
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3.1. Approximation on pseudohyperbolic discs. As a corollary to The-
orem 2.1, we prove a result about approximating on other discs contained in
the unit disc. These other discs, the so-called pseudohyperbolic discs, will
allow us to present a result about approximation by Blaschke products. The
statement of approximation by Blaschke products appears in Theorem 3.2.

Our result will make use of the fact that Euclidean discs are pseudohyper-
bolic discs. To see this, recall first that the pseudohyperbolic distance between
two points z and w in D is defined to be the distance

(3.1) ρ(z,w) =
∣∣∣∣ z − w

1 − wz

∣∣∣∣.
For a ∈ D and r with 0 < r < 1 we let Dρ(a, r) = {z : ρ(a, z) < r}. Given
a Euclidean disc D(a0, r0), we may rotate it so that the center lies on the
positive real axis, and let x and y, with |x| < y, denote the points in which
the bounding circle C intersects the real line. Let ϕa be the Möbius function

(3.2) ϕa(z) =
z + a

1 + az

and let R = 1+xy
x+y . Then R > 1 and if a = R −

√
R2 − 1 then r = −ϕ−1

a (x) =
ϕ−1

a (y). Since a is real, ϕ−1
a maps C onto a circle C1 passing through r and

−r and since the real line is orthogonal to C, the real line must be orthogonal
to C1. Therefore, ϕ−1

a maps C onto {z : |z| = r}. Thus, the disc D(a0, r0) is
rotation of a pseudohyperbolic disc Dρ(a, r) for some a, r. This means that

(3.3) Dρ(a, r) = ϕa

(
D(0, r)

)
.

For basic information about automorphisms of the disc, see Garnett [4].

Theorem 3.1. Let f be a function that is analytic and nonvanishing in a
neighborhood of the disc D(a0, r0) ⊂ D. Then f can be uniformly approximated
on D(a0, r0) by a polynomial that has all of its zeros lying on the unit circle.

Proof. Suppose f has no zeros in a neighborhood of the closure of a pseu-
dohyperbolic disc Dρ(a, r). Then f ◦ ϕa has no zeros in a neighborhood of the
disc D(0, r). By Theorem 2.1, there is a polynomial p with all of its zeros on
the unit circle such that

(3.4) ‖f ◦ ϕa − p‖D(0,r) < ε.

Therefore by (3.3) and a change of variables,

(3.5)
∥∥f − p ◦ ϕa

−1
∥∥

Dρ(a,r)
< ε.

Now, letting z1, . . . , zN denote the zeros of p, all of which satisfy |zj | = 1,
we see that

(3.6) p ◦ ϕ−1
a (z) =

N∏
j=1

(
ϕa

−1(z) − zj

)
.
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This is a rational function with poles outside the (closed) unit disc and zeros
at ϕa(zj) for j = 1, . . . ,N . Thus, the zeros of this rational function also lie on
the unit circle.

Now choose s < 1 so that Dρ(a, r) ⊂ D(0, s). Since p ◦ ϕ−1
a (z) is analytic

and nonvanishing in a neighborhood of D(0, s), we can apply Theorem 2.1
again to get a polynomial q so that

(3.7)
∥∥q − p ◦ ϕa

−1
∥∥

D(0,s)
< ε,

which implies

(3.8)
∥∥q − p ◦ ϕa

−1
∥∥

Dρ(a,r)
< ε.

Combining (3.5) and (3.8) gives ‖f − q‖Dρ(a,r) < 2ε, as required. �

There is a Blaschke product version of this result that can be obtained
in a similar, but simpler manner; that is, if we use Corollary 2.3 in place
of Theorem 2.1 and note that B ◦ ϕ−1

a is a finite Blaschke product (see [4,
p. 6]) with zeros on the boundary of Dρ(a, r) whenever the zeros of B lie on
{z : |z| = r}, we obtain the following result.

Theorem 3.2. Let f be a function that is analytic and nonvanishing in
a neighborhood of the disc D(a0, r0) ⊂ D. Then, for δ with 0 < δ < r0, the
function f can be uniformly approximated on D(a0, r0 − δ) by a constant times
a Blaschke product with all of its zeros on the circle {z : |z − a0| = r0}.

From these results, we obtain a corollary about functions with zeros. For
0 < p < ∞ and f an analytic function on D, we say that f ∈ Hp if

(3.9) sup
r

1
2π

∫ ∣∣f(
reiθ

)∣∣p dθ = ‖f ‖p
Hp < ∞.

It is well known that given a nonzero function f ∈ Hp the zero sequence of f ,
denoted (zn), is a Blaschke sequence. Letting C1 denote the (possibly infinite)
Blaschke product with zeros (zn) there exists a function g that is analytic on
D and has no zeros in D such that f = C1g. Applying the previous theorem
to g, we obtain the following.

Corollary 3.3. Let 0 < p < ∞ and let f ∈ Hp. If D(a0, r0) ⊂ D and
0 < δ < r0, then f can be uniformly approximated on D(a0, r0 − δ) by functions
of the form c0C1C2 where c0 is a constant, C1 is the Blaschke factor of f ,
and C2 is a Blaschke product with zeros on the circle {z : |z − a0| = r0}.

4. The Riemann zeta function and random matrix theory

One of the motivations for the work in this paper was to understand possible
consequences of Voronin’s universality result [16], [14] for the Riemann zeta
function. Combining the universality result with the principle that the zeta-
function can be modeled by the characteristic polynomials of a random unitary
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matrices [5], suggests the theorem that nonvanishing analytic functions can
be approximated by polynomials having all zeros on the unit circle.

We recall Voronin’s theorem and then discuss consequences for random
unitary matrices.

Theorem 4.1 (Voronin [16], [14]). Let 0 < r < 1
4 and suppose g is a non-

vanishing continuous function on the disc |s| ≤ r which is analytic in the
interior. Then for any ε > 0,

(4.1) lim inf
T →∞

1
T

meas
{

τ ∈ [0, T ] : max
|s|<r

∣∣∣∣ζ
(

3
4

+ iτ + s

)
− g(s)

∣∣∣∣ < ε

}
> 0.

Here ζ(s) is the Riemann zeta function. The standard reference is Titch-
marsh [15].

Note that the theorem says a positive proportion of shifts of ζ( 3
4 + s) ap-

proximate the given function g(s). Below we formulate a random matrix
analogue of this observation.

If U ∈ U(N) is an N × N unitary matrix, we let

(4.2) ΛU (x) = det
(
I − U ∗z

)
denote its characteristic polynomial, where U ∗ is the conjugate transpose of U .
Note that this is a slightly different normalization than commonly used for
the characteristic polynomial of a matrix; it is defined in this way so that
ΛU (0) = 1. Recasting Proposition 2.4 in terms of characteristic polynomials
of unitary matrices, we have:

Corollary 4.2. Suppose (c1, c2, . . . , cn) ∈ C
n. If N is sufficiently large

then there exists a matrix U ∈ U(N) such that

(4.3)
(
Λ′

U (0),Λ′ ′
U (0), . . . ,Λ(n)

U (0)
)

= (c1, c2, . . . , cn).

We suggest that there should be a new proof of Theorem 2.1, based on
the idea of providing an explicit lower bound for the probability that a given
function is closely approximated by the characteristic polynomial of a random
unitary matrix. We formulate the problem as follows:

Conjecture 4.3. Suppose f is a nonvanishing analytic function on the
unit disc with f(0) = 1, and suppose 0 < r < 1 and ε > 0 are given. If eN

matrices U ∈ U(N) are chosen randomly with respect to Haar measure, then
the probability that at least one of those eN matrices satisfies

(4.4)
∣∣det

(
I − U ∗z

)
− f(z)

∣∣ < ε for all |z| < r,

is positive and bounded below independent of N .

See [3] for an explanation of why one uses eN matrices from U(N) to model
the zeta function on [0, T ].

If this random matrix approach is successful, it will produce polynomials of
a very different form than those in Theorem 2.1. The characteristic polynomial
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of a random unitary matrix has, with probability 1, only simple zeros, and
those zeros tend to be very evenly spaced on the unit circle. This is in sharp
contrast to the polynomials produced in our construction.

We are grateful to the referee for a very careful reading of our manuscript
as well as many helpful suggestions.
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