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SCALING LIMITS FOR THE UNIFORM INFINITE
QUADRANGULATION

JEAN-FRANCOIS LE GALL AND LAURENT MENARD

ABSTRACT. The uniform infinite planar quadrangulation is an
infinite random graph embedded in the plane, which is the local
limit of uniformly distributed finite quadrangulations with a fixed
number of faces. We study asymptotic properties of this random
graph. In particular, we investigate scaling limits of the profile
of distances from the distinguished point called the root, and we
get asymptotics for the volume of large balls. As a key technical
tool, we first describe the scaling limit of the contour functions of
the uniform infinite well-labeled tree, in terms of a pair of eter-
nal conditioned Brownian snakes. Scaling limits for the uniform
infinite quadrangulation can then be derived thanks to an ex-
tended version of Schaeffer’s bijection between well-labeled trees
and rooted quadrangulations.

1. Introduction

The main purpose of the present work is to study asymptotic properties of
the infinite random graph called the uniform infinite quadrangulation. Recall
that planar maps are proper embeddings of finite connected graphs in the two-
dimensional sphere, considered up to orientation-preserving homeomorphisms
of the sphere. It is convenient to deal with rooted maps, meaning that there is
a distinguished oriented edge, whose origin is called the root vertex. Given a
planar map, its faces are the regions delimited by the edges. Important special
cases of planar maps are triangulations, respectively quadrangulations, where
each face of the map is adjacent to three edges, resp. to four edges.

Combinatorial properties of planar maps have been studied extensively
since the work of Tutte [21], which was motivated by the famous four color
theorem. Planar maps have also been considered in the theoretical physics
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literature because of their connections with matrix integrals (see [5]). More
recently, they have been used in physics as models of random surfaces, espe-
cially in the setting of the theory of two-dimensional quantum gravity (see, in
particular, the book by Ambjgrn, Durhuus and Jonsson [2]).

In a pioneering paper, Angel and Schramm [4] defined an infinite random
triangulation of the plane, whose law is uniform in the sense that it is the local
limit of uniformly distributed triangulations with a fixed number of faces,
when this number tends to infinity. Various properties of the uniform infinite
triangulation, including the study of percolation on this infinite random graph,
were derived by Angel [3] (see also Krikun [11]). Some intriguing questions,
such as the recurrence of random walk on the uniform infinite triangulation,
still remain open.

Although quadrangulations may seem to be more complicated objects than
triangulations, some of their properties can be studied more easily because
they are bipartite graphs, and especially thanks to the existence of a simple
bijection between the set of all (rooted) quadrangulations with a fixed number
of faces and the set of all well-labeled trees with the same number of edges. See
[7] for a thorough discussion of this correspondence, which we call Schaeffer’s
bijection. Motivated by this bijection, Chassaing and Durhuus [6] constructed
the so-called uniform infinite well-labeled tree, and then used an extended
version of Schaeffer’s bijection to get an infinite random quadrangulation from
this infinite random tree. A little later, Krikun [10] constructed the uniform
infinite quadrangulation as the local limit of uniform finite quadrangulations
as their size goes to infinity, in the spirit of the work of Angel and Schramm
for triangulations. It was proved in [17] that both these constructions lead to
the same infinite random graph, which is the object of interest in the present
work.

Before describing our main results, let us recall the definition of the uniform
infinite well-labeled tree. A (finite) well-labeled tree is a rooted ordered tree
whose vertices are assigned positive integer labels, in such a way that the
root has label one, and the labels of two neighboring vertices can differ by
at most one in absolute value. Chassaing and Durhuus [6] showed that the
uniform probability distribution on the set of all well-labeled trees with n edges
converges as n — oo towards a probability measure p supported on infinite
well-labeled trees, which is called the law of the uniform infinite well-labeled
tree. It was also proved in [6] that an infinite tree distributed according to u
has a.s. a unique spine, that is a unique infinite injective path starting from
the root.

Thanks to the latter property, the uniform infinite well-labeled tree can
be coded by two pairs of contour functions (C(), V() and (C),V(R)
corresponding respectively, to the left side and the right side of the spine.
Roughly speaking (see Section 2.1.1 for more precise definitions), if we imagine
a particle that explores the left side of the spine by traversing the tree from
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the left to the right, then for every integer k, C,(CL) is the height in the tree of

the vertex visited by the particle at time k, and V,C(L) is the label of the same
vertex. The pair (C®), V(B) is defined analogously for the right side of the
spine. We obtain asymptotics for the uniform infinite well-labeled tree in the
form of the following convergence in distribution (Theorem 5):
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Here ¢(F) and W represent respectively, the lifetime process and the end-
point process of a path-valued process W) called the eternal conditioned
Brownian snake. Roughly speaking, the eternal conditioned Brownian snake
should be interpreted as a one-dimensional Brownian snake started from 0
(see [12]) and conditioned not to hit the negative half-line. This process was
introduced in [16], where it was shown to be the limit in distribution of a
Brownian snake driven by a Brownian excursion and conditioned to stay pos-
itive, when the height of the excursion tends to infinity (see Theorem 4.3 in
[16]). Similarly the pair (¢ (R),W\(R)) is obtained from another eternal con-
ditioned Brownian snake W), Note however that the processes W) and
W) are not independent: The dependence between W) and W comes
from the labels on the spine, which are (of course) the same when exploring
the left side and the right side of the tree.

We can combine the convergence (1) with the extended version of Scha-
effer’s bijection in order to derive asymptotics for distances in the uniform
infinite quadrangulation in terms of the eternal conditioned Brownian snake.
Here we use a key property of Schaeffer’s bijection, which remains valid in the
infinite setting: If a quadrangulation is associated with a well-labeled tree in
this bijection, vertices of the quadrangulation (except the root vertex) exactly
correspond to vertices of the tree, and the graph distance in the quadrangu-
lation between a vertex v and the root vertex coincides with the label of v on
the tree. If V(q) stands for the set of vertices of the uniform infinite quadran-
gulation q and if dg,(0,v) denotes the graph distance between vertex v and
the root vertex 9, we let the profile of distances be the o-finite measure on
Z4 defined by

)‘q(k) = #{U € V(q) : dgr(avv) = k}a
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for every k € Z. For every integer n > 1, we also define a rescaled profile
G by

2n
n =2

for every Borel subset A of R;. Then Theorem 6 shows that the sequence
)\Sln) converges in distribution towards the random measure Z defined by

=3 [T a0

for every continuous function g with compact support on R,. As a conse-
quence, if B,(q) denotes the ball of radius n centered at 9 in V(q), we also
get the convergence in distribution of n=%#B,,(q) as n — cc.

Although the present work concentrates on the profile of distances, we
expect that the convergence (1) will have applications to other problems con-
cerning the uniform infinite quadrangulation and random walk on this graph
(similarly as in the case of the uniform infinite triangulation, the recurrence of
this random walk is still an open question). Indeed, thanks to the explicit con-
struction of edges of the map from the associated tree in Schaeffer’s bijection,
scaling limits for the uniform infinite well-labeled tree should lead to useful
information about the geometry of the uniform infinite quadrangulation. We
hope to address these questions in some future work.

To conclude this Introduction, let us mention that a different approach to
asymptotics for large planar maps has been developed in several recent papers,
which do not deal with local limits but instead study the convergence of
rescaled random planar maps viewed as random compact metric spaces, in the
sense of the Gromov—Hausdorff distance. In particular, the recent papers [15],
[18] have proved independently that uniformly distributed quadrangulations
with n faces, equipped with the graph distance rescaled by the factor n—1/4
and viewed as random metric spaces, converge in distribution in the sense
of the Gromov-Hausdorff distance towards the so-called Brownian map (the
results of [15] apply to more general planar maps such as triangulations). The
Brownian map is a quotient space of Aldous’ continuum random tree [1] for
an equivalence relation defined in terms of Brownian labels assigned to the
vertices of the tree. Although we do not pursue this matter here, we note that
the limiting process appearing in the convergence (1) should play a role in the
study of the Brownian map, and should indeed be related to the geometry of
the Brownian map near a typical point. We also observe that the convergence
(1) is an infinite tree version of a result of [14], which gives the scaling limit of
the contour functions of well-labeled trees with a (large) fixed number of edges.

The paper is organized as follows. Section 2 contains preliminaries about
trees, finite or infinite quadrangulations, and the extended version of Scha-
effer’s bijection. We also discuss the uniform infinite well-labeled tree and
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quadrangulation as defined in [6], [10] and recall some basic facts about the
Brownian snake. Section 3 contains the most technical part of this work,
which is the proof of the convergence (1). Our applications to scaling limits
for the uniform infinite quadrangulation are discussed in Section 4.

NoTATION. If I is an interval of the real line, and F is a metric space,
the notation C'(I, E) stands for the space of all continuous functions from I
into E. This space is equipped with the topology of uniform convergence on
compact sets. If E is a Polish space, D(E) stands for the space of all cadlag
functions from [0,00[ into F, which is equipped with the usual Skorokhod
topology.

2. Preliminaries
2.1. Trees and quadrangulations.

2.1.1. Spatial trees. In order to give precise definitions of the objects of interest
in this work, it will be convenient to use the standard formalism for plane trees.

Let
Uu=|JNm,
n=0
where N={1,2,...} and N° = {(}} by convention. An element u of I/ is thus
a finite sequence u = (uy, ..., u,) of positive integers, and n = gen(u) is called

the generation of u. If u,v € U, uv denotes the concatenation of v and v. If
v is of the form uj with j € N, we say that w is the parent of v or that v is
a child of u. We use the notation v < v’ for the (strict) lexicographical order
onlU.

A plane tree 7 is a (finite or infinite) subset of U such that

(1) e 7 (0 is called the root of T),
(2) if v €7 and v # ), the parent of v belongs to 7
(3) for every u € U there exists an integer k, (7) > 0 such that, for every j € N,
uj € 7 if and only if j <k, (7).
The edges of 7 are the pairs (u,v), where u,v € 7 and u is the parent
of v. The integer |7| denotes the number of edges of 7 and is called the
size of 7. The height H(7) of 7 is defined by H(7) =sup{gen(u): uet}. A
spine of T is an infinite linear subtree of 7 starting from its root (of course a
spine can only exist if 7 is infinite). We denote by 7 the set of all plane trees.
A labeled tree (or spatial tree) is a pair 6 = (7, (£(u))ye-) that consists of
a plane tree 7 and a collection of integer labels assigned to the vertices of T,
such that if (u,v) is an edge of 7, then |[¢(u) — £(v)| < 1.
A labeled tree (7, (€(u))yer) such that £(0) =1 and £(u) > 1 for every u € 7
is called a well-labeled tree. We denote the space of all well-labeled trees
by T. The notation T, respectively Tso, resp. T,,, will stand for the set of all
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FIGURE 1. A labeled tree 6 and its pair of contour functions (Cy, Vp).

well-labeled trees that have finitely many edges, resp. infinitely many edges,
resp. n edges.

If 0 =(7,((u))uer) is a labeled tree, |0] = |7]| is the size of § and H(0) =
H(7) is the height of §. A spine of § is a spine of .

A finite labeled tree 6 = (7,£) can be coded by a pair (Cy, Vy), where Cy =
(Co(t))o<t<2s) is the contour function of 7 and Vp = (Vy(t))o<s<2jg is the
spatial contour function of @ (see Figure 1). To define these contour functions,
let us consider a particle which follows the contour of the tree from the left
to the right, in the following sense. The particle starts from the root and
traverses the tree along its edges at speed one. When leaving a vertex, the
particle moves towards the first non visited child of this vertex if there is
such a child, or returns to the parent of this vertex. Since all edges will be
crossed twice, the total time needed to explore the tree is 2|f|. For every
t € [0,2|0]], Cy(t) denotes the distance from the root of the position of the
particle at time ¢. In addition if ¢ € [0,2|6]] is an integer, Vy(¢) denotes the
label of the vertex that is visited at time t. We then complete the definition
of Vy by interpolating linearly between successive integers. Figure 1 explains
the construction of the contour functions better than a formal definition.

A finite labeled tree is uniquely determined by its pair of contour functions.
It will sometimes be convenient to define the functions Cy and Vy for every
t >0, by setting Cp(t) =0 and Vy(t) = Vp(0) for every ¢ > 2|6].

If 6 and 6’ are two labeled trees, we define

d(0,0") = (1+sup{h: try(0) = try(0)}) ",
where, for every integer h > 0, try(0) is the labeled tree consisting of all
vertices of 6 up to generation h, with the same labels. One easily checks that
d is a distance on the space of all labeled trees.

If 0 € T, for every k € N, we let N (0) denote the number of vertices of
that have label k. We then define .7 as the set of all trees in T that have at
most one spine, and whose labels take each integer value only finitely many
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FIGURE 2. An infinite well-labeled tree 6 and its contour
functions (C(gL), VQ(L)), (CéR), VG(R)).

times:
S =TU{leT: Vi>1,N;(0) < oo and 6 has a unique spine}.

A tree 6§ € . can be coded by two pairs of contour functions, (C’éL), %(L)) :

Ry — R4 xRy and (C’éR), G(R)) : Ry — Ry x Ry, each pair coding one side
of the spine. Note that to define the pair (C’éL), V(,(L))7 we follow the contour of
the tree from the left to the right as before, but in order to define (O(gR)7 VO(R))
we follow the contour from the right to the left. The definition of these contour
functions should be clear from Figure 2. Note that the functions C(gL), V(,(L),
C(SR) and VG(R) tend to infinity at infinity.

2.1.2. Planar maps and quadrangulations. A planar map is a proper embed-
ding of a finite connected graph in the two-dimensional sphere S2. Loops and
multiple edges are a priori allowed. The faces of the map are the connected
components of the complement of the union of edges. A planar map is rooted
if it has a distinguished oriented edge called the root edge, whose origin is
called the root vertex. In what follows, planar maps are always rooted, even
if this is not explicitly specified. Two rooted planar maps are said to be
equivalent if the second one is the image of the first one under an orientation-
preserving homeomorphism of the sphere, which also preserves the root edges.
Two equivalent planar maps will always be identified.

The vertex set of a planar map will be equipped with the graph distance
dgr: if v and v’ are two vertices, dg-(v,v’) is the minimal number of edges on
a path from v to v'.
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A planar map is a quadrangulation if all its faces have degree 4, that is 4
adjacent edges (one should count edge sides, so that if an edge lies entirely
inside a face it is counted twice).

Let us introduce infinite quadrangulations using Krikun’s approach in [10].
For every integer n > 1, we denote the set of all rooted quadrangulations with
n faces by Q,, and we set

Q= U Qn.
n>1

For every ¢,q’ € Q, we define

D(¢,q') = (1 +sup{r: M,(q) = M,(¢")}) ",

where, for r > 1, M,(q) is the rooted planar map obtained by keeping only
those edges of ¢ that are adjacent to a face having at least one vertex at dis-
tance strictly smaller than r from the root. By convention, sup() = 0. Note
that M, (q) is not a quadrangulation in general (it should be viewed as a
quadrangulation with a boundary) but is still a planar map. Then (Q, D)
is a metric space. Denote by (Q, D) the completion of this space. We call
(rooted) infinite quadrangulations the elements of Q that are not finite quad-
rangulations and we denote the set of all such quadrangulations by Qx.

Note that one can extend the function ¢ € Q — M, (¢) to a continuous
function on Q. Suppose that ¢ € Q... When r varies, the planar maps M,.(q)
are consistent in the sense that if » <7’ the planar map M, (q) is naturally
interpreted as the union of the faces of M, (q) that have a vertex at distance
strictly smaller than r from the root. Thanks to this observation, we can
make sense of the vertex set of ¢ and of the graph distance on this vertex set.

The vertex set of a (finite or infinite) quadrangulation ¢ will always be
denoted by V(q), and the root vertex of ¢ will be denoted by 0.

2.2. Schaeffer’s correspondence. The relations between quadrangulations
and labeled trees come from the following key result [8], [20]. There exists a
bijection ®,,, called Schaeffer’s bijection, from T, onto Q, that enjoys the
following property: if 8 = (7, (¢(v))yer) € Ty, then, for every integer k > 1 one
has
Ha e V(®,(0)) : dgr(0,0) =k} =|{veT: l(v)=Ek}|

Schaeffer’s bijection has been extended to the infinite setting in [6]: There
exists a one-to-one mapping ® from . into Q such that, for every 6 =
(7, ((v))yper) € .7, for every integer k > 1 one has

HaeV(®(0)): dgr(0,a) =k} ={veT:Ll(v) =k}
Note however that ® is not a bijection. There are infinite quadrangulations
(in Krikun’s sense) that cannot be written in the form ®(6).

Let us describe the mapping ® (see [6], Section 6.2 for details). Fix a tree
0 = (1,¢) € ¥ and assume that 7 is infinite (the case when 7 is finite is similar
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FI1GURE 3. Construction of a few edges in Schaeffer’s correspondence.

and easier to describe). Consider an embedding of 7 in the sphere S?, such
that every sequence p = (p,)nen of points of S? belonging to distinct edges
of 7, has a unique accumulation point A € S2. Recall that a corner of 7 is a
sector between two consecutive edges around a vertex. The label of the corner
is the label of the corresponding vertex.

We first add a vertex 9 in the complement of 7 U {A}. Then, for every
vertex v of 7 and every corner ¢ of v, an edge is added according to the
following rules:

o If {(v) =1, we draw an edge between the corner ¢ and 0 (see Figure 3, left).

e If ¢ is on the right side of the spine, if £(v) > 2, and if there exists a corner
with label ¢(v) — 1 that is visited after ¢ in the contour of the right side of
the spine, we draw an edge between ¢ and the first such corner (see Figure 3,
left).

e If ¢ is on the right side of the spine, if £(v) > 2, and if there is no corner
with label £(v) — 1 that is visited after ¢ in the contour of the right side
of the spine, we draw an edge between ¢ and the corner on the left side of
the spine with label ¢(v) — 1 that is the last one to be visited during the
contour of the left side of the spine (see Figure 3, middle).

e If ¢ is on the left side of the spine and if ¢(v) > 2, we draw an edge between
¢ and the corner with label ¢(v) — 1 that is the last one to be visited before
¢ during the contour of the left side of the spine (see Figure 3, right).

The construction can be made in such a way that edges do not intersect. The
resulting (infinite) embedded planar graph whose vertices are the vertices of
7 and the extra vertex 0, and whose edges are obtained by the preceding
prescriptions, is rooted at the oriented edge between 0 and the first corner
of . This embedded random graph ®(#) can be interpreted as an infinite
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quadrangulation in Krikun’s sense. Moreover, for each vertex v of 7, the
distance dg,(0,v) between the root vertex 9 and v in the map ®(f) coincides
with the label £(v).

2.3. The uniform infinite quadrangulation. In this section, we collect
the known results about the uniform infinite quadrangulation and the uniform
infinite well-labeled tree.

THEOREM 1 ([10]). For every n>1 let v, be the uniform probability mea-
sure on Q. The sequence (Vn)nen converges to a probability measure v, in the
sense of weak convergence of probability measures on (Q, D). Moreover, v is
supported on the set of infinite quadrangulations. A random quadrangulation
distributed according to v will be called a uniform infinite quadrangulation.

The probability measure v is connected with the law of the uniform infinite
well-labeled tree, which appears in the next theorem. Recall that d stands for
the distance on the space of labeled trees.

THEOREM 2 ([6]). For every n>1, let u, be the uniform probability mea-
sure on the set of all well-labeled trees with n edges. The sequence (fin)nen
converges weakly to a probability measure p in the sense of weak convergence of
probability measures on (T,d). Moreover, u is supported on the set .7 C To.
A random tree distributed according to p will be called a uniform infinite well-
labeled tree.

It was proved in previous work [17] that v is the image of p under the
mapping ® (the extended Schaeffer’s correspondence) described in Section 2.2.
This is stated in the next theorem.

THEOREM 3 ([17]). For every Borel subset A of Q one has
y(A4) = u(@71(4)).

Informally, we may say that the uniform infinite quadrangulation is coded
by the uniform infinite well-labeled tree.

For our purposes, we do not really need the preceding results. We will
mainly use the description of the probability measure p in Theorem 4 below,
and the fact that the uniform infinite quadrangulation is obtained from a tree
distributed according to p via Schaeffer’s correspondence.

In order to give a precise description of the measure p, we need a few more
definitions. Let 6 = (7, (¢(v))yer) be an infinite tree in . and let n > 0. If
v, is the (unique) vertex at generation n in the spine of 6, we denote the
label of v, by X,,(0) =¢(v,). The (labeled) trees attached to v, respectively,
on the left side and on the right side of the spine are denoted by L, (6)
and R, (0). More precisely, L,(0) = (7z,, (L, (v))ver,, ), Where 1o, = {v €
U:vpv €T and vpv < vpy1}, and £p (v) = £(v,v) for every v € 71, and a
similar definition holds for R, (6).



SCALING LIMITS FOR THE UNIFORM INFINITE QUADRANGULATION 1173

For every integer [ € Z, we denote by p; the law of the Galton—Watson
tree with geometric offspring distribution with parameter 1/2 (see, e.g., [13]),
labeled according to the following rules. The root has label [ and every other
vertex has a label chosen uniformly in {m — 1, m,m + 1} where m is the label
of its parent, these choices being made independently for every vertex. Then,
p1 is a probability measure on the space of all labeled trees. Moreover, for
every labeled tree § with n edges and root label [, p;(6) = %12_‘”. Since the
cardinality of the set of all plane trees with n edges is the Catalan number of
order n, we easily get

—3 2
(2) pi(10] =n) = po(|0] =n) = NG +0(n="?),
(3) pu(6] = 1) = po(|6] = n) = O(n~'/?)

as n goes to infinity.
Denote by Vi = Vi () the minimal label in 6. Suppose now that [ > 1.
Proposition 2.4 of [6] shows that

I(1+3)
(+D(+2)

We define another probability measure p; on labeled trees by setting
pr=pi(- | Vi >0).

(4) pu(V. > 0) =

We will very often use the bound p; < 2p;, which holds for every [ > 1 from
the explicit formula for p;(Vi > 0).

THEOREM 4 ([6]). Let © be a random labeled tree distributed according
to p. Write X,, = X,,(©) for every n > 0.

(1) The process X = (Xy)n>0 15 a Markov chain with transition kernel II such
that I1(0,1) =1 and the other nonzero values of II(1, k) are given by

I, —1) = (wy )dll forl>2,

12d;
(wi)?
f— >
TII(Z,1) 15 forl>1,
(wi)?
11 1) = >
(l,l—l— ) 124, diy1  forl>1,
where
v o 10+3)
U na+2)
dy = 3L (514 4 3005 + 5917 + 421 + 4),

560
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(2) Conditionally given (X,)n>0 = (Tn)n>0, the sequence (Ly)n>0 of subtrees
of © attached to the left side of the spine and the sequence (Ry)n>0 of
subtrees attached to the right side of the spine form two independent se-
quences of independent labeled trees distributed respectively according to
the measures py, , n > 0.

We will also use the following proposition, which is proved in [17]. We keep
the notation (X,,),>0 for the labels on the spine of the tree ©.

PROPOSITION 1 ([17]). The sequence of processes (1/ 5= X |nt| )10 converges

in distribution in the Skorokhod sense to a mine-dimensional Bessel process
started at 0.

We refer to Chapter XI of [19] for extensive information about Bessel pro-
cesses.

2.4. The Brownian snake. In this section, we collect some facts about the
Brownian snake that we will use later. We refer to [12] for a more complete
presentation of the Brownian snake.

The Brownian snake is a Markov process taking values in the space W
of all finite real paths. An element of W is simply a continuous mapping
w: [0,¢] = R, where ¢ = () >0 depends on w and is called the lifetime
of w. The endpoint (or tip) of w will be denoted by w = w(¢). The range of
w is denoted by w[0,{(yw)]. If z € R, we denote the subset of paths with initial
point z by W,. The trivial path in W, such that () =0 is identified with
the point z. The set W is a Polish space for the distance

+8up|w (¢ A Cay) = W' (EA Cory) |-
+>0

dyw (W, w") =|{(w) = Cwr)

The canonical space 2 = C(Ry, W) is equipped with the topology of uni-
form convergence on every compact subset of R,. The canonical process on {2
is denoted by W(w) = w(s) for w € Q and we write (s = (,) for the lifetime
of Wi.

Let w € W. The law of the (one-dimensional) Brownian snake started from
w is the probability Py, on £ which can be characterized as follows. First,
the process ((s)s>0 is under Py, a reflected Brownian motion in [0, co[ started
from ((y). Secondly, the conditional distribution of (W;)s>o knowing (Cs)s>o0,
which is denoted by QS,, is characterized by the following properties:

(1) Wo=w, Q5 as.
(2) The process (W;)s>o is time-inhomogeneous Markov under QS,. More-
over, if 0 < s <5,

o Wy (t) =Wi(t) for every t <m(s,s') =inf; o1 ¢, OF as.

b (VVS’ (m(sl’ 3) + t) - Wy (m(s, 5/)))0§t§Cs/—m(s,s’) is independent of W,

and distributed under QS as a Brownian motion started at 0.
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Informally, the value W of the Brownian snake at time s is a random path
with a random lifetime ¢, evolving like a reflected Brownian motion in [0, co].
When (s decreases, the path is erased from its tip, and when (, increases, the
path is extended by adding “little pieces” of Brownian paths at its tip.

We denote the It6 measure of positive excursions by n(de) (see, e.g., Chap-
ter XII of [19]). This is a o-finite measure on the space C(R4,R;). We write

o(e) =inf{s>0: e(s) =0}

for the duration of an excursion e. For s >0, n( denotes the conditioned
probability measure n(-|oc = s). Our normalization of the It6 measure is fixed
by the relation

< d
(5) n= / 78 n(s).
0 2V2rs3

If z € R, the excursion measure N, of the Brownian snake started at = is
defined by

N, = / n(de)Qe.
C(R+ 7]R+)

With a slight abuse of notation we will also write o(w) =inf{s > 0: {;(w) =0}
for w € 2. We can then consider the conditioned measures

NSES) =N,(-lo=s)= / n(, (de)Qs.

CRy,Ry)

The range R = R(w) is defined by R = {Ws 1§ >0}, and we write minR
for the minimum of R. We have, for every x > 0,

3

See, for example, Section VI.1 of [12] for a proof.

2.5. Convergence towards the Brownian snake. In this section, we
recall a standard result of convergence towards the Brownian snake. Let
F =(01,05,...) be a sequence of independent labeled trees distributed ac-
cording to the probability measure pg. We denote by C¥ = (C7(t));>¢ the
contour function of the forest F, which is obtained by concatenating the con-
tour functions of the trees 61,0z, .... Similarly, V¥ = (V7 (¢));>0 is obtained
by concatenating the spatial contour functions of the trees 6;,60s,.... Note
that this concatenation creates no problem because the labels of the roots of
01,62,... are all equal to 0.



1176 J.-F. LE GALL AND L. MENARD

In the next statement, (W;);>¢ is the Brownian snake under the probability
measure Py and (;):>o is the associated lifetime process.

PROPOSITION 2. The sequence of processes

(%C}-(n%), \/%Vf(n%))

converge in distribution to the process (Ct,ﬁ/\t)tzo in the sense of weak con-
vergence of the laws on the space C (R, R?).

t>0

The convergence of contour functions in the proposition follows from the
more general Theorem 1.17 of [13] (in our particular case, it is just a straight-
forward application of Donsker’s theorem). The joint convergence with the
spatial contour process can then be obtained as an easy application of the
techniques in [9)].

Theorem 5 below provides an analogue of Proposition 2 when the forest of
independent trees F is replaced by the forest of subtrees branching from the
left (or right) side of the spine of the uniform infinite well-labeled tree. This
replacement makes the proof much more involved, essentially because of the
positivity constraint on labels.

3. Scaling limit of the uniform infinite well-labeled tree

3.1. The eternal conditioned Brownian snake. We start by introduc-
ing the eternal conditioned Brownian snake, which will appear in our limit
theorem for the uniform infinite well-labeled tree. Let Z = (Z;);>0 be a nine-
dimensional Bessel process started at 0. Conditionally given Z, let

P=2 0w
iel
be a Poisson point process on Ry x Q with intensity
(7) 21 {min R (w)> - 2z} At No(dw)

where we recall that R(w) denotes the range of the snake. We then construct
our conditioned snake W as a measurable function G(Z,P) of the pair
(Z,P). Let us describe this function G. To simplify notation, we put

o =o(w;), (L= Co(wi), Wi =W,(w;)

for every i € I and s > 0. For every u > 0, we set

Tu = Zl{mﬁu}ai'
iel



SCALING LIMITS FOR THE UNIFORM INFINITE QUADRANGULATION 1177

Then, if s > 0, there is a unique u such that 7, <s<7,, and:

e Either there is a (unique) 7 € I such that u =r; and we set
¢ =ut G, s

Wee (1) = Zy, if t <u,
S\ Zu+ Wi (t—u), ifu<t<(R.

e Or there is no such 7, then 7,_ = u =17, and we set
G =u,
W (t)=2Z;, t<u.

These prescriptions define a continuous process W™ = G(Z,P) with values
in W. As usual the head of W at time s is Wfo =W2(¢S°). We say that
W is an eternal conditioned Brownian snake.

The preceding construction can be reinterpreted by saying that the pair
(¢, /V[7°°)520 is obtained by concatenating (in the appropriate order given by

S
the values of 7;) the functions

(Ti + Cz’ Zr, + VV;)OSSSUV
In particular, it is easy to verify that, a.s. for every u >0,
Tu =sup{s>0: ¢ <u}.

This simple observation will be useful later.
If K >0 is fixed, an application of (6) gives for every u >0,

(o)

P| inf Wg°> K} = E[exp—?,/ ((Zs— K)™* = (Z5)7?) ds|,
S>Ty w

with the convention that the integral in the exponential is infinite if Z;, < K

for some s > u. The right-hand side of the previous display tends to 1 as

u — oo, and it follows that

(8) lim /WS‘X’ =+00, a.s.

Suppose that conditionally given Z, P is another Poisson measure with
the same intensity as P, and that P and P are independent conditionally
given Z. Then let W = G(Z,P) as before and also set W™ = G(Z,P).

We say that (W, WW) is a pair of correlated eternal conditioned Brownian
snakes (driven by the Bessel process Z).
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3.2. Convergence of the rescaled uniform infinite well-labeled tree.
Throughout this subsection, we consider a uniform infinite well-labeled tree ©,
and we use the notation introduced in Theorem 4: In particular X,,, n €
Zy are the labels along the spine of ©, and L, and R,, n € Z,, are the
subtrees attached respectively, to the left side and to the right side of the
spine. Recall that the left side (resp. right side) of the spine can be coded
by the contour functions (CX), V() (resp. (CU9, V1)), The main result
of this section gives the joint convergence of these suitably rescaled random
functions towards a pair of correlated eternal conditioned Brownian snakes.

THEOREM 5. Let (W) W) be a pair of correlated eternal conditioned
Brownian snakes. We have the joint convergence in distribution:

) ((%cwn?s), e <n2s>) ,

s>0

1 3
—CW (n2s), ] =V (n28)> )

(@ 7 T
2 (W) o (P W) ),

n— oo

where C§L) = C(W(L)), resp. CgR) = C(W<R>)a for every s > 0. The convergence

in distribution (9) holds in the sense of weak convergence of laws of processes
in the space C(R,R?)2.

Before proving Theorem 5, we will establish a few preliminary results. For
every finite labeled tree 6 and every t > 0, we set

(" 0,57 (1) = (%%(n?t), @ Ve <n2t>> ,

where (Cy, Vp) is the pair of contour functions of 4. In addition, we also write
R(V"™) ={Vy" (1) : 120},

We use the notation p;(f) (or pi(f)) for the integral of a function f defined
on T with respect to p; (or to p;), whenever this integral makes sense.

PROPOSITION 3. Let ¢ be a bounded continuous function from C(R,R)? x
Ry into Ry. Assume that there exists n >0 such that (f,g,s) =0 if s <
1. Fix z >0 and let (z,)nen be a sequence of positive integers such that

,/%xn — 2z as n goes to co. We have the following convergence:

N n n) 2|0 =
Npg,, (SO (Cog )a%( )a %)) n?go 2N, (@(C?W7U)1{min72>0})~
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Proof. Recall the notation

1(1+3)

T+0)i+2) 2p(Vi > 0),

w; =
for every integer [ > 1. Fix K >n. Then, for every integer n > 1,

. n) () 20
(10) NPz, <<F7<Cog )vVe )’F>>

- B (n) n) 2|6|
=2nw, " Pz, (1{minR(V§”))>0}¢ (C n?

| Kn?|
=2nw,t Y pa (l6]=k)
k=|nn?/2]
(m) 1), 2|9|
X Pz, (1{minR(V9("))>0}<p(C ‘|0|

+ 200 pe, (6] > Kn?)

X P, (1{min7z(vé"))>0}90(C ‘|9| ’

The first term in the right-hand side of (10) can be written as

|Kn?|+1

(11) %%*/ " s pa (10 = [s12))

Tn fnn2/2)
n2

n) < (m) 2]sn?]
e (1{minR(Vé")>>o#p(C‘5 i )’TNW' B LanJ)'

In order to investigate the behavior of the quantity (11) as n — oo, we
use a result about the convergence of discrete snakes. Fix y > 0 and let
(yx)ken be a sequence of positive integers such that (9/8%k)/ %y, — y as n goes
to co. Let (Wy);eo,1) be distributed according to N;l) (see Section 2.4). Then
(et)tef0,1] := (Cw,))tefo,1) is a normalized Brownian excursion. Theorem 4 of
[7] (see also Theorem 2 of [9]) implies that the law of the pair

(Cg(2kt) (g>1/4\/'9(2kt)>
\/ﬁ "\8 ki/4 teo,1]

under py, (+||0] = k) converges as k goes to infinity to the law of (et,\/ﬂ\ft)te[oyl]
in the sense of weak convergence of probability measures on C([0,1],R?). If
s >0 is fixed, we can apply the previous convergence to integers k of the
form k = |sn?], noting that (9/8|sn?|)/*z, converges to (2s)~/*z under
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our assumptions, and we get

n) 1r(n 2Lan
pwn(1{mwv<n>>>o}so(0é LV = )\|e| [sn J)
— NG, (Liminr>0) 9 (V25C( j20), (28) /1T 4, 25) ).

n—oo

To justify the latter convergence, we also use the property
( inf /Wt:o) -0,
teR

which follows from the fact that the law of the infimum of a Brownian snake
driven by a normalized Brownian excursion e has no atoms: see the beginning
of the proof of Lemma 7.1 in [14].

A scaling argument then gives

Ng.)s)*l/‘lz (l{min R>O}(p(\/2—$<(-/2s)a (25)1/4W(,/25), 23))
= Ngs) (l{minR>0}90(<> W? 28))

and thus we have proved, for every fixed s > 0,

n 25n
(T TR (= Rzt | TR e

- N( S)(l{mlnR>0}(p(C w 28))

n—oo

From the explicit formula for w;, we have w; > 4/3 for every | > 0. Using
also (2), we see that the following bound holds for all sufficiently large n: for
every s € [n, K,

(13) 20wzl ps, (0] = [sn?])

" n 2 0
X pi?n (1{minR(V9(”))>0}<p (C( ( ‘ ‘ > “el |_ J)
3

< = |l¥lloo;
s elelle
where |||/ is the supremum of |g|.

We can use (2), (12), (13) (to justify dominated convergence) and the fact
that w,, — 2 as n — oo to see that the quantity (11) converges as n — oo to

K
ds
/ 2\/—N(25) (l{mlnR>0}<p(< W 25))
n

K
Cds s .

Since this holds for every K > 1), we get by using (5) that

n n) 2|0 =
liminf np,, <<p<C’é ),Va( )’r|z2|)> > 2N; (Lminr>0y (¢, W, 0)).

n—oo
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Similar arguments, using also the estimate (3), lead to

216
limsup np,,, <<P (Cén), Vg(n)a 7l2|) >

< / \](25 (I_ (‘Q(C [/[/ QS)) C ||(17||
= /— min (o old
n 2 { R>0} V K

with a constant C that does not depend on K. By letting K — oo, we get

. . n 2|0 T
llmsupnp:mL( (C( ‘/9 9 7‘1 |)) §2Nz(1{minn>0}¢(C7WaU)>

n—oo

which completes the proof. O

We now state a technical lemma, which will play an important role in the
proof of Theorem 5. We need to introduce some notation. For every integer
n > 1 and every h > 0, we set

[nh)
(Lnh) _ L"hJ T Z 2n*2|L .
=0
This is the time needed in the rescaled contour of the left side of the spine to
explore the trees L;, 0 <4 < |[nh]. Furthermore, for every integer k > 0, we
write Jy for the unique index 7 such that the vertex visited at time £ in the
contour of the left side of the spine belongs to L;.

LEMMA 1. Let h > 0. For every x >0, we can find § > 0 sufficiently small
so that, for all large integers n,

1
P sup _JI_TLQuJ_JLn2vJ’>K’ <K.
0<u<v<r(Lmnh) y_y<s T
REMARK. If we use linear interpolation to define J,, for every real u > 0,
Lemma 1 just says that the functions v — nilan(u,\T(L,n,h)) are uniformly
equi-continuous in probability.

Proof of Lemma 1. To simplify notation, we write p,(k,d) for the prob-
ability that is bounded in the lemma. Suppose that there exist u and v
with 0 <u < v < 7Emh) and v —u < 6, such that || n2u) — J|n2e)| > nk.
Notice that all vertices belonging to the subtrees L; for indices i such that
J|n2u) <@ < Jpp2y) are visited by the contour of the left side of the spine
between times |n?u] and |n?v]. Hence

2 Z |L;i| < [n*v] — [nu| <n?6 +1.
JLHQM <i<JLn2,,J

Since |J|p2q| — J|n20|| > 1k, we can find an integer j of the form j =1|nk/2],
with 1 <1 <nh/|nk/2], such that the inequalities J|,2,) < i < J|n2,) hold
fori=j+4+1,j4+2,...,5+ [nk/2].
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It follows from the preceding considerations that

[nr/2]
U {2 Z |Lanm/2j+i|§n25+1}

1<i<nh/|nk/2] i=1

k2]
U ( N {2|Lann/2J+i|S”25+1}>

1<i<nh/|nk/2] i=1

pn(‘%7 6) S P

<P

From Proposition 1 and the fact that a nine-dimensional Bessel process
does not return to 0, we can fix n >0 and A > 0 such that

Plnvn < X; < AynVie{|nk/2],...,|nh] + [nk/2]}] > 1 —K/2.
It follows that

lnk/2)
P ) <5+ D Pl () {2lLiwzi] <041,
1<i<nh/|nk/2] i=1

VN < X jnwya)+i < AV}

h ~
E+”—( sup 7u(20] <06+ 1)
2 Lnl{/2j nvn<z<A\/n
using the conditional distribution of the trees L; given the labels on the spine
(Theorem 4). We can find a large constant K > 0 such that, for every suffi-

ciently large n,
5+L<1_£)L”“/2J s
2 |nk/2] n '
To complete the proof of the lemma, we just have to observe that we can

choose § > 0 sufficiently small so that, for all n large,

~ K
inf  7,(20) >n?+1) > —.
nvn<z<Ayn n
This is indeed a consequence of Proposition 3, together with the fact that, for
every 1> 0,

. ) nr /2]

%iroan(U>(5,minR>O)an(minR>0):+oo. O

We denote the rescaled contour functions of the labeled trees L; (resp. R;)
by C(LT;) and VL(:L) (resp. C’g) and ng)), in agreement with the notation
introduced after Theorem 5. To simplify notation, we also put

n) _ |3
Xt - %Xl_nﬂ? tZ O
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PROPOSITION 4. Fize >0 and hg >0. Let ¢: D(Ry) — R and (5 ()
R; x C(R;,R)? x R, — Ry be continuous functions. Assume that ¢ is
bounded, and that X and B are Lipschitz with respect to the first vari-

able and such that ) (h, f,g,s) =0 and ) (h, f,g,5) =0 if h > hg ors <e.
Then

stxe 30 (£l v, 220
Xexp< Zw(m( RZ),QI;'H))
— E[é(z) eXp(—2 / dhNz, (1{minr >0y (1 —exp—w”(h,cﬁ,a))))
n—oo 0

X exp (—2/ dhNz, (1{minr>0} (1 — exp —¢(R)(h7C7W7U)))>} ,
0

where Z is a nine-dimensional Bessel process started from 0.

E

REMARK. We can interpret the limit in the theorem in terms of Poisson
point processes. Conditionally given Z, let (P(X), P(R)) be a pair of indepen-
dent Poisson point processes on Ry x Q with intensity given by (7). Then,
the exponential formula for Poisson point processes implies that the limit
appearing in the proposition is equal to

Blo(@)exn(~ [0 (1.6.0). 20+ W), ) PO fan, )

X exp<—/¢<R> (hC.(w), Zn + ﬁ/\.(w),a(w))P(R)(dh,dw))}

Proof. We have

- (n) 2|L|
o(X exp( ;w ( PR
B[ A0 ) 2R
xexp<2¢( )(H7CR’ ’VRi ,7
1=0

N i ) ) 2L
</>(X<"))HE[exp—w@)(ﬁ,céﬂVéﬁ, - ')\Xi]

=0
T fon o (£t v 250 ]
=0

using the independence of the subtrees L; and R; given the labels on the spine
(Theorem 4).

(14 E

=F
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Let us study the contribution of the left side of the spine in (14). By
Theorem 4 again,

- i ) ) 2|L
(15) HE[exp—w@)(5,0237V£),|n—2>\Xz}

=0

—HPX (exp w(”( ol ym, TLI))

=0

.- ~ 2|0
:eXlengXi (exp ¢(L)( C(") V(n) 7|l |)>

=0

:expn/ dtlog(l
0
n n 2|0
. <l—exp ¢L><LnJ S OR7Cl T|L2|>)>

By Proposition 1 and the Skorokhod representation theorem we can find,
for every n > 1, a process (X}')rx>0 having the same distribution as (Xg)r>0,
and a nine-dimensional Bessel process Z started from 0, such that almost

surely, for every a > 0, (4/ %antj)oftﬁa converges uniformly to (Z;)o<t<a as

n goes to infinity. Using the Lipschitz property of (%) in the first variable,
together with the fact that o) (h, f,g,s) =0 if s < e, we have, for some

constant K,
~ o nt] ) ) 200
np)?[LmJ <1expw( )< n 700na‘/:9n’ n2

2
[nt] ’I’L

< Kpg, (161 [en]/2) < 2K po(16] > Lsan/2),

(16)

which tends to 0 as n — oco. We then deduce from Proposition 3 that, for
every fixed ¢t > 0,

Ber — exp—D) () 2|0|
(17) P, <1 exp — <t,C’ WV 2

— 2NZt< {min R >0} (1 —exp— w(L)(t ¢, W U))) a.s.

n— oo

From our assumptions on ¥%), we have for every t >0 and n > 0:
- nt n ) 2|0
npf’ﬁm (1 —exp _¢(L) (L ] C( ) v ’ | |)>

=nP%p (1{tsm+1}1{|ezten2j/z}
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t 2|60
X <1 — eXp _¢(L) ( Ln J 7Oén)7ve(n)’ 2|)>)
n n
< 1{t§h0+1}nﬁ§h” (16] > [en?]/2).

It then follows from (3) and the bound p; < 2p; that there exists a constant
K’ >0, which does not depend on t, such that for every ¢ >0 and every n > 1
one has:

~ nt n) n) 2|0
"z, (1_6Xp_¢(L)(L JC( Vo ’#))SK’l{Khm}-

Thus, we can use (16), (17) and dominated convergence to see that the right-
hand side of (15), with X replaced by X™, converges a.s. to

exXp 72/ dtNZt, (1{min R>0} (1 — €Xp 77/}(11) (ta gv W? J)))
0

as n — 0o. A similar analysis applies to the contribution of the right side of
the spine in (14). Using the fact that X™ has the same distribution as X (so
that the right-hand side of (14) coincides with a similar expectation involving
X™), we conclude that

R Am) ) 2Rl
X exp(—gdj( )<E7CRi VR, 2

oo
— E[¢<Z> exp —2 / dtNz, (1gminr>0} (1 — exp =B (t,¢, W, 0)))
n—oo O

E

X exp —2 / dtNz, (1 minrso0y (1 — exp —¢ (t,c,W,(r)))] :
0
This completes the proof. O

Fix hg >0 and € > 0. Let P(L7"0:¢) be the finite point measure on [0, ko] x
C(R4,R)? x R, defined by

pLinhoe) — Zl{ i <noyly, (C§)>e 101 ®0 (§ VM) ®52\L L-
>0

We denote by P:7:10:€) the point measure defined similarly for the right side
of the spine. The random variables P(E:7:"0:2) and PUm:m0.2) take values in
the space
E:=M¢(Ry x C(Ry,R)* x Ry)
of all finite measures on Ry x C(R;,R)? x Ry, which is a Polish space.
Let Z be a nine-dimensional Bessel process started at 0. As in the preced-
ing proof we consider two point processes P& and P on R, x Q, which
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conditionally given Z are independent and Poisson with intensity given by
(7). Then we define a random element P(£:°20:€) of E by

/P(L,oo,hme) (dhdfdgds)F(h, f,g,s)

- / PO (A ) F (h, (@), Zn + T (@), (@) Lincns o (ore).

We similarly define P(:2%:0:¢) from the point process PV,

COROLLARY 1. For every fized € >0 and hg >0,
(X(n)7p(Lymho,E)?'])(R,mho,a)) N (Z7P(L7w7h075)7'p(R,OO,h075))7

n—oo
in the sense of convergence in distribution for random wvariables with values

mn D(R+) X FExE.

Proof. Let us first show that the sequence of the laws of P(EFmho) g
tight. We will verify that, for every o > 0, there is a real number M, >0 and
a compact subset K, of [0, ho] x C(R;,R)? x R such that, for every integer
n > 1, with probability at least 1 — c, the measure P(E7h0:¢) has total mass
bounded by M, and is supported on K. Since the set of all finite measures
supported on K, with total mass bounded by M, is compact, Prohorov’s
theorem will imply the desired tightness.

Since for every = > 1,

Do (0(C5V) =€) <20, (0(C5™) > €) = 200(2/6] > en?) = O(n ")

a first moment calculation shows that we can find a constant M, such that,
for every n > 1,

(L,n,ho,¢) «
Pl[pthmtod] = M,] < 3.

A similar argument gives the existence of a constant H, large enough so
that, for every n,

P[PEmRo2) ([0, ho] x C(Ry,R)2x]Hy,00[) > 0] < %.
We will thus take the compact set K, of the form
K, =10,ho] x Ko x [0, Hal,

where KC,, will be a suitable compact subset of C(R,R)2. To construct K, we
rely on the convergence results for discrete snakes. We first note that, thanks

to the convergence in distribution of the rescaled processes (\/%X Int] )0
we can find a constant A, such that, for every n > 1,
Pl sup X;>A,vn|<a/s.
0<i<|hon]
Theorem 4 of [7], or Theorem 2 of [9], implies that the collection of the
distributions of the processes (Cé"),Ve(")) under the probability measures
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pz(- | en? < 10| < Hyn?), for n > 1 and z varying in [0, A,+/n], is tight (of
course the choice of = here just amounts to a translation of the labels). In
particular, we can find compact subsets K of C(R,,R)? for which

P2 ((CS V™) ¢ K | en® < |0] < Hon?)

is arbitrarily small, uniformly in x € [0, A,+/n] and n > 1. Using once again
the bound p; < 2p; and the estimate (3), we can thus find a compact subset
Ko of C(R4,R)? such that

(Inho] +1) x 5. ({(CSV, VM) ¢ Ko} n{en® < |6] < Han?}) < o8,
for every z € [0, Aqv/n] and n > 1. From this last bound and a first moment
calculation, we get
PH sup X < Aa\/ﬁ} N {PLnhoD) ([0, h] x K& x [0, Hy)) > 0}} <a/s.
0<i<|hon
We take K, =[0,ho] x K4 x [0,H,] as already mentioned, and by putting
together the previous estimates, we arrive at

p[{|p(L,n,h0,s)| < Ma} N {P(L,n,hO,s)(Kg) _ 0}] >1—a

This completes the proof of tightness.

The same arguments also give the tightness of the sequence of the laws
of PUmhoe) - Therefore, we know that the sequence of the laws of (X,
PpLonshoe) pRnshoc)y js tight.

Proposition 4, and the remark following the statement of this proposition,
now show that

E [\If (X(n) 7 rP(L,n,ho,s) 7 zP(R,n,hO,E))] N [\I/ (Z, Pg)o,ho,a) 7 P}(%oo,ho,a))]

n—oo

for all functions ¥ of the type
W (u,mq,mz) =¢(U)6XP<—/¢(L)dm1 —/¢(R) dmz)»

with ¢, ¥ and ") as in Proposition 4. Once we know that the sequence
of the laws of (X () P(Lnhoe) plRnhoe)) ig tight, this suffices to get the
statement of Corollary 1. O

Proof of Theorem 5. Throughout the proof, hy > 0 is fixed. We consider
as previously a triplet (Z, P(F), P(F)) such that Z is a nine-dimensional Bessel
process started at 0, and conditionally given Z, (P(), P(®)) is a pair of inde-
pendent Poisson point processes on Ry x Q with intensity given by (7). We
assume that the process W&, resp. W& is then determined from the pair
(Z,P(), resp. (Z,P)), in the way explained in Section 3.1. In agreement
with this subsection, we also use the notation

T&L) = sup{s >0: §§L) < u}

for every u > 0.
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Let us fix € > 0. For every n > 0, let C(L>™"0:¢) denote the concatenation of
the functions (£ +C’I(ﬁ) (t))o<t<2n-2|L;|, for all integers i such that 2n2|L;| > ¢
and i < nhg. The random function C'Z/0:) is defined and cadlag on the
time interval [0, 7(57h0:9) [ where

(18) T(L,n,hg,a) = Z 1{2n*2|Li\>6}2n72|Li|'

Z‘S’nho

We extend the function ¢t — C(L"0:€) to [0, 00[ by setting C(Lmho) (¢) =
% for every ¢ € [r(L:mho:8) ool

We denote the rescaled contour function of the left side of the spine of the
uniform infinite well-labeled tree, up to and including its subtree L5, at

generation |nhg|, by C&>mh0) The function t — C(F7h0) (1) is defined and

continuous over [0,7(&™50)] where as previously
nh _
(19) i) - 0] 5™ g2y,

itho

Again, we extend CL"0) to [0,00[ by setting CLmho)(¢) = L"ZOJ if ¢ >
7(Lm:ho) - Note that we have also

r(Emsho) — sup{t >0: lC’(L)(712t) < M}
n n
and that C(F-mho) (¢) = LOW) (2 (¢ A 7(Emho))) for every t > 0. The difference
between C(E:7:70) and C(Fm"0:9) comes from the time spent on the spine by
the contour of # and the contribution of small trees. See Figure 4 for an
illustration of the processes C'(F:7:"0) and C(L-mhose)

Similarly, we denote by V(E7h0:€) the concatenation of the functions
(VL(:L) (t))o<t<2n-2|1; for all integers ¢ such that 2n~2|L;| > ¢ and i < nho,
and we extend this function to [0, oo by setting V (Fmho8) () = sz;v,oj/n for
t > 7(Lmhof) - We define the process V(E"0) analogously to C'(Fmm0) | re-
placing the contour function by the spatial contour function.

We define in the same way the processes C(Fmho.e) 7/ (Fnsho.e) - C(Rin:ho)
and V7h0) for the right side of the spine.

Finally, let P(L:00:h0.6) and PUR00:h0:€) he the point measures on Ry x
C(R,,R)? x Ry defined from P%) and P in the way explained before
Corollary 1. We define four processes C'(£:00:h0.€) 1/ (L,00,h0.2) - (C1(R.00,h0.€) gpd
Y (R:00.h0.€) by imitating the preceding construction but using the point mea-
sures PL:00:10:2) and PH:00:h0.€) ingtead of PLmho) and P02 - More
explicitly, if (r1, (f1,91),51), (r2,(f2,92),52), etc. are the atoms of P(L:00:h0.€)
listed in such a way that 7, <7y < ---, the process CL:°%50:€) ig obtained by
concatenating the functions (r1+ f1(£))o<i<s,» (r2 + f2(t))o<i<s,, €tc., and the
process V' (£:50:70:€) i5 obtained by concatenating the functions (g1 (t))o<t<s, ,
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C(L,n,ho.s)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ™y

[nho]

|nho|—3
n

4 . . .

S Linho)-s ¢ Linke)

2 S | |

2 .
: »
| (Lnho.€)
L[nhgj—:i LU()LOJ

»
(Lo

<e <Lc¢

FIGURE 4. The processes C(Lm:h0) and C(Lmahose)

(92(t))o<t<s,, etc. The random functions C1:00:h0:2) and V(£:0:ho:) are a
priori only defined on a finite interval [0, T}(Lf’s) [, but we extend them to [0, 00[

by setting
(i) Bt ) _ (1, 7,,)

for every t > T,(LOL’E).

Using Corollary 1 and the Skorokhod representation theorem, we may find,
for every n > 1, a triplet (X PLmhoe) plHEnho)) haying the same law
as the triplet (X (™) PEnhoe) plRnhoe)) and such that

(20) ()Z‘(")’ﬁ(L;mhoﬁ)?'ﬁ(R;mho,E)) SN (Z"])(L;OO,h075)77)(R7007h0,8))
n—oo

almost surely. We can order the atoms of the point measures considered in
(20) according to their first component. From the convergence (20), we deduce
that almost surely for n large enough the measures PLinsho.e) gapd PLioohoe)
have the same number of atoms, and the ith atom of P(Linhose) converges as
n — 0o to the ith atom of P(£:%:"0:€)  The same property holds for the right
side of the spine.

_ With the point measure ’ﬁ(L’”’h‘“E), we can associate random functions
C(Lmohoe) 17 (Lnshog) defined in the same way as C(Lmho.e) 7(Lnho.g) wwere
defined from P(L:m-h0-9)  Similarly, with the point measure P00 we ag-
sociate the random functions CN'(R’”’hO’E),XN/(R’"*hO’E). From the almost sure
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convergence of the atoms of ﬁ(L’”’hO’E), resp. 73(R’”’h"’5), towards the corre-
sponding atoms of P(L:00:h0:€) " pregp. P00:h0.€) it is then an easy exercise,
using the definition of the Skorokhod topology, to check that we have almost
surely
(21) (ClEmho.e) llamho)) _, (C(Loohond) y(Liooiho.e))

) N—s 00 9
and similarly
(22) (é(R,n,ho,s),i}(R,n,ho,e)) N (C(R,oo,ho,s)7V(R,oo,im,s))

n—oo
in the sense of the Skorokhod topology on D(R?).
Let dsx be a metric inducing the Skorokhod topology on D(R?). We may

assume that dSk((flvgl)v (f2ag2)) < Hfl - f2||oo + Hgl - 92”00, where ||fHoo =
sup{|f(t)] : t > 0} < o0.

Then let F be a bounded Lipschitz function on D(R?) x D(R?). From (21)
and (22), we have

(23) E [F((C(L’n’ho’e), V(L,n,hg,e))’ (Cv(R,n,ho,s)7 V(R,n,ho,s)))]
- E [F((é(L,n,h0,€)7 V(L,n,ho,e)) , (6«(R,n,hg,5)’ v(R,n,ho,a)))]
I o [F((C(L,oo,ho,s)7 V(L,oo,hg,s))’ (C(R,oo,hg,s)’ V(R,oo,hg,s)))] )

n—oo

Our goal is to prove that
(24) E [F((C(L,n,ho)’ ‘/‘(L,nﬁo))7 (CY(R,mho)7 V(R,n,ho)))]
— F [F((C(Loqho)’ V(Loo,ho))7 (C(R’Oo’ho), V(R,oo,ho)))] 7

n—oo

where (C(Lo0:ho) (¢), V(Ew00ho) (1)) = (Ct(ﬂ;/§>7/v‘7t(fj,g§>)v and the processes
(CF00h0) (1) V7 (F.00.h0) (1)) are defined in a similar manner. As we will ex-
plain later, the statement of Theorem 5 easily follows from the convergence
(241)1.1 order to derive (24) from (23), we use the next lemma.
LEMMA 2. (i) For every n >0, we have, for all € >0 small enough,
limsupP[§§g|C(L’"’h°’E) (t) — C(L’"’ho)(t)| > n] <n

and
limsup P {sup|V(L’”’h°’5)(t) - V(L’"’ho)(t)| > n} <.

n—0o0 t>0

(ii) We have for every n >0,
lim P[sup|C’(L’°°’h0’5)(t) — C(L’Oo’ho)(t)| > n} =0
e—=0 Li>p

and

lim P [sup|V(L’°°’h°’€) (t) — Vool (3)] > n} =0.
e—=0 Li>o
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Let us postpone the proof of Lemma 2 and complete the proof of Theorem 5.
Fix § > 0. From part (ii) of the lemma (and the obvious analogue of this lemma
for processes attached to the right side of the spine), and our assumptions
on F', we can choose g > 0 such that, for every ¢ €]0,¢¢],

EVHFV((CV(L,OOJLQ)7 ‘/(L,oo,hg))7 (O(R,Oo,ho)’ V(R,Oo,ho)))
_ F((C(L’Oo’ho’s), V(L,oo,ho,z-:))7 (O(R,oo,ho,s)7 V(R,oo,ho,s))) H < 5.

From part (i) of the lemma, and choosing ¢ even smaller if necessary, we have
also

lim sup E |:|F((C(L,n,ho)’ V(L,n,ho)), (C(R,n,ho), V(R,n,ho)))

_ F((C(Lm,ho,a), V(L,n,ho,a))’ (CV(R,n,ho,(:)7 V(R,mho,s))) H <4
Hence, using also (23),

hm supEHF((C(L,n,ho), ‘/(L,’n,ho))7 (C;f(l:x’,,’n,ho)7 V(R,n,hg)))

_ F((C(L,OO,hO)’ ‘/v(L,oo,ho))7 (C’(R,oo,ho)7 V(R,oo,ho))) H <95
Since ¢ was arbitrary, this completes the proof of (24). We have thus obtained
(25) ((C(L,n,ho)’ ‘/‘(L,n,ho))7 (C(R,n,ho)7 V(R,n,ho)))
ﬂ ((C(L,oo,ho)’ V(L,oo,ho))7 (C(R7oovh0)7 V(R,oo,ho))).

n—oo
However, the pair (C(Lmho) 7/ (Em.ho)) coincides with the process (£ C1)(n?.),

1/%V(L)(n2~)) stopped at time 7(5™50) - and the pair (C(F:00:h0) 17 (L00.h0))

coincides with the process (((L),W(L)) stopped at time T,EOL). Simple argu-

ments (using the fact that (25) holds for every hg > 0) show that 7(F:7ho)

T}(Lf), and that this convergence holds jointly

must converge in distribution to
with (25).

Analogous properties hold for the pairs (C (ko) [y (Enho)) and (O:00ho),
V (R.20:h0)) “and for the random times 7(7h0) and T}gf) defined in an obvious
manner for the right side of the spine. Since T}EL) and T]_(Lf) both increase to co

as ho 1 0o, the statement of Theorem 5 follows from the convergence (25). O

Proof of Lemma 2. We start by proving (ii). Write the atoms of P(%) in

the form
pL) — Z (5(”7“&)
iel
and notice that, for every u >0,

=Y "1, cuyo(wi).
iel
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The construction of W) from the point measure P (cf. Section 3.1) shows
that the pair (¢(®), W(F) is obtained by concatenating (in the appropriate
order given by the values of r;) the functions

(ri + C.(@1), Zr, + W.(w1)).

On the other hand, the definition of the point measure P(£:°°m0:¢) “and the
construction of the pair (C(F:°0m0:2) 17 (L:00.h0.)) from this point measure,
show that the pair (C(F:00.h0.2) 17(L,00,h0.6)) ig obtained by concatenating the
same functions, but only for those indices ¢ such that r; < hg and o(w;) > €.
In other words, if we define for every t > 0,

ho,
(L 0:€) _ / dSZl{T <ho,o(w; >5}1{T(L)<S<T(L)}

i€l
and
o) = inf{s >0 AlLR0S) S} A
we have
o0 [ o0 L
(26)  (Cte @), vt w) = (¢, W, ).
for every t > 0. It is however immediate that
ATshoe) Ly A 7_(L)
¢ e—0

and the convergence is uniform in ¢ by a monotonicity argument. It follows

that
y(Lo:e) —’t/\TIEL)
again uniformly in ¢. Part (ii) of the lemma now follows from (26).

Let us turn to the proof of (i), which is more delicate. The general
idea again is that the process C(L™0:€) can be written as a time change
of CF-m:ho) (this should be obvious from Figure 4), and that this time change
is close to the identity when € is small. We start by estimating the difference
r(Emho) _p(Lnhoe) et us fix § > 0. If n is large enough so that ho/n < §/2,
we have, using (18) and (19),

(27) P[T(L,n,ho) _ pLmhoe) > 5]

Lnho] _
:P[ ORI Y Lza-ingza2n %L 26

i<nhg

2
—E[ > Lgon-2iz,<e120 7| L @

1<nhg

{Z px; (Lgan-2j91<c} 20" |9|)}

1<nhg

(o)

04\[\9
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4(|nho| +1)
S s - 7
1)
S K(hOa 6)61/2a

po(1i2n-2j0/<c}2n%16))

where the last bound is an easy consequence of (2), with a constant K (hg,0)
that depends only on hg and §.

We now compare C(Fmho€) and C(Fmho)  Note that we can write
CLomhoe) () = CLmho) (Ay), where the time change A; is such that 0 <
Ay — t < 7Lsmho) _ 2 (Linshose) (a brief look at Figure 4 should convince the
reader). It follows that
(28) sup|C(L’"’h°’5) (t) — C(L’"’hO)(t)|

>0

< sup |C(L’n’h0)(t1) — C(L’n’ho)(t2)|.

|t1—t2‘ST(L’””LO)—T(L’"’ho'g)

Recall that the function C(F™"0) is constant on [r(F-™h0) oo[ by construc-
tion. In order to bound the right-hand side of (28), we fix t; <ty < 7(F-m:ho)
such that to — t; < 7Lmho) — 7(Linhose) f there exists 0 < i < nhg such that

T(L,n,(ifl)/n) _~_n72 <t <ty < 7_(L,n,i/n) _~_n72
(with the convention 7(5™~1/") = —_p=2) then this means that the times t;
and ty correspond, in the time scale of the rescaled contour process, to the

exploration of the same tree L;, or perhaps of the edge of the spine above the
root of L;. In that case, we can clearly bound

(29) ‘C(L’n’ho)(tl) _ C(L,n,ho)(tQ)’

n n 1
< sup €5 (w) = LY ()] + —

K3
|u—w| <7 (L ho) (L ko)

On the other hand, if there exists no such i, then we can find 0 <i < j <nhyg
such that

Lo (i=1)/n) 4 =2 < ¢ < p(Lnsi/n) 4 =2
< 7 LmG=1/n) 4 p=2 <, < 7(Lmd/n) 4 =2
and we have:
|CEm-ho) () — ¢t (1,
< ]ng’,) (t2 — A Ln,(G=1)/n) _ n_2)

_ CE’E) (t — r(Bmsl=D/m) _ n=2)| + J _:l"‘ 1

b

where we recall the convention that C(n (s) =0 for s >2|L;|/n?. Now note
that i = J|,24, | and j = J| 24, |, with the notation introduced before Lemma 1.
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We obtain

(30) |C(L’n’h0)(t1) o C(L’n’ho)(t2)|
< Jin2ts] = Jn2ty) +1

" + max{C(L’;) (t — FLin(=1)/n) 4 n?),

O (1 — 7B G-1/) 4 y=2)).

Put v, . = 7(Fmho) — r(Enhoe) to simplify notation. From (28) and the
bounds (29) and (30), we get

(31) sup| €100 () — ko) ()|
t>0
J n2v| — J n !
< sup [Jinzo) = Tpnzug[ +
u,’UST(L’n'hU)’lv_u‘S’Y7L’E "
a0 - o,

0<k<[nho||v—u|<vn,e

We write £1(n,e) and Ba(n,e) for the two terms in the sum of the right-hand
side of (31). We will use Lemma 1 to handle 31 (n,¢), but we need a different
argument for fz(n,e). Recall our notation H(6) for the height of a labeled
tree #. Then, for every 6 >0 and x > 0,

(32) P{ sup sup ‘Cgl) (u) — C(Ln) (v)] > Ii:|

0<k<|nho] lu—v|<d * *
\_nhuj

< Z P| sup |Cr,(n*u)—Cy, (n?v)| > nn]
=0 lu—v|<8
thgj

= Z E{ﬁxk< sup |Cy(n?u) — Cy(n?v)| > nm)}
k=0 lu—v|<6

<2(|nho| + l)po( sup |Cyp(n*u) — Co(n’v)| > nm)

lu—v|<é

=2(|nho| + 1)po (H(0) > nk)
X po( sup |C’én)(u) - C’én)(v)‘ > k| H(0) > nfi).

lu—v|<6
By standard results about Galton—Watson trees,

(33) SIiII npo(H(0) >n) < oo

and so the quantities 2(|nho| + 1)po(H(6) > nk) are bounded above by a
constant K (hg,x) depending only on hy and k. On the other hand, from
Corollary 1.13 in [13] (or as an easy consequence of Proposition 2), the law of

(C’én) (t))o<t<2n-2|6 under the conditional probability measure po(- | H(6) >
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nk) converges as n — oo to the law of a Brownian excursion with height
greater than x. Consequently,

limsuppo( sup |C’én)(u) - C’én) ()| > k|H(0) > nﬂ)

n— 00 lu—v|<8

< n( sup |e(u) —e(v)| > H‘ supe(t) > li),
lu—v|<8 t>0

where n stands for the Itd excursion measure as in Section 2.4. For any
fixed k, the right-hand side can be made arbitrarily small by choosing § small
enough.

To complete the argument, fix n > 0. By the preceding considerations, we
can choose § > 0 small enough so that

(34) limsupP{ sup sup }Cg;) (u) — C(L?(v)| > 77} <

n—oo  L0<k<|nho| lu—v|<é 2

w3

and, using Lemma 1,

Jnv 7Jnu +1
(35) limsupP{ sup [Jin0) [n2u) | >77]<

n—oo u,vST(Lvnth),|v7u|§6 n 2

w3

From (31), we get

P [SUp!C(L’"’hO’E)(t) — C(L’"’h(’)(t)’ > 77}
>0

< Pline2 81+ P e <0.51(02) > | 4 Plne <0palne) > 2.

The quantities Ply, . < §,81(n,e) > 2] and Ply,. < §,52(n,e) > 3] are
smaller than 4 when n is large (independently of the choice of ¢), by (34)
and (35). Finally, (27) allows us to choose £ > 0 sufficiently small so that
P[yn,e > 0] < 7 for every n > 1. This completes the proof of the first assertion
in (i).

The second assertion in (i) is proved in a similar way, and we only point at
the differences. The same arguments we used to obtain the bound (31) give

(36) Sup|V(L’”’h°’5)(t) _ V(L,n,ho)(t)‘
>0
. (X~ Ko | 1)
- b o M [n2) I 20

uw<r(Emho) Jo—u| <y .

+ sup sup ‘VL(:)(U) - VL(:)(u)‘
0<k<nho] [v—u|<Vn,e
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If n > 0 is fixed, we can again use Lemma 1, together with Proposition 1, to
see that we can choose d > 0 small enough so that

—3 X n n
sup Vs (X, = Xsa 40> 1] < 2.
u,p<r(Lmiho) |y —y|<§ 2n | Ln?v) [n2u] | ) 9 3

Then, in order to estimate the second term of the right-hand side of (36), we
replace the bound (32) by

(37) limsup P

n—oo

(38) P{ sup sup |VL(:) (u) — VL(:)(U)| > n}
0<k<|mnho] |lu—v|<d

< 2(lnho] + D (V*(0)> 5 A

n n ok K
x po(l s (Vi) =V )] > v 0)> 5Vi).
u—v|<

where V**(0) denotes the maximal absolute value of a label in §. The analogue
of (33) is

(39) supnpo (V**(6) > v/n) < oc.

n>1

This bound can be derived from the much more precise estimate given in
Proposition 4 of [7] (together with (2)). Then, Proposition 2 implies that the
law of (Ve(") (t))o<t<2n-2|0 under the conditional probability measure po(- |

—

V**(6) > 5/n) converges as n — oo to the law of (Wy)o<i<o under No(- |
W** > (3/8)1/2k), where W** = max{|W,|: s > 0} (the precise justification
of this convergence uses arguments very similar to the proof of Corollary 1.13
n [13]). Consequently,

lim sup ,00< sup ’Ve(n) (u) — Ve(n)(v)| > %‘V**(G) > gﬁ)

n—o0 Jlu—v|<8

<No( sup [W(u) = W)l = |W™ > (3/8)/2k),
lu—v|<6
and, for any fixed x > 0, the left-hand side can be made arbitrarily small by
choosing ¢ small. The remaining part of the proof is exactly similar to the
proof of the first assertion in (i). This completes the proof of Lemma 2. O

4. Distances in the uniform infinite quadrangulation

The main result of this section provides a scaling limit for the profile of
distances in the uniform infinite quadrangulation. In order to derive this result
from Theorem 5, we need a preliminary lemma. We use the same notation as
in Theorem 5.
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LEMMA 3. Let A>0. We have
lim (supP Ligl}f{ V(L)(ngt) < A\/ED =0.

K—oo n>1
Proof. We first note that for every fixed n > 1, the probability considered
in the lemma tends to 0 as K — oo because V) (k) tends to oo as k — oo.
The problem is thus to get uniformity in n, and for this purpose we may
restrict our attention to values of n that are larger than some fixed constant.
Next, we observe that it is enough to prove that
lim (supP{ inf VI (n?t) < A\/ﬁD =0.

h—oo \>1 t>7(L,n,h)

Indeed, since we know that 7(X™") converges in distribution towards T}(LL) as

n — oo, with T}EL) < 00 a.s., we can for every fixed value of h > 0 choose K
sufficiently large so that P[T(L’”’h) > K] is arbitrarily small, uniformly in n.
Thus the probability in the lemma will be bounded above by the probability
appearing in the last display, up to a (uniform in n) small error.

The event

{ inf V(L)(n2t)<A\/ﬁ}

tzT(L,n,h)

may occur only if one of the trees L;,i > [nh| has a vertex with label smaller
than Ay/n. Hence, the probability of the complement of this event is bounded
below by

ﬁ PX, (V* > A\/ﬁ)

i=|nh]

E

)

where we recall our notation V. for the minimal label in a labeled tree 8. The
preceding quantity can also be written in the form

(40) E

exp Z log(l—ﬁxi(V*<A\/ﬁ))].

i=|nh]
Let us fix € €]0,1/4[, and set B =64A/e2. Consider the event
Iy ={X;> Byvn, for every i > [nh]}.

As a consequence of Proposition 1 and Lemma 2 in [17], we can choose h > 0
large enough so that, for every sufficiently large n, P[['y,] > 1 —e. We will
prove that, for this value of h, and for every sufficiently large n, the quantity
in (40) is bounded below by 1 — 3e. This will complete the proof of the lemma.
To get a lower bound on the quantity (40), we recall from Section 2 that,
for every | > 1,
1(1+3) 2

pl(V*>0)=(l+1)(l+2):l_ (+1)(+2)
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Since p; (Vi > 0) = pi (Vi > —=1) = pi41 (Vi > 0), it follows that, for every [ > 1,

4 < 4
I+ D) +2)(1+3) ~ 3

Note that p;(Vi =) = p—p (Vi =0) if I > 1’ > 0. If X; > By/n, we have thus

SLAVA| 164V
- AvmP = XF

p(Vi=0)=

px, (Vi <Avn) <2px, (0< Vi < Ay/n) <

Hence, on the event I'y, ,,, for n sufficiently large, we have

o0

Z log(1 = px, (Vi < Av/n))

i=|nh]

> 164/n
<2 Z X3
i=|nh] i

For every integer j > 1, set A; =#{i >0:X; = j}. By Proposition 5.1 in [6],
we have E[A;] < j, for all sufficiently large j. Hence, if n is sufficiently large,

o0 o0
32A/n 3240
E|1r, , Z <3 <E ZTI{Xi>B\/ﬁ}]
i=|nh| v i=0 i
= 1
=32AVRE| Y SA;
j=1Bva)+1”
> 1
< 324vn —
DD
j=1Bvn]+1
< 64A/B
<e?,

by our choice of B. Using the Markov inequality, we now get

Fh,nm{ >€}‘| <e.

Recalling that P[I', ] > 1 — e, we thus see that the quantity inside the ex-
pectation in (40) is bounded below by exp(—e) > 1 — ¢, except possibly on an
event of probability at most 2e. It follows that the quantity (40) is bounded
below by 1 — 3¢, which was the desired result. O

P i log(l - DX, (V* < A\/ﬁ))

i=|nh]

Recall that the profile A, of a quadrangulation g is the integer-valued mea-
sure on Zy defined by

Ag(k) = {a € V(q): dg:(0,a) =k}
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for every k € Zy. If g€ Q and n > 1 is an integer, we define the rescaled
profile )\((1") as the o-finite measure on Ry such that

n 1 2n
Al )(A)zﬁAqQ/?A)

for any Borel subset A of Ry. Also recall that B,(q) denotes the ball of
radius n centered at 0 in V(q)

THEOREM 6. Let q be a uniform infinite quadrangulation. The sequence

()\51"))”21 converges in distribution to the random measure T on Ry, which is
defined, for every continuous function g with compact support, by

=4 [ aalT) +T)),

where (W) W)Y s a pair of correlated eternal conditioned Brownian
snakes.
In particular we have:

1 (@ 9
—3#Ba(a) — ~I([0,1]).

REMARK. Both )\El") and 7 are random variables with values in the space
of Radon measures on R, which is a Polish space for the topology of vague
convergence. The convergence in distribution of the sequence ()\Eln))nzl thus
refers to this topology.

Proof of Theorem 6. We may assume that q is the image under the ex-
tended Schaeffer correspondence of a uniform infinite well-labeled tree ©, and
we use the same notation (X;,L;, R;);>o as in Section 3.2. For every i > 0, we
write the labeled trees L; and R; as L; = (r,,%r,) and R; = (7gr,,tRr,). We
also keep the notation (CX), V(1)) resp. (O V) for the pair of contour
functions coding the part of © to the left of the spine, resp. to the right of
the spine.

Fix a continuous function g with compact support on R;. From the prop-
erties of the Schaeffer correspondence, we have then

(41) (Aar9) = 9(0) + ) 9(X;)
=0

+i( RO EEDS 9<f&-<v>>>-

i=0 “weL;\{0} veR\{0}

We can rewrite the right-hand side of (41) in terms of the contour functions of
O. To this end, set for every t > 0, [t]owy = [t] +1if CE ([t +1) > CE)([t)),
and [t]ow) = [t] otherwise. Define [t]o(r in a similar way. Then, from the
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construction of the contour functions, it is easy to verify that we have also

(12) Oat) =90 +9(1)+ 5 [ dtg(VE (o)

" %/Ooo at g (V) (o))

Consequently,
90) +9(\/35) 1 [ 3
(0= =g [ atal 5V )

+ % /OOo dtg (\/%V(R)([n%]cm)) :

Since |V ) ([s]aw)) — VI (s)] < 1, for every s >0, and g is compactly sup-
ported hence uniformly continuous, a simple argument, using also Lemma 3,
shows that

o 3 e 3 (P)
[ 2 v (n2]0) | — [2 v@m2n | 2
/0 dtg( 5,V ([ toc >)> /0 dtg( 5,V t)) — 0

P
where the notation &) indicates convergence in probability. Thus we have

obtained

1 e 3
4 () gy _ 1 / [ 3 @) 2
(43) (A 9) 2( i dtg( 5,V (n°t)
~ 3 (R (2 (P)
+ dtg| \/ —V""(n"t) — 0.
0 2n n—oo
By Lemma 3,

/Ooodtg<\/§V(L)(n2t)> /OKdtg<\/§V(L)(n2t)>] el 1,

uniformly in n > 1, and a similar result holds for the integrals involving V().
Moreover, by (8),

(45) P[(Lg):%/o ds(g(/WgL))Jrg(ng))] — 1.

K—oo

(44) P

Theorem 5 implies that, for every K > 0,

/OK dt (g <\/iv@> (th)> +g <\/§V(R> (th)> >

@ [ W wR
SN ds(g(Ws )—l—g(VVS ))

n—oo 0
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From this convergence, (43), (44) and (45), we get that (Ag”), g) converges in
distribution to (Z,g), which completes the proof of the first assertion.

Note that Z([0,7]) @ r4Z([0,1]) for every r >0, by a simple scaling argu-
ment. Since

A Bu(a) =2 (0,3/2)7),

the second assertion of the theorem will follow if we can verify that )\((ln) ([0,7])
converges in distribution to Z([0,r]) for every r > 0. This is a straightforward
consequence of the first assertion and the fact that Z({r}) =0 a.s. The latter
fact is easy from a first-moment calculation. O

The known connections between the Brownian snake and partial differential
equations (see Chapters V and VI of the monograph [12]) make it possible to
derive some information about the distribution of the random measure 7 in
Theorem 6. Here we content ourselves with a first-moment calculation.

PROPOSITION 5. For every nonnegative measurable function g on Ry,

128 [
BT =5y | drrg)
21 J,
In particular, for every r >0,
24
21

Proof. From the definition of Z and the construction of the eternal condi-
tioned Brownian snake, we get

Blz.) =48] [ @t (1o [ dsa) |

For every z > 0, set

(pg(Z) :NZ (1{min72>0}/ ng(WS)>
0

Let (&):>0 denote a linear Brownian motion that starts from z under the
probability measure P,. Then, by the case p =1 of Theorem 2.2 in [16], we
have

E[Z([0,r])] =

0g(2) = /OOO da E, [g(ga)exp (—4/: dsNe, (minR < 0))}

[ wsfm{ o[ $)

(46) = /OOO da2*E.[Z;%9(Z,)),

where the nine-dimensional Bessel process Z starts from z under the proba-
bility measure P,. In the second equality we used (6), and in the third one
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we applied the absolute continuity properties of laws of Bessel processes (see,
e.g., Proposition 2.6 in [16]).

Since the nine-dimensional Bessel process has the same distribution as the
Euclidean norm of a nine-dimensional Brownian motion, we can use the ex-
plicit form of the Green function of the latter process to evaluate the integral
(46). After straightforward calculations, we arrive at the formula of the propo-
sition. U
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