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INTEGRATION OF VECTOR-VALUED FUNCTIONS WITH
RESPECT TO VECTOR MEASURES DEFINED ON δ-RINGS

N. D. CHAKRABORTY AND SANTWANA BASU

Abstract. This paper extends the theory of scalar-valued in-
tegrable functions with respect to vector measures defined on

δ-rings to the case of vector-valued tensor integrable functions

with respect to vector measures defined on δ-rings. This paper

also generalizes some results of G. F. Stefánsson for tensor inte-
gration theory of vector-valued functions with respect to vector
measures defined on σ-algebras.

1. Introduction

The main purpose of our paper is to develop an integration theory of vec-
tor valued functions with respect to vector measures defined on δ-rings. The
theory of integration of scalar valued functions with respect to vector mea-
sures defined on δ-rings was introduced in 1972 by D. R. Lewis in [13]. In
1989, Masani and Niemi [16], [17] continued the study of integration theory
developed by Lewis [13]. In [5], O. Delgado further developed this theory and
analysed the subtle differences between the L1-spaces of vector measures de-
fined on δ-rings and defined on σ-algebras. In fact, she showed that the space
L1(ν) of a vector measure ν defined on a δ-ring is an order continuous Banach
lattice which may not have a weak order unit. Since a countably additive vec-
tor measure defined on a δ-ring may not be strongly additive, she studied the
effect of strong additivity of ν on L1(ν) and connected the analytic properties
of ν with the lattice properties of L1(ν).

Vector measures defined on σ-algebras have become a very important tool
for the study of operators T : Z → Y between Banach function spaces. In fact,
the optimal domain of T can be described as the space L1(ν) of integrable
functions with respect to the vector measure ν canonically associated to T by
ν(A) = T (χA) (see [4, p. 133] and [18, Chapters 3 and 4]).

Received October 6, 2009; received in final form March 15, 2010.
2010 Mathematics Subject Classification. Primary 46G10, 28B05. Secondary 46B99.

495

c©2013 University of Illinois

http://www.ams.org/msc/


496 N. D. CHAKRABORTY AND S. BASU

The theory of tensor integration of vector-valued functions f : Ω → X with
respect to a countably additive vector measure ν : Σ → Y defined on a σ-
algebra Σ, where (Ω,Σ) is a measurable space and X and Y are real Banach
spaces, was systematically studied by G. F. Stefánsson in [22]. It has been
shown in [22, Theorem 4, p. 932] that the space L1(ν,X,Y ) of all tensor
integrable functions is a Banach space with respect to the norm

N(f) = sup
{∫

Ω

‖f ‖ d
∣∣y∗ν

∣∣ : y∗ ∈ BY ∗

}
.

In [2], we studied some general properties of the Banach space L1(ν,X,Y ),
such as order continuity, separability, weak sequential compactness and weak
compactly generated property.

In [3], we also studied the space of p-tensor integrable functions and related
Banach space properties, which extends the theory of integration developed
in [11], [21].

In this connection, we would like to mention that I. Dobrakov developed
a theory of integration for vector-valued functions with respect to operator-
valued measures defined on δ-rings in a series of papers initiated by his fun-
damental papers in 1970 [7], [8].

In 2004, Dobrakov and Panchapagesan [10] provided detailed proofs of
many results of [7] and [8] and discussed some of the distinguishing features of
this theory including the stronger version of the Pettis measurability criteria.

On the other hand, B. Jefferies and S. Okada studied the theory of tensor
integration of vector-valued functions with respect to vector-valued measures
defined on a σ-algebra [12, Definition 1.5, p. 521]. Their definition of ten-
sor integration is weaker than the definition as given by Stefansson in [22,
Definition 1, p. 927]. However, they succeeded in developing a relationship
between the tensor integrable functions and Dobrakov integrable functions
[12, Theorem 3.5, and Corollary 3.6].

In [19], R. Pallu de la Barriére also studied a theory of integration based
on the notion of semivariation and developed the theories of bilinear integra-
tion and tensor integration and proved Dominated Convergence Theorem and
Convergence Theorem of Vitali type from this notion.

In [20], J. Rodŕıguez studied the integration theory of vector-valued func-
tions with respect to operator-valued measures and extended the theories of
Birkhoff and Mcshane integrals and connected these integrals with the S∗-
integrals as developed by Dobrakov in [9] (see [20, Theorem 3.7, p. 817 and
Theorem 3.8, p. 823]).

In this paper, we construct a theory of tensor integration of vector-valued
functions with respect to vector measures defined on δ-rings keeping in mind
the papers of Stefánsson [22] and Delgado [5]. In this setting, we prove the
Dominated Convergence Theorem for tensor integrable functions and also give
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an alternative proof of the completeness of L1(ν,X,Y ) when ν is defined on
a δ-ring (see [22, Theorem 3, p. 931 and Theorem 4, p. 932]).

2. Notations, definitions and preliminaries

Throughout this paper, X and Y are two real Banach spaces with topolog-
ical duals X∗ and Y ∗, respectively. BX (respectively BX∗ ) denotes the closed
unit ball of X (respectively, X∗). X ⊗̌ Y is the injective tensor product of
X and Y (see [6, Chapter VIII]) and L(X,Y ) denotes the set of all bounded
linear transformations from X to Y .

Unless otherwise stated, we always assume that τ is a δ-ring of subsets
of a non-empty set Ω and C(τ) is the σ-algebra of sets locally in τ , that is,
A ∈ C(τ) if and only if A ∩ B ∈ τ for all B ∈ τ and ν : τ → Y a countably
additive vector measure (or simply, a vector measure). Let M(X) denote
the space of all X-valued measurable functions on (Ω,C(τ)). If X = R, we
simply denote M(R) by M. M ∗ denotes the set of all extended real-valued
measurable functions on C(τ). The space of all X-valued τ -simple functions
is denoted by S(τ,X). If X = R, S(τ,R) is simply denoted by S(τ).

The semivariation of ν is the set function defined on C(τ) by

‖ν‖(A) = sup
{∣∣y∗ν

∣∣(A) : y∗ ∈ BY ∗
}
,

where |y∗ν| is the variation of the scalar measure y∗ν defined on C(τ).
‖ν‖ is finite on τ and a set B ∈ C(τ) is called ν-null if ‖ν‖(B) = 0.
A property holds ν-almost everywhere (ν-a.e.) if it holds except on a ν-null

set [5, p. 433].
We denote by w − L1(ν) the space of all equivalence classes of functions

in M which are integrable with respect to y∗ν for all y∗ ∈ Y ∗. The space
w − L1(ν) is a Banach lattice with respect to the norm

‖f ‖ν = sup
{∫

Ω

|f | d
∣∣y∗ν

∣∣ : y∗ ∈ BY ∗

}
, f ∈ w − L1(ν)

and the usual order structure.
A function f in M is said to be ν-integrable if

(1) f is y∗ν integrable for each y∗ ∈ Y ∗ and
(2) for each A ∈ C(τ), there is a vector in Y denoted by

∫
A

fdν such that

y∗
(∫

A

f dν

)
=

∫
A

f dy∗ν for all y∗ ∈ Y ∗.

Let L1(ν) denote the space of all equivalence classes of M-measurable ν-
integrable functions, equipped with the norm

‖f ‖ν = sup
{∫

Ω

|f | d
∣∣y∗ν

∣∣ : y∗ ∈ BY ∗

}
, f ∈ L1(ν).
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It is well known that L1(ν) is an order continuous Banach lattice which,
in general, may not have a weak order unit and so it may not be a Banach
function space, in sharp contrast with the case when ν is defined on a σ-algebra
(see [17, Theorem 4.7(c), p. 141] and [5, p. 435 and p. 438]).

If φ =
∑n

i=1 aiχAi
∈ S(τ), then φ ∈ L1(ν) with∫

A

φdν =
n∑

i=1

aiν(Ai ∩ A) for A ∈ C(τ).

It is also well known that S(τ) is dense in L1(ν) (see [13, Theorem 3.5, p.
297] and [17, Theorem 4.7, p. 141]).

The vector measure ν : τ → Y is said to be strongly additive if ν(An) → 0
for every pair wise disjoint sequence {An} in τ.ν is called σ-finite if there exists
a sequence {An} ⊂ τ and a ν-null set N ∈ C(τ) such that Ω = (

⋃
An) ∪ N . It

is obvious that any vector measure defined on a σ-algebra is strongly additive
and σ-finite.

Strongly additive vector measures are σ-finite [1, Lemma 1.1, p. 158]. The
converse does not hold, in general (see [5, Example 2.1, p. 435, p. 437]).

3. Definition of the integral and main properties

Let φ =
∑n

i=1 xiχAi , be an X-valued τ -simple function and let A ∈ C(τ).
We define

∫
A

φdν by the equation∫
A

φdν =
n∑

i=1

xi ⊗ ν(Ai ∩ A).

Then it follows by [22, p. 927] that
∫

A
φdν can be viewed as an element of

X ⊗̌ Y and ∥∥∥∥∫
A

φdν

∥∥∥∥ ≤ sup
{∫

A

‖φ‖ d
∣∣y∗ν

∣∣ : y∗ ∈ BY ∗

}
.

Definition 3.1. Let f ∈ M(X) and ν : τ → Y be a vector measure. The
function f is said to be weakly Bochner integrable with respect to ν if f is
Bochner integrable with respect to y∗ν for each y∗ ∈ Y ∗, that is, if for each
y∗ ∈ Y ∗, there exists a sequence of X-valued τ -simple functions {ψn} such
that limn

∫
Ω

‖f − ψn‖ d|y∗ν| = 0.

If f is weakly Bochner integrable, then it follows that
∫
Ω

‖f ‖ d|y∗ν| < ∞,
for each y∗ ∈ Y ∗, that is, ‖f ‖ ∈ w − L1(ν).

The space of all weakly Bochner integrable functions is denoted by w −
L1(ν,X).

Definition 3.2. f ∈ M(X) is said to be ⊗̌-integrable with respect to
ν : τ → Y if there exists a sequence of X-valued τ -simple functions {φn} such
that limn sup‖y∗ ‖ ≤1

∫
Ω

‖f − φn‖ d|y∗ν| = 0.
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In this case, the sequence {
∫

A
φn dν} is a Cauchy sequence in X ⊗̌ Y for

each A ∈ C(τ). The limit
∫

A
f dν = limn

∫
A

φn dν, is called the ⊗̌-integral of
f over A with respect to ν (see [22, Definition 1, p. 927]).

The space of all ⊗̌-integrable functions with respect to ν is denoted by
L1(ν,X,Y ).

It follows from Definitions 3.1 and 3.2 that L1(ν,X,Y ) ⊂ w − L1(ν,X).
Define N(f) = sup{

∫
Ω

‖f ‖ d|y∗ν| : y∗ ∈ BY ∗ }, f ∈ w − L1(ν,X).
Then it is easy to see that both L1(ν,X,Y ) and w − L1(ν,X) are normed

linear spaces with respect to N(·).
If f ∈ L1(ν,X,Y ), we write μf (A) =

∫
A

f dν ∈ X ⊗̌ Y for each A ∈ C(τ).
Then we can view μf (A) as an element of L(Y ∗,X) and μf (A)(y∗) =∫

A
f dy∗ν is an X-valued countably additive measure for each y∗ ∈ Y ∗ and

so x∗(
∫

A
f dy∗ν) =

∫
A

x∗f dy∗ν is a countably additive scalar-valued measure
for each x∗ ∈ X∗ and y∗ ∈ Y ∗.

Thus, we have (x∗ ⊗ y∗)(
∫

A
f dν) =

∫
A

x∗f dy∗ν.
Consequently, following the arguments as in [22, Theorem 2, p. 929] we

have the following theorem.

Theorem 3.3. Let f ∈ M(X) and let ν : τ → Y be a vector measure. If f
is ⊗̌-integrable, then we have
(a) μf (·) is a countably additive vector measure on C(τ).
(b) ‖μf ‖(A) = sup{

∫
A

|x∗f | d|y∗ν| : x∗ ∈ BX∗ , y∗ ∈ BY ∗ }.
(c) lim‖ν(A)‖ →0 ‖μf ‖(A) = 0, if ν is strongly additive.

Theorem 3.4. Let f ∈ M(X). Then f is ⊗̌-integrable with respect to the
vector measure ν : τ → Y if and only if ‖f ‖ is ν-integrable.

Proof. We first note that L1(ν,X,Y ) ⊂ w − L1(ν,X). So if f is ⊗̌-integra-
ble, then ‖f ‖ ∈ w − L1(ν). Let {φn} be a sequence of X-valued τ -simple
functions such that limn N(f − φn) = 0.

Then | ‖f(ω)‖ − ‖φn(ω)‖ | ≤ ‖f(ω) − φn(ω)‖ and therefore ‖‖f ‖ − ‖φn‖‖ν ≤
N(f − φn).

This implies that { ‖φn‖ } converges to ‖f ‖ in w − L1(ν). Since each ‖φn‖ ∈
L1(ν) and L1(ν) is a closed subspace of w − L1(ν), it follows that ‖f ‖ ∈ L1(ν)
and this means that ‖f ‖ is ν-integrable.

Conversely, let ‖f ‖ be ν-integrable. Let ε > 0. So an application of [13,
Lemma 3.4, p. 297] allows us to choose an A ∈ τ such that

(1) sup
‖y∗ ‖ ≤1

∫
Ω\A

‖f ‖ d
∣∣y∗ν

∣∣ < ε/2.

Define a countably additive Y -valued measure νA : C(τ) → Y by

νA(B) = ν(A ∩ B) for all B ∈ C(τ).

Since f ∈ M(X), by [22, Corollary B, p. 927], there exists a sequence {fn}
of countably valued functions in M(X) such that ‖f − fn‖ < 1

n ‖νA‖-a.e.
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Then ‖fχA − fnχA‖ ≤ 1
n ‖νA‖-a.e. and so, ‖fnχA‖ ≤ ‖fχA‖ + 1

n ‖νA‖-
a.e. From this, it follows that ‖fnχA‖ is νA-integrable for each n and conse-
quently

(2) lim
‖νA ‖(E)→0

N(fnχAχE) = 0 for E ∈ C(τ).

Let fn =
∑∞

k=1 xn,kχAn,k, where An,i ∩ An,j = φ if i �= j and An,k ∈ C(τ)
and xn,k ∈ X . So fnχA =

∑∞
k=1 xn,kχAn,k ∩A. Since An,k ∈ C(τ) and A ∈ τ

we have An,k ∩ A ∈ τ .
Let fnχA = hn. Then hn is a countably valued function based on τ and we

have

(3) lim
‖νA ‖(E)→0

N(hnχE) = 0, by (2).

For each n, it follows from equation (3) that we can choose pn large enough
so that

(4) sup
‖y∗ ‖ ≤1

∫
⋃

k>pn
An,k ∩A

‖hn‖ d
∣∣y∗νA

∣∣ <
‖νA‖(Ω)

n
.

If we let φn =
∑

k≤pn
xn,kχAn,k ∩A, then φn is an X-valued τ -simple func-

tion and since fnχA vanishes off A,φn also vanishes off A and

N(fχA − φn) ≤ N(fχA − hn) + N(hn − φn) <
2‖νA‖(Ω)

n
,

by (3) and (4).
This implies that N(fχA − φn) → 0, as n → ∞ and so we have

(5) N(fχA − φn0) < ε/2 for some positive integer n0.

Now φn0(ω) = 0 for ω ∈ Ω \ A and so ‖f(ω) − φn0(ω)‖ = ‖f(ω)‖ on Ω \ A and
ν = νA on A. Therefore,

sup
‖y∗ ‖ ≤1

∫
Ω

∥∥f(ω) − φn0(ω)
∥∥d

∣∣y∗ν
∣∣

= sup
‖y∗ ‖ ≤1

∫
Ω\A

∥∥f(ω)
∥∥d

∣∣y∗ν
∣∣ + sup

‖y∗ ‖ ≤1

∫
A

∥∥f(ω) − φn0(ω)
∥∥d

∣∣y∗νA

∣∣
= sup

‖y∗ ‖ ≤1

∫
Ω\A

∥∥f(ω)
∥∥d

∣∣y∗ν
∣∣ + N(fχ

A
− φ

n0
)

< ε/2 + ε/2 = ε, by (1) and (5).

Thus, sup‖y∗ ‖ ≤1

∫
Ω

‖f − φn0 ‖ d|y∗ν| < ε, where φn0 is an X-valued τ -simple
function and this implies that f is ⊗̌-integrable with respect to ν. �

Corollary 1. If f ∈ M(X) is bounded, then f is ⊗̌-integrable with respect
to the vector measure ν : τ → Y , if ν is strongly additive.
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The proof follows from Corollary 3.2(b) of [5, p. 438].

Corollary 2. Let both f and g ∈ M(X). If g is ⊗̌-integrable with respect
to the vector measure ν and ‖f ‖ ≤ ‖g‖ ‖ν‖-a.e., then f is ⊗̌-integrable with
respect to the vector measure ν.

The proof follows from Theorem 3.4 and Theorem 4.10 of [17].

Theorem 3.5 (Dominated Convergence Theorem). Let {fn} be a sequence
of ⊗̌-integrable functions which converges ‖ν‖-a.e. to a function f . If there
exists a ⊗̌-integrable function g such that ‖fn‖ ≤ ‖g‖‖ν‖-a.e. then f is ⊗̌-
integrable and

lim
n

∫
B

fn dν =
∫

B

f dν, uniformly with respect to B ∈ C(τ).

Proof. Since ‖fn‖ ≤ ‖g‖ ‖ν‖-a.e., ‖f ‖ ≤ ‖g‖ ‖ν‖-a.e. Since g is ⊗̌-integrable,
it follows by the above theorem that ‖g‖ is ν-integrable and so by [17, Theo-
rem 4.10, p. 145] that ‖f ‖ is ν-integrable and hence, by the above theorem,
f is ⊗̌-integrable.

Again, since each fn is ⊗̌-integrable with respect to ν, it follows that each
fn ∈ L1(|y∗ν|,X) for y∗ ∈ Y ∗ and since both ‖fn‖ and ‖g‖ are y∗ν-integrable,
an application of dominated convergence theorem in L1(|y∗ν|,X) shows that
f ∈ L1(|y∗ν|,X) and this implies that f is y∗ν-integrable and moreover∫

E

f dy∗ν = lim
n

∫
E

fndy∗ν for all E ∈ C(τ).

This implies that ∫
E

x∗f dy∗ν = lim
n

∫
E

x∗fn dy∗ν.

Following the arguments as in the proof of [22, Theorem 3, p. 931], it suffices
to show that the sequence {

∫
B

fn dν} is Cauchy uniformly with respect to
B ∈ C(τ).

Let ε > 0. Since each fn and g are ⊗̌-integrable and ‖fn‖ ≤ ‖g‖ ‖ν‖-a.e.,
it follows by Lemma 3.4 of [13] that there is an A ∈ τ such that

sup
‖y∗ ‖ ≤1

∫
Ω\A

‖g‖ d
∣∣y∗ν

∣∣ < ε/3 and so

sup
‖y∗ ‖ ≤1

∫
Ω\A

‖fn‖ d
∣∣y∗ν

∣∣ < ε/3 for all n.

Therefore,

sup
‖y∗ ‖ ≤1

∫
B\A

‖fn‖ d
∣∣y∗ν

∣∣ < ε/3 for B ∈ C(τ) and for all n.
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Now by an easy calculation, we have∥∥∥∥∫
B

fn dν −
∫

B∩A

fn dν

∥∥∥∥ =
∥∥∥∥∫

B\A

fn dν

∥∥∥∥ ≤ sup
‖y∗ ‖ ≤1

∫
B\A

‖fn‖ d
∣∣y∗ν

∣∣(6)

≤ sup
‖y∗ ‖ ≤1

∫
Ω\A

‖fn‖ d
∣∣y∗ν

∣∣
< ε/3 for all n and B ∈ C(τ).

Define F : C(τ) → Y by

F (B) = νA(B) = ν(A ∩ B) for all B ∈ C(τ).

Then F is a countably additive Y -valued vector measure on C(τ) and since
f and each fn are ⊗̌-integrable with respect to ν, they are also ⊗̌-integrable
with respect to F and consequently by Theorem 3 of [22] we have,∥∥∥∥∫

B

fn dF −
∫

B

fm dF

∥∥∥∥ < ε/3(7)

for m,n > n0, for some positive integer n0 and B ∈ C(τ).

Now ∥∥∥∥∫
B

fn dν −
∫

B

fm dν

∥∥∥∥
≤

∥∥∥∥∫
B

fn dν −
∫

B∩A

fn dν

∥∥∥∥ +
∥∥∥∥∫

B∩A

fn dν −
∫

B∩A

fm dν

∥∥∥∥
+

∥∥∥∥∫
B∩A

fm dν −
∫

B

fm dν

∥∥∥∥
=

∥∥∥∥∫
B

fn dν −
∫

B∩A

fn dν

∥∥∥∥ +
∥∥∥∥∫

B

fn dF −
∫

B

fm dF

∥∥∥∥
+

∥∥∥∥∫
B∩A

fm dν −
∫

B

fm dν

∥∥∥∥ < ε/3 + ε/3 + ε/3 = ε,

by (6) and (7), for B ∈ C(τ) and for all m,n > n0.
This implies that {

∫
B

fn dν} is a Cauchy sequence in X ⊗̌ Y and since
X ⊗̌ Y is complete, there exists an element UB ∈ X ⊗̌ Y such that

∫
B

fn dν →
UB in X⊗̌Y and so

∫
B

fn dν → UB weakly in X ⊗̌ Y .
Also, since f is ⊗̌-integrable we have that(

x∗ ⊗ y∗)(∫
B

fn dν

)
=

∫
B

x∗fn dy∗ν →
∫

B

x∗f dy∗ν

=
(
x∗ ⊗ y∗)(∫

B

f dν

)
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for all x∗ ∈ X∗ and y∗ ∈ Y ∗. So, by Lemma 1.1 of [14], it follows that∫
B

fn dν →
∫

B
f dν weakly in X ⊗̌ Y . Thus, we have

∫
B

f dν = UB and conse-
quently limn

∫
B

fn dν =
∫

B
f dν for each B ∈ C(τ) and the theorem is proved.

�

Theorem 3.6. w − L1(ν,X) is a Banach space with respect to the norm

N(f) = sup
{∫

Ω

‖f ‖ d
∣∣y∗ν

∣∣ : y∗ ∈ BY ∗

}
, f ∈ w − L1(ν,X).

Proof. It is easy to see that w − L1(ν,X) is a normed linear space with
respect to the norm N(·). So we have only to show that it is complete with
respect to the norm N(·).

Let {fk } be a sequence in w − L1(ν,X) such that
∑∞

k=1 N(fk) < ∞. So we
have to show that there exists an f ∈ w − L1(ν,X) such that

N

(
f −

n∑
k=1

fk

)
→ 0, as n → ∞.

Let ω ∈ Ω and let

φ(ω) =
∞∑

k=1

∥∥fk(ω)
∥∥ ∈ [0, ∞],

Ω∞ =
{
ω ∈ Ω and φ(ω) = ∞

}
.

Since each fk ∈ M(X), it follows that φ ∈ M ∗ and Ω∞ ∈ C(τ).
We contend that ‖ν‖(Ω∞) = 0 and ‖φχΩ∞ ‖ν = 0.
Fix y∗ ∈ BY ∗ . Then∫

Ω

φd
∣∣y∗ν

∣∣ =
∫

Ω

[
lim
n

n∑
k=1

‖fk ‖
]

d
∣∣y∗ν

∣∣ = lim
n

n∑
k=1

∫
Ω

‖fk ‖ d
∣∣y∗ν

∣∣
≤ lim

n

n∑
k=1

N(fk) =
∞∑

k=1

N(fk) < ∞.

Hence, φ ∈ L1(|y∗ν|) and so it follows by a classical result that |y∗ν|(Ω∞) = 0.
Therefore,∫

Ω

φχΩ∞ d
∣∣y∗ν

∣∣ =
∫

Ω∞

|φ| d|y∗ν| = 0 for all y∗ ∈ BY ∗ .

Taking supremum over y∗ ∈ BY ∗ we have, ‖ν‖(Ω∞) = 0 and ‖φχΩ∞ ‖ν = 0.
Define f(·) on Ω by

f(ω) =
{

0, if ω ∈ Ω∞,∑∞
k=1 fk(ω), if ω ∈ Ω \ Ω∞.
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Then an easy calculation shows that f ∈ w − L1(ν,X). Now,

N

(
f −

n∑
k=1

fk

)
= sup

‖y∗ ‖ ≤1

∫
Ω

∥∥∥∥∥f −
n∑

k=1

fk

∥∥∥∥∥d
∣∣y∗ν

∣∣
= sup

‖y∗ ‖ ≤1

∫
Ω\Ω∞

∥∥∥∥∥
∞∑

k=n+1

fk

∥∥∥∥∥d
∣∣y∗ν

∣∣
≤ sup

‖y∗ ‖ ≤1

∫
Ω

∥∥∥∥∥
∞∑

k=n+1

fk

∥∥∥∥∥d
∣∣y∗ν

∣∣ = N

( ∞∑
k=n+1

fk

)

≤
∞∑

k=n+1

N(fk) → 0 as n → ∞.

This implies that
∑n

k=1 fk converges to f in w − L1(ν,X) and so w − L1(ν,X)
is a Banach space with respect to the norm N(·) and the proof is complete. �

Note that L1(ν,X,Y ) ⊂ w − L1(ν,X). Since by definition, S(τ,X) is dense
in L1(ν,X,Y ) with respect to the norm N(·), it follows that L1(ν,X,Y ) is
a closed subspace of w − L1(ν,X) with respect to the norm N(·) and conse-
quently we have that

Theorem 3.7. L1(ν,X,Y ) is a Banach space with respect to the norm
N(·).

Proposition 3.8. Let f ∈ M(X). A necessary condition that f belongs to
L1(ν,X,Y ) is that
(a) there exists a sequence {φn} ⊂ S(τ,X) such that {φn} converges to f ‖ν‖-

a.e.
(b) {

∫
A

φn dν} converges in the norm of X ⊗̌ Y for all A ∈ C(τ).

Proof. Let f ∈ L1(ν,X,Y ). Then, by definition, there exists a sequence
of X-valued τ -simple functions {ψn} such that N(f − ψn) → 0, as n → ∞.
So, there exists a subsequence {φn} of {ψn} such that {φn} converges to f
‖ν‖-a.e.

Now, an easy calculation shows that∥∥∥∥∫
A

f dν −
∫

A

φn dν

∥∥∥∥
X⊗̌Y

= sup
{∣∣∣∣(x∗ ⊗ y∗)(∫

A

f dν −
∫

A

φn dν

)∣∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
= sup

{∣∣∣∣∫
A

x∗(f − φn)dy∗ν

∣∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
≤ N(f − φn) → 0, as n → ∞.

So, {
∫

A
φn dν} converges to

∫
A

f dν in the norm of X ⊗̌ Y for all A ∈ C(τ). �
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Remark. Whether the conditions (a) and (b) are sufficient for the above
proposition is not known, even when the vector measure ν is defined on a
σ-algebra.

However, the conditions (a) and (b) are sufficient for the case of integration
theory of scalar valued functions with respect to a vector measure ν defined
on a δ-ring (see [5, Proposition 2.3, p. 436]), where the proof of the sufficiency
part depends on the fact that ‖f ‖ν = ‖μf ‖(Ω) for f ∈ L1(ν), which is not true
for f ∈ L1(ν,X,Y ).

It has been shown in [5, Corollary 3.2, p. 438] the following.

Theorem A. Let Y be a Banach space, τ a δ-ring of subsets of a non-
empty set Ω and ν : τ → Y a vector measure.
(a) If ν is strongly additive, then L1(ν) coincides with L1(ν̂) where ν̂ : C(τ) →

Y is a vector measure which extends ν.
(b) The vector measure ν is strongly additive if and only if χΩ ∈ L1(ν).
(c) If ν is strongly additive then L1(ν) is an order continuous Banach func-

tion space with respect to (Ω,C(τ), λ) where λ = |x∗
0ν|, x∗

0 ∈ BX∗ , is the
Rybakov control measure for ν.

We are now in a position to extend Theorem A to L1(ν,X,Y ).

Theorem 3.9. Let X be an order continuous Banach lattice and Y a Ba-
nach space. Let ν : τ → Y be a vector measure. If ν is strongly additive, then
L1(ν,X,Y ) coincides with L1(ν̂,X,Y ), where ν̂ : C(τ) → Y is a vector mea-
sure which extends ν and L1(ν,X,Y ) is an order continuous Banach lattice
with weak order unit.

Proof. We first show that S(τ,X) is dense in L1(ν̂,X,Y ). Since ν is
strongly additive, we have Ω = (

⋃∞
n=1 An) ∩ N where {An} ⊂ τ and N ∈ C(τ)

is a ν-null set and (
⋃∞

n=1 An) ∩ N = φ. So Ω \ N =
⋃∞

n=1 An. Let Bn =⋃n
k=1 Ak.
Then {Bn} is an increasing sequence in τ with

⋃∞
n=1 Bn =

⋃∞
n=1 An.

Let f ∈ L1(ν̂,X,Y ) and ε > 0. Since X is order complete and

|f |χB1 ≤ |f |χB2 ≤ · · · ≤ |f |χΩ\N and lim
n

|f |χBn = |f |χΩ\N ,

it follows that {|f |χBn } is an order bounded increasing sequence in L1(ν̂,
X,Y ). Since L1(ν̂,X,Y ) is an order continuous Banach lattice [2, Theorem 1,
p. 5], we have by [15, Proposition 1.a.8, p. 7] that there exists some Bk ∈ τ
such that

sup
‖y∗ ‖ ≤1

∫
Ω

∥∥|f |χΩ\N − |f |χBk

∥∥d
∣∣y∗ν̂

∣∣ < ε/2.

This implies that

sup
‖y∗ ‖ ≤1

∫
Ω

‖fχΩ\N − fχBk
‖ d

∣∣y∗ν̂
∣∣ < ε/2
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and so in notational form, we have

(8) N(fχΩ\N − fχBk
) < ε/2.

Since S(C(τ),X) is dense in L1(ν̂,X,Y ) [22, Definition 1, p. 927], there exists
g ∈ S(C(τ),X) such that

N(f − g) < ε/2.

This implies that

(9) N(fχBk
− gχBk

) < ε/2.

Let

g =
n∑

i=1

xiχEi , xi ∈ X,Ei ∈ C(τ).

Then

gχBk
=

n∑
i=1

xiχEi ∩Bk
, Ei ∩ Bk ∈ τ and so gχBk

∈ S(τ,X).

Now

N(fχΩ\N − gχ
Bk

) ≤ N(fχΩ\N − fχ
Bk

) + N(fχ
Bk

− gχ
Bk

)

< ε, by (8) and (9) and so N(f − gχBk
) < ε.

Thus, S(τ,X) is dense in L1(ν̂,X,Y ).
We next show that L1(ν,X,Y ) coincides with L1(ν̂,X,Y ). By Defini-

tion 3.2, S(τ,X) is dense in L1(ν,X,Y ) with respect to the norm N(·) and
L1(ν,X,Y ) ⊂ L1(ν̂,X,Y ).

So S(τ,X) ⊂ L1(ν,X,Y ) ⊂ L1(ν̂,X,Y ).
Since S(τ,X) is dense in L1(ν̂,X,Y ) with respect to the norm N(·) and

since L1(ν,X,Y ) is complete with respect to ν̂ restricted to τ , it follows by
an easy calculation that L1(ν,X,Y ) = L1(ν̂,X,Y ). Since by [2, Theorem 1,
p. 5], L1(ν̂,X,Y ) is an order continuous Banach lattice with weak order unit,
it follows that L1(ν,X,Y ) is an order continuous Banach lattice with weak
order unit. �
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