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DESCRIPTIVE THEORY OF NEAREST POINTS
IN BANACH SPACES
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Abstract. Let X be a separable Banach space, Y a closed, non-
reflexive, linear subspace, and P the set of points admitting a

nearest approximation in Y . Then P is an analytic set, and has

three obvious algebraic properties. By adjusting the norm of X,

any analytic set of this kind can be realized as the set of elements
proximal to Y .

Let X be a Banach space with norm | · | and Y a closed linear subspace.
An element of X is called proximal if it admits a closest point in Y . The set
of proximal elements is called P (or P (| · |) to emphasize the dependence on
the norm). Clearly, P = X if Y is reflexive. P has three further algebraic
properties: (a) P ⊃ Y , (b) P + Y = Y , (c) tP = P if t �= 0. A set with these
properties is called stable. We assume throughout that Y isn’t reflexive, as
otherwise P = X . When X is separable, then P is the projection into X of a
certain closed subset of X × Y , and is therefore analytic [10].

When X/Y has dimension 1, then P = X or P = Y . This special case is a
disguised form of the classical problem of norm-attaining linear functionals.
When X/Y has dimension at least 2, then the set P can fail to be a Borel set.
Subspaces Y such that all elements of X are proximal are called proximinal.
It seems to be unknown whether there is always a proximinal subspace of
codimension 2.

Theorem. Suppose X is separable, Y is not reflexive, and A is stable and
analytic. The extremes A = X and A = Y are allowed. Then there is an
equivalent norm ‖ · ‖ on Xsuch that P (‖ · ‖) = A.
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In the following paragraphs, we collect lemmas from functional analysis
and topology, proceeding to the special case A = Y . The general case depends
on analysis in the space l1(N). Fatou’s lemma is invoked frequently, and a
converse is needed at the conclusion.

1. LUR norm

A norm | · | is LUR (locally uniformly rotund) at an element w if the
conditions lim |zn| = |w|, lim |zn + w| = 2|w| imply that limzn = w. By a
theorem of Kadec (1958) every separable space Z, in particular Z = X/Y ,
admits an LUR norm ([6], pp. 42–49.)

Since Z is a quotient space, we denote by by π the map of X onto Z and
an LUR norm on Z by ‖ · ‖ ∗. The norm promised in our theorem will yield
this norm as the quotient norm on Z. To begin, we define a norm with that
property: |x| ′ = c|x| ∨ ‖πx‖ ∗ with a small constant c > 0.

2. Bartle–Graves selector

The map π of X onto X/Y admits a continuous right inverse, that is,
a map θ of X/Y into X such that πθz = z on X/Y ([3], [9], pp. 1–6). Thus,
θ is a continuous selector for the multivalued map π−1. It’s easily seen that θ
can be taken as an odd mapping; with a bit more work we can assume that θ
is bounded in the sense that |θz| ≤ c‖z‖ ∗ with a constant c (whose value isn’t
important). We remark that in certain cases, θ cannot be made uniformly
continuous [1], [2], [11], but this doesn’t cause any difficulties. A study of
Lipschitz-continuous selectors, and more about uniformly continuous selec-
tors, is presented in [8].

3. A special basic sequence

In this paragraph, we use a theorem of Pelczynski: Y contains a bounded
basic sequence [en], such that f ∗(en) = 1, n ≥ 1, with some element f ∗ of X∗

[13]. Thus, the basic sequence is nonshrinking ; conversely, from a nonshrink-
ing basic sequence we can obtain the sequence [en] by standard methods.

4. Discontinuous functions on a metric space

Let U be an open set in a metric space M , and φ its characteristic function.
Then φ =

∑
wn, where w1,w2,w3, . . . are continuous and

∑
|wn| ≤ 1. To see

this, we take a continuous function v such that v = 0 off U and 0 < v < 1
on U . Then w1 = v,w2 = v1/2 − v,w3 = v1/4 − v1/2, . . . are the functions we
sought. The same can be accomplished for the difference U \ V of open sets
U and V , except that the inequality on the sum of absolute values becomes∑

|wn| ≤ 2. This follows from the identity U \ V = U \ U ∩ V .
We apply this in the metric space Z = X/Y with open sets U and V

symmetric about 0. Thus, all functions wn can be made even. Let (f ∗
j ) be a
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sequence in Z∗ whose common null-space is (0)—that is, the sequence is total
over Z. Let ν(z) be the first j such that f ∗

j (z) �= 0 (if z �= 0). Then the set
(ν = 1) is open, while the sets (ν = 2), (ν = 3), . . . are differences of open sets
and are plainly symmetric. We define

h(z) = 2−j arctanf ∗
j (z) if ν(z) = j, h(0) = 0.

Then we have h =
∑

wn, wn odd and continuous,
∑

|wn| ≤ 4. It is clear
that the function h cannot be continuous when dimZ > 1. Borsuk’s “An-
tipodal Theorem” (1937) ([7], pp. 347–350) is a profound generalization of
this.

5. A special case

This treats the case A = Y . We recall that Z = X/Y , and then define three
odd maps of Z into sp[en]

r(z) =
∑

wn(z)en,

gk(z) = r(z) − h(z)ek, k ≥ 1,

g′
k(z) = k(k + 1)−1θ(z) + gk(z).

Let B′ ′ be the ball of radius 1/2 around 0, defined by the norm | · | ′ in the
paragraph on LUR norms, and ‖ · ‖ the norm whose closed unit ball is the
closed convex hull of the set

S = B′ ′ ∪ {g′
k(z) : k ≥ 1, ‖z‖ ∗ = 1}.

Then the quotient norm of ‖ · ‖ is the LUR norm ‖ · ‖ ∗ on Z. We claim
that when ‖x‖ = 1 then ‖πx‖∗ < 1, that is, P = Y . In the contrary case
‖x0‖ = 1, ‖πx0‖ ∗ = 1, it is clear that the set B′ ′ plays only a negligible role
and can be omitted from the set S. Thus, x0 is a (norm) limit of sums∑

tjg
′
k(zj) where tj ≥ 0,

∑
tj = 1 and k is a variable depending on j. Applying

the quotient mapping π leaves only terms k(k + 1)−1zj . Since ‖x0‖ ∗ = 1,
the variable k must tend to ∞ “almost everywhere”, that is, we can replace
k(k + 1)−1 by 1 in what follows. (Besides using “almost everywhere” in this
colloquial way, we omit a special notation for the limiting process.) Thus,∑

tjzj must approach πx0. From the LUR property of the norm in Z, we
conclude that

∑
tj ‖zj − πx0‖ ∗ → 0 and from the continuity of θ at πx0 we

conclude that
∑

tjθ(zj) must converge in norm. (Thus, continuity at πx0 is
sufficient in our theorem.)

We remark that a weaker property of the norm—abbreviated ALUR—is
sufficient in the previous step. A comparison of ALUR and LUR may be
found in [6], pp. 72, 135–138.

The mapping r is continuous into a (very) weak topology on sp[en], namely
convergence of the biorthogonal functionals. We call this τ -convergence,
and observe that limek = 0 in this sense. The τ − lim of the convex sums
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∑
tjgk(zj) will therefore be r(πx0) since

∑
tj ‖zj − πx0‖ ∗ → 0. But this can-

not be a limit in the norm of X since the functions r(z) − h(z)ek are in the
null-space of f ∗, while f ∗(r(z)) = h(z), and h(z) = 0 only when z = 0. This
contradiction completes the proof in the special case A = Y .

The argument just completed is valid when X/Y is separable (or, more
generally, when X/Y admits an LUR norm and a total sequence of linear
functionals) and Y isn’t reflexive, but the conclusion fails for certain spaces
X , as we now explain. Suppose that a Banach space W has the property that
for each norm | · | in W there are elements u and v such that |au+bv| = |a| + |b|
for all real a, b; and J is James’ space: J ∗ ∗/J has dimension 1. Then every
norm ‖ · ‖ on X = W ⊕ J will present elements proximal to J but not in J .

To verify this, we take for | · | the distance to J , an equivalent norm on W ,
and denote by u and v the elements defined above, relative to the norm | · |.
Then there are bounded sequences pn and qn in J such that lim ‖pn − u‖ = |u|
and lim ‖qn − v‖ = |v|. Now there are constants a and b, not both 0, such that
the sequence aun + bvn has a weakly convergent subsequence, with a limit L
in J . Then |L − au − bv| ≤ |a| + |b|, so au + bv is proximal but not in J .

The space m0 described in [12], [6], pp. 76–79, has the property imposed
on W (and much more). It is possible that more transparent examples could
be found, following [5], pp. 516, 521–522, or [4]. Unlike the first two examples,
the third makes no use of uncountable sets.

6. Conclusion

Let Σ be the closed set in X defined by the equations ‖πx‖ ∗ = 1 and x =
θπx. We construct the norm ‖ · ‖ so that P ∩ Σ = A ∩ Σ. This equality quickly
yields our main theorem, as we now demonstrate. Suppose, for example, that
x ∈ P but x /∈ Y . Then tx + y ∈ Σ, with certain t > 0 and y in Y . By the
stability of P , tx + y ∈ P , hence tx + y ∈ A. By the stability of A, x ∈ A.
The reverse implication follows similarly by stability. Defining A ∩ Σ = B,
we observe that B is analytic and symmetric; we can suppose that B �= ∅,
since the contrary case was treated above. Let BN be the standard product
space NN (Baire null-space, homeomorphic to the set of irrationals) and BN ′

the set of pairs σ′ = (ε,σ) where ε = −1,1 and σ belongs to BN . Then B,
being analytic and symmetric, is a continuous image ψ(BN ′), with an odd
mapping ψ, i.e. ψ(−1, σ) = −ψ(1, σ). We define three maps of BN ′ into X
as follows

T1(σ′) =
∑

2−ke(nk) when σ = (n1, n2, . . . , nk, . . .);

T2(σ′) = r ◦ π ◦ ψ(σ′);
T3(σ′) = ψ(σ′) + T2(σ′) − h ◦ π ◦ ψ(σ′) · T1(σ′).

Thus, T1 is continuous and even with respect to the sign ε.
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We then define S′ = T3(BN ′), and now ‖ · ‖ is the norm on X whose closed
unit ball is the closed convex hull of S ∪ S′; its quotient norm is again ‖ · ‖∗.
The elements of B have distance 1 from Y and are proximal, by the formula
for T3; this is the easy half of the equality B = P ∩ Σ. Suppose now that
x0 ∈ P ∩ Σ, that is, ‖x0‖ ∗ = 1 and ‖y − x0‖ = 1 for some y in Y . Then,
as before, y is a limit of sums

∑
tjs

′ ′
j ,0 ≤ tj ,

∑
tj = 1 and each s′ ′

j ∈ S ∪ S′.
Again, we can omit B′ ′ from the estimation. It will be convenient to write each
s′ ′

j as aj + bj − cj following the order in which T3 and g′
k were defined. The

same analysis as before yields lim
∑

tjaj = x0. Also
∑

bj has a τ − lim r ◦ πx0;
applying f ∗ to this we get h ◦ π(x0) �= 0. For definiteness, we assume this is
positive.

The sums
∑

tjcj demand closer analysis. The part of the sum extended
over S has τ − lim0. The remainder, that is, the sum extended over S′, has
to be divided in two pieces. To explain this, we write ν(π(x0)) = ν0. (i) In
this piece, ν(π ◦ ψ(σ′)) < ν0. Now π ◦ ψ(σ′) → π(x0) almost everywhere. The
definition of ν shows that the value of h tends almost everywhere to 0 in the
sum over (i). (ii) Here, ν takes the value ν0 so h tends to h ◦ π(x0) almost
everywhere. We add that cases (i) and (ii) account for all but a negligible part
of the sum of tjcj over S′. We can pass to a subsequence so that all three
pieces have τ -limits. Now we can conclude that case (ii) covers almost all of
the sum, for the remaining cases would otherwise produce a positive jump
in the value of f ∗; by Fatou’s lemma such a jump would not be balanced by
a contrary jump arising from case (ii). In the last assertion, we refer to the
formula for T1.

Now we have to look at sums
∑

tjT1(σ′
j) τ -convergent to a limit L, such

that f ∗(L) = 1. We treat this limit in two ways.
First, we treat them as non-negative elements of l1(N) converging every-

where on N , such that the sum (or integral) of the limit sequence is the limit
of the sum. By an argument of Kadec–Klee type (explained below), the limit
must be a limit in the norm of l1. This can be stated in terms of the remain-
ders Rp: the remainder of a series a1 + a2 + a3 + · · · is ap + ap+1 + · · · . On
a sequence which converges in norm, the remainders Rp must converge to 0
uniformly as p → ∞.

The second approach is to treat the sums
∑

tj(σ′) as integrals over BN ′ of
T1 with respect to a sequence of (nearly) probability distributions, say (λm).
We also know that ψσ′ − x0 tends to 0 in the sequence of measure spaces
defined by the probabilities. We observe that BN ′ is a set of type Gδ in a
compact metric space Γ—for example, the space obtained by adjoining ∞ to
each of the factors N . Hence, the sequence λm has a subsequence converging
weak* to a probability measure λ on Γ. Our aim is to prove that the limit
measure is concentrated on BN ′ (and a bit more than this). We do so by
proving that the sequence is tight : for each r ≥ 1 there is a compact set Γr

contained in BN ′ such that λm(Γr) ≥ 1 − r−1 for all m. (This notion occurs
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in the theory of stochastic processes.) We can express this by means of the
digits nk, treating them as continuous functions on BN ′. (The signs −1,1
do not affect the compactness.) We claim that for each k ≥ 1 and r ≥ 1 there
is a number c = ck,r such that λm(nk ≤ c) ≥ 1 − r−1 for all r. From this,
the tightness follows. When nk > p, then Rp gains at least 2−k. If our claim
were false for some k and r, the remainders of the sums

∑
tjT1(σ′) would not

converge uniformly to 0.
From the tightness of the sequence, we find a measure concentrated on BN ′

such that ψ(σ′) = x0 a.e. Thus, x0 belongs to B and the proof is complete.
We referred to an argument related to the Kadec–Klee property of norms

on Banach spaces: on the unit sphere of l1(N), weak* convergence implies
convergence in norm.

Acknowledgments. We record our thanks to the referee for improvements in
the exposition and for references to the literature and history of the subject.
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