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ON THE REAL NERVE OF THE MODULI SPACE OF
COMPLEX ALGEBRAIC CURVES OF EVEN GENUS

GRZEGORZ GROMADZKI AND EWA KOZ�LOWSKA-WALANIA

Abstract. The real locus in the moduli space of complex alge-
braic curves of given genus consists of curves having real forms,

that is, Riemann surfaces admitting a symmetry (anticonformal

involution). The real locus is covered by subsets, each formed by

curves having a given topological type determined by the num-
ber of connected components and the separability type of the real

models of the curves. In this paper, we study the structure of the

nerve corresponding to this covering, called the real nerve of com-
plex algebraic curves, for even genera. We find its geometrical

and homological dimension, and we obtain some results concern-
ing its global geometrical properties. In the proofs, we use the
equivalent language of Riemann surfaces and their symmetries.

1. Introduction

A smooth, irreducible, real, projective algebraic curve has three important
topological invariants: the number of connected components, the algebraic
genus being the ordinary genus of its complexification and its separability
character in its complexification. The complexification allows to map such
curves of given genus g into the classical moduli space Mg of smooth, ir-
reducible, complex projective algebraic curves of genus g. The image MR

g ,
called the real locus, is covered by the subsets Mk,ε

g proceeding from the real
algebraic curves with k connected components and given separability ε whose
meaning will be explained later. Now a subset Mk,ε

g overlaps a subset Mk′,ε′

g

if and only if there is a complex algebraic curve of genus g having two real
forms of the types (k, ε) and (k′, ε′). In this paper, we study the nerve N (g),
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corresponding to this covering, as in ([14], Example 3.1.6), called the real
nerve of complex algebraic curves of given even genus g.

We shall use the equivalent language of compact Riemann surfaces and their
symmetries in the proofs, which is possible due to the fact that there is a func-
torial equivalence between compact, connected Riemann surfaces and smooth,
irreducible, complex, projective, algebraic curves. Under this equivalence, a
Riemann surface X admits a symmetry σ if and only if the corresponding
curve CX has a real form CX(σ). Furthermore, two such symmetries σ and τ
define real forms CX(σ) and CX(τ), birationally isomorphic over the field R

of real numbers, if and only if they are conjugate in the group Aut±(X) of
all, including antiholomorphic, automorphisms of X . Finally, the set Fix(σ)
is homeomorphic to a smooth projective model of the corresponding real form
CX(σ).

Recall that a symmetry of a compact Riemann surface X of genus g > 1
is an antiholomorphic involution σ of X . We call a symmetry σ separating
if X \ Fix(σ) is disconnected and nonseparating otherwise. It is well known,
by the classical results of Harnack, that the set of points fixed by σ consists
of k disjoint simple closed curves which, according to the nineteenth century
terminology of Hilbert, are called ovals. Here k varies between 0 and g+1 and
some extra conditions, known as Harnack–Weichold conditions, are satisfied
if σ is assumed to be separating. For a symmetry σ of a Riemann surface of
genus g, we define (k, ε), where k denotes the number of ovals of σ and ε = +1
or −1 if respectively, σ is separating or not, to be the topological type of σ.

The above covering of the real locus MR

g gives rise to the associated nerve
N (g), which we call the real nerve, being the simplicial complex whose vertices
are the topological types (k, ε). The sequence of distinct types ((k0, ε0), . . . ,
(kn, εn)) is an n-simplex in N (g) if and only if there exists a Riemann sur-
face X of genus g having n + 1 symmetries of the types (k0, ε0), . . . , (kn, εn).
Furthermore, the differential for the nerve N (g) is induced by

∂n

(
(k0, ε0), . . . , (kn, εn)

)
=

n∑
i=0

(−1)i
(
(k0, ε0), . . . , (̂ki, εi), . . . , (kn, εn)

)
.

Some results concerning N (g) are known. First of all, it has [(3g + 4)/2]
vertices, by the mentioned above results of Harnack and Weichold (c.f. [5]).
By the results of Buser, Seppälä and Silhol [4], N (g) is connected and fur-
thermore it was shown by Costa and Izquierdo in [6], that given g and a type
(k, ε) there exists a Riemann surface X of genus g, having two symmetries
σ, τ of the types (k, ε) and (1, −1) respectively, which means that (1, −1) is a
spine for N (g) for arbitrary g. Here we find both geometrical and homological
dimension of N (g) for even values of g and we give some results concerning
its global properties.
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2. Preliminaries

All the results are obtained by methods from combinatorial group the-
ory, that is, theory of non-euclidean crystallographic groups (NEC groups in
short), by which we mean discrete and cocompact subgroups of the group G
of all isometries of the hyperbolic plane H. The algebraic structure of such a
group Λ is determined by the signature:

(1) s(Λ) =
(
h; ±; [m1, . . . ,mr];

{
(n11, . . . , n1s1), . . . , (nk1, . . . , nksk

)
})

,

where the brackets (ni1, . . . , nisi) are called the period cycles, the integers nij

are the link periods, mi proper periods and finally h the orbit genus of Λ.
A group Λ with signature (1) has the presentation with the following gen-

erators, called canonical generators:

x1, . . . , xr, ei, cij ,1 ≤ i ≤ k,0 ≤ j ≤ si and a1, b1, . . . , ah, bh if the sign is +
or d1, . . . , dh otherwise,

and relators:

xmi

i , i = 1, . . . , r, c2
ij−1, c

2
ij , (cij−1cij)nij , ci0e

−1
i cisiei, i = 1, . . . , k, j = 1, . . . , si

and

x1 · · · xre1 · · · eka1b1a
−1
1 b−1

1 · · · ahbha−1
h b−1

h or x1 · · · xre1 · · · ekd2
1 · · · d2

h,

according to whether the sign is + or −. The elements xi are elliptic trans-
formations, ai, bi are hyperbolic translations, di glide reflections and cij hy-
perbolic reflections. Reflections cij−1, cij are said to be consecutive. Every
element of finite order in Λ is conjugate either to a canonical reflection or to a
power of some canonical elliptic element xi, or else to a power of the product
of two consecutive canonical reflections.

Now an abstract group with such a presentation can be realized as an NEC
group Λ if and only if the value

ηh + k − 2 +
r∑

i=1

(
1 − 1

mi

)
+

1
2

k∑
i=1

si∑
j=1

(
1 − 1

nij

)

is positive, where η = 1 or 2 according to the sign being − or +. This value
turns out to be the normalized hyperbolic area μ(Λ) of any fundamental region
for such a group and we have the following Hurwitz–Riemann formula

[
Λ : Λ′] =

μ(Λ′)
μ(Λ)

for a subgroup Λ′ of finite index in an NEC group Λ.
Now NEC groups having no orientation reversing elements are classical

Fuchsian groups. They have signatures (g;+; [m1, . . . ,mr]; {−}), which shall
be abbreviated as (g;m1, . . . ,mr). Given an NEC group Λ, the subgroup
Λ+ of Λ consisting of the orientation preserving elements of Λ is called the
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canonical Fuchsian group of Λ. Given an NEC group with signature (1) it
has, by [13], signature

(2) (ηh + k − 1;m1,m1, . . . ,mr,mr, n11, . . . , nksk
).

A torsion free Fuchsian group Γ is called a surface group and it has signature
(g; −). In such a case, H/Γ is a compact Riemann surface of genus g and
conversely, every compact Riemann surface can be represented as such an
orbit space for some surface Fuchsian group Γ. Furthermore, given a Riemann
surface so represented, a finite group G is a group of automorphisms of X if
and only if G = Λ/Γ for some NEC group Λ. The following result from [7],
[8] is a principal tool in the paper.

Theorem 2.1. Let X = H/Γ be a Riemann surface with the group G of all
automorphisms of X , let G = Λ/Γ for some NEC group Λ and let θ : Λ → G
be the canonical projection. Then the number of ovals of a symmetry σ of X
equals ∑[

C
(
G,θ(ci)

)
: θ

(
C(Λ, ci)

)]
,

where C stands for the centralizer and the sum is taken over a set of repre-
sentatives of all conjugacy classes of canonical reflections whose images under
θ are conjugate to σ.

For a symmetry σ, we shall denote by ‖σ‖ the number of its ovals. The
index wi = [C(G,θ(ci)) : θ(C(Λ, ci))] will be called a contribution of ci to ‖σ‖.

We shall also use the result below, which follows easily from [3]. Let Λ′ be
a normal subgroup of an NEC group Λ. A canonical generator of Λ is proper
(with respect to Λ′) if it does not belong to Λ′. The elements of Λ expressable
as a composition of proper generators of Λ are the words of Λ (with respect
to Λ′). With these notations, we have

Lemma 2.2 (c.f. Theorem 2.1.3 of [3]). Let us suppose that [Λ : Λ′] is even
and Λ has the sign +. Then Λ′ has the sign + if and only if no orientation
reversing word belongs to Λ′. If [Λ : Λ′] is even and Λ has the sign −, then Λ′

has the sign − if and only if either a glide reflection of the canonical generators
of Λ or an orientation reversing word belongs to Λ′.

3. Geometrical dimension of N (g)

We start with the following results of the first author and Izquierdo related
to our task.

Theorem 3.1 ([9]). A Riemann surface of even genus g has at most four
conjugacy classes of symmetries and this bound is attained for every even
genus g.

Theorem 3.2 ([9]). Let X be a Riemann surface of even genus and let G be
a subgroup of Aut±(X) generated by the nonconjugate symmetries σ1, σ2, σ3

and σ4. Then G = Dn ⊕ Z2.
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Observe that, by the Sylow theorem, we may assume that G is a 2-group.
Indeed, for σ1, σ2, . . . , σk being the representatives of conjugacy classes of sym-
metries, we know that all Sylow 2-groups are conjugate and so we can assume
that these symmetries generate a 2-group G. For the sake of completeness,
we shall also present the two results below, concerning the maximal possible
number of ovals of the set of nonconjugate symmetries on a Riemann surface
of even genus.

Theorem 3.3 ([10]). Let X be a Riemann surface of even genus having
k nonconjugate symmetries, two of which do not commute. Then the total
number of ovals of these symmetries does not exceed 2g + 2 and this bound
is sharp for arbitrary even g. Furthermore, let g ≥ 2 be even and let n be
arbitrary power of 2 dividing g. Then there exists a Riemann surface X of
genus g with Aut±(X) = Dn ⊕ Z2, having four nonconjugate symmetries which
have 2g + 2 ovals in total.

The upper bound for the total number of ovals of three nonconjugate sym-
metries of a Riemann surface of even genus for n > 2 is also 2g + 2, however
it can be proved that in such a case the bound is not attained. Now for the
case of commuting symmetries, that is, n = 2, the following result holds.

Theorem 3.4 ([10]). Let X be a Riemann surface of even genus g having
three or four nonconjugate commuting symmetries. Then the total number of
ovals of the symmetries does not exceed 2g +3 or 2g +2 respectively and these
bounds are sharp for arbitrary even g.

Now we shall look for the geometrical dimension dimG N (g) of N (g). Ob-
serve that for even g there are at most 4 nonconjugate symmetries on a Rie-
mann surface of genus g. This means, however, that there at most four types of
symmetries on this surface and, equivalently, any simplex in N (g) is spanned
by at most 4 vertices. Hence, dimG N (g) ≤ 3. The next theorem shows that
in fact the equality holds for any even g ≥ 2.

Theorem 3.5. For any even g ≥ 2, the geometrical dimension of N (g)
equals 3.

Proof. To prove the theorem, it is enough to construct, for any even g,
a Riemann surface of genus g having four symmetries of distinct topological
types. Assume first that g > 2. Consider an NEC group Λ with signature(

0;+; [−];
{
(2, g+3. . . ,2)

})
and an epimorphism θ : Λ → Z3

2 = 〈x, y, z〉, which maps the consecutive canon-
ical reflections to

x, y,x, . . . , x, y︸ ︷︷ ︸
g

, z, y, xyz,x.
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Then Γ = kerθ is a surface Fuchsian group of genus g and so X = H/Γ is a
Riemann surface of genus g having four nonconjugate symmetries x, y, z, xyz.
Now by Theorem 2.1, canonical reflection c0 contributes with 1 oval to the
symmetry x and reflections c2, c4, . . . , cg−2 contribute to x with 2 ovals each.
Reflections c1, c3, . . . , cg−3 contribute with 2 ovals each to the symmetry y
and reflections cg−1, cg+1 with 1 oval each. Reflection cg contributes with 2
ovals to the symmetry z and reflection cg+2 contributes with 1 oval to the
symmetry xyz. Summing up, we see that x has (g − 2)/2 · 2 + 1 = g − 1 ovals,
y has (g − 2)/2 · 2+2 = g ovals, z has 2 ovals and xyz has 1 oval. We see that
for any even g > 2 numbers of ovals of these symmetries are distinct, hence
we have a 3-simplex in N (g) and so dimG N (g) = 3.

For g = 2, we shall construct a Riemann surface of genus 2, having a fixed
point free symmetry, separating symmetries with 1 and 3 ovals and a nonsep-
arating symmetry with 1 oval. For, consider an NEC group Λ with signature(

0;+; [−];
{
(2,2,2,4)

})
and an epimorphism θ : Λ → G = D4 ⊕ Z2 = 〈x, y〉 ⊕ 〈z〉 which maps the con-
secutive canonical reflections corresponding to the nonempty period cycle to

x, z, xyx, y, x.

Observe that, by Theorem 2.1, c10 contributes with 1 oval to x, c11 contributes
with 1 oval to z and reflections c12 and c13 contribute respectively with 1 and
2 ovals to the symmetry y. Therefore, y is a separating symmetry with 3
ovals and, by Lemma 2.2, central symmetry z is separating, as there is no
orientation reversing word in θ−1(z). Symmetry z(xy)2 is fixed point free.
Recall that, by the main theorem in [2], two noncommuting symmetries on a
Riemann surface of genus 2 can have at most 4 ovals in total and symmetries x
and y together have exactly 4 ovals. By the results of [1] and [2] (see remarks
on page 321 of [2]), in such a case symmetry x must be nonseparating. This
completes the proof. �

4. Homological dimension of N (g)

As it is usually defined, by the homological dimension of N (g) we under-
stand the greatest number n such that Hn(N (g),Z) 	= 0. Before we state the
main result about homological dimension dimH N (g) of N (g), we shall give a
lemma, concerning separability of the symmetries.

Lemma 4.1. If a Riemann surface X of even genus g has 4 nonconjugate
commuting symmetries with fixed points, then all the symmetries are nonsep-
arating.

Proof. Let G = 〈x, y, z〉 = Z3
2 = Λ/Γ for some surface Fuchsian group Γ and

an NEC group Λ with signature

(3)
(
h; ±; [2, r. . .,2];

{
(2, s1. . .,2), . . . , (2, sk. . .,2), (−), l. . ., (−)

})
.
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Let θ : Λ → G denote the canonical epimorphism. As all four of the symme-
tries in question have fixed points, there are canonical reflections ci1 , ci2 , ci3 , ci4

which are mapped by θ respectively to x, y, z, xyz. Observe, that each of the
symmetries can be represented as the product of the remaining three. There-
fore, for any symmetry ρ ∈ {x, y, z, xyz}, the inverse image Γρ = θ−1(〈ρ〉) ≤ Λ
contains an orientation reversing word. Indeed, for example, we have an ori-
entation reversing word ci2ci3ci4 ∈ Γx and so x is nonseparating. Hence, all
the symmetries are nonseparating by Lemma 2.2. �

Lemma 4.2. For any even g ≥ 6, there exist five Riemann surfaces X1, . . . ,
X5 of genus g, having commuting, nonseparating symmetries with respectively:

2,3,4,5 ovals,
1,3,4,5 ovals,
1,2,4,5 ovals,
1,2,3,5 ovals,
1,2,3,4 ovals.

Proof. We shall construct the Riemann surfaces in question. Let g ≥ 6 be
even. Consider an NEC group Λ with signature(

0;+;
[
2, (g−6)/2. . . ,2

]
;
{
(2,2,2,2,2,2,2,2,2)

})
.

Now we shall define epimorphisms θ1, . . . , θ5 : Λ → G = Z3
2 such that Xi =

H/Γi for Γi = kerθi. First of all, we define θi(xj) = xy for all the canonical
elliptic generators of Λ and we put θi(e) = xy if 4 divides g and θi(e) =
1 otherwise. Now we only have to define θi on the consecutive canonical
reflections.

For θ1, we map the reflections c0, . . . , c9 respectively to

x, y,x, z, x, z, xyz, z, xyz,x.

Then, by Theorem 2.1, we see that reflections c0, c2 contribute to x with 1
oval each and reflection c4 contributes to x with 2 ovals. Reflections c3, c7

contribute to z with 2 ovals each and reflection c5 with 1 oval. Reflection c1

contributes to y with 2 ovals. Reflection c6 contributes to xyz with 2 ovals
and reflection c8 with 1 oval. The last reflection does not contribute, as it
is conjugate to the first one. Summing up, we obtain a Riemann surface X1

of genus g, having four commuting symmetries x, y, z, xyz with the following
numbers of ovals: ‖x‖ = 4, ‖y‖ = 2, ‖z‖ = 5, ‖xyz‖ = 3.

For θ2, consecutive canonical reflections are sent respectively to

x,xyz, y, x, y, z, y, z, y, x.

As before, we see that ‖x‖ = 3, ‖y‖ = 5, ‖z‖ = 4, ‖xyz‖ = 1 and we obtain a
Riemann surface X2 that we looked for.

Let θ3 map the reflections ci respectively to

x, y, z, xyz,x,xyz, z, x, z, x
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and observe that, by Theorem 2.1 again, we have ‖x‖ = 5, ‖y‖ = 1, ‖z‖ =
4, ‖xyz‖ = 2. This definition gives rise to the Riemann surface X3.

For θ4, we map the consecutive canonical reflections ci to

x, y, z, x,xyz, z, xyz,x, z, x.

With such a definition, ‖x‖ = 3, ‖y‖ = 1, ‖z‖ = 5, ‖xyz‖ = 2 and so X4 = H/Γ4

for Γ4 = kerθ4.
Finally, let θ5 be defined by

x,xyz, y, x, z, y, x, y, z, x

for the consecutive canonical reflections. Here ‖x‖ = 4, ‖y‖ = 3, ‖z‖ = 2,
‖xyz‖ = 1. As a result, we obtain the Riemann surface X5 = H/Γ5 for Γ5 =
kerθ5, holding the conditions of the lemma.

The fact that all the symmetries are nonseparating follows easily from
Lemma 4.1, as in each of the cases (1)–(5) we consider commuting symmetries
with fixed points. �

As a consequence of the above lemma, we obtain the following theorem.

Theorem 4.3. For any even g ≥ 6, we have dimH N (g) = 3.

Proof. Recall, that the boundary homomorphism is induced by

∂n

(
(k0, ε0), . . . , (kn, εn)

)
=

n∑
i=0

(−1)i
(
(k0, ε0), . . . , (̂ki, εi), . . . , (kn, εn)

)
.

Hence, the alternating sum of the five simplices(
(2, −1), (3, −1), (4, −1), (5, −1)

)
,(

(1, −1), (3, −1), (4, −1), (5, −1)
)
,(

(1, −1), (2, −1), (4, −1), (5, −1)
)
,(

(1, −1), (2, −1), (3, −1), (5, −1)
)
,(

(1, −1), (2, −1), (3, −1), (4, −1)
)
,

given by Lemma 4.2, is a cycle which is not a homological boundary of a
4-dimensional chain. Thus, it represents a nontrivial element in the third
homology group and so dimH N (g) = 3. �

For the next part of the paper, we need the following result from [12].

Theorem 4.4. If a Riemann surface X of even genus g admits a fixed point
free symmetry x and a symmetry y with nonempty fixed point set, then the
order of xy is even but not divisible by 4 and the number of ovals of symmetry
y is odd.

Not surprisingly, for g = 2 the homological dimension of N (2) is not max-
imal, as the next result shows the following theorem.
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Theorem 4.5 (see also [1]). The homological dimension of N (2) equals 0.

Proof. Obviously the possible types of symmetries on a Riemann surface
of genus 2 are (0, −1), (1, −1), (2, −1), (1,1) and (3,1). However, there is no
Riemann surface of genus 2, which simultaneously admits symmetries of the
types (2, −1) and (1,1) (see remarks on page 23 in [12]). Furthermore, by
Theorem 1.1 in [12] there is no edge between (2, −1) and (3,1) as 2 and 3
have different parity. In particular, the vertex (2, −1) is not a vertex of any
3-simplex. Hence, (3,1), (1,1), (1, −1), (0, −1) span the unique 3-simplex in

N (2), by the second part of Theorem 3.5, and therefore dimH N (2) < 3.
Now we shall show that dimH N (2) < 1. First of all, any 2-simplex is a

face of the 3-simplex Δ spanned by (3,1), (1,1), (1, −1), (0, −1). Indeed, by
Theorem 4.4, there is no edge between (2, −1) and (0, −1). Also, we already
know that there is no edge between (2, −1) and (1,1) or (3,1). Therefore,
there does not exist a nontrivial 2-cycle and so dimH N (2) < 2. Finally, the
only 1-simplex not contained in the above Δ is an edge joining vertices (2, −1)
and (1, −1). Therefore, there does not exist a nontrivial 1-cycle and hence
dimH N (2) < 1. As a result, we see that dimH N (2) = 0. �

Remark 4.6. It can be shown that dimH N (4) = 1. However, the only
evidence of this fact we have, is to find explicitly the entire simplicial com-
plex N (4). The last is an uphill task, which involves the Schreier coset graph
technique, developed by Hoare and Singerman in [11], to determine the sepa-
rability types of the symmetries. Going into the details is not the goal of this
paper and the proof of this fact shall be presented separately somewhere else.

5. On global geometrical properties of N (g)

Now we shall give some results concerning the global structure of N (g).
As we already mentioned, N (g) has [(3g + 4)/2] vertices, by the Hurwitz–
Weichold theorems (c.f. [5]). Call the vertex corresponding to a fixed point
free symmetry null, the vertices corresponding to the remaining nonseparat-
ing symmetries negative and vertices corresponding to separating symmetries
positive. Furthermore, call a simplex spanned by vertices corresponding to
commuting symmetries of a Riemann surface, a commutative simplex.

Theorem 5.1. If Δ is a commutative 3-simplex in N (g), then it is also a
simplex in N (g̃) for even g̃ > g if:
(a) at least two of its vertices are negative;
(b) exactly one of the vertices is negative and g̃ ≡ g(4);
(c) all the non-null vertices are positive and g̃ ≡ g(8).

Proof. Let Δ be a 3-simplex and let us assume that the commuting symme-
tries in question generate the group G = 〈x, y, z〉 = Z3

2 = Λ/Γ for some surface
Fuchsian group Γ and an NEC group Λ with signature (3). Let θ : Λ → G



488 G. GROMADZKI AND E. KOZ�LOWSKA-WALANIA

denote the canonical epimorphism and so X = H/Γ for Γ = kerθ is a Riemann
surface of genus g having commuting symmetries x, y, z, xyz.

Observe first that if all the symmetries have fixed points, then the theorem
holds. Indeed, by Lemma 4.1 the symmetries are nonseparating. Let g̃ = g +
2α for a nonnegative integer α and consider an NEC group Λ′ with signature

(4)
(
h; ±;

[
2, r′

. . .,2
]
;
{
(2, s1. . .,2), . . . , (2, sk. . .,2), (−), l. . ., (−)

})
which differs from the signature (3) only in the elliptic part, i.e. we take
r′ = r + α. Observe that, with such a definition, canonical generators of the
group Λ′ correspond to the canonical generators of the group Λ. We have
the same genus and sign, therefore we have the same number of hyperbolic
generators. Also the number and lengths of period cycles are the same, which
gives us the correspondence between the canonical reflections of Λ and Λ′. We
define θ′ : Λ′ → G such that θ and θ′ have the same image on the corresponding
generators except e′

1. We put θ(x′
i) = xy for i ≥ r + 1. If α is even, we take

θ(e′
1) = 1 and θ(e′

1) = xy otherwise. This definition gives us a Riemann surface
X ′ = H/Γ′ for Γ′ = kerθ′, which by the Hurwitz–Riemann formula has genus
g̃ and admits symmetries x, y, z, xyz, having the same types as in the case of
surface X .

Let us assume now that one of the symmetries, say xyz, is fixed point
free. Therefore, symmetries x, y, z have fixed points. Let, as in the proof of
Lemma 4.1, ci1 , ci2 , ci3 be the canonical reflections in Λ which are mapped to
x, y, z, respectively.

Let first at least two of the symmetries, say x, y, be nonseparating and let
g̃ = g + 2α, where α ≥ 0 is an integer. Our aim is to construct a Riemann
surface X ′ of genus g̃ having symmetries of the same types as x, y, z, xyz. Now
it is enough to consider the definition of X ′ from the previous case. Observe,
that in fact it gives rise to the configuration in question and it does not change
the separability of the symmetry z.

Now we shall deal with the case when exactly one of the symmetries with
fixed points, say x, is nonseparating. By Lemma 2.2, we know that there is
a canonical glide reflection or an orientation reversing word in Γx but not in
Γy and Γz as these are separating symmetries. It follows that there are no
proper periods in the signature of Λ and that all the connecting generators are
mapped by θ to 1. Indeed, an elliptic element xi or the connecting generator
ei with nontrivial image can be mapped to xy, xz or yz. In the first case,
symmetry y is nonseparating as the word xici1 is an orientation reversing
word in Γy . In the second case, symmetry z is nonseparating because the
word xici1 is an orientation reversing word in Γz . Similarly, in the third case
both y and z are nonseparating. Hence, for our case it must be that r = 0 and
for the same reason all generators ei are mapped to 1. Furthermore, for x to
be nonseparating, there must be an orientation reversing word or a canonical
glide reflection in Γx. As there are no canonical generators mapped to xy,xz
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or yz, the sign in the signature of Λ is −, h > 0 and all the glide reflections
are mapped to x. Indeed, if there was a canonical glide reflection d for which
θ(d) = xyz, then y and z would be nonseparating as dci1ci3 and dci1ci2 would
be orientation reversing words in Γy and Γz , respectively. Now we have to
construct a Riemann surface X ′ of genus g̃ = g+4α, where α ≥ 0 is an integer,
having symmetries of the same types as for the suface X . Consider an NEC
group Λ′ with signature

(5)
(
h′; −; [−];

{
(2, s1. . .,2), . . . , (2, sk. . .,2), (−), l. . ., (−)

})
which differs from the signature of Λ only for the genus, i.e. we take h′ = h+α.
Again, we define θ′ : Λ′ → G in the same way as θ for all the corresponding
generators. In addition, we put θ(d′

i) = x for i > h. Observe that with such
a definition, for Γ′ = ker θ′, we obtain a Riemann surface X ′ = H/Γ′, having
symmetries x, y, z, xyz of the same types as in the case of surface X .

Let finally x, y, z be separating. Obviously there are no canonical glide
reflections in the signature of Λ and so Λ has sign +. Similarly to the previous
case, r = 0 and all the generators ei are mapped to 1. Let g̃ = g +8α for α ≥ 0
being an integer. Consider an NEC group Λ′ with signature

(6)
(
h′;+; [−];

{
(2, s1. . .,2), . . . , (2, sk. . .,2), (−), l. . ., (−)

})
with h′ = h+α and an epimorphism θ′ : Λ′ → G which has the same image as
θ on all the generators of Λ′ corresponding to the generators of Λ. Moreover,
we take θ(a′

i) = θ(b′
i) = 1 for i > h. This definition gives rise to the Riemann

surface X ′ of genus g̃ having the same symmetry type as X . �

Now we shall present the necessary and sufficient condition for the existence
of a 3-simplex Δ in N (g), such that the vertices of Δ come from nonseparating
commuting symmetries with 0, t1, t2 and t3 ovals. By Theorem 4.4, we know
that ti must be odd for i = 1,2,3.

Theorem 5.2. Let Δ be a 3-simplex of N (g) spanned by the null and three
negative vertices corresponding to the commuting symmetries with 0, t1, t2, t3
ovals, where t1 < t2 < t3 are odd. Then t3 < g − 1 and t1 + t2 + t3 ≤ 2g − 5.

Proof. Let G = Z3
2 = 〈x, y, z〉 be the group generated by the symmetries and

let xyz be the fixed point free symmetry. Take Λ to be an NEC group with
signature (3) and let θ : Λ → G denote the canonical epimorphism. By the
results of [10], we know that the total number of ovals of the symmetries does
not exceed 2g +3 and that at least three canonical reflections contribute with
only one oval to respective symmetry. Therefore, t ≤ 2s + 4l − 3 and in turn
s/4 + l/2 ≥ (t + 3)/8, for s = s1 + · · · + sk. Observe that μ(Λ)/2π = (g − 1)/4
and g − 1 is odd, therefore there are link periods in the signature of Λ and so
k ≥ 1. As xyz is fixed point free, there are no canonical reflections in Γxyz .
However, x, y, z are nonseparating, which means that there are orientation
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reversing words or canonical glide reflections in Γx,Γy,Γz . If h > 0, then by
the Hurwitz–Riemann formula

(g − 1)/4 ≥ h − 2 + 1 + l + s/4 ≥ (t + 3)/8,

which gives t ≤ 2g − 5. Assume now that h = 0. Then the orientation reversing
words must involve the elliptic generators xi or connecting generators ei with
nontrivial image under θ. These images can only be xy,xz or yz. Moreover,
observe that there must be at least three such generators with distinct images.
Indeed, if there are only two, then they have the same image for the relation
θ(x1 · · · xre1 · · · ek) = 1 to hold. Assume without loss of generality that this
image is xy. Then we get a contradiction, as there is no orientation reversing
word in Γz and so z is separating. Obviously the relation above does not hold
if there is only one xi or ei with nontrivial image. Therefore, we have at least
three such generators and so

(g − 1)/4 ≥ −2 + 1 + 1 + l/2 + s/4,

giving t ≤ 2g − 5 and the proof of the first part is finished.
Now we shall show that in fact t3 < g − 1. Assume to a contrary that

t3 = g − 1 and let first l = 0. In such a case, we have only nonempty period
cycles in the signature of Λ. We shall show that in a such case our symmetries
would have more than 2g − 2 ovals in total, which contradicts the fact that the
maximal number of ovals is 2g − 5. Let ci be a canonical reflection such that
θ(ci) = z. If θ(ci−1) = θ(ci+1) then ci contributes with 2 ovals to symmetry
z and reflections ci−1 and ci+1 contribute together with at least two ovals
to symmetries x, y. Now if θ(ci−1) 	= θ(ci+1), then ci contributes with only
1 oval to z but, as before, the reflections ci−1 and ci+1 contribute together
with at least two ovals to symmetries x, y. Observe also that there is at least
one reflection which contributes with 1 oval to z. Therefore, the total number
t1 + t2 of ovals of symmetries x, y equals at least g and summing up we arrive
to a contradiction, as t1 + t2 + g − 1 ≥ 2g − 1 and on the other hand, by the
first part of the proof, the total number of ovals does not exceed 2g − 5.

Hence, it must be that l ≥ 1 and in particular the difference between num-
bers of ovals g − 1 and t1 + t2 − 1 must be covered by reflections corresponding
to the empty period cycles. Let first g − t1 − t2 be divisible by 4. Then there
are at least (g − t1 − t2)/4 empty period cycles in the signature of Λ. Therefore,

(g − 1)/4 = μ(Λ)/2π

= ηh − 2 + k + r/2 + l + s/4
≥ ηh − 2 + k + r/2 + (g − t1 − t2)/8 + (t1 + t2 + g − 1 + 3)/8
= ηh − 2 + k + r/2 + g/4 + 1/4,

which gives ηh + k + r/2 ≤ 3/2. It follows that k = 1, h = 0 and r ≤ 1. Sym-
metries x, y, z are nonseparating, so there are at least three generators xi, ei
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with images xy,xz, yz. As r < 2, there are empty period cycles whose con-
necting generators have nontrivial image under θ. It follows that in fact
l ≥ (g − t1 − t2)/4 + 1 and t ≤ 2s + 4l − 3 − 4 = 2s + 4l − 7, and as a result
s/4 + l/2 ≥ (t + 7)/8 = (t1 + t2 + g + 6)/8. This gives (g − 1)/4 ≥ −1 + (g −
t1 − t2)/8 + 1/2 + (t1 + t2 + g + 6)/8 and so −1/4 ≥ 0, a contradiction.

Now if 4 divides g + 2 − t1 − t2, then there are at least (g + 2 − t1 −
t2)/4 empty period cycles and for one of these, the connecting generator has
nontrivial image under θ. Hence, t ≤ 2s + 4l − 3 − 2 and in turn s/4 + l/2 ≥
(t + 5)/8 = (t1 + t2 + g + 4)/8. Now, as before, we have

(g − 1)/4 = μ(Λ)/2π

= ηh − 2 + k + r/2 + l + s/4)
≥ ηh − 2 + k + r/2 + (g + 2 − t1 − t2)/8 + (t1 + t2 + g + 4)/8
= ηh − 2 + k + r/2 + g/4 + 1/4,

which gives ηh + k + r/2 ≤ 1. It follows that k = 1, h = 0 and r = 0. Sym-
metries x, y, z are nonseparating, so there are at least three generators ei

with images xy,xz, yz. But in our case, it means that there are at least
three empty period cycles, which contribute 2 ovals to z and so it must be
l ≥ (g + 2 − t1 − t2)/4 + 1. It follows that t ≤ 2s + 4l − 3 − 6 and in turn
s/4 + l/2 ≥ (t + 9)/8 = (t1 + t2 + g + 8)/8. We obtain a contradiction, since
in such a case (g − 1)/4 ≥ −1 + (g + 2 − t1 − t2)/8 + (t1 + t2 + g + 8)/8 and so
−1/4 ≥ 1/4. This finishes the proof, showing that in fact t3 < g − 1. �

Theorem 5.3. Let Δ be a commutative 2-simplex of N (g) spanned by three
vertices corresponding to symmetries with t1, t2, t3 	= 0 ovals, where t1, t2, t3
are odd and either a vertex is positive or all the vertices are negative, t1 <
t2 < t3 < g − 1 and t1 + t2 + t3 ≤ 2g − 5. Then this simplex is the face of the
3-simplex (spanned on the null vertex).

Proof. By Lemma 4.1, if at least one of the symmetries x, y, z is separating,
then xyz is a fixed point free symmetry in question and the proof is finished.

Therefore, we only have to consider the case, when all the symmetries are
nonseparating. Let X be a Riemann surface of even genus g having three
nonseparating commuting symmetries x, y, z with odd and distinct numbers
of ovals. Then t1 < t2 < t3 < g − 1, t1 = 2t′

1 + 1 < t2 = 2t′
2 + 1 < t3 = 2t′

3 + 1 <
g − 1. We also know that t1 + t2 + t3 ≤ 2g − 5 is odd and so we have two
possible cases. Either t1 + t2 + t3 ≡ 2g + 3 mod 4 or t1 + t2 + t3 ≡ 2g + 1
mod 4.

Assume first that (t1 + t2 − t3 − 1)/2 is nonnegative and that the condition
t1 + t2 + t3 ≡ 2g + 3 mod 4 holds. In such a case, we obtain

2g + 3 − 4α = 2t′
1 + 2t′

2 + 2t′
3 + 3

for some positive integer α ≥ 2. It follows that t′
1 + t′

2 + t′
3 is an even number,

which means that either t′
1, t

′
2, t

′
3 are all even or exactly two of these are odd. In
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both cases, we obtain that (ta + tb − tc − 1)/2 are even integers, for pairwise
distinct parameters 1 ≤ a, b, c ≤ 3. Indeed, if t′

i are even, then ti = 4t′ ′
i + 1

for i = 1,2,3. It follows that (ta + tb − tc − 1)/2 = 4(t′ ′
a + t′ ′

b − t′ ′
c )/2. Now

if two of t′
i are odd, say t′

a and t′
b, we see that ta = 4t′ ′

a + 3, tb = 4t′ ′
b + 3 and

tc = 4t′ ′
c +1. Now (ta+tb − tc − 1)/2 = 4(t′ ′

a +t′ ′
b − t′ ′

c +1)/2, (ta+tc − tb − 1)/2 =
4(t′ ′

a + t′ ′
c − t′ ′

b )/2 and (tb + tc − ta − 1)/2 = 4(t′ ′
b + t′ ′

c − t′ ′
a)/2. Observe also, that

the integers t1 + t3 − t2 − 1 and t2 + t3 − t1 − 1 are positive, as we assumed
that t1 < t2 < t3,.

Consider an NEC group Λ with signature(
0;+; [2, α. . .,2];

{
(2, s. . .,2)

})
for which s = (t1 + t2 + t3 + 3)/2 and let θ : Λ → G = Z3

2 = 〈x, y, z〉 be the
canonical epimorphism, which maps the canonical reflections corresponding
to the nonempty period cycle to

y,x, y, . . . , x, y︸ ︷︷ ︸
s1

, x, z, x, . . . , z, x︸ ︷︷ ︸
s2

, z, y, z, . . . , y, z︸ ︷︷ ︸
s3

, y,

where s1 = (t1 + t2 − t3 − 1)/2, s2 = (t1 + t3 − t2 − 1)/2, s3 = (t2 + t3 − t1 − 1)/2.
In addition, we take θ(x1) = xy, θ(x2) = xz and θ(xi) = yz for i = 3, . . . , α
and if α is even, θ(e) = yz. If α is odd, we take θ(e) = 1. In both cases
H/Γ, where Γ = kerθ, is a Riemann surface of genus g. By Theorem 2.1,
if θ(ci−1) 	= θ(ci+1), then reflection ci contributes with 1 oval to symmetry
θ(ci) and with 2 ovals in the other case. Therefore, symmetries x, y, z have
t1, t2, t3 ovals respectively. They are all nonseparating as there are orientation
reversing words in Γx,Γy,Γz .

Assume still that (t1 + t2 − t3 − 1)/2 ≥ 0 and let now the condition t1 +
t2 + t3 ≡ 2g + 1 mod 4 be true. In such a case, we obtain

2g + 1 − 4α = 2t′
1 + 2t′

2 + 2t′
3 + 3

for some positive integer α ≥ 2. Obviously, t′
1 + t′

2 + t′
3 is odd and so either

t′
1, t

′
2, t

′
3 are all odd or exactly one of these is odd. Now (ta + tb − tc − 3)/2 are

even integers for pairwise distinct parameters 1 ≤ a, b, c ≤ 3. If t′
i are odd, then

ti = 4t′ ′
i +3 for i = 1,2,3. It follows that (ta + tb − tc − 3)/2 = 4(t′ ′

a + t′ ′
b − t′ ′

c )/2.
Now if two of t′

i are even, say t′
a and t′

b, we see that ta = 4t′ ′
a + 1, tb = 4t′ ′

b + 1
and tc = 4t′ ′

c + 3. Now (ta + tb − tc − 3)/2 = 4(t′ ′
a + t′ ′

b − t′ ′
c − 1)/2, (ta + tc −

tb − 3)/2 = 4(t′ ′
a + t′ ′

c − t′ ′
b )/2 and (tb + tc − ta − 3)/2 = 4(t′ ′

b + t′ ′
c − t′ ′

a)/2. As in
the previous case, the integers t1 + t3 − t2 − 3 and t2 + t3 − t1 − 3 are positive.
Taking p3 = t3 − 2, we obtain that (t1 + t2 − p3 − 1)/2, (t1 + p3 − t2 − 1)/2
and (t2 + p3 − t1 − 1)/2 are even and positive. Now consider an NEC group
Λ with signature (

0;+; [2,α−1. . . ,2];
{
(2, s. . .,2), (−)

})
for which s = (t1 + t2 + t3 + 1)/2 and let θ : Λ → G = Z3

2 = 〈x, y, z〉 be the
canonical epimorphism, which maps the canonical reflections corresponding
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to the nonempty period cycle to

y,x, y, . . . , x, y︸ ︷︷ ︸
s1

, x, z, x, . . . , z, x︸ ︷︷ ︸
s2

, z, y, z, . . . , y, z︸ ︷︷ ︸
s3

, y,

where s1 = (t1 + t2 − p3 − 1)/2, s2 = (t1 + p3 − t2 − 1)/2, s3 = (t2 + p3 − t1 −
1)/2. In addition, we take θ(c20) = z, θ(x1) = xy, θ(e2) = yz, θ(xi) = xz for
i = 2, . . . , α − 1 and if α is even, θ(e1) = xz. If α is odd, we take θ(e1) = 1. In
both cases, we get the configuration of symmetries in question.

Let now t1 + t2 − t3 − 1 < 0 and assume that 4 divides t3 − t1 − t2 + 1.
Consider an NEC group Λ with signature(

0;+; [2, r. . .,2];
{
(2, s. . .,2), (−)l

})
for which s = t1 + t2 + 1, l = (t3 − t1 − t2 + 1)/4, r = (g + 1 − t3)/2 and
let θ : Λ → G = Z3

2 = 〈x, y, z〉 be the canonical epimorphism, which maps the
canonical reflections corresponding to the nonempty period cycle to

y,x, z, x, . . . , z, x︸ ︷︷ ︸
s1

, z, y, z, . . . , y, z︸ ︷︷ ︸
s2

, y,

where s1 = t1 − 1, s2 = t2 − 1 and the reflections corresponding to the empty
period cycles are mapped to z. As in the previous case, we take θ(x1) =
xy, θ(x2) = xz, θ(xi) = yz for i = 3, . . . , r, θ(e1) = 1 if r is odd and if r is even
we take θ(e1) = yz with θ(ei) = 1 for i ≥ 2. Again, H/Γ, where Γ = ker θ, is
a Riemann surface X ′ of genus g that we were looking for. Now if 4 divides
t3 − t1 − t2 + 3, we take an NEC group Λ with signature(

0;+; [2, r. . .,2];
{
(2, s. . .,2), (−)l

})
for which s = t1 + t2 + 1, l = (t3 − t1 − t2 + 3)/4, r = (g − 1 − t3)/2 and let
θ : Λ → G = Z3

2 = 〈x, y, z〉 be the canonical epimorphism defined as in the
previous case for the canonical reflections. Also, as in the previous case, we
take θ(x1) = xy, θ(xi) = xz for i = 2, . . . , r, θ(e2) = yz with θ(ei) = 1 for i ≥ 3
and θ(e1) = xz if r is odd and if r is even we take θ(e1) = 1. This definition
leads to the configuration of symmetries in question. �
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