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SHARP GREEN FUNCTION ESTIMATES FOR Δ + Δα/2 IN C1,1

OPEN SETS AND THEIR APPLICATIONS

ZHEN-QING CHEN, PANKI KIM, RENMING SONG AND ZORAN VONDRAČEK

Abstract. We consider a family of pseudo differential operators
{Δ + aαΔα/2; a ∈ [0,1]} on R

d that evolves continuously from Δ

to Δ + Δα/2, where d ≥ 1 and α ∈ (0,2). It gives rise to a fam-
ily of Lévy processes {Xa, a ∈ [0,1]}, where Xa is the sum of a

Brownian motion and an independent symmetric α-stable process

with weight a. Using a recently obtained uniform boundary Har-
nack principle with explicit decay rate, we establish sharp bounds

for the Green function of the process Xa killed upon exiting a

bounded C1,1 open set D ⊂ R
d. Our estimates are uniform in

a ∈ (0,1] and taking a → 0 recovers the Green function estimates

for Brownian motion in D. As a consequence of the Green func-
tion estimates for Xa in D, we identify both the Martin boundary

and the minimal Martin boundary of D with respect to Xa with

its Euclidean boundary. Finally, sharp Green function estimates

are derived for certain Lévy processes which can be obtained as
perturbations of Xa.
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1. Introduction

Discontinuous Markov processes have been intensively studied in recent
years due to their importance both in theory and applications; see, for in-
stance, [1], [2], [5], [13], [14], [16], [17], [19], [25], [26], [28]. In contrast to the
diffusion case, the infinitesimal generator of a discontinuous Markov process
in R

d is a nonlocal (or integro-differential) operator. Most of the recent stud-
ies have concentrated on discontinuous Markov processes (and corresponding
integro-differential operators) that do not have a diffusion component. See
[7], [11] and the references therein for a summary of some of these recent re-
sults from the probability literature. For recent progress in PDE literature,
we refer the readers to [8], [9], [10].

However, Markov processes with both diffusion and jump components are
needed in many situations, like in finance and control theory. See, for example,
[24], [31], [32]. On the other hand, the fact that such a process X has both
diffusion and jump components is also the source of many technical difficulties
in investigating the potential theory of X . The main difficulty in studying X
stems from the fact that it runs on two different scales: on the small scale the
diffusion part dominates, while on the large scale the jumps take over. Another
difficulty is encountered at the exit of X from an open set: for diffusions, the
exit is through the boundary, while for the pure jump processes, typically the
exit happens by jumping out from the open set. For the process X , both cases
will occur which makes the process X much more difficult to study.

Despite these difficulties, significant progress has been made in the last few
years in understanding the potential theory of discontinuous Markov processes
with both diffusion and jump components. Green function estimates (for
the whole space) and the Harnack inequality for some processes with both
diffusion and jump components were established in [33], [35]. The parabolic
Harnack inequality and heat kernel estimates were studied in [37] for the sum
of a Brownian motion and an independent symmetric stable process, and in
[15] for much more general diffusions with jumps (see also [20]). Moreover, an
a priori Hölder estimate is established in [15] for bounded parabolic functions.
Very recently, the boundary Harnack principle for some one-dimensional Lévy
processes with both diffusion and jump components was studied in [29], where
sharp estimates on the Green functions of bounded open sets of R were also
established. Most recently, a boundary Harnack principle with explicit decay
rate for nonnegative harmonic functions of the sum of a Brownian motion and
an independent symmetric stable process in C1,1 open sets in R

d was obtained
in [12].

The main goal of this paper is to use the boundary Harnack principle
obtained in [12] to establish sharp Green function estimates in C1,1 open sets
for the Lévy processes that are sums of Brownian motions and independent
symmetric stable processes. These processes, although very specific, serve
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as a model case for more general Lévy processes and Markov processes that
have both diffusion and jump components, just as Brownian motion does for
diffusions. We hope the results of this paper and some of the techniques
used in this paper will shed light on the fine potential theoretic properties of
general Lévy processes and on general Markov processes with both diffusion
and jump components.

Let us now fix the notation and state the main result of this paper.
Throughout this paper, we assume that d ≥ 1 is an integer and α ∈ (0,2). Let
X0 = (X0

t , t ≥ 0) be a Brownian motion in R
d with generator Δ =

∑d
i=1

∂2

∂x2
i
,

and let Y = (Yt, t ≥ 0) be an independent (rotationally) symmetric α-stable
process in R

d. For a > 0, we define the process Xa = (Xa
t , t ≥ 0) by Xa

t =
X0

t + aYt, called the sum of a Brownian motion and an independent symmet-
ric stable process with weight a.

Let D be a C1,1 open set in R
d, let Xa,D be the process Xa killed upon

exiting D and let Ga
D(x, y) denote the Green function of Xa,D (for precise

definitions see Section 2). Our main goal is to establish sharp two-sided
estimates for Ga

D(x, y). Let δD(x) denote the Euclidean distance between
the point x ∈ D and the boundary ∂D. The main result of this paper is the
following theorem. Here and in the sequel, for a, b ∈ R, a ∧ b := min{a, b} and
a ∨ b := max{a, b}. Define for d ≥ 3 and a > 0,

ga
D(x, y) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

|x−y|d−2

(
1 ∧ δD(x)δD(y)

|x−y|2
)
,

when x, y are in the same component of D,
aα

|x−y|d−2

(
1 ∧ δD(x)δD(y)

|x−y|2
)
,

when x, y are in different components of D;

for d = 2 and a > 0,

(1.1) ga
D(x, y) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
log

(
1 + δD(x)δD(y)

|x−y|2
)
,

when x, y are in the same component of D,

aα log
(
1 + δD(x)δD(y)

|x−y|2
)
,

when x, y are in different components of D;

and for d = 1 and a > 0,

(1.2) ga
D(x, y) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(δD(x)δD(y))1/2 ∧ δD(x)δD(y)

|x−y| ,

when x, y are in the same component of D,

aα
(
(δD(x)δD(y))1/2 ∧ δD(x)δD(y)

|x−y|
)
,

when x, y are in different components of D.

Theorem 1.1. Let M > 0. Suppose that D is a bounded C1,1 open set
in R

d. There exists C = C(D,M,α) > 1 such that for all x, y ∈ D and all
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a ∈ (0,M ]

(1.3) C−1ga
D(x, y) ≤ Ga

D(x, y) ≤ Cga
D(x, y).

Note that the above estimates are uniform in a ∈ (0,M ]. In case d = 1, a
(nonuniform) estimate is established by [29]. Letting a ↓ 0 in (1.3) recovers
the Green function estimates for Brownian motion killed upon exiting D; for
the latter, see [18, p. 182] for d = 2 and [40] for d ≥ 3, respectively. Note that
when x and y are in the same component of D the estimates for Ga

D(x, y) are
the same as for the Brownian motion killed upon exiting D, but contrary to
the latter case, Ga

D(x, y) is nonzero when x and y are in different components.
This, of course, is a consequence of Xa having jumps, and estimates in the
case when x and y are in different components follow easily from the jump
structure together with the estimates for a single component. Furthermore,
our estimates on Ga

D(x, y) give the rate at which Ga
D(x, y) vanishes as a ↓ 0

when x and y are in different components.
The rest of the paper is organized as follows. Section 2 gives preliminary

and background materials. Theorem 1.1 is proved in Sections 3, 4 and 5.
The proof of the theorem in the case d ≥ 3 is by now quite standard. Once
the interior estimates are established, the full estimates in connected C1,1

open sets follow from the boundary Harnack principle by the method devel-
oped by Bogdan [6] and Hansen [23]. However, this method is not applicable
when d ≤ 2 since Brownian motion is recurrent in this case. When d = 2, the
above method ceases to work due to the nature of the logarithmic potential
associated with the Laplacian. We use a capacitary argument to derive the
interior upper bound estimate for the Green function; see Lemmas 4.5, 4.6 and
Corollary 4.7. By a scaling consideration and applying the uniform bound-
ary Harnack principle, we can then get sharp Green function upper bound
estimates. For the lower bound estimates, we compare the process with the
subordinate killed Brownian motion when D is connected, and then extend
it to general bounded C1,1 open set by using the jumping structure of the
process. The proof of these estimates for d = 2 is presented in Section 4. The
case d = 1 is dealt with in Section 5, where we follow the arguments of [29],
making use of the reflected process at supremum and the ascending ladder
processes. In Section 6, using the boundary Harnack principle and our Green
function estimates, we show that both the Martin and the minimal Martin
boundary of the process Xa,D can be identified with the Euclidean boundary
when D is a bounded C1,1 open set. In the last section, we extend our results
on Xa to symmetric Lévy processes that can be obtained from Xa through
certain perturbations. In particular, for every m > 0, we obtain sharp Green
function estimates of Δ+m − (m2/α − Δ)α in any bounded C1,1 open set with
zero exterior condition. The process corresponding to Δ + m − (m2/α − Δ)α

is a Lévy process that is the sum of a Brownian motion and an independent
relativistic α-stable process with mass m.
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Throughout this paper, we use the capital letters C1,C2, . . . to denote con-
stants in the statement of results, and their labeling will be fixed. The low-
ercase constants c1, c2, . . . will denote generic constants used in proofs, whose
exact values are not important and can change from one appearance to an-
other. The labeling of the constants c1, c2, . . . starts anew in every proof. The
dependence of the constant c on the dimension d and α ∈ (0,2) may not be
mentioned explicitly. The constant α ∈ (0,2) will be fixed throughout this
paper. We will use “:=” to denote a definition, which is read as “is defined
to be.” B(x, r) denotes the open ball in R

d centered at x with radius r > 0.
Recall that for any x ∈ D, δD(x) denotes the distance between x and ∂D, and
for a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}. We will use ∂ to denote
a cemetery point and for every function f , we extend its definition to ∂ by
setting f(∂) = 0. Lebesgue measure in R

d will be denoted by dx. For a Borel
set A ⊂ R

d, we also use |A| to denote its Lebesgue measure.

2. Preliminaries

A (rotationally) symmetric α-stable process Y = (Yt, t ≥ 0,Px, x ∈ R
d) in

R
d is a Lévy process with the characteristic exponent |ξ|α, that is,

Ex

[
eiξ·(Yt −Y0)

]
= e−t|ξ|α

for every x ∈ R
d and ξ ∈ R

d.

The infinitesimal generator of Y is the fractional Laplacian Δα/2, which is a
prototype of nonlocal operators. The fractional Laplacian can be written in
the form

Δα/2u(x) = lim
ε↓0

∫
{y∈Rd:|y−x|>ε}

(
u(y) − u(x)

) A(d, −α)
|x − y|d+α

dy,

where A(d, −α) := α2α−1π−d/2Γ(d+α
2 )Γ(1 − α

2 )−1. Here, Γ is the Gamma
function defined by Γ(λ) :=

∫ ∞
0

tλ−1e−t dt for every λ > 0.
Suppose X0 is a Brownian motion in R

d with generator Δ =
∑d

i=1
∂2

∂x2
i
,

and Y is a symmetric α-stable process in R
d. Assume that X0 and Y are

independent. For any a > 0, we define the process Xa = (Xa
t , t ≥ 0) by Xa

t :=
X0

t + aYt. As already mentioned, the process Xa is called the sum of the
Brownian motion X0 and the independent symmetric α-stable process Y with
weight a. It is a Lévy process with the characteristic exponent Φa(ξ) = |ξ|2 +
aα|ξ|α, ξ ∈ R

d, and its infinitesimal generator is Δ+aαΔα/2. The process Xa

has a jointly continuous transition density that will be denoted by pa(t, x, y).
From the Chung–Fuchs criterion (see [3, Theorem I.17]), it easily follows that,
when a > 0, Xa is transient if and only if α < d, while it is well known that
X0 is transient if and only if d ≥ 3.

There is another representation of the process Xa which will be useful
in Sections 3, 4 and 5. It can be obtained by subordinating X0 with an
independent subordinator T a

t := t+a2Tt where T = (Tt, t ≥ 0) is an α/2-stable
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subordinator, that is, the processes (Xa
t , t ≥ 0) and (X0

T a
t
, t ≥ 0) have the same

distribution. Note that the Laplace exponent of T a is φa(λ) = λ + aαλα/2.
Let Mα/2(t) :=

∑∞
n=0(−1)ntnα/2/Γ(1+nα/2). It follows by a straightforward

integration that ∫ ∞

0

e−λtM1−α/2

(
a2α/(2−α)t

)
dt =

1
φa(λ)

,

which shows that the potential density ua of the subordinator T a is given by

(2.1) ua(t) = M1−α/2

(
a2α/(2−α)t

)
.

Since, for any a > 0, φa is a complete Bernstein function, we know that (see,
for instance, [33]) ua(·) is a completely monotone function. In particular, ua(·)
is a decreasing function. Since ua(t) = u1(a2α/(2−α)t), we see that a 	→ ua(t)
is a decreasing function. Moreover, since the drift of T a is equal to 1, we have
that ua(0+) = 1 and so

(2.2) ua(t) ≤ 1 for t > 0.

The Lévy measure of Xa has a density with respect to the Lebesgue mea-
sure given by

(2.3) Ja(x, y) := ja(y − x) := ja(|y − x|) = aαA(d, −α)|x − y| −(d+α),

which is called the Lévy intensity of Xa. It determines a Lévy system for Xa,
which describes the jumps of the process Xa: For any nonnegative measurable
function f on R+ × R

d × R
d with f(s,x,x) = 0 for all s > 0 and x ∈ R

d, and
stopping time T (with respect to the filtration of Xa),

(2.4) Ex

[∑
s≤T

f(s,Xa
s−,Xa

s )
]

= Ex

[∫ T

0

(∫
Rd

f(s,Xa
s , y)Ja(Xa

s , y)dy

)
ds

]
(see, for example, [13, Proof of Lemma 4.7] and [14, Appendix A]).

The quadratic form (E a, F ) associated with the generator Δ + aαΔα/2 of
Xa is given by

F = W 1,2(Rd) :=
{

u ∈ L2(Rd;dx) :
∂u

∂xi
∈ L2(Rd;dx) for every 1 ≤ i ≤ d

}
and for u, v ∈ F ,

E a(u, v) =
∫

Rd

∇u(x) · ∇v(x)dx

+
1
2

∫
Rd ×Rd

(
u(x) − u(y)

)(
v(x) − v(y)

) A(d, −α)aα

|x − y|d+α
dxdy.

In probability theory, the quadratic form (E a,W 1,2(Rd)) is called the Dirichlet
form of Xa. Let E a

1 (u,u) := E a(u,u)+
∫

Rd u(x)2 dx. Note that for every a > 0,
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there is a positive constant c = c(a, d,α) ≥ 1 so that∫
Rd

(
| ∇u(x)|2 + u(x)2

)
dx

≤ E a
1 (u,u) ≤ c

∫
Rd

(
| ∇u(x)|2 + u(x)2

)
dx for u ∈ W 1,2(Rd).

Thus the processes Xa, a ≥ 0, share the same family of sets having zero
capacity.

For any open set D ⊂ R
d, τa

D := inf{t > 0 : Xa
t /∈ D} denotes the first exit

time from D by Xa. We denote by Xa,D the subprocess of Xa killed upon
leaving D. The infinitesimal generator of Xa,D is (Δ + aαΔα/2)|D. It is
known (see [15]) that Xa,D has a continuous transition density pa

D(t, x, y)
with respect to the Lebesgue measure.

Definition 2.1. A real-valued function u defined on R
d is said to be:

(1) harmonic in D ⊂ R
d with respect to Xa if for every open set B whose

closure is a compact subset of D,

(2.5) Ex[|u(Xa
τa

B
)|] < ∞ and u(x) = Ex[u(Xa

τa
B
)] for every x ∈ B;

(2) regular harmonic in D ⊂ R
d with respect to Xa if it is harmonic in D

with respect to Xa and

u(x) = Ex[u(Xa
τa

D
)] for every x ∈ D;

(3) harmonic for Xa,D if it is harmonic for Xa in D and vanishes outside D;
(4) superharmonic in D ⊂ R

d with respect to Xa if for every open set B
whose closure is a compact subset of D,

(2.6) Ex[|u(Xa
τa

B
)|] < ∞ and u(x) ≥ Ex[u(Xa

τa
B
)] for every x ∈ B.

It follows from [15] that every harmonic function u in D with respect to
Xa is continuous in D and

∫
Rd |u(y)|(1 ∧ |y|−(d+α))dy < ∞.

Using the parabolic Harnack inequality from [15, Theorem 6.7] and a scal-
ing argument, the following uniform Harnack principle was established in [12].

Proposition 2.2 (Uniform Harnack principle). Suppose that M > 0. There
exists a constant C1 = C1(α,M) > 0 such that for any r ∈ (0,1], a ∈ [0,M ],
x0 ∈ R

d and any function u which is nonnegative in R
d and harmonic in

B(x0, r) with respect to Xa we have

u(x) ≤ C1u(y) for all x, y ∈ B(x0, r/2).

We recall that an open set D in R
d with d ≥ 2 is said to be C1,1 if there

exist a localization radius R > 0 and a constant Λ > 0 such that for every
Q ∈ ∂D, there exist a C1,1-function φ = φQ : R

d−1 → R satisfying φ(0) = 0,



988 Z.-Q. CHEN ET AL.

∇φ(0) = (0, . . . ,0), ‖ ∇φ‖ ∞ ≤ Λ, | ∇φ(x) − ∇φ(y)| ≤ Λ|x − y|, and an orthonor-
mal coordinate system CSQ: y = (y1, . . . , yd−1, yd) =: (ỹ, yd) with its origin at
Q such that

B(Q,R) ∩ D = {y = (ỹ, yd) ∈ B(0,R) in CSQ : yd > φ(ỹ)}.

The pair (R,Λ) is called the characteristics of the C1,1 open set D. Note that
a C1,1 open set may be disconnected. Observe that the distance between any
two distinct connected open components of D is at least R. By a C1,1 open
set in R we mean an open set which can be written as the union of disjoint
intervals so that the minimum of the lengths of all these intervals is positive
and the minimum of the distances between these intervals is positive. Note
that a C1,1 open set may be unbounded. It is well known that any C1,1 open
set D satisfies the uniform exterior ball condition: There exists R̃ > 0 such
that for every z ∈ ∂D, there is a ball Bz of radius R̃ such that Bz ⊂ (D)c

and ∂Bz ∩ ∂D = {z}. Without loss of generality, throughout this paper, we
assume that the characteristics (R,Λ) of a C1,1 open set satisfy R = R̃.

Observe that for any C1,1 open set with C1,1 characteristics (R,Λ), there
exists a constant κ ∈ (0,1/2], which depends only on (R,Λ), such that for each
Q ∈ ∂D and r ∈ (0,R), D ∩ B(Q,r) contains a ball B(Ar(Q), κr) of radius κr.
In the rest of paper, whenever we deal with C1,1 open sets, the constants Λ,
R and κ will have the meaning described above.

Let Q ∈ ∂D. We will say that a function u : R
d → R vanishes continuously

on Dc ∩ B(Q,r) if u = 0 on Dc ∩ B(Q,r) and u is continuous at every point
of ∂D ∩ B(Q,r).

The following theorem is the main result of [12].

Theorem 2.3 (Uniform boundary Harnack principle). Suppose that M > 0.
For any C1,1 open set D in R

d with characteristics (R,Λ), there exists a
positive constant C2 = C2(α,d,Λ,R,M) such that for all a ∈ [0,M ], r ∈ (0,R],
Q ∈ ∂D and any nonnegative function u in R

d that is harmonic in D ∩ B(Q,r)
with respect to Xa and vanishes continuously on Dc ∩ B(Q,r), we have

(2.7)
u(x)
u(y)

≤ C2
δD(x)
δD(y)

for every x, y ∈ D ∩ B(Q,r/2).

A subset D of R
d is said to be Greenian for Xa if Xa,D is transient.

A Greenian set for X0 will be simply called Greenian. As mentioned in the
second paragraph of Section 2, when d ≥ 2 and a > 0, any nonempty open set
D ⊂ R

d is Greenian for Xa; and any nonempty open set in R
d is Greenian

when d ≥ 3. An open set D ⊂ R
2 is Greenian if and only if Dc is nonpolar (or

equivalently, has positive capacity). In particular, every bounded open set in
R

2 is Greenian.
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For any a > 0 and any Greenian open subset D of R
d for Xa, we use

Ga
D(x, y) to denote the Green function of Xa,D, that is,

(2.8) Ga
D(x, y) :=

∫ ∞

0

pa
D(t, x, y)dt,

where pa
D(t, x, y) is the continuous transition density of Xa,D with respect

to the Lebesgue measure. The function Ga
D(·, ·) is finite off the diagonal. It

follows immediately from (2.8) that Ga
D(x, y) is a positive continuous sym-

metric function off the diagonal of D × D such that for any Borel measurable
function f ≥ 0,

Ex

[∫ τa
D

0

f(Xa
s )ds

]
=

∫
D

Ga
D(x, y)f(y)dy.

We set Ga
D equal to zero outside D × D. The function Ga

D(x, y) is also called
the Green function of Xa in D. For any x ∈ D, Ga

D(·, x) is superharmonic in
D with respect to Xa, harmonic in D \ {x} with respect to Xa and regular
harmonic in D \ B(x, ε) with respect to Xa for every ε > 0.

Recall that a point z on the boundary ∂D of an open set D is said to be
a regular boundary point for Xa if Pz(τa

D = 0) = 1. An open set D is said
to be regular for Xa if every point in ∂D is a regular boundary point for
Xa. It is easy to check that every C1,1 open set D is regular for Xa for
all a > 0 and using the argument in the last paragraph of the proof of [18,
Theorem 2.4], we conclude that for any bounded C1,1 open set D, Ga

D(·, z)
vanishes continuously on ∂D for every z ∈ D.

Now, as a corollary of the uniform boundary Harnack principle and the
fact that, for any bounded C1,1 open set D, Ga

D(x, ·) vanishes continuously
on ∂D for every fixed x ∈ D, we have the following proposition.

Proposition 2.4. Suppose that M > 0. For any bounded C1,1 open set
D in R

d with characteristics (R,Λ), there exists a positive constant C3 =
C3(α,d,Λ,R,M) > 1 such that for all Q ∈ ∂D, r ∈ (0,R) and a ∈ (0,M ] we
have

(2.9)
Ga

D(x, z1)
Ga

D(y, z1)
≤ C3

Ga
D(x, z2)

Ga
D(y, z2)

,

when x, y ∈ D \ B(Q,r) and z1, z2 ∈ D ∩ B(Q,r/2).

The following scaling property will be used below: If (Xa,D
t , t ≥ 0) is the

subprocess in D of the sum of a Brownian motion and an independent symmet-
ric stable process in R

d with weight a, then (λXa,D
λ−2t, t ≥ 0) is the subprocess

in λD of the sum of a Brownian motion and an independent symmetric stable
process in R

d with weight aλ(α−2)/α. So for any λ > 0, we have
(2.10)

paλ(α−2)/α

λD (t, x, y) = λ−dpa
D(λ−2t, λ−1x,λ−1y) for t > 0 and x, y ∈ λD.
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By integrating the above equation with respect to t, we get that when D is
Greenian for Xa,

(2.11) Ga
D(x, y) = λd−2Gaλ(α−2)/α

λD (λx,λy) for x, y ∈ D.

In particular, for d = 2, we have

(2.12) Ga
D(x, y) = Gaλ(α−2)/α

λD (λx,λy) for x, y ∈ D.

3. Higher dimensional case: d ≥ 3

In this section, we assume that d ≥ 3. We will use Ga(x, y) = Ga(y − x) =
Ga

Rd(x, y) to denote the Green function of Xa in R
d.

Recall that ua is the potential density of the subordinator T a
t = t + a2Tt

given in (2.1). The Green function Ga of Xa is also given by the following
formula [33]

(3.1) Ga(x) =
∫ ∞

0

(4πt)−d/2e− |x|2/(4t)ua(t)dt, x ∈ R
d.

Using this formula, we can easily see that Ga is radially decreasing and con-
tinuous in R

d \ {0}.

Lemma 3.1. Suppose that M > 0. For all a ∈ [0,M ], we have

GM (x) ≤ Ga(x) ≤ 1
|x|d−2

for all x ∈ R
d.

Proof. We have seen that for all t > 0, ua(t) ≤ 1, and the function a 	→
ua(t) is decreasing on R+, cf. (2.2) and the text preceding it. The desired
inequalities follow immediately from these properties and (3.1). �

Lemma 3.2. Suppose that M > 0. There exist R1 > 0 and L1 ≥ 2 such that
for all a ∈ [0,M ]

(3.2) Ga(x) ≥ 2Ga(L1x) for all |x| < R1.

Proof. By [33, Theorem 3.1], there exists c1 = c1(α,d,M) > 0 such that

(3.3) lim
|x|→0

GM (x)|x|d−2 = c1.

Let L1 = (2/c1)2/(d−2) ∨ 2 and take 0 < δ1 < c1(1 − L−(d−2)/2). Using (3.3),
we can choose a positive constant R1 > 0 such that

(3.4) (c1 − δ1)
1

|x|d−2
≤ GM (x) when |x| ≤ R1.

Thus, by Lemma 3.1, for every |x| < R1

Ga(x) ≥ GM (x) ≥ (c1 − δ1)
1

|x|d−2
≥ L

d−2
2

1

c1

|L1x|d−2
≥ 2Ga(L1x). �

The next proposition gives the interior estimates for Ga
D.
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Proposition 3.3. Suppose that M > 0. For any bounded and connected
C1,1 open set D in R

d there exists a positive constant C4 such that for every
a ∈ [0,M ]

(3.5) Ga
D(x, y) ≤ C4

1
|x − y|d−2

for all x, y ∈ D

and

(3.6) Ga
D(x, y) ≥ C−1

4

1
|x − y|d−2

when 2|x − y| ≤ δD(x) ∧ δD(y).

Proof. Since Ga
D(x, y) ≤ Ga(x, y), (3.5) is an immediate consequence of

Lemma 3.1. So we only need to show (3.6). Without loss of generality, we
assume that δD(y) ≤ δD(x).

Recall that L1 ≥ 2 and R1 are the constants from Lemma 3.2. By Lemmas
3.1, 3.2 and (3.4), we have

Ga(x, y) − Ga(L1x,L1y) ≥ 1
2
Ga(x, y) ≥ 1

2
GM (x, y)(3.7)

≥ c1
1

|x − y|d−2
when |x − y| ≤ R1

for some positive constant c1.
Case 1: L1|x − y| ≤ δD(y). We consider three subcases separately:
(a) δD(y) ≤ R1. Note that, since L1|x − y| ≤ δD(y),∣∣Xa

τa
B(y,δD(y))

− y
∣∣ ≥ δD(y) ≥ L1|x − y|.

Thus by the fact that Ga(·) is radially decreasing and (3.7),

Ga
D(x, y) ≥ Ga

B(y,δD(y))(x, y) = Ga(x, y) − Ex

[
Ga(Xa

τa
B(y,δD(y))

, y)
]

≥ Ga(x, y) − Ga(L1x,L1y) ≥ c1
1

|x − y|d−2
.

(b) δD(y) > R1 and L1|x − y| ≤ R1. In this case, |Xa
τa

B(y,R1)
− y| ≥ R1 ≥

L1|x − y| and, again by the fact that Ga(·) is radially decreasing and (3.7),

Ga
D(x, y) ≥ Ga

B(y,R1)
(x, y) = Ga(x, y) − Ex

[
Ga(Xa

τa
B(y,R1)

, y)
]

≥ Ga(x, y) − Ga(L1x,L1y) ≥ c1
1

|x − y|d−2
.

(c) δD(y) > R1 and L1|x − y| > R1. In this case, we have δD(x) ≥ δD(y) ≥
L1|x − y| ≥ R1. Choose a point w ∈ ∂B(y,R1/(2L1)). Then from the argu-
ment in (b), we get

Ga
D(w,y) ≥ c1

1
(R1/(2L1))d−2

.
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Since D is a bounded and connected C1,1 open set and |x − w| ≤ |x − y| + |y −
w| ≤ δD(y)/L1 + R1/(2L1) ≤ 3δD(y)/(2L1), by Proposition 2.2 and a chain
argument, we have

Ga
D(x, y) ≥ c2G

a
D(w,y) ≥ c3

1
(R1/(2L1))d−2

≥ c32d−2(2L1/R1)2(d−2) 1
|x − y|d−2

.

Case 2: 2|x − y| ≤ δD(y) < L1|x − y|. Take x0 ∈ ∂B(y, δD(y)/(L1 + 1)).
Then

|x − y| ≤ 1
2
δD(y) ≤ L1|x0 − y| =

L1

L1 + 1
δD(y) ≤ δD(y) ∧ δD(x0).

Since D is a bounded and connected C1,1 open set and |x0 − x| ≤ |x0 − y| + |y −
x| ≤ ( 1

L1+1 + 1
2 )δD(y), by Proposition 2.2, a chain argument and the argument

in the first case, there are constants ci = ci(D,α,L1,M) > 0, i = 4,5,6, such
that

Ga
D(x, y) ≥ c4G

a
D(x0, y) ≥ c5

1
|x0 − y|d−2

≥ c6
1

|x − y|d−2
.

This completes the proof of the proposition. �

Suppose that D is a bounded and connected C1,1 open set in R
d with

characteristics (R,Λ) and corresponding κ. Fix z0 ∈ D with κR < δD(z0) < R,
and let ε1 := κR/24. For x, y ∈ D, define r(x, y) := δD(x) ∨ δD(y) ∨ |x − y| and

B(x, y) :=
{

z ∈ D : δD(z) >
κ

2
r(x, y), |x − z| ∨ |y − z| < 5r(x, y)

}
if r(x, y) < ε1, and B(x, y) := {z0} otherwise.

Put C5 := C42d−2δD(z0)−d+2. Then by (3.5),

Ga
D(·, z0) ≤ C5 on D \ B

(
z0, δD(z0)/2

)
.

Now we define
ga(x) := Ga

D(x, z0) ∧ C5.

Note that if δD(z) ≤ 6ε1, then |z − z0| ≥ δD(z0) − 6ε1 > δD(z0)/2 since 6ε1 <
δD(z0)/4, and therefore ga(z) = Ga

D(z, z0).
Using the uniform Harnack principle (Proposition 2.2) and Proposition 2.4,

the following form of Green function estimates follows from [23, Theorem 2.4].

Theorem 3.4. Suppose that M > 0. For any bounded and connected C1,1

open set D in R
d, there exists C6 = C6(D,M,α) > 0 such that for all x, y in

D and all a ∈ (0,M ]

C−1
6

ga(x)ga(y)
ga(A)2

|x − y| −d+2 ≤ Ga
D(x, y) ≤ C6

ga(x)ga(y)
ga(A)2

|x − y| −d+2,

where A ∈ B(x, y).
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Suppose D is a bounded and connected C1,1 open set. For all x, y ∈ D,
we let Qx and Qy be points on ∂D such that δD(x) = |x − Qx| and δD(y) =
|y − Qy |, respectively. It is easy to check that if r(x, y) < ε1

(3.8) Ar(x,y)(Qx),Ar(x,y)(Qy) ∈ B(x, y).

(Recall that, for any Q ∈ ∂D, Ar(Q) is a point such that B(Ar(Q), κr) ⊂
D ∩ B(Q,r).) Indeed, by the definition of Ar(x,y)(Qx), δD(Ar(x,y)(Qx)) ≥
κr(x, y) > κr(x, y)/2. Moreover,∣∣x − Ar(x,y)(Qx)

∣∣ ≤ |x − Qx| +
∣∣Qx − Ar(x,y)(Qx)

∣∣
≤ δD(x) + r(x, y) ≤ 2r(x, y)

and |y − Ar(x,y)(Qx)| ≤ |y − x| + |x − Ar(x,y)(Qx)| ≤ 3r(x, y). This verifies the
claim (3.8).

Recall the fact that ga(z) = Ga
D(z, z0) if δD(z) < 6ε1. By Theorem 2.3 and

the fact that κr(x, y) ≤ δD(Ar(x,y)(Qy)) ≤ r(x, y), there exists c1 > 1 such that
for every a ∈ (0,M ] and all x, y ∈ D with δD(x) < 6ε1 and δD(y) < 6ε1,

(3.9) c−1
1

δD(x)
r(x, y)

≤ ga(x)
ga(Ar(x,y)(Qx))

=
Ga

D(x, z0)
Ga

D(Ar(x,y)(Qx), z0)
≤ c1

δD(x)
r(x, y)

and

(3.10) c−1
1

δD(y)
r(x, y)

≤ ga(y)
ga(Ar(x,y)(Qy))

=
Ga

D(y, z0)
Ga

D(Ar(x,y)(Qy), z0)
≤ c1

δD(y)
r(x, y)

.

Proof of Theorem 1.1 when d ≥ 3. First, we assume that D is connected.
Combining inequalities (3.9) and (3.10) with Proposition 3.3, Theorem 3.4

and the fact that

(3.11)
δD(x)δD(y)
(r(x, y))2

≤
(

1 ∧ δD(x)δD(y)
|x − y|2

)
≤ 9

4
δD(x)δD(y)
(r(x, y))2

(see [6]), we get the inequalities (1.3).
Next we assume that D is not connected. Let (R,Λ) be the C1,1 character-

istics of D. Note that D has only finitely many components and the distance
between any two distinct components of D is at least R > 0. Assume first that
x and y are in two distinct components of D. Let D(x) be the component of
D that contains x. Then by the strong Markov property and the Lévy system
(2.4) of Xa, we have

Ga
D(x, y) = Ex[Ga

D(Xa
τa

D(x)
, y)]

= Ex

[∫ τa
D(x)

0

(∫
D\D(x)

ja(|Xa
s − z|)Ga

D(z, y)dz

)
ds

]
.
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Consequently,

ja(diam(D))Ex

[
τa
D(x)

]∫
D\D(x)

Ga
D(y, z)dz(3.12)

≤ Ga
D(x, y) ≤ ja(R)Ex

[
τa
D(x)

]∫
D\D(x)

Ga
D(y, z)dz.

Applying the two-sided estimates (1.3) established in the first part of this
proof to D(x), we get

(3.13) c−1
1 δD(x) = c−1

1 δD(x)(x) ≤ Ex

[
τa
D(x)

]
≤ c1δD(x)(x) = c1δD(x)

for some c1 = c1(D,M,α) > 1. Clearly, using (3.13),∫
D\D(x)

Ga
D(y, z)dz ≥

∫
D(y)

Ga
D(y)(y, z)dz = Ey

[
τa
D(y)

]
≥ c2δD(y).

On the other hand, it follows from (3.5) that supz∈D,a∈(0,M ] Ez[τa
D] ≤ c3 < ∞.

Moreover by (3.13) and the Lévy system (2.4) of Xa,∫
D\D(x)

Ga
D(y, z)dz

≤ Ey[τa
D] = Ey

[
τa
D(y)

]
+ Ey

[
EXτa

D(y)
[τa

D]
]

≤ c4δD(y) + Ey

[∫ τa
D(y)

0

(∫
D\D(y)

ja(|Xa
s − z|)Ez[τa

D]dz

)
ds

]
≤ c4δD(y) + c5j

M (R)Ey

[
τa
D(y)

]
≤ c6δD(y).

We conclude from the last three displays, (3.12) and the form of ja given
in (2.3) that there is a constant c7 = c7(D,M,α) ≥ 1 such that for every
a ∈ (0,M ],

(3.14) c−1
7 aαδD(x)δD(y) ≤ GD(x, y) ≤ c7a

αδD(x)δD(y).

Since for x and y in different components of D, R ≤ |x − y| ≤ diam(D), we
have established (1.3).

Now we assume that x, y are in the same component U of D. Applying
(1.3) to U , we get

Ga
D(x, y) ≥ Ga

U (x, y) ≥ c8
1

|x − y|d−2

(
1 ∧ δU (x)δU (y)

|x − y|2
)

= c8
1

|x − y|d−2

(
1 ∧ δD(x)δD(y)

|x − y|2
)

.
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For the upper bound, we use the strong Markov property, the Lévy system
(2.4), and (3.13), (3.14) to get

Ga
D(x, y) = Ga

U (x, y) + Ex[Ga
D(Xa

τa
U
, y)](3.15)

≤ c9
1

|x − y|d−2

(
1 ∧ δD(x)δD(y)

|x − y|2
)

+ Ex

[∫ τa
U

0

(∫
D\U

ja(|Xa
s − z|)Ga

D(z, y)dz

)
ds

]
≤ c9

1
|x − y|d−2

(
1 ∧ δD(x)δD(y)

|x − y|2
)

+ jM (R)Ex[τa
U ]

∫
D\U

Ga
D(y, z)dz

≤ c9
1

|x − y|d−2

(
1 ∧ δD(x)δD(y)

|x − y|2
)

+ c10δD(x)δD(y)
∫

D\U

δD(z)dz.

Since the boundedness of D implies

δD(x)δD(y) ≤ c11
1

|x − y|d−2

(
1 ∧ δD(x)δD(y)

|x − y|2
)

,

we have from (3.15)

Ga
D(x, y) ≤ c12

1
|x − y|d−2

(
1 ∧ δD(x)δD(y)

|x − y|2
)

. �

Define
(3.16)

a(x, y, z,w) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, when x, y, z,w are in the same component of D,

a−α, when x, y ∈ D(x), z /∈ D(x) and w ∈ D(z),

aα, when x,w ∈ D(x),#
(

{y, z} ∩ D(x)
)

= 1,

aα, when x, y, z,w are all in different components of D,

a2α, when x,w ∈ D(x), {y, z} ∩ D(x) = ∅.

The next theorem will be used in Section 7.

Theorem 3.5 (Generalized 3G theorem). Suppose that M > 0. For any
bounded C1,1 open set D in R

d, there exists a constant C8 = C8(D,α,M) such
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that for all x, y, z,w ∈ D and a ∈ (0,M ],

Ga
D(x, y)Ga

D(z,w)
Ga

D(x,w)
(3.17)

≤ C8a(x, y, z,w)
(

|x − w| ∧ |y − z|
|x − y| ∨ 1

)
×

(
|x − w| ∧ |y − z|

|z − w| ∨ 1
)

|x − w|d−2

|x − y|d−2|z − w|d−2
.

Proof. Recall that r(x, y) = δD(x) ∨ δD(y) ∨ |x − y| and let

gD(x, y) :=
1

|x − y|d−2

δD(x)δD(y)
(r(x, y))2

and

H(x, y, z,w) :=
|x − w|d−2

|x − y|d−2|z − w|d−2
.

By Theorem 1.1 for the case d ≥ 3 and (3.11),

Ga
D(x, y)Ga

D(z,w)
Ga

D(x,w)
(3.18)

≤ c1a(x, y, z,w)
gD(x, y)gD(z,w)

gD(x,w)

= c1a(x, y, z,w)
δD(y)δD(z)r(x,w)2

r(x, y)2r(z,w)2
H(x, y, z,w).(3.19)

1. If |x − w| ≤ δD(x) ∧ δD(w), gD(x,w) ≥ |x − w|−d+2. Thus, by (3.18)

Ga
D(x, y)Ga

D(z,w)
Ga

D(x,w)
≤ c1a(x, y, z,w)H(x, y, z,w).

2. Note that if y = z, since r(x,w) ≤ 2r(x, y) + 2r(y,w),

δD(y)δD(y)r(x,w)2

r(x, y)2r(y,w)2
≤ 8

(
δD(y)2

r(y,w)2
+

δD(y)2

r(x, y)2

)
≤ 8.

Thus,

gD(x, y)gD(y,w)
gD(x,w)

≤ 8H(x, y, y,w).(3.20)

Now consider the case |y − z| ≤ δD(y) ∧ δD(z). In this case gD(y, z) ≥
|y − z| −d+α. Thus, using (3.20), we obtain that

gD(x, y)gD(z,w)
gD(x,w)

(3.21)

=
gD(x, y)gD(y, z)

gD(x, z)
gD(x, z)gD(z,w)

gD(x,w)
1

gD(y, z)
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≤ 64
|x − z|d−2

|x − y|d−2|y − z|d−2

|x − w|d−2

|x − z|d−2|z − w|d−2

1
gD(y, z)

= 64
|x − w|d−2

|x − y|d−2|y − z|d−2|z − w|d−2

1
gD(y, z)

.

Thus, by (3.18) and (3.21), we have

Ga
D(x, y)Ga

D(z,w)
Ga

D(x,w)
≤ c2a(x, y, z,w)H(x, y, z,w).

3. Now we assume that |x − w| > δD(x) ∧ δD(w) and |y − z| > δD(y) ∧ δD(z).
Since δD(x) ∨ δD(w) ≤ δD(x) ∧ δD(w)+ |x − w|, using the assumption δD(x) ∧
δD(w) < |x − w|, we obtain r(x,w) < 2|x − w|. Similarly, r(y, z) < 2|y − z|.
By (3.19), we only need to show that
(3.22)

δD(y)δD(z)r(x,w)2

r(x, y)2r(z,w)2
≤ c3

(
|x − w| ∧ |y − z|

|x − y| ∨ 1
)(

|x − w| ∧ |y − z|
|z − w| ∨ 1

)
.

Since r(x,w) ≤ 2r(x, y) + 2r(y,w) ≤ 2r(x, y) + 4r(y, z) + 4r(z,w), we have

δD(y)δD(z)r(x,w)2

r(x, y)2r(z,w)2
≤ c4

(
δD(y)δD(z)

r(z,w)2
+

δD(y)δD(z)
r(x, y)2

+
δD(y)δD(z)r(y, z)2

r(x, y)2r(z,w)2

)
≤ c4

(
δD(y)
r(z,w)

+
δD(z)
r(x, y)

+
r(y, z)2

r(x, y)r(z,w)

)
≤ c4

(
r(y, z)
r(z,w)

+
r(y, z)
r(x, y)

+
r(y, z)2

r(x, y)r(z,w)

)
,

which is, by [25, Lemma 3.15], less than or equal to

2c4

(
r(y, z)
r(x, y)

∨ 1
)(

r(y, z)
r(z,w)

∨ 1
)

.

On the other hand, clearly

δD(y)δD(z)r(x,w)2

r(x, y)2r(z,w)2
=

δD(y)δD(z)
r(x, y)r(z,w)

r(x,w)2

r(x, y)2r(z,w)2

≤
(

r(x,w)
r(x, y)

∨ 1
)(

r(x,w)
r(z,w)

∨ 1
)

.

Thus,

δD(y)δD(z)r(x,w)2

r(x, y)2r(z,w)2
≤ c5

(
r(y, z) ∧ r(x,w)

r(x, y)
∨ 1

)(
r(y, z) ∧ r(x,w)

r(z,w)
∨ 1

)
.

Now applying the fact that r(x,w) < 2|x − w|, r(y, z) < 2|y − z|, r(x, y) ≥
|x − y| and r(z,w) ≥ |z − w|, we arrive at (3.22).

We have proved the theorem. �
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Note that, since we consider disconnected open sets too, we can not apply
[25, Theorem 1.1] directly to get the generalized 3G theorem.

Taking y = z in (3.17), we get the classical 3G estimates, that is,

Ga
D(x, z)Ga

D(z,w)
Ga

D(x,w)
≤ C8a(x, z, z,w)

|x − w|d−2

|x − z|d−2|z − w|d−2

≤ C8(M2α ∨ 1)
|x − w|d−2

|x − z|d−2|z − w|d−2
.

4. Two dimensional case

In this section, we assume d = 2 and prove Theorem 1.1 for this case.
Unlike the case of d ≥ 3, due to the recurrence of planar Brownian motions,
the methods in [6], [23] are not applicable in dimension d = 2 even though
we have the Harnack and boundary Harnack principles. We use a capacitary
approach and some recent results on the subordinate killed Brownian motions
instead.

First, we derive the lower bound. The method we use relies on comparing
the process Xa,D, which is the killed subordinate Brownian motion, with
another process, the subordinate killed Brownian motion. This method also
works for dimensions d ≥ 3.

To be more precise, let D be a bounded open set in R
2 and X0,D the killed

Brownian motion in D. Let (T a
t : t ≥ 0) be a subordinator independent of

X0 which can be written as T a
t = t + a2Tt where (Tt : t ≥ 0) is an α/2-stable

subordinator. The process (Za,D
t : t ≥ 0) defined by Za,D

t = X0,D
T a

t
is called a

subordinate killed Brownian motion in D. Let ua be the potential density of
T a (see (2.1)). It follows from [36] that the Green function Ra

D(x, y) of Za,D

is given by

(4.1) Ra
D(x, y) =

∫ ∞

0

p0
D(t, x, y)ua(t)dt,

where p0
D(t, x, y) is the transition density of the killed Brownian motion X0,D.

It is well known (see, for instance, [38, Proposition 3.1]) that

(4.2) Ra
D(x, y) ≤ Ga

D(x, y), (x, y) ∈ D × D.

Theorem 4.1. Suppose that M > 0. For any bounded C1,1 connected open
set D in R

2, there exists a positive constant C9 = C9(α,M,D) such that for
all x, y ∈ D and all a ∈ (0,M ],

Ga
D(x, y) ≥ Ra

D(x, y) ≥ C9 log
(

1 +
δD(x)δD(y)

|x − y|2
)

.

Proof. First, recall the following lower bound for the transition density of
the killed Brownian motion X0,D obtained in [39] which states that for any
A > 0, there exist positive constants c0 and c1 such that for any t ∈ (0,A] and
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any x, y ∈ D,

(4.3) p0
D(t, x, y) ≥ c0

(
1 ∧ δD(x)δD(y)

t

)
t−1 exp

(
− c1|x − y|2

t

)
.

It follows from (2.1) that

(4.4) ua(t) = u1
(
a

2α
2−α t

)
for t > 0.

Let T = (diam(D))2. Since u1(t) is a completely monotone function with
u1(0+) = 1, by (4.4), for any a ∈ (0,M ]

ua(t) ≥ u1
(
M

2α
2−α T

)
, t ∈ (0, T ].(4.5)

By a change of variables s = |x−y|2
t , we have∫ T

0

(
1 ∧ δD(x)δD(y)

t

)
t−1e−c1

|x−y|2
t dt(4.6)

=
∫ ∞

|x−y|2
T

(
1 ∧ δD(x)δD(y)s

|x − y|2
)

s−1e−c1s ds.

Define

(4.7) fD(x, y) =
δD(x)δD(y)

|x − y|2 .

Since 1/fD(x, y) ≥ |x − y|2/diam(D)2 = |x − y|2/T , we split the last integral
into two parts: ∫ ∞

1

(
1 ∧ δD(x)δD(y)s

|x − y|2
)

s−1e−c1s ds(4.8)

≥
(∫ ∞

1

s−1e−c1s ds

)(
1 ∧ δD(x)δD(y)

|x − y|2
)

,

and ∫ 1

|x−y|2
T

s−1
(
1 ∧ (fD(x, y)s)

)
ds ≥

∫ 1

|x−y|2
T

s−11{s≥1/fD(x,y)} ds

= log
(
fD(x, y) ∨ 1

)
.(4.9)

Combining (4.3) and (4.6)–(4.9), we have∫ T

0

p0
D(t, x, y)dt ≥ c2

(
1 ∧ fD(x, y)

)
+ c2 log

(
fD(x, y) ∨ 1

)
≥ c3 log

(
1 +

δD(x)δD(y)
|x − y|2

)
.

So it follows from (4.1), (4.2) and (4.5) that

Ga
D(x, y) ≥ Ra

D(x, y) ≥ u1
(
M

2
2−α T

)∫ T

0

p0
D(t, x, y)dt

≥ c4 log
(

1 +
δD(x)δD(y)

|x − y|2
)

. �
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Integrating the estimate in Theorem 4.1 with respect to y yields the fol-
lowing corollary.

Corollary 4.2. Suppose that M > 0. For any bounded connected C1,1

open set D in R
2, there exists a positive constant C10 = C10(α,M,D) such

that for all x ∈ D and all a ∈ (0,M ],

Ex[τa
D] ≥ C10δD(x).

The inequalities in the next lemma can be proved by elementary calculus
and will be used several times without being mentioned explicitly.

Lemma 4.3. For any L > 0, there exists a constant C11 = C11(L) > 1 such
that

C−1
11 b ≤ log(1 + b) ≤ b for any 0 < b ≤ L

and

C−1
11 log(1 + s) ≤ log(1 + Ls) ≤ C11 log(1 + s) for any 0 < s < ∞.

Using Corollary 4.2, Theorem 4.1 can be extended to general (not neces-
sarily connected) bounded C1,1 open sets. Recall that ga

D is defined by (1.1).

Theorem 4.4. Suppose that D is a bounded C1,1 open set in R
2 with

characteristics (R,Λ). There exists a positive constant C12 = C12(α,M,D)
such that for all x, y ∈ D and all a ∈ (0,M ],

Ga
D(x, y) ≥ C12g

a
D(x, y).

Proof. Recall that fD(x, y) is defined in (4.7). If x and y are in the same
component, say x, y ∈ U , then by monotonicity,

(4.10) Ga
D(x, y) ≥ Ga

U (x, y) ≥ c1 log
(
1 + fU (x, y)

)
= c1 log

(
1 + fD(x, y)

)
.

If x, y are in the different components of D, using Corollary 4.2 and Lemma 4.3,
and by following the second part of the proof of Theorem 1.1 in case d ≥ 3
(that is, the paragraph containing (3.12) and (3.13)), we get

Ga
D(x, y) ≥ c2a

αδD(x)δD(y) ≥ c2R
2aα δD(x)δD(y)

|x − y|2

≥ c3a
α log

(
1 +

δD(x)δD(y)
|x − y|2

)
.

This completes the proof of the theorem. �

Recall that when d ≥ 2 and a > 0, any non-empty open set D ⊂ R
d is

Greenian for Xa. For any Greenian open set D, any Borel subset A of D and
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a ≥ 0, we define

Capa
D(A) := sup

{
η(A) : η is a measure supported on A(4.11)

with
∫

D

Ga
D(x, y)η(dy) ≤ 1

}
.

It is known (cf. [22]) that for any open subset A of D,

Capa
D(A) = inf

{
E a(u,u) : u ∈ W 1,2(Rd), u = 0 on Dc, u ≥ 1 a.e. on A

}
and for any Borel subset A of D,

Capa
D(A) = inf{Capa

D(B) : A ⊂ B and B is open}.

Since E 0 ≤ E a, for any Greenian open set D ⊂ R
d and every a ∈ [0,M ]

(4.12) Cap0
D(A) ≤ Capa

D(A) for every A ⊂ D.

Lemma 4.5. There exists C13 > 0 such that

Cap0
B(0,1)(B(0, r)) ≥ C13

log(1/r)
for every r ∈ (0,3/4).

Proof. Recall that (see, e.g., [18, p. 178])

(4.13) G0
B(0,1)(x, y) =

1
2π

log
(

1 +
(1 − |x|2)(1 − |y|2)

|x − y|2
)

.

Let P denote the family of all probability measures on B(0, r). It follows from
[21, p. 159] that

(4.14) Cap0
B(0,1)(B(0, r)) =

(
inf
μ∈P

sup
x∈supp(μ)

G0
B(0,1)μ(x)

)−1

.

Let mr be the normalized Lebesgue measure on B(0, r). By (4.14),

(4.15) Cap0
B(0,1)(B(0, r)) ≥ 1

sup
x∈B(0,r)

G0
B(0,1)mr(x)

.

Further, by using symmetry in the first equality, and (4.13) in the second line,
we have

sup
x∈B(0,r)

G0
B(0,1)mr(x) = G0

B(0,1)mr(0) =
∫

B(0,r)

G0
B(0,1)(0, y)mr(dy)

=
1

πr2

∫
B(0,r)

1
2π

log
1

|y|2 dy

=
1

πr2

r2

2

(
1 + 2 log

1
r

)
≤ c log

1
r
,
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for some constant c > 0. This together with (4.15) yields the desired capacity
estimate. �

For any Borel subset V , we use σa
V to denote the first hitting time of V by

Xa: σa
V = inf{t > 0 : Xa

t ∈ V }.

Lemma 4.6. Suppose that M > 0. There exists C14 > 0 such that for every
a ∈ (0,M ], any Greenian open set D in R

2 containing B(0,1) and any x ∈
B(0, 3

4 )

Ga
D(x,0) ≤ C14

Cap0
D(B(0, |x|/2))

Px

(
σa

B(0,|x|/2)
< τD

)
.

Proof. Fix x ∈ B(0,3/4) and let r := |x|/2. Since B(0, r) is a compact
subset of D, there exists a capacitary measure μa

r for B(0, r) with respect to
Xa,D such that

Capa
D(B(0, r)) = μa

r(B(0, r))
(see, for example, [4, Section VI.4] for details). Then by Proposition 2.2, we
have ∫

B(0,r)

Ga
D(x, y)μa

r(dy) ≥
(

inf
y∈B(0,r)

Ga
D(x, y)

)
μa

r(B(0, r))(4.16)

≥ c1G
a
D(x,0)Capa

D(B(0, r))

≥ c1G
a
D(x,0)Cap0

D(B(0, r))

for some constant c1 > 0. In the last inequality above, we have used (4.12).
On the other hand,∫

B(0,r)

Ga
D(x, y)μa

r(dy)(4.17)

=
∫

B(0,r)

Ex

[
Ga

D

(
Xa,D

σa
B(0,r)

, y
)]

μa
r(dy)

≤
(

sup
w∈B(0,r)

∫
B(0,r)

Ga
D(w,y)μa

r(dy)
)

Px

(
σa

B(0,r)
< τD

)
≤ Px

(
σa

B(0,r)
< τD

)
.

In the last inequality above, we have used (4.11).
Combining (4.16) and (4.17), we have

Ga
D(x,0) ≤ c−1

1

Cap0
D(B(0, r))

Px

(
σa

B(0,r)
< τD

)
. �

Corollary 4.7. Suppose that M > 0. There exists C15 > 0 such that for
every a ∈ (0,M ] and every x ∈ B(0,3/4)

Ga
B(0,1)(x,0) ≤ C15 log(1/|x|).
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Proof. It follows from Lemmas 4.5 and 4.6 that

Ga
B(0,1)(x,0) ≤ C14

Cap0
B(0,1)(B(0, |x|/2))

Px

(
σa

B(0,|x|/2)
< τB(0,1)

)
≤ C14C

−1
13 log(2/|x|) ≤ c log(1/|x|)

for some constant c > 0. �

Lemma 4.8. Suppose that M > 0 and that D is a bounded C1,1 open set in
R

2 with characteristics (R,Λ). There exists C16 = C16(D) > 0 such that for
every a ∈ (0,M ] and all x, y ∈ D with |x − y| ≤ 3

4δD(x) < 3
4R,

Ga
D(x, y) ≤ C16 log

(
δD(x)

|x − y|

)
.

Proof. By our assumption, D satisfies the uniform exterior ball condition
with radius R > 0.

Fix x, y ∈ D with |x − y| ≤ 3
4δD(x) and let r := δD(x). Since r < R, without

loss of generality, we may assume x = (0,0), (0, −r) ∈ ∂D with B((0, −2r), r) ∈
R

2 \ D.
Let â := ar(2−α)/α, ŷ := r−1y and D̂ := r−1D. Then by (2.12),

(4.18) Ga
D(0, y) = Gâ

D̂
(0, ŷ).

By the strong Markov property, we have

(4.19) Gâ
D̂

(0, ŷ) = Gâ
B(0,1)(0, ŷ) + E0

[
Gâ

D̂

(
X â

τ â
B(0,1)

, ŷ
)]

.

Note that â = ar(2−α)/α ≤ MR(2−α)/α. Define

h(z,w) := Ez

[
Gâ

D̂

(
X â

τ â
B(0,1)

,w
)]

.

For each fixed z ∈ B(0,1), the function w 	→ h(z,w) is harmonic in B(0,1)
with respect to X â and for each fixed w ∈ B(0,1), z 	→ h(z,w) is harmonic in
B(0,1) with respect to process X â. So it follows from Proposition 2.2,

h(0, ŷ) ≤ c1 min
z,w∈B(0,5/6)

h(z,w) ≤ c1 min
z,w∈B(0,5/6)

Gâ
D̂

(z,w) ≤ c1G
â
D̂

(0, x1),

where |x1| = 1/2. In the second inequality we used that Gâ
D̂

(·,w) is super-

harmonic in B(0,1) for X â. Note that D̂ ⊂ E := R
2 \ B((0, −2),1). Thus, by

Lemma 4.6,

(4.20) h(0, ŷ) ≤ c1G
â
D̂

(0, x1) ≤ c1G
â
E(0, x1) ≤ c2

Cap0
E(B(0,1/4))

< ∞.

On the other hand, by Corollary 4.7

(4.21) Gâ
B(0,1)(0, ŷ) ≤ c3 log

(
1

|ŷ|

)
= c3 log

(
δD(0)

|y|

)
.
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It follows from (4.18)–(4.21) that

Ga
D(x, y) = Ga

D(0, y) ≤ c4 + c3 log
(

δD(0)
|y|

)
≤ c5 log

(
δD(x)

|x − y|

)
,

which proves the lemma. �

Lemma 4.9. Suppose that M > 0 and that D is a bounded C1,1 open set
in R

2. If x and y are in the same component of D with
1
c

(
δD(x) ∨ δD(y)

)
≤ |x − y| ≤ c

(
δD(x) ∧ δD(y)

)
for some c > 1, then there exists C17 = C17(c,D) > 0 such that for every a ∈
[0,M ]

Ga
D(x, y) ≤ C17.

Proof. Without loss of generality, we assume δD(x) ≤ δD(y). If 1
c δD(y) ≤

|x − y| ≤ 3
4δD(x), then the lemma follows from Lemma 4.8. In the case

3
4δD(x) ≤ |x − y| ≤ cδD(x), since x, y are in the same component of D, we
use Proposition 2.2 and a standard Harnack chain argument. �

Theorem 4.10. Suppose that M > 0 and that D is a bounded C1,1 open
set in R

2. There exists C18 = C18(D) > 0 such that for every a ∈ (0,M ] and
all x, y ∈ D

Ga
D(x, y) ≤ C18 log

(
1 +

1
|x − y|2

)
.

Proof. Let L = max{2diam(D),2}.
(i) If |x − y| < 1/4, by Lemma 4.8 applied to B(x,L),

Ga
D(x, y) ≤ Ga

B(x,L)(x, y) ≤ c1 log
(

1
|x − y|

)
≤ c2 log

(
1 +

1
|x − y|2

)
.

(ii) If 1/4 ≤ |x − y|, by (2.12) and Corollary 4.7,

Ga
D(x, y) ≤ Ga

B(x,L)(x, y) ≤ GaL(2−α)/α

B(L−1x,1)(L
−1x,L−1y) ≤ c3 log

(
L

|x − y|

)
≤ c3 log(4L) ≤ c4 ≤ c5 log

(
1 +

1
|x − y|2

)
. �

Now we are ready to prove Theorem 1.1 for d = 2. Recall that fD(x, y) is
defined in (4.7).

Proof of Theorem 1.1 when d = 2. By Theorem 4.4, we only need to con-
sider the upper bound. We divide its proof into two steps.

Step 1. We first consider the case that x and y are in the same component
of D. Without loss of generality, throughout this proof, we assume δD(x) ≤
δD(y).
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Fix z0 ∈ D with κR < δD(z0) < R, and let ε1 := κR/24. Choose Qx,Qy ∈
∂D with |Qx − x| = δD(x) and |Qy − y| = δD(y). We consider the following
five cases separately.

(a) If δD(x) ≥ ε1κ
2/32, by Theorem 4.10

Ga
D(x, y) ≤ c1 log

(
1 +

1
|x − y|2

)
≤ c2 log

(
1 + fD(x, y)

)
.

(b) Suppose δD(x) < ε1κ
2/32 and δD(y) ≥ ε1κ/4. Let r := ε1κ/16 and put

x1 = Arκ/2(Qx). One can easily check that |z0 − Qx| ≥ r and |y − Qx| ≥ r. So
by (2.9), Theorem 2.3 and Theorem 4.10, we have

Ga
D(x, y) ≤ c3G

a
D(x1, y)

Ga
D(x, z0)

Ga
D(x1, z0)

≤ c4δD(x) ≤ c5fD(x, y)

for some c3, c4, c5 > 0. Note that fD(x, y) < c6 in this case because D is
bounded and |x − y| ≥ δD(y) − δD(x) ≥ ε1κ(1/4 − κ/32) > 0. So it follows
from the above display and Lemma 4.3 that

Ga
D(x, y) ≤ c7 log

(
1 + fD(x, y)

)
.

(c) Suppose δD(x) < ε1κ
2/32, δD(y) ≤ ε1κ/4 and |x − y| < δD(y)/2. From

δD(y) ≤ |x − y| + δD(x) we conclude that δD(y) < 2δD(x) and so |x − y| <
δD(x). This together with Lemma 4.8 gives that

Ga
D(x, y) ≤ c8 log

(
δD(y)

|x − y|

)
≤ c9 log

(
1 + fD(x, y)

)
.

(d) If 1
2δD(y) ≤ |x − y| ≤ (24/κ2)δD(x), by Lemma 4.9,

Ga
D(x, y) ≤ c10 ≤ c11 log

(
1 + fD(x, y)

)
.

(e) The remaining case is

δD(x) ≤ ε1κ
2

32
, δD(x) ≤ δD(y) ≤ ε1κ

4
and

|x − y| > max
{

24
κ2

δD(x),
δD(y)

2

}
.

We claim that in this case

(4.22) Ga
D(x, y) ≤ c12fD(x, y).

By Lemma 4.3, the above implies that Ga
D(x, y) ≤ c13 log(1 + fD(x, y)) since

in this case

fD(x, y) =
δD(x)δD(y)

|x − y|2 ≤ 4.

We now proceed to prove (4.22) by considering the following two subcases.
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(i) (24/κ2)δD(x) ≤ |x − y| ≤ (4/κ)δD(y): Let r := δD(y)/3. Put x1 =
Arκ/2(Qx). One can easily check that |z0 − Qx| ≥ r and |y − Qx| ≥ r. So
by (2.9) and Theorem 2.3, we have

Ga
D(x, y) ≤ c14G

a
D(x1, y)

Ga
D(x, z0)

Ga
D(x1, z0)

≤ c15G
a
D(x1, y)

δD(x)
|x − y| .

Moreover,
24
κ2

δD(x) ≤ |x − y| ≤ 3
2

|x1 − y| ≤ 6
κ

δD(y) ≤ 72
κ3

δD(x1),

implying that

δD(y) ≤ |x − y| + δD(x) ≤
(

3
2

+
36
κ2

)
|x1 − y|.

It follows from Lemma 4.9 that Ga
D(x1, y) ≤ c16. Therefore,

Ga
D(x, y) ≤ c17

δD(x)
|x − y| ≤ c18fD(x, y).

(ii) δD(x) ≤ δD(y) ≤ (κ/4)|x − y|: Let r := 1
2 (|x − y| ∧ ε1). Put x1 =

Arκ/2(Qx) and y1 = Arκ/2(Qy). Then, since |z0 − Qx| ≥ r and |y − Qx| ≥ r,
by (2.9), we have

c−1
19

Ga
D(x1, y)

Ga
D(x1, z0)

≤ Ga
D(x, y)

Ga
D(x, z0)

≤ c19
Ga

D(x1, y)
Ga

D(x1, z0)

for some c19 > 1. On the other hand, since |z0 − Qy | ≥ r and |x1 − Qy | ≥ r,
applying (2.9),

c−1
19

Ga
D(x1, y1)

Ga
D(x1, y)

≤ Ga
D(y1, z0)

Ga
D(y, z0)

≤ c19
Ga

D(x1, y1)
Ga

D(x1, y)
.

Putting the four inequalities above together we get

c−2
19

Ga
D(x1, y1)

Ga
D(x1, z0)Ga

D(y1, z0)
≤ Ga

D(x, y)
Ga

D(x, z0)Ga
D(y, z0)

≤ c2
19

Ga
D(x1, y1)

Ga
D(x1, z0)Ga

D(y1, z0)
.

Moreover, 1
3 |x − y| < |x1 − y1| < 2|x − y| and

4
3κ

(
δD(x1) ∨ δD(y1)

)
≤ 1

3
|x − y| ≤ |x1 − y1| ≤ 64

κ3ε1

(
δD(x1) ∧ δD(y1)

)
.

Thus by Lemma 4.9 and Theorem 2.3, we have

Ga
D(x, y) ≤ c20

Ga
D(x, z0)Ga

D(y, z0)
Ga

D(x1, z0)Ga
D(y1, z0)

≤ c21fD(x, y)

for some c20, c21 > 0. This completes the proof of the claim (4.22) and there-
fore of the theorem when x and y are are in the same component of D.

Step 2. Next, we consider the case that x and y are in two different
components of D. This part of the proof is the same as the second part
of the proof of Theorem 1.1 when d ≥ 3 [that is, the paragraph containing
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(3.12) and (3.13)]. The only place that needs modification is the proof of
supz∈D Ex[τa

D] ≤ c22 < ∞. When d = 2, we can not use (3.5) to deduce it.
However, since D is bounded, there is K > 0 so that D ⊂ B(0,K). It follows
from Step 1 that

sup
z∈D,a∈(0,M ]

Ez[τa
D] ≤ sup

z∈B(0,K),a∈(0,M ]

Ez[τa
B(0,K)] ≤ c23 < ∞.

This completes the proof of Theorem 1.1. �

Theorem 4.11 (3G theorem for d = 2). Suppose that M > 0 and that
D is a bounded C1,1 open set in R

2. Then there exist positive constants
C19 = C19(D,α,M) and C20 = C20(D,α,M) such that for all x, y, z ∈ D and
a ∈ (0,M ]

Ga
D(x, y)Ga

D(y, z)
Ga

D(x, z)
≤ C19

(
log

(
1 + fD(x, y)

)
+ log

(
1 + fD(y, z)

)
+ 1

)
≤ C20

((
log

1
|x − y| ∨ 1

)
+

(
log

1
|y − z| ∨ 1

))
.

Proof. Note that, if x, z are in different components of D, either x, y or y, z
are in different components of D. Thus, by Theorem 1.1 for d = 2 and the
fact that a ∈ [0,M ], we have

Ga
D(x, y)Ga

D(y, z)
Ga

D(x, z)
≤ c1

log(1 + fD(x, y)) log(1 + fD(y, z))
log(1 + fD(x, z))

for some c1 = c1(M,D,α). Now following the proof of [18, Theorem 6.24], we
get the theorem. �

Remark 4.12. By considering how many different components of D that
x, y and z fall into, we could get more precise 3G estimates with the de-
pendence on a explicitly spelled out. Theorem 4.11 will not be used in the
remainder of this paper.

5. One dimensional case

In this section we assume d = 1 and prove Theorem 1.1 for this case. We
will follow the ideas in [29].

Let X
a

be the supremum process of Xa defined by X
a

t = sup{0 ∨ X
a

s : 0 ≤
s ≤ t} and let X

a − Xa be the reflected process at the supremum. The local
time at zero of X

a − Xa is denoted by La = (La
t : t ≥ 0) and the inverse

local time by {τa
t : t ≥ 0}, where τa

t := inf{s : La
s > t}. The inverse local time

{τa
t : t ≥ 0} is a subordinator. The (ascending) ladder height process of Xa

is the process Ha = (Ha
t : t ≥ 0) defined by Ha

t = Xa
τa

t
. The ladder height
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process is again a subordinator. It follows from [29] that Ha is a special
subordinator with Laplace exponent given by

(5.1) χa(λ) = exp
(

1
π

∫ ∞

0

log(θ2λ2 + aαθαλα)
1 + θ2

dθ

)
and that the drift coefficient of Ha is 1. When a = 0, we have χ0(λ) = λ.
Thus, if V a is the potential measure of Ha and V a(x) = V a([0, x]), then, for
every a ≥ 0, V a has a continuous, decreasing and strictly positive potential
density va such that va(0+) = 1. When a = 0, we have va ≡ 1. The following
results is a uniform version of [29, Proposition 2.3] in our present special case.

Lemma 5.1. Let M and R2 be positive constants. There exists a constant
C21 = C21(M,R2) ∈ (0,1) such that for all a ∈ [0,M ] and x ∈ (0,R2],

C21 ≤ va(x) ≤ C−1
21 and C21x ≤ V a(x) ≤ C−1

21 x.

Proof. Since Ha is special, the potential density va is a decreasing function.
Hence, inf0<t≤R2 va(t) = va(R2). It follows from (5.1) that the Laplace expo-
nent χa is continuous in a. Thus, the potential measures converge vaguely,
and by continuity and monotonicity of va, we get that va(t) → vb(t) as a → b
for all t > 0. In particular, va(R2) → vb(R2). Therefore, c1 :=
inf0<t≤R2,0≤a≤M va(t) > 0. Since va(t) ≤ 1 for all t > 0 and all a ≥ 0, we
get that c2 = sup0<t≤R2,0≤a≤M va(t) = 1. Choose c3 = c3(M,R2) ∈ (0,1) such
that c3 ≤ c1 ≤ c2 ≤ c−1

3 . Since V (x) =
∫ x

0
v(t)dt, the claim follows immedi-

ately. �
Theorem 5.2. Suppose that M > 0. For any bounded open interval D in

R, there exists a constant C22 = C22(α,M,D) > 1 such that for all x, y ∈ D
and all a ∈ (0,M ],

C−1
22

((
δD(x)δD(y)

)1/2 ∧ δD(x)δD(y)
|x − y|

)
≤ Ga

D(x, y) ≤ C22

(
(δD(x)δD(y))1/2 ∧ δD(x)δD(y)

|x − y|

)
.

Proof. The proof of the lower bound is similar to that of Theorem 4.1 and
[29, Proposition 3.3]. Using our Lemma 5.1 instead of [29, Proposition 2.3],
we can follow the proof of [29, Proposition 3.1] to get the upper bound. We
omit the details. �

Integrating the estimate in Theorem 5.2 with respect to y yields the fol-
lowing corollary.

Corollary 5.3. Suppose that M > 0. For any bounded open interval D
in R, there exists a positive constant C23 = C23(α,M,D) > 1 such that for all
x ∈ D and all a ∈ (0,M ],

C−1
23 δD(x) ≤ Ex[τa

D] ≤ C23δD(x).
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Using Corollary 5.3, we can repeat the proof of Theorem 1.1 for d ≥ 3
case (see also [29, Theorem 3.8]) to generalize Theorem 5.2 to general (not
necessarily connected) bounded C1,1 open sets. Recall that ga

D is defined by
(1.2).

Theorem 5.4. Suppose that D is a bounded C1,1 open set in R. There
exists a positive constant C24 = C24(α,M,D) > 1 such that for all x, y ∈ D
and all a ∈ (0,M ],

C−1
24 ga

D(x, y) ≤ Ga
D(x, y) ≤ C24g

a
D(x, y).

6. Martin boundary and Martin kernel estimates

Throughout this section, we assume that d ≥ 1 and D is a bounded C1,1

open set in R
d with characteristics (R,Λ) and the corresponding κ. We will

show in this section that the Martin boundary and the minimal Martin bound-
ary of D with respect to Xa can both be identified with the Euclidean bound-
ary ∂D of D. With the boundary Harnack principle given in Theorem 2.3,
the arguments of this section are modifications of the corresponding parts of
[5], [16], [26], [28]. For this reason, most of the proofs in this section will be
omitted.

The next lemma follows from Theorem 2.3.

Lemma 6.1. Suppose that M > 0 and that D is a bounded C1,1 open set
in R

d. There exists a positive constant C25 = C25(D,α,M) such that for all
a ∈ (0,M ], Q ∈ ∂D, r ∈ (0,R/2), and nonnegative function u in R

d which is
harmonic with respect to Xa in D ∩ B(Q,r) we have

(6.1) u(Ar(Q)) ≤ C25

(
2
κ

)k

u
(
A(κ/2)kr(Q)

)
, k = 0,1, . . . .

Lemma 6.2. Suppose that M > 0. For every b ∈ (0, ∞), there exist C26 =
C26(M,b) > 0 and C27 = C27(M,b) > 0 such that for all x0 ∈ R

d, a ∈ (0,M ]
and r ∈ (0, b],

(6.2) C26r
2 ≤ Ex0

[
τa
B(x0,r)

]
≤ C27r

2

and

(6.3) Ex

[
τa
B(x0,r)

]
≤ C27rδB(x0,r)(x).

Proof. See [15, Lemmas 2.3 and 2.4] or [35, Lemmas 2.2 and 2.3] for a proof
of (6.2). The inequality (6.3) follows easily from Theorem 1.1. In fact, by
(2.11) and Theorem 1.1 (with Mb(2−α)/α instead of M )

Ex

[
τa
B(0,r)

]
= r2

∫
B(0,1)

Gar(2−α)/α

B(0,1) (r−1x, z)dz ≤ cr2δB(0,1)(r−1x)

= crδB(0,r)(x). �
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For an open set U ⊂ R
d, let

(6.4) Ka
U (x, z) :=

∫
U

Ga
U (x, y)Ja(y, z)dy, (x, z) ∈ U × U

c
.

Then by (2.4), for any nonnegative measurable function f on R
d,

Ex[f(Xa
τa

U
);Xa

τa
U − �= Xa

τa
U
] =

∫
U

c
Ka

U (x, z)f(z)dz.

From (6.4), Theorem 1.1 and Lemma 6.2, we immediately get the following
proposition.

Proposition 6.3. Suppose that M > 0. There exist C28 > 0 and C29 > 0
such that for all a ∈ (0,M ] and r ∈ (0,R) and x0 ∈ R

d,

Ka
B(x0,r)(x, y) ≤ C28r(r − |x − x0|)(|y − x0| − r)−d−α(6.5)

for (x, y) ∈ B(x0, r) × B(x0, r)
c

and

(6.6) Ka
B(x0,r)(x0, y) ≥ C29r

2|y − x0| −d−α for y ∈ B(x0, r)
c
.

Using (6.6), the proof of the next lemma is similar to that of [26, Lemma 4.3]
or [28, Lemma 5.3]. Thus, we skip the proof.

Lemma 6.4. Suppose that a > 0 and that D is a bounded C1,1 open set
in R

d. There exists a positive constant C30 = C30(D,α,a) such that for all
Q ∈ ∂D, r ∈ (0,R/2) and w ∈ D \ B(Q,r),

Ga
D(Ar(Q),w) ≥ C30r

2

∫
B(Q,r)c

ja(|z − Q|/2)Ga
D(z,w)dz.

Using (6.5), Lemmas 6.1 and 6.4, the proof of the next lemma is similar to
that of [26, Lemma 4.4] or [28, Lemma 5.4]. Thus, we skip the proof.

Lemma 6.5. Suppose that a > 0 and that D is a bounded C1,1 open set
in R

d. There exist positive constants C31 = C31(D,α,a) and C32 = C32(D,α,
a) < 1 such that for any Q ∈ ∂D, r ∈ (0,R/4) and w ∈ D \ B(Q,2r/κ), we
have

Ex[Ga
D(Xa

τa
D∩Bk

,w) : Xa
τa

D∩Bk

∈ B(Q,r)c] ≤ C31C
k
32G

a
D(x,w), x ∈ D ∩ Bk,

where Bk := B(Q, (κ/2)kr), k = 0,1, . . . .

Let x0 ∈ D be fixed and set

Ma
D(x, y) :=

Ga
D(x, y)

Ga
D(x0, y)

, x, y ∈ D, y �= x0.

Now the next theorem follows from Theorem 2.3 and Lemma 6.5 (instead
of [5, Lemma 13] and [5, Lemma 14], respectively) in very much the same way
as in the case of symmetric stable processes in [5, Lemma 16] (with Green
functions instead of harmonic functions). We omit the details.
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Theorem 6.6. Suppose that a > 0 and that D is a bounded C1,1 open set
in R

d. There exist positive constants R1, M1, C33 and β depending on D, α
and a such that for any Q ∈ ∂D, r < R1 and z ∈ D \ B(Q,M1r), we have

|Ma
D(z,x) − Ma

D(z, y)| ≤ C33

(
|x − y|

r

)β

, x, y ∈ D ∩ B(Q,r).

In particular, the limit limD�y→w Ma
D(x, y) exists for every w ∈ ∂D.

As the process Xa,D satisfies Hypothesis (B) in Kunita and Watanabe
[30], the process Xa,D has a Martin boundary: For every a ∈ (0,M ], there
is a compactification DM

a of D, unique up to a homeomorphism, such that
Ma

D(x, y) has a continuous extension to D × (DM
a \ {x0}) and Ma

D(·, z1) =
Ma

D(·, z2) if and only if z1 = z2 (see, for instance, [30]). The set ∂M
a D =

DM
a \ D is called the Martin boundary of D for Xa,D . For z ∈ ∂M

a D, set
Ma

D(·, z) to be zero in Dc.
For each fixed z ∈ ∂D and x ∈ D, let

Ma
D(x, z) := lim

D�y→z
Ma

D(x, y),

which exists by Theorem 6.6. Ma
D is called the Martin kernel of D with respect

to Xa. For each z ∈ ∂D, set Ma
D(x, z) to be zero for x ∈ Dc. By Theorem 6.6,

Ma
D(z,x) is jointly continuous on {x ∈ D : δD(x) > 2ε} × ∂D, and hence on

D × ∂D after letting ε ↓ 0.
The following Martin kernel estimate is an immediate consequence of the

Green function estimates in Theorem 1.1. Recall that D(x) denotes the com-
ponent of D that contains x. Define

(6.7) ha
D(x, z) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δD(x)

|x−z|d , if x ∈ D(x0), z ∈ ∂D(x0) or

x ∈ D \ D(x0), z ∈ ∂D \
(
∂D(x0) ∪ ∂D(x)

)
,

aα δD(x)
|x−z|d , if x ∈ D(x0), z ∈ ∂D \ ∂D(x0),

a−α δD(x)
|x−z|d , if x ∈ D \ D(x0), z ∈ ∂D(x0).

Theorem 6.7. Suppose that M > 0 and that D is a bounded C1,1 open set
in R

d. There exists C34 := C34(x0,D,α,M) > 1 such that for all a ∈ (0,M ],

C−1
34 ha

D(x, z) ≤ Ma
D(x, z) ≤ C34h

a
D(x, z) for x ∈ D,z ∈ ∂D.

Theorem 6.7 in particular implies that Ma
D(·, z1) differs from Ma

D(·, z2) if
z1 and z2 are two different points on ∂D.

Now using our Green function estimates, (6.5) and Lemma 6.1, one can
follow the arguments in the proofs of [26, Lemmas 4.6 and 4.7] and [28, Lem-
mas 5.6 and 5.7] and get the next two lemmas.

Lemma 6.8. Suppose that D is a bounded C1,1 open set in R
d. For every

z ∈ ∂D and B ⊂ B ⊂ D, Ma
D(Xa

τa
B
, z) is Px-integrable.
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Lemma 6.9. Suppose that D is a bounded C1,1 open set in R
d. For every

z ∈ ∂D and x ∈ D,

(6.8) Ma
D(x, z) = Ex

[
Ma

D

(
XD

τa
B(x,r)

, z
)]

for every 0 < r ≤ 1
2
(
R ∧ δD(x)

)
.

Unlike the case in the proofs of [16, Theorem 2.2] and [26, Theorem 4.8],
Px(Xa

τa
U

∈ ∂U) �= 0 for every smooth open set U . Thus, we give the details of
the proof of the next result.

Theorem 6.10. For every z ∈ ∂D, the function x 	→ Ma
D(x, z) is harmonic

in D with respect to Xa.

Proof. Fix z ∈ ∂D and let h(x) := Ma
D(x, z). Consider an open set D1 ⊂

D1 ⊂ D and x ∈ D1 and put

r(x) =
1
2
(
R ∧ δD(x)

)
and B(x) = B(x, r(x)).

Define a sequence of stopping times {Tm,m ≥ 1} as follows:

T1 = inf{t > 0 : Xa
t /∈ B(Xa

0 )},

and for m ≥ 2,

Tm =

{
Tm−1 + τB(Xa

Tm−1
) ◦ θTm−1 , if Xa

Tm−1
∈ D1,

τa
D1

, otherwise.

Note that Xa
τa

D1
∈ ∂D1 on

⋂∞
n=1{Tn < τa

D1
}. Thus, since limm→∞ Tm = τa

D1

Px-a.s. and h is continuous in D,

lim
m→∞

h(Xa
Tm

) = h(Xa
τa

D1
), on

∞⋂
n=1

{Tn < τa
D1

}

and, since h is bounded on D1, by the dominated convergence theorem

lim
m→∞

Ex

[
h(Xa

Tm
);

∞⋂
n=0

{Tn < τa
D1

}
]

= Ex

[
h(Xa

τa
D1

);
∞⋂

n=0

{Tn < τa
D1

}
]
.

Therefore, using Lemma 6.9

h(x) = lim
m→∞

Ex[h(Xa
Tm

)]

= lim
m→∞

Ex

[
h(Xa

Tm
);

∞⋃
n=0

{Tn = τa
D1

}
]

+ lim
m→∞

Ex

[
h(Xa

Tm
);

∞⋂
n=0

{Tn < τa
D1

}
]

= Ex

[
h(Xa

τa
D1

);
∞⋃

n=0

{Tn = τa
D1

}
]
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+ Ex

[
h(Xa

τa
D1

);
∞⋂

n=0

{Tn < τa
D1

}
]

= Ex[h(Xa
τa

D1
)]. �

A consequence of Theorems 6.6, 6.7 and 6.10 is that, when D is a bounded
C1,1 open set, the Martin boundary of Xa,D can be identified with the Eu-
clidean boundary ∂D of D.

A positive harmonic function u for Xa,D is minimal if, whenever v is a
positive harmonic function for Xa,D with v ≤ u on D, one must have v = cu
for some constant c. The set of points z ∈ ∂M

a D such that Ma
D(·, z) is minimal

harmonic for Xa,D is called the minimal Martin boundary of D for Xa,D.
With the explicit estimates from Theorem 6.7, by the same argument as

that for [16, Theorem 3.7], we have the following.

Theorem 6.11. Suppose that D is a bounded C1,1 open set in R
d and

a > 0. For every z ∈ ∂D, Ma
D(·, z) is a minimal harmonic function for Xa,D .

Thus the minimal Martin boundary of D can be identified with the Euclidean
boundary.

We know from the general theory in Kunita and Watanabe [30] that non-
negative superharmonic functions with respect to Xa,D (or equivalently, su-
perharmonic functions with respect to Xa that vanish on Dc) admit a Martin
representation. Thus, by Theorem 6.11 we conclude that, for every superhar-
monic function u ≥ 0 with respect to Xa,D , there is a unique Radon measure
μ in D and a finite measure ν on ∂D such that

(6.9) u(x) =
∫

D

Ga
D(x, y)μ(dy) +

∫
∂D

Ma
D(x, z)ν(dz).

Furthermore, u is harmonic for Xa,D if and only if the measure μ = 0.

7. Perturbation results

In this section, we assume d ≥ 1 and fix a > 0. We consider a symmetric
Lévy process Z which can be thought of as a perturbation of Xa, and show
that under certain conditions, the Green function of ZD, the process Z killed
upon exiting a bounded C1,1 open set D, is comparable to the Green function
of Xa,D , see Theorem 7.13. Together with Theorem 1.1, this gives sharp
bounds for the Green function GZ

D of ZD.
The approach of this section is motivated by [19], where perturbations of

pure jump Lévy processes are discussed. Even though they consider pure
jump Lévy processes, some results work for our case as well.

Throughout this section, Z is a symmetric Lévy process in R
d such that its

Lévy measure has a density JZ(x, y) = jZ(y − x) with respect to the Lebesgue
measure. We assume that

ja
1 (x) := ja(x) − jZ(x)
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is nonnegative and integrable in R
d and put J a :=

∫
Rd ja

1 (y)dy. We also
assume that the transition density of the Lévy process Z exists and we denote
it by pZ(t, x, y) = pZ(t, y − x).

Recall that pa(t, x, y) = pa(t, y − x) is the transition density function of Xa.
It is well known that (see [15], [37])

pa(t, x, y) ≤ c1(t−d/α ∧ t−d/2) ∧
(

t−d/2e−c2|x−y|2/t +
t

|x − y|d+α

)
,(7.1)

(t, x, y) ∈ (0, ∞) × R
d × R

d

for some ci = ci(a, d,α) > 0, i = 1,2. Thus, by following the proof of [19,
Lemma 2.6], we have the following.

Lemma 7.1. pZ(t, x) is bounded on the set {(t, x) : t > 0, |x| > ε} for ε > 0.

Recall that for every bounded open set D, Ga
D is the Green function of

Xa,D. We know from [27, Corollary 3.12] that there is a constant c = c(D,a) >
0 such that

(7.2) cEx[τa
D]Ey[τa

D] ≤ Ga
D(x, y), x, y ∈ D.

The proofs of the following three results are the same as those of [19,
Lemmas 2.2, 2.4, 2.5]. So we omit their proofs here. In the remainder of this
section, the dependence of the constants on Z will not be mentioned explicitly.

Lemma 7.2. For every bounded open set D, there exists C35 = C35(D,a) > 0
such that for all x ∈ D and t ≥ 1 we have

pa
D(t, x, y) ≤ C35t

−2
Ex[τa

D]Ey[τa
D].

For any open set U ⊂ R
d, τZ

U := inf{t > 0 : Zt /∈ U } denotes the first exit
time from U by Z. We denote by ZD the subprocess of Z killed upon leaving
D and pZ

D(t, x, y) the transition density for ZD.

Lemma 7.3. For every bounded open set D, there exist a constant C36 =
C36(D,a) > 1 such that for every x ∈ D,

C−1
36 Ex[τZ

D ] ≤ Ex[τa
D] ≤ C36Ex[τZ

D ].

Lemma 7.4. For every bounded open set D and any x ∈ D and t > 0, we
have

pZ
D(t, x, ·) ≤ eJatpa

D(t, x, ·) a.e.

If, in addition, we assume that pZ(t, ·) is continuous then we have for x, y ∈ D,

(7.3) Ex[pZ(t − τZ
D ,ZτZ

D
, y) : t ≥ τZ

D ] ≤ e2Jat
Ex[pa(t − τa

D,Xa
τa

D
, y) : t ≥ τa

D].

Using the above lemmas (for Lemma 7.4, only its first part is needed), and
following the proof of [19, Theorem 3.1], we have
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Theorem 7.5. For every bounded open set D, there exists C37 = C37(D,
a) > 0 such that for every x ∈ D,

(7.4) GZ
D(x, y) ≤ C37G

a
D(x, y) a.e. y ∈ D.

Here are some assumptions that we might put on the process Z.
(A1) The transition density pZ

D(t, x, y) of ZD is continuous and strictly posi-
tive in (0, ∞) × D × D.

(A2) There exist positive constants c and ρ such that ja
1 (x) ≤ c|x|ρ−d on

B(0,1).
(A3) There exists R0 > 0 such that infx∈B(0,R0) jZ(x) > 0.

Without loss of generality, we may and do assume that the constant ρ in
(A2) is less than 1. Clearly assumption (A2) implies (A3).

Proposition 7.6 ([27, Corollary 3.11]). Suppose that (A1) and (A3) hold.
Then for every bounded open set D, there exists constant C38 = C38(D,α) > 0
such that

(7.5) C38Ex[τZ
D ]Ey[τZ

D ] ≤ GZ
D(x, y) for all (x, y) ∈ D × D.

For the remainder part of this section, we assume D is a bounded C1,1

open set in R
d.

Lemma 7.7. Suppose that (A1) and (A3) hold. Then for every ε > 0, there
exists C39 = C39(ε,D,a) > 0 such that for all x, y ∈ D satisfying |x − y| ≥ ε,

Ga
D(x, y) ≤ C39G

Z
D(x, y).

Proof. It follows from Theorem 1.1 that there exists c1 = c1(D,a) > 0 such
that

(7.6) c−1
1 Ex[τa

D] ≤ δD(x) ≤ c1Ex[τa
D], x ∈ D.

Combining (7.6) with Theorem 1.1 yields that there exist c2, c3 > 0 so that
for all x and y ∈ D with |x − y| ≥ ε,

Ga
D(x, y) ≤ c2δD(x)δD(y) ≤ c3Ex[τa

D]Ey[τa
D].

Therefore, by Lemma 7.3 and Proposition 7.6 we get

Ga
D(x, y) ≤ c4Ex[τZ

D ]Ey[τZ
D ] ≤ c5G

Z
D(x, y)

for some positive constants c4, c5 > 0. �

The next lemma can be proved by following the arguments in the proofs
of [34, Lemmas 7, 9]. So we skip the proof of the next lemma.

Lemma 7.8. Suppose that (A1) holds. For all x,w ∈ D, we have

Ga
D(x,w) ≤ GZ

D(x,w) +
∫

D

∫
D

Ga
D(x, y)ja

1 (y − z)Ga
D(z,w)dy dz.
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Proposition 7.9. Suppose that d ≥ 3 and that (A2) holds. There exists a
positive constant C40 = C40(D,a) such that for every (x,w) ∈ D × D∫

D

∫
D

Ga
D(x, y)ja

1 (y − z)Ga
D(z,w)dy dz ≤ C40G

a
D(x,w)|x − w|d−2.

Proof. Using the generalized 3G inequality (Theorems 3.5) for the Green
function of Xa, one can easily get the following∫

D

∫
D

Ga
D(x, y)ja

1 (y − z)Ga
D(z,w)dy dz

≤ cGa
D(x,w)

(
|x − w|d−2

∫
D

∫
D

|y − z|ρ−d dy dz

|x − y|d−2|z − w|d−2

+ |x − w|d−1

∫
D

∫
D

|y − z|ρ−d dy dz

|x − y|d−1|z − w|d−2

+ |x − w|d−1

∫
D

∫
D

|y − z|ρ−d dy dz

|x − y|d−2|z − w|d−1

+ |x − w|d
∫

D

∫
D

|y − z|ρ−d dy dz

|x − y|d−1|z − w|d−1

)
for some constant c = c(D,a) > 0. Now combining the above with [19, Lem-
ma 3.12],we easily get the conclusion of the proposition. �

Proposition 7.10. Suppose that d ≥ 1 and that (A2) holds. There exists
a positive constant C41 = C41(D,a) such that for every (x,w) ∈ D × D∫

D

∫
D

Ga
D(x, y)ja

1 (y − z)Ga
D(z,w)dy dz ≤ C41

δD(x)δD(w)
|x − w|d−ρ

.

Proof. Recall that for every d ≥ 1, Ga
D(x, y) ≤ c1

δD(x)δD(y)
|x−y|d by Theorem 1.1.

Therefore, by following the arguments in the proof of [34, Lemma 8] we have

(7.7)
∫

D

Ga
D(x, y)

1
|y − z|d−ρ

dy ≤ c2
δD(x)

|x − z|d−ρ
.

Thus ∫
D

Ga
D(x, y)ja

1 (y − z)dy ≤ c3
δD(x)

|x − z|d−ρ

and so, since Ga
D(z,w) = Ga

D(w,z), by (7.7)∫
D

∫
D

Ga
D(x, y)ja

1 (y − z)Ga
D(z,w)dy dz ≤ c3δD(x)

∫
D

Ga
D(z,w)

1
|x − z|d−ρ

dz

≤ c4
δD(x)δD(w)

|x − w|d−ρ
. �
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Lemma 7.11. Suppose that d ∈ {1,2}, T > 0 and that (A1) holds. Then
there exists a constant C42 = C42(a,T ) > 0 such that

sup
0<t≤T

(
pa(t, x, y) − e−2JatpZ(t, x, y)

)
≤ C42t

1−d/2.

Proof. Recall that pZ(t, y − x) := pZ(t, x, y) and pa(t, y − x) = pa(t, x, y).
Let Ẑ be a pure jump Lévy process with Lévy density ja

1 in R
d independent

of Z. Then Ẑ is a compound Poisson process with transition probability given
by

P Ẑ(t, ·) = e− Jatδ0(·) + e− Jat
∞∑

n=1

tn(ja
1 )∗n(·)
n!

.

The process Z + Ẑ has the same distribution as Xa. Thus, the distribution of
Xa

t is equal to the convolution of pZ(t, ·) and P Ẑ(t, ·). Consequently, we have

pa(t, x) = pZ(t, x)e− Jat + e− Jat
∞∑

n=1

tnpZ(t, ·) ∗ (ja
1 )∗n(x)

n!
.

It follows from Lemma 7.4 and (7.1) that for 0 < t ≤ T

pZ(t, ·) ∗ (ja
1 )∗n(x) ≤ eJatpa(t, ·) ∗ (ja

1 )∗n(x)

≤ c1e
Jat(Ja)n(t−d/α ∧ t−d/2) ≤ c2t

−d/2eJat(Ja)n

for some positive constants c1, c2. Thus, it follows from Lemma 7.4 and the
above two displays that for 0 < t ≤ T

pa(t, x) − e−2JatpZ(t, x) = pa(t, x) − e− JatpZ(t, x) + e− Jat(1 − e− Jat)pZ(t, x)

≤ c2

∞∑
n=1

tn−d/2(Ja)n

n!
+ (1 − e− Jat)pa(t, x).

Since by (7.1) pa(t, x) ≤ c3t
−d/2 for 0 < t ≤ T , we reach the conclusion of the

lemma in view of the above display. �
We also need the following lemma.

Lemma 7.12. Let D be a C1,1 open set with C1,1 characteristics (R,Λ).
Then there is a constant C43 > 0 such that for all x ∈ D and t > 0,

Px(τa
D > t) ≤ C43

δD(x)
t +

√
t
.

Proof. When t ≥ 1, the above inequality follows immediately from Markov’s
inequality and (7.6). To establish the inequality for the case of 0 < t < 1, we
will use a result from [12].

We will only give the proof for the case d ≥ 2. The proof in the case
d = 1 is similar but simpler. Without loss of generality, we can always as-
sume that R ≤ 1 and Λ ≥ 1. By definition, for every Q ∈ ∂D, there is
a C1,1-function φQ : R

d−1 → R satisfying φQ(0) = 0, ∇φQ(0) = (0, . . . ,0),
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‖∇φQ‖ ∞ ≤ Λ, | ∇φQ(x) − ∇φQ(z)| ≤ Λ|x − z|, and an orthonormal coordi-
nate system CSQ : y = (ỹ, yd) such that B(Q,R) ∩ U = {y = (ỹ, yd) ∈ B(0,R)
in CSQ : yd > φ(ỹ)}. Define

ρQ(x) := xd − φQ(x̃),

where (x̃, xd) are the coordinates of x in CSQ. Note that for every Q ∈ ∂U

and x ∈ B(Q,R) ∩ U , we have (1 + Λ2)−1/2ρQ(x) ≤ δU (x) ≤ ρQ(x). We define
for r1, r2 > 0

DQ(r1, r2) := {y ∈ U : r1 > ρQ(y) > 0, |ỹ| < r2}.

Note that for b > 0,

Px(τ b
D > 1) ≤ Px

(
τ b
DQ(δ0,r0)

> 1
)
+ Px

(
Xb

τb
DQ(δ0,r0)

∈ D and τ b
DQ(δ0,r0)

≤ 1
)

≤ Ex

[
τ b
DQ(δ0,r0)

]
+ Px

(
Xb

τb
DQ(δ0,r0)

∈ D
)
.

Thus by [12, Lemma 3.5], there is a constant c1 = c1(R,Λ, a) so that for every
b ∈ (0, a]

(7.8) Px(τ b
D > 1) ≤ c1δD(x) for every x ∈ D.

Note that for 0 < λ ≤ 1, λ−1D is a C1,1 open set with C1,1 characteristics
(R,Λ). Hence by the scaling property of Xa in (2.10), we have from (7.8)
that for t ∈ (0,1],

Px(τa
D > t) = Pt−1/2x

(
τat(2−α)/(2α)

t−1/2D > 1
)

≤ c1δt−1/2D(t−1/2x) = c1
δD(x)√

t
.

This completes the proof of the lemma. �

Theorem 7.13. Suppose that conditions (A1) and (A2) hold. There exists
C44 = C44(D,a) > 0 such that

(7.9) C−1
44 GZ

D(x,w) ≤ Ga
D(x,w) ≤ C44G

Z
D(x,w), (x,w) ∈ D × D.

Proof. By (7.4) and Lemma 7.7, we only need to show the second inequality
in (7.9) for |x − y|2 < ε, where ε ∈ (0,1) is a constant to be chosen later. We
consider the cases d ≥ 3 and d ≤ 2 separately.

(a) d ≥ 3: Applying Lemma 7.8 and then Proposition 7.9, we get

Ga
D(x, y) ≤ GZ

D(x, y) + c1G
a
D(x, y)|x − y|d−2.

Choose ε > 0 small so that

c1G
a
D(x, y)|x − y|d−2 ≤ 1

2
Ga

D(x, y) if |x − y| < ε1/2.

Thus,
Ga

D(x, y) ≤ 2GZ
D(x, y) if |x − y| < ε1/2.
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(b) d ≤ 2: We first note that, since pa
D(t, x, y) ≤ c2(t−d/α ∧ t−d/2) by (7.1),

using the semigroup property,

pa
D(t, x, y) =

∫
D

pa
D(t/3, x, z)

∫
D

pa
D(t/3, z,w)pa

D(t/3,w, y)dwdz

≤ c2(t−d/α ∧ t−d/2)
∫

D

pa
D(t/3, x, z)dz

∫
D

pa
D(t/3,w, y)dw

= c2(t−d/α ∧ t−d/2)Px(τa
D > t/3)Py(τa

D > t/3).

By Lemma 7.12, we get

pa
D(t, x, y) ≤ c3(t−d/α ∧ t−d/2)

(
δD(x)√

t
∧ 1

)(
δD(y)√

t
∧ 1

)
≤ c4(t−d/α−1 ∧ t−d/2−1)δD(x)δD(y).

Consequently, ∫ ∞

t0

pa
D(t, x, y)dt ≤ c5t

−d/2
0 δD(x)δD(y)(7.10)

for every t0 > 0 and x, y ∈ D.

Since
pa

D(t, x, y) = pa(t, x, y) − Ex[pa(t − τa
D,Xa

τa
D

, y) : t ≥ τa
D]

and
pZ

D(t, x, y) = pZ(t, x, y) − Ex[pZ(t − τZ
D ,ZτZ

D
, y) : t ≥ τZ

D ],

it follows from (7.3) that

pa
D(t, x, y) = pa(t, x, y) − Ex[pa(t − τa

D,Xa
τa

D
, y) : t ≥ τa

D]

≤ pa(t, x, y) − e−2Jat
Ex[pZ(t − τZ

D ,ZτZ
D

, y) : t ≥ τZ
D ]

= pa(t, x, y) − e−2Jat
(
pZ(t, x, y) − pZ

D(t, x, y)
)

≤ pa(t, x, y) + pZ
D(t, x, y) − e−2JatpZ(t, x, y).

So integrating over [0, t0] with t0 = (δD(x)δD(y))1/2, which is bounded by
diam(D), we have by Lemma 7.11 and (7.10) that

Ga
D(x, y) =

∫ t0

0

pa
D(t, x, y)dt +

∫ ∞

t0

pa
D(t, x, y)dt(7.11)

≤ GZ
D(x, y) +

∫ t0

0

(
pa(t, x, y) − e−2JatpZ(t, x, y)

)
dt

+ c5t
−d/2
0 δD(x)δD(y)

≤ GZ
D(x, y) + c6t

2−d/2
0 + c5t

−d/2
0 δD(x)δD(y)

≤ GZ
D(x, y) + c7(δD(x)δD(y))1−d/4.
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Since Ga
D(x, y) ≥ c8(δD(x)δD(y))1−d/2 for |x − y|2 ≤ δD(x)δD(y) by Theo-

rem 1.1, we have from (7.11) that

Ga
D(x, y) ≤ GZ

D(x, y) + c9(δD(x)δD(y))d/4Ga
D(x, y)(7.12)

if |x − y|2 ≤ δD(x)δD(y).

On the other hand, applying Lemma 7.8 and then Proposition 7.10, we get

Ga
D(x, y) ≤ GZ

D(x, y) + c10
δD(x)δD(y)

|x − y|d−ρ
.

Since c11
δD(x)δD(y)

|x−y|d ≤ Ga
D(x, y) for |x − y|2 ≥ δD(x)δD(y) by Theorem 1.1, we

have

(7.13) Ga
D(x, y) ≤ GZ

D(x, y) + c12|x − y|ρGa
D(x, y).

Now using (7.12) and (7.13), we can choose ε ∈ (0,1) small so that

c12G
a
D(x, y)|x − y|ρ ≤ 1

2
Ga

D(x, y) if δD(x)δD(y) ≤ |x − y|2 < ε

and

c9(δD(x)δD(y))d/4Ga
D(x, y) ≤ 1

2
Ga

D(x, y) if |x − y|2 ≤ δD(x)δD(y) < ε.

Thus in these cases, Ga
D(x,w) ≤ 2GZ

D(x,w).
For the remaining case δD(x)δD(y) ≥ ε, we use (7.11), Lemma 7.3 and (7.5)

to get that

Ga
D(x,w) ≤

(
1 + c13(δD(x)δD(y))−d/4

)
GZ

D(x, y) ≤ (1 + c13ε
−d/4)GZ

D(x, y).

The proof of the theorem is now complete. �

We now show that the theorem above covers the case of the sum of a
Brownian motion and an independent relativistic stable process, and the case
of the sum of a Brownian motion and an independent truncated stable process.

For any m ≥ 0, a relativistic α-stable process Y m in R
d with mass m is a

Lévy process with characteristic function given by

Ex

[
eiξ·(Y m

t −Y m
0 )

]
= exp

(
−t

(
(|ξ|2 + m2/α)α/2 − m

))
, ξ ∈ R

d.

Suppose that Y m is independent of the Brownian motion X0. We define Zm

by Zm
t := X0

t + Y m
t . We will call the process Zm the independent sum of the

Brownian motion X0 and the relativistic α-stable process Y m with mass m.
The Lévy measure of Zm has a density

JZm

(x) = A(d, −α)|x|−d−αψ(m1/α|x|)
where

ψ(r) := 2−(d+α)Γ
(

d + α

2

)−1 ∫ ∞

0

s
d+α

2 −1e− s
4 − r2

s ds,
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which is a decreasing smooth function of r2. (see [17, pp. 276–277] for details).
Thus,

0 ≤ j1(x) − jZm

(x) ≤ c|x|2−α−d.

Moreover, the conditions (A1) and (A2) can be checked easily. Therefore as
a corollary of Theorem 7.13, we have the following.

Corollary 7.14. There exists a constant C45 = C45(D,α) > 0 such that

C−1
45 G1

D(x, y) ≤ GZm

D (x, y) ≤ C45G
1
D(x, y), x, y ∈ D,

where GZm

D (x, y) is the Green function of Zm in D.

By a λ-truncated symmetric α-stable process in R
d we mean a pure jump

symmetric Lévy process Ŷ λ = (Ŷ λ
t , t ≥ 0,Px, x ∈ R

d) in R
d with the Lévy

density A(d, −α)|x|−d−α1{ |x|<λ}. Note that the Lévy exponent ψλ of Ŷ λ,
defined by

Ex

[
eiξ·(Ŷ λ

t −Ŷ λ
0 )

]
= e−tψλ(ξ) for every x ∈ R

d and ξ ∈ R
d,

is given by

(7.14) ψλ(ξ) = A(d, −α)
∫

{ |y|<λ}

1 − cos(ξ · y)
|y|d+α

dy.

Suppose that Ŷ λ is a λ-truncated symmetric α-stable process in R
d which

is independent of the Brownian motion X0. We define X̂λ
t := X0

t + Ŷ λ
t for

t ≥ 0. Then X̂λ has the same distribution as the Lévy process obtained from
X1 by removing jumps of size larger than λ.

Unlike the symmetric stable process Y , the process Ŷ λ can only make
jumps of size less than λ. In order to guarantee the strict positivity of the
transition density pX̂λ

D (t, x, y) for X̂λ,D, we need to impose the following as-
sumption on D.

Definition 7.15. We say that an open set D in R
d is λ-roughly connected

if for every x, y ∈ D, there exist finitely many distinct connected components
U1, . . . ,Um of D such that x ∈ U1, y ∈ Um and dist(Uk,Uk+1) < λ for 1 ≤ k ≤
m − 1.

The following result is proved in [27].

Proposition 7.16 ([27, Proposition 4.4]). For any bounded λ-roughly con-
nected open set D in R

d, the transition density pX̂λ

D (t, x, y) for X̂λ,D is strictly
positive in (0, ∞) × D × D.

The other conditions (A1) and (A2) can be checked easily. Therefore as a
corollary of Theorem 7.13, we have the following.
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Corollary 7.17. Suppose D is a bounded λ-roughly connected C1,1 open
set in R

d, d ≥ 1. There exists C46 = C46(D,α) > 0 such that

C−1
46 G1

D(x, y) ≤ GX̂λ

D (x, y) ≤ C46G
1
D(x, y), x, y ∈ D,

where GX̂λ

D (x, y) is the Green function of X̂λ in D.
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