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RECURRENCE AND TRANSIENCE PRESERVATION FOR
VERTEX REINFORCED JUMP PROCESSES IN ONE

DIMENSION

BURGESS DAVIS AND NOAH DEAN

Dedicated to Donald Burkholder

Abstract. We show that the application of linear vertex rein-
forcement to one dimensional nearest neighbor Markov processes,

yielding associated vertex reinforced jump processes, preserves

both recurrence and transience. The analog for discrete time lin-
ear bond reinforcement is due to Takeshima. This together with

another result we prove adds to the numerous known parallels

between these two reinforcements. Martingales are the primary
tool used to study vertex reinforced jump processes.

1. Introduction

Three of the self organizing processes called reinforced random walks in-
volve linear reinforcement. Two of these processes are similar in many re-
spects.

We study perturbations of nearest neighbor random walks on Z, that is,
of Markov processes on the integers with transition probabilities pi,j which
for every integer i satisfy pi,i+1 > 0, pi,i−1 > 0, and pi,i+1 + pi,i−1 = 1. Often
bond weights (conductances) or vertex weights are used to represent these
transition probabilities. In bond weighting, each bond (i, i + 1) is assigned a
positive number ωi, and the probabilities of jumps from i to i+1 and i − 1 are
proportional to ωi and ωi−1, so that pi,i+1 = ωi

ωi+ωi−1
. In vertex weighting,

positive numbers wi are assigned to each integer i and probabilities of jumps
from i are proportional to wi+1 and wi−1 so that pi,i+1 = wi+1

wi+1+wi−1
.

Discrete time linear bond reinforced random walk was introduced by Cop-
persmith and Diaconis [CD87], and is here for brevity called Diaconis walk.
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A positive number (the initial weight) is assigned to each bond (i, i + 1), and
the first jump is made with probabilities determined by these weights. The
weight of a bond is increased by the positive constant δ each time it is crossed,
and jumps at time n are made with probabilities proportional to the weights
at time n. The analogous vertex reinforcement scheme, where the weight of
an integer is increased by δ each time it is visited, behaves very differently.
For example, if each integer has initial weight one, the bond reinforced walk
visits every integer infinitely often (see [Pem92]) while the vertex reinforced
walk visits exactly five states infinitely often (see [PV99] and [Tar04]).

Wendelin Werner (personal communication) has observed that in continu-
ous time there is a third linear reinforcement, a vertex reinforcement. Again
an initial positive weight wi is assigned to each integer i; the weight wt

i of i
at time t equals wi plus δ times the total time before t that the process has
spent at i:

wt
i = wi + δ

∫ t

0

I(Xs = i)ds,

where Xt, t ≥ 0, is the integer-valued process. Given the past up to time
t and that Xt = i, X jumps in the next dt seconds to i + 1 and i − 1 with
probabilities wt

i+1 dt and wt
i−1 dt, respectively. So, if X0 = i, the time of its

first jump has an exponential (rate wi+1 + wi−1) distribution and that jump
is to i + 1 with probability wi+1

wi+1+wi−1
. Whether the jump is to i + 1 or i − 1

is independent of the time of this jump. Let 0 = τ0 and let τi, i > 0, be the
time of the ith jump of Xt. We call the discrete time process Xτi , i ≥ 0,
Werner walk. Werner walk can be defined without invoking continuous time:
the reinforcements are conditionally exponential. This will be discussed more
fully in the next section.

We call a discrete time integer valued process Yi, i ≥ 0, transient if Yi = k
for only finitely many i for each k a.s., and recurrent if Yi = k for infinitely
many i for each k a.s. Takeshima shows in [Tak00] that if the unreinforced
walk on Z associated with a bond weighting is recurrent (resp. transient),
then, for any δ > 0, the Diaconis walk associated with this initial weighting
is recurrent (resp. transient). Recurrence preservation is to be expected, but
the transience preservation is surprising, especially since a theorem of Peman-
tle [Pem88] shows that Diaconis walk on the binary tree, with initial bond
weights 1, is transient for small δ and recurrent for large δ. Here, we prove the
analog of Takeshima’s theorem for Werner reinforcement. Takeshima’s proof
used extensively that Diaconis walk is a mixture of Markov chains, which is
not true of Werner walk. Our proof of transience preservation is easy, while
the proof of recurrence preservation is more difficult. We do not know how
to prove recurrence preservation without the unexpected (to us) scaling re-
sult, Theorem 2.3 of Section 2. We use some results from [DV02] and [DV04]
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but not the main results, rather only some fairly quickly provable propositions
from the beginnings of these papers. The proofs of most of these are sketched.

It is immediate that the (unreinforced) random walk on Z, determined by
the bond weights ωi of (i, i+1), and the random walk, determined by weights
cωi for c > 0, are the same, and easy to show that no other bond weightings
determine this random walk. It is also easy to see that the reinforced walks
resulting from Diaconis reinforcement (δ) of the initial weights ωi and Diaco-
nis reinforcement (cδ) of the initial weights cωi have the same distribution.
Thus, the collection of all the Diaconis reinforced walks on Z (i.e., for all
δ > 0) corresponding to initial bond weights {ωi : i ∈ Z} depends only on the
unreinforced Markov process corresponding to these weights. In Section 4, we
prove that, unusually for a vertex reinforcement scheme, the analogous result
holds for Werner walk. See Theorem 4.1. This is not difficult to prove but
neither is it immediate.

2. Preliminaries

We use exp(λ) to denote an exponential variable of rate λ, with expectation
1
λ . Throughout, C,C1,C2, . . . will stand for positive constants, each of which
we could replace by an explicit number. Two stochastic processes will be said
to be the same if they have the same distributions. We begin this section by
describing a way to simulate Werner walk and VRJP. The construction below
may be taken as a definition, which some readers may prefer to the definition
given in the Introduction. A third definition is given at the beginning of
Section 3.

The construction we now give will describe Werner walk on graphs with
vertices {i : i ∈ I}, where I is a set of consecutive integers, and bonds {(i, i +
1) : i, i + 1 ∈ I}. These are the only graphs considered in this paper. We
denote this graph again by I .

The parameters of this process are the initial weights, which are positive
numbers wi assigned to each i ∈ I , and a reinforcement constant δ > 0.

The construction of Werner walk Y0, Y1, . . . on I proceeds inductively. Let
N(v) be the set of neighbors of v ∈ I , so N(i) = {i − 1, i + 1} unless i is
a largest or smallest integer in I . Let Z1,Z2, . . . be i.i.d. exponential(1)
random variables. Let Y0 = v and W 0

v = wv , v ∈ I . Then P(Yk+1 = θ|Zi, i ≤
k + 1, Yi, i ≤ k) = 0, unless θ is a neighbor of Yk in which case it equals

W k
θ∑

u∈N(Yk) W k
u

.

Also W k+1
θ = W k

θ unless θ = Yk, in which case

W k+1
Yk

= W k
Yk

+ δ

(
Zk+1∑

u∈N(Yk) W k
u

)
.
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To define the continuous time vertex reinforced jump process (VRJP) Xt,
t ≥ 0, associated with initial weights wθ , we put

τk =
1
δ

∑
j∈I

(W k
j − W 0

j ), k ≥ 0,

and Xt = Yk for τk ≤ t < τk+1. Note that in the above sum, for each k, only
finitely many terms are positive.

Our main result, Theorem 3.1, while stated for all δ > 0, will be shown to
be implied by the δ = 1 case. Unless explicitly mentioned otherwise, we study
only the δ = 1 case in the rest of this paper.

Even if we were only concerned with Werner walk, we would find it very
convenient to study it as a process embedded in a VRJP.

In the rest of this section, we study VRJP on {0,1}. Up through Propo-
sition 2.2, we present results which are easy corollaries of results in [DV02],
with brief sketches of some proofs. For readers who refer to [DV02], we note
that the notation L(k, t) there has been replaced by wt

k which, as defined
in the Introduction, stands for the weight of k at time t. As noted, we as-
sume δ = 1 and always start our VRJP at 0. We usually designate the initial
weights at 0 and 1 to be a and b, respectively, and this is always assumed
if not indicated otherwise. The VRJP will be denoted by (Xt, t ≥ 0). We
put ξa,b(t) = ξ(t) = inf{s ≥ 0 : ws

0 = t}, t ≥ a. Thus, w
ξ(t)
0 = t. Note that

(wξ(t)
1 − b) is the sum of a random number of exponential random variables.

We put mt = ma,b
t = w

ξ(t)
1
t , t ≥ a.

Proposition 2.1 (Corollary 2.3 of [DV02]). mt, t ≥ 0, is a martingale.

Sketch of a proof. Note m0 = b
a . We will show Emt satisfies the differential

equation y′ = 0 which yields

(2.1) Emt =
b

a
, t ≥ a,

and the proof we give of (2.1) is not difficult to extend to a full proof of
the proposition. Note Xξ(t) = 0, and that w

ξ(t)
1 = w

ξ(t+dt)
1 unless there is an

excursion to 1 between times t and t + dt. This happens with probability
dt · w

ξ(t)
1 and if it does happen the excursion is exp(t) so has expectation t−1.

Thus, conditioned on w
ξ(t)
1 = c,

Emt+dt =
c + cdt · 1

t

t + dt
=

c

t
= mt. �

Similarly, by showing Em2
t satisfies another differential equation, it can be

shown that (this is (2.7) of [DV02])

(2.2) Em2
t =

ab2 + b

a3
− b

at2
, t ≥ a.
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Thus, mt, t ≥ a, is an L2 bounded martingale, and so we have

Em∞ = lim
t→∞

Emt =
b

a
,

(2.3)
Em2

∞ = lim
t→∞

Em2
t =

ab2 + b

a3
.

Let τ = inf{t : Xt = 1}, put θ(t) = inf{s ≥ 0 : ws+τ
1 = t}, t ≥ b, and put

Mt = w
θ(t)
0

w
θ(t)
1

= w
θ(t)
0
t . Given τ = x, Mt, t ≥ b, has the distribution of mb,a+x

t ,

t ≥ b, and it is easy to check that Mt, t ≥ b is an L2 bounded martingale.
We use mb,a+exp(b) to denote a martingale with the distribution of Mt, t ≥ b.
Thus, using (2.3),

EM∞ = EE(M∞ |τ) = E
a + τ

b
=

[
1 +

1
ab

]
a

b
,

EM2
∞ = EE(M2

∞ |τ) = E
b(a + τ)2 + (a + τ)

b3
(2.4)

=
[
1 +

3
ab

+
3

(ab)2

]
a2

b2
.

Now Corollary 2.4 of [DV02] states that limt→∞
wt

1
wt

0
= m∞ a.s. and that

m∞ ∈ (0, ∞) a.s. Also, given the discussion before (2.4) above, Corollary 2.4
of [DV02] gives limt→∞

wt
1

wt
0

= M∞ a.s., from which we get 1
m∞

= M∞. It will
be convenient to write

m̃t = mt · a

b
and r̃a,b

t = r̃t =
wt

0

wt
1

· b

a
.

The following is immediate from (2.3) and (2.4).

Em̃∞ = 1,

Em̃2
∞ =

a2

b2

(
ab2 + b

a3

)
= 1 +

1
ab

,

(2.5)
E

1
m̃∞

=
b

a

(
a + 1

b

b

)
= 1 +

1
ab

,

E
1

m̃2
∞

=
b2

a2
EM2

∞ = 1 +
3
ab

+
3

(ab)2
.

In [DV02] the following inequality, related to Doob’s L2 martingale maxi-
mal inequality, is proved.

(2.6) E sup
t≥0

(
wt

1

wt
0

− m∞

)2

≤ 16
b

a3
.
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With the discussion above (2.4) and the fact that 1
m∞

= M∞, (2.6) gives

E sup
t≥τ

(
wt

0

wt
1

− 1
m∞

)2

= EE

(
sup
t≥τ

(
wt

0

wt
1

− M∞

)2∣∣∣τ)
(2.7)

≤ 16E
a + τ

b3
= 16

a + 1
b

b3
.

Multiplying (2.6) by (a
b )2 gives

(2.8) E sup
t≥0

(
1
r̃t

− m̃∞

)2

≤ 16 · 1
ab

,

and multiplying (2.7) by ( b
a )2 gives

(2.9) E sup
t≥τ

(
r̃t − 1

m̃∞

)2

≤ 16
(

1
ab

+
1

(ab)2

)
.

Proposition 2.2. There is a positive constant C such that, for ε > 0,

P

(
sup
t≥τ

∣∣∣∣r̃t −
(

1 +
1
ab

)∣∣∣∣ > ε

)
<

C

ε2
· 1 + ab

(ab)2
.

Proof. From (2.5), we know the variance of 1
m̃∞

:

var
1

m̃∞
=

2 + ab

(ab)2
.

From this, and Chebyshev’s inequality, we get

(2.10) P

(∣∣∣∣ 1
m̃∞

−
(

1 +
1
ab

)∣∣∣∣ > ε

)
<

2 + ab

(ab)2ε2
.

Now,

P

(
sup
t≥τ

∣∣∣∣r̃t −
(

1 +
1
ab

)∣∣∣∣ > ε

)
< P

(
sup
t≥τ

∣∣∣∣r̃t − 1
m̃∞

∣∣∣∣ >
ε

2

)

+ P

(∣∣∣∣ 1
m̃∞

−
(

1 +
1
ab

)∣∣∣∣ >
ε

2

)
.

The second term is controlled by (2.10), and the first term by (2.9), giving us

P

(
sup
t≥τ

∣∣∣∣r̃t −
(

1 +
1
ab

)∣∣∣∣ > ε

)
< 64 · 1 + ab

(ab)2ε2
+ 4 · 2 + ab

(ab)2ε2

=
1
ε2

·
(

68
ab

+
72

(ab)2

)
. �

Note that all the equalities in (2.5) depend only on the product ab. We
were able to find the density of m̃∞ and this also depended only on ab, which
led us to the following theorem.
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Theorem 2.3. If ab = cd, then m̃a,b
a·t , t ≥ 0 and m̃c,d

c·t , t ≥ 0 are equal in
distribution.

To prove Theorem 2.3, we will first prove a lemma about the distribution
of waiting times between jumps. If the initial weights are a at 0 and b at 1,
we let δa,b

k = δk = τk − τk−1 where, as before, τk is the time of the kth jump,
for k ≥ 1 and τ0 = 0. So δ1 is the waiting time at 0 before the jump to 1,
δ2 is the waiting time at 1 before the jump back to 0, and so on. At time
δ1 + · · · + δk, then, the weight at vertex 0 is a + δ1 + δ3 + · · · and the weight
at 1 is b+ δ2 + δ4 + · · · , where the final terms are either δk−1 or δk, depending
on the parity of k.

Lemma 2.4. Assume ab = cd. Then{
δa,b
1

a
,
δa,b
2

b
,
δa,b
3

a
, . . .

}
and

{
δc,d
1

c
,
δc,d
2

d
,
δc,d
3

c
, . . .

}
are equal in distribution.

Proof. We inductively show that the joint distributions of the first n ran-
dom variables in each of the two sequences above are the same for all n. Now
δa,b
1
a is exp(ab) and δc,d

1
c is exp(cd) and so the case n = 1 holds. Suppose that

the case n = k − 1 holds. We will show that the case n = k holds. We treat
the case k − 1 even first, and show that the conditional distribution of δa,b

k

a
given (

δa,b
1

a
,
δa,b
2

b
, . . . ,

δa,b
k−1

b

)
= (x1, . . . , xk−1)

is equal to the conditional distribution of δc,d
k

c given(
δc,d
1

c
,
δc,d
2

d
, . . . ,

δc,d
k−1

d

)
= (x1, . . . , xk−1),

where xi > 0. The first of these conditional distributions is exponential with
rate (b +

∑
j even
j≤k−1

bxj)a, the second is exponential (d +
∑

j even
j≤k−1

dxj)c, where

the final a and c in these rates come from the denominators of δa,b
k

a and δc,d
k

c
respectively. Since ab = cd, these two conditional distributions are the same,
and since we know that the two vectors above have the same distributions,
this proves the n = k case, if k − 1 is even. The case where k − 1 is odd can
be treated similarly. �

Proof of Theorem 2.3. Recall the definition of m̃t and consider

(2.11) m̃a,b
at =

w
ξ(at)
1
b

w
ξ(at)
0
a

, t ≥ 1.
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Denote the left-hand vector in the statement of Lemma 2.4 by A. Given A,
the entire process (

w
ξ(at)
1

b
,
w

ξ(at)
0

a

)
, t ≥ 1,

can be reconstructed. Since w
ξ(s)
0 = s, we have w

ξ(at)
0
a = t for 1 ≤ t < ∞. Now

w
ξ(s)
1 is constant except for jumps at s = δ1, δ1 + δ3, δ1 + δ3 + δ5, . . . at which

times w
ξ(s)
1 jumps by δ2, δ4, δ6, . . . respectively. So w

ξ(at)
1
b is constant except for

jumps at δ1
a , δ1

a + δ3
a , δ1

a + δ3
a + δ5

a , . . . at which times it jumps by δ2
b , δ4

b , δ6
b , . . .,

respectively. This, together with its analog in which c, d replace a, b, and
Lemma 2.4, establishes Theorem 2.3. �

We note that A determines the range of

wt
0

a
wt

1
b

= r̃t
a,b, t ≥ 0.

By the range, we mean the random interval which is the set of all values
taken on by a sample path of r̃t

a,b. For the numerator of r̃t
a,b increases lin-

early from 1 to 1 + δ1
a on the interval [0, δ1], while the denominator does not

change. Then on [δ1, δ1 + δ2] the denominator of r̃t
a,b increases linearly from 1

to 1 + δ2
b , while the numerator does not change, and so on. Thus, the distri-

butions of supt≥0 r̃t
a,b and supt≥0

1
r̃t

a,b
are determined by the distribution of A.

Therefore, if ab = cd, Lemma 2.4 implies that supt≥0 r̃t
a,b and supt≥0 r̃t

c,d are
equidistributed, as are the corresponding infima. Furthermore, these com-
ments and Lemma 2.4 also imply that both supt≥τ r̃t

a,b and supt≥τ
1

r̃t
a,b

are

equidistributed with supt≥τ r̃t
c,d and supt≥τ

1
r̃t

c,d
respectively, if ab = cd, where

τ is the time of the first jump (also denoted δ1 in the previous proofs).

3. Recurrence and transience of Werner walk on Z

We call a VRJP recurrent (resp. transient) if its associated Werner walk
is recurrent (resp. transient). Let Z

+ be the natural numbers {0,1,2, . . .}
and Z

− be {0, −1, −2, . . .}. The graphs Z
+, Z

−, and Z are trees in the sense
of [DV04] and thus by Proposition 3 of [DV04], VRJP is either transient or
recurrent on each of them, if the initial weights are positive constants, which
is always assumed. Then Lemma 2 of [DV04] says that VRJP on a tree is
recurrent if and only if w∞

v = ∞ a.s. for each vertex v of the tree and VRJP is
transient if and only if w∞

v < ∞ a.s. for each vertex v. Furthermore, whether
recurrence or transience obtains is not influenced by the initial position.

The main theorem of this paper is the following.
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Theorem 3.1. Werner walk on Z is recurrent (resp. transient) for all δ > 0
if the Markov process associated with the initial vertex weights is recurrent
(resp. transient).

Now let Z1,Z2, . . . be i.i.d. exponential(1) random variables. Let Y0, Y1, . . .
and W0,W1, . . . be respectively, the steps of the Werner walk on Z started at
0 with initial weights wi and reinforcement constant δ, and the Werner walk
started at 0 with initial weights δ−1wi and reinforcement constant 1, both
constructed from the initial data (Zi), exactly according to the instructions in
the definition of Werner walk close to the beginning of Section 2. It is easy to
see that Yi = Wi, i ≥ 0. Also, the (unreinforced) Markov process corresponding
to weights wi and the Markov process corresponding to weights δ−1wi have
the same distribution. These facts immediately show that if the particular
case δ = 1 of Theorem 3.1 holds, then Theorem 3.1 is true in its entirety.
Thus as noted earlier, in the proof of Theorem 3.1, that is, in the rest of this
section, we may and do study only the δ = 1 Werner walk.

Now let F = Ft, t ≥ 0, be VRJP on Z with initial weights wi, started at 0.
Let G be VRJP on Z

+ with initial weights wi, started at 0, and let H be
VRJP on Z

−, with initial weights wi, started at 0.

Proposition 3.2. F is recurrent if and only if both G and H are recurrent.

We note that the analog of Proposition 3.2 for the unreinforced Markov
processes corresponding to the weights wi also holds.

Next, we sketch a Poisson construction of Werner walk and VRJP on an
interval I from [DV04]. This will be used in the proof of Proposition 3.2.

Let 〈i, i + 1〉 and 〈i + 1, i〉 stand for directed bonds between consecutive
integers i and i + 1 in I . To these directed bonds, independent Poisson pro-
cesses (rate 1) Γ〈i,i+1〉

0 and Γ〈i+1,i〉
0 (i, i + 1 ∈ I) are associated. Let T 0

〈·,·〉 be

the first jump time of Γ〈·,·〉
0 .

We describe the Werner walk associated with the initial weights wi, i ∈ I ,
started at v ∈ I , and reinforcement constant δ = 1. Let the walk start at
v and denote the weight of i at time 0 by L0

i , i ∈ I , so that L0
i = wi. Let

τ1 = min{ 1
L0

j
T 0

〈v,j〉 : j ∈ N(v)}. If 1
L0

k
T 0

〈v,k〉 is this minimum, the walk jumps

to k at τ1. Put L1
i = L0

i , i ∈ I , i �= v and L1
v = L0

v + τ1, and also define Γ〈i,j〉
1

to be the Poisson process Γ〈i,j〉
0 if i is a neighbor of j, unless i = v and j is a

neighbor of v, in which case Γ〈v,j〉
1 (t) is Γ〈v,j〉

0 (L0
jτ1 + t) − Γ〈v,j〉

0 (L0
jτ1), t ≥ 0.

Let T 1
〈i,j〉 be the first jump time of Γ〈i,j〉

1 . Note that the Poisson processes

Γ〈i,j〉
1 just constructed are still independent. To determine the second jump,

mimic the previous procedure, with Γ1, T1, and L1 in the roles of Γ0, T0 and
L0.

To define the VRJP associated with this Werner walk, take the definitions
used to get from Werner walk to VRJP in our Section 2 definition. Note the
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collection of all the jump times of all the Poisson processes Γ〈i,j〉
0 determines

the entire Werner walk.

Proof of Proposition 3.2. We construct F using the construction described
above, started from 0, and then use the same Poisson processes to construct
both G started from 0 and H started from 0. That is, for example, the Poisson
process which determines the jumps from 2 to 3 for F is also the determining
process for G.

If F is recurrent, and we observe only the jumps that F makes between
two consecutive integers of Z

+, we see the jumps of G. Formally, these two
processes, which are defined on the same probability space, are the same.
A similar statement holds for H . Since F visits 0 infinitely often, so do G
and H .

Conversely, if G and H are recurrent, both of their associated Werner walks
return to 0 a.s. after each jump from 0 to 1 and −1, respectively, so F returns
to 0 a.s. after each jump from 0. �

In view of Proposition 3.2, and the discussion after the statement of The-
orem 3.1, Theorem 3.1 follows from the following proposition.

Proposition 3.3. Werner walk with δ = 1 on Z
+ is recurrent if the un-

reinforced Markov process corresponding to its initial weights is recurrent and
transient if the unreinforced process is transient.

It is easy to show that the unreinforced Markov process Z0,Z1, . . . on Z
+

corresponding to weights wi is recurrent if and only if
∑∞

i=0
1

wiwi+1
= ∞. This

follows from the fact that if

f(k) =
k−1∑
i=0

1
wiwi+1

then f(Ẑi), i ≥ 0 is a martingale, where Ẑ is Z stopped at 0, or by the standard
criterion for transition probabilities (see [HPS72, p. 33]) and a little algebra.

Proposition 3.3 follows from the following two propositions.

Proposition 3.4. If
∑∞

i=0
1

wiwi+1
< ∞, then the VRJP on Z

+ with δ = 1
and initial weights (wi)i≥0 is transient.

Proposition 3.5. If
∑∞

i=0
1

wiwi+1
= ∞, then the VRJP on Z

+ with δ = 1
and initial weights (wi)i≥0 is recurrent.

Recall that we use exp(a) to denote an exponential random variable and
mb,a+exp(b) to denote a martingale with the distribution of Mt, t ≥ b, as defined
in the paragraph between (2.3) and (2.4).

We need the following result from [DV02]. We sketch an alternate proof to
the one given there. Let σ(·) stand for the σ-field generated by ·.
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Lemma 3.6. Let X be VRJP on Z
+ started at 0 with initial weights w0

i =
wi. Let Tn = inf{t ≥ 0 : Xt = n}, n ≥ 0. Then for 0 ≤ i < n, the conditional

distribution of wTn
i

wTn
i+1

given σ(wTn

k , i + 1 ≤ k ≤ n) := Fi, is the distribution of

m
wi+1,wi+exp(wi+1)

wTn
i+1

.

Proof. We may and do assume that X is VRJP on {0,1, . . . , n + 1} with
initial weights wi started at 0. Construct X via the Poisson construction.

Let θ(t) = inf{s ≥ 0 : ws
i+1 = t}, t ≥ wi+1. Then q(t) := w

θ(t)
i

w
θ(t)
i+1

, t ≥ wi+1, has

the same distribution as m
wi+1,wi+exp(wi+1)
t , t ≥ wi+1, since only Γ〈i,i+1〉

0 and
Γ〈i+1,i〉

0 are involved in this ratio.
Now wTn

i+1 is the weight of i + 1 at the last time before Tn that X jumps
from i + 1 to i + 2 (unless i + 1 = n, in which case it is simply the initial
weight), and so is determined by Poisson processes associated with bonds to
the right of i + 1, as is the entire σ-field Fi, and so is independent of Γ〈i,i+1〉

0

and Γ〈i+1,i〉
0 . So wTn

i

wTn
i+1

samples the process q(t) at an independent time. �

Proof of Proposition 3.4. Let X be a VRJP on Z
+ with initial weights wi

started at 0. We will examine the ratio of the weight of 0 at time Tn as
compared to its initial weight, wTn

0
w0

. By expanding this into a telescoping
product, we can express it in the following form:

(3.1)
wTn

0

w0
=

wTn
0

wTn
1

w0
w1

·
wTn

1

wTn
2

w1
w2

· · ·
wTn

n−1

wTn
n

wn−1
wn

· wTn
n

wn
.

With the exception of the last, each of these multiplicands are of the form

wTn
k

wTn
k+1
wk

wk+1

=
wTn

k

wTn

k+1

· wk+1

wk
.

This is similar to our definition of r̃ in the previous section, and we will denote
these by R̃Tn

k = R̃n
k . We always use s, t, T , etc. for times and k, n, N , etc.

for vertices, so the ambiguity in notation should not cause confusion here.
The reader familiar with [DV02] will note that R̃n

k is the ‘adjusted’ version of
the Rn

k found there. The last term in (3.1) is identically equal to 1, since the
weight at vertex n does not increase until after Tn. We rewrite the identity
using R̃ notation:

(3.2)
wTn

0

w0
= R̃n

0 · R̃n
1 · · · R̃n

n−1.
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Now Lemma 3.6 and (2.1) and the fact that σ(R̃j , i + 1 ≤ j ≤ n) = Fi (as
defined in the statement of Lemma 3.6) together with

Emwi+1,wi+exp(wi+1)
c = E

wi + exp(wi+1)
wi+1

=
wi + 1

wi+1

wi+1
, t ≥ 0, c ≥ wi+1,

give

E(R̃n
i |R̃n

j , i + 1 ≤ j ≤ n) =
wi+1

wi

[wi + 1
wi+1

wi+1

]

=
(

1 +
1

wiwi+1

)

for i = n − 1, n − 2, . . . ,0. Thus,

ER̃n
n−2R̃

n
n−1 = ER̃n

n−1EE(R̃n
n−2|R̃n

n−1)

=
(

1 +
1

wnwn−1

)
E

(
1 +

1
wn−1wn−2

)

=
(

1 +
1

wnwn−1

)(
1 +

1
wn−1wn−2

)
.

Continuing, we get

E
wTn

0

w0
=

n−1∏
i=0

(
1 +

1
wiwi+1

)
.

Letting n approach infinity, we get

Ew∞
0 = w0

∞∏
i=0

(
1 +

1
wiwi+1

)
< ∞

if
∑∞

i=1
1

wiwi+1
< ∞. Thus w∞

0 < ∞ a.s. and so, by the discussion at the
beginning of this section, the Werner walk is transient. �

Proof of Proposition 3.5. We begin with a version of a standard fact.

Lemma 3.7. Let X be a random variable with EX ≥ θ, EX2 ≤ Kθ2, where
θ and K are positive constants. Then

P

(
X ≥ θ

2

)
>

1
4K

.

Proof. Let A = {X ≥ θ
2 }. Then we have

θ ≤ EXIA + EXIAC < EXIA +
θ

2
, so

θ

2
< EXIA ≤ (EX2)

1
2 (EIA)

1
2 ≤

√
KθP(A)

1
2 . �
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We retain the notation and conventions of the proof of Proposition 3.4. We
will show that there is a constant C such that

(3.3) sup
n≥0

P

(
wTn

0

w0
> M

)
> C,

if M ∈ R and
∑∞

i=0
1

wiwi+1
= ∞. Since wTn

0 is nondecreasing in n, (3.3) implies
P(w∞

0 = ∞) ≥ C, from which, for reasons explained at the beginning of this
section, the recurrence of X follows.

Taking logarithms of both sides of (3.2) gives ln(wTn
0

w0
) =

∑n−1
i=0 ln R̃n

i . We
put

Δn
i = E(ln R̃n

i |R̃k, i < k ≤ n), 0 ≤ i < n, and

δn
i = ln R̃n

i − Δn
i , 0 ≤ i < n.

We note that δn
n−1, δn

n−2, . . . , δ
n
0 , in this order, is a martingale difference se-

quence. To prove (3.3), it suffices to prove

(3.4) lim inf
n→∞

P

(
0∑

k=n−1

δn
k + Δn

k > λ

)
> C, λ > 0,

if
∑∞

i=0
1

wiwi+1
= ∞, where C does not depend on λ. To this end, we will

prove that there are constants C1, C2, C3 such that if n ≥ 0 and 0 ≤ i < n,

Δn
i ≥ C1 ln

(
1 +

1
wiwi+1

)
,(3.5)

E(δn
i )2 ≤ C2 ln

(
1 +

1
wiwi+1

)
, if wiwi+1 >

1
2
, and(3.6)

E(δn
i )2 ≤ C3

[
ln

(
1 +

1
wiwi+1

)]2

, if wiwi+1 ≤ 1
2
.(3.7)

Before proving (3.5)–(3.7), we will show that together they imply Proposi-
tion 3.5. Let

An =
{

k : 0 ≤ k ≤ n − 1 and wkwk+1 >
1
2

}
, and

Bn =
{

k : 0 ≤ k ≤ n − 1 and wkwk+1 ≤ 1
2

}
.

Put

μn =
∑

i∈An

ln
(

1 +
1

wiwi+1

)
, νn =

∑
i∈Bn

ln
(

1 +
1

wiwi+1

)
,

σn =
∑

i∈An

E(δn
i )2, and θn =

∑
i∈Bn

E(δn
i )2.
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Proposition 3.5 presupposes that
∑∞

i=0
1

wiwi+1
= ∞, which implies

∞∑
i=0

ln
(

1 +
1

wiwi+1

)
= ∞,

and so

(3.8) lim
n→∞

μn + νn = ∞.

We put An =
∑

i∈An
Δn

i and Bn =
∑

i∈An
δn
i . Then, by (3.5), we have

(3.9) An ≥ C1μn.

Now EBn = 0 since Bn is a sum of a martingale difference sequence, and, for
the same reason,

(3.10) EB2
n =

∑
i∈An

E(δn
i )2 ≤ C2μn,

by (3.6), and so, by Chebyshev

(3.11)
Bn

C1μn
→ 0

in probability if limn→∞ μn = ∞. Together, (3.9) and (3.11) give

(3.12) lim
n→∞

P

(
An + Bn >

(
C1

2

)
μn

)
= 1

if limn→∞ μn = ∞.
Now let Gn =

∑
i∈Bn

Δn
i and Hn =

∑
i∈Bn

δn
i . Then using arguments sim-

ilar to those just given we have, using (3.7) and (3.5),

EH2
n =

∑
i∈Bn

E(δn
i )2 ≤ C3ν

2
n, and(3.13)

Gn ≥ C1νn.(3.14)

Applying Lemma 3.7 to Hn + C1νn, noting EHn = 0, and using (3.13) to
bound E(Hn + C1ν1)2, gives

(3.15) P

(
Hn + C1νn ≥ C1νn

2

)
>

1
4( C3

C2
1

+ 1)
.

Thus, using (3.14) we obtain

P

(
Gn + Hn ≥ C1νn

2

)
≥ P

(
C1νn + Hn ≥ C1νn

2

)
(3.16)

>
1

4( C3
C2

1
+ 1)

.
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It follows from (3.12) and (3.16) and
0∑

i=n−1

δn
i + Δn

i = An + Bn + Gn + Hn,

that if limn→∞ μn = ∞ and limn→∞ νn = ∞ then (3.4) holds. To complete the
proof of (3.4), we must address the possibility that only one of these two limits
is infinity. In case limn→∞ μn = ∞ and limn→∞ νn < ∞, we can use (3.12),
together with (3.13) and (3.14) which give both that Gn is nonnegative and
that the sequence EH2

n, is bounded, to easily prove (3.4). And if limn→∞ μn <
∞ and limn→∞ νn = ∞, (3.16), (3.10), and (3.9) can be used in the same way
to prove (3.4).

To complete the proof of Proposition 3.3 it suffices to prove (3.5), (3.6),
and (3.7).

Proof of (3.5). By Lemma 3.6, (3.5) is implied by

(3.17) E ln
(

wi+1

wi
m

wi+1,wi+exp(wi+1)
t

)
> C ln

(
1 +

1
wiwi+1

)
, t ≥ wi+1.

Now by (2.5) and (2.8), we have

E sup
t≥wi+1

(
1

wi+1
wi

m
wi+1,wi+expwi+1
t

)2

≤ E sup
t≥0

(
wi

wi+1

r1
t

r0
t

)2

< ∞,

and since (lnx)+ < x, x > 0, and (lnx)− = (ln 1
x )+, we have

E sup
t≥wi+1

[
ln

(
wi+1

wi
m

wi,wi+expwi+1
t

)−]2

< ∞.

Thus, the dominated convergence theorem gives

lim
t→∞

E ln
(

wi+1

wi
m

wi+1,wi+expwi+1
t

)−
= E ln

(
wi+1

wi
mwi+1,wi+expwi+1

∞

)−
.

Furthermore, Fatou’s lemma gives

lim
t→∞

E ln
(

wi+1

wi
m

wi+1,wi+expwi+1
t

)+

≥ E ln
(

wi+1

wi
mwi+1,wi+expwi+1

∞

)+

.

Since lnx is a concave function of x, the left-hand side of (3.17) is the expec-
tation of a concave function of a martingale thus nonincreasing.

Now if at + bt is nonincreasing, and limt→∞ at ≥ a∞ while limt→∞ bt = b∞,
then at + bt ≥ a∞ + b∞, t ≥ 0. Thus, using lnx = lnx+ − lnx−, the inequality
and equality just above give

E ln
(

wi+1

wi
m

wi+1,wi+exp(wi+1)
t

)
≥ E ln

(
wi+1

wi
mwi+1,wi+exp(wi+1)

∞

)
, t ≥ wi.
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Thus, to prove (3.17) it suffices to prove

(3.18) E ln
(

wi+1

wi
mwi+1,wi+exp(wi+1)

∞

)
> C ln

(
1 +

1
wiwi+1

)
which is equivalent to

(3.19) E ln
(

1
m̃

wi,wi+1
∞

)
> C ln

(
1 +

1
wiwi+1

)
,

which, by Theorem 2.3, noting that m̃δ,δ = mδ,δ , is equivalent to

(3.20) E ln
1

mδ,δ
∞

≥ C ln
(

1 +
1
δ2

)
,

where δ2 = wiwi+1.

Lemma 3.8. Let ε > 0 and let 0 ≤ θ and let P̃θ,ε = P̃ and Ẽθ,ε = Ẽ be
probability and expectation associated with VRJP on {0,1} with initial weights
w0

0 = ε,w0
1 = ε + θ, which satisfies

P̃(X0 = 0) = P̃(X0 = 1) =
1
2
.

Then if θ ≥ 1
ε ,

(3.21) Ẽ ln lim
t→∞

(
wt

0

wt
1

)
> C ln

(
1 +

1
ε2

)
.

Furthermore,

(3.22) Ẽ ln lim
t→∞

(
wt

0

wt
1

)
≥ 0

for all θ.

Proof. We use P̄ and Ē to denote probability and expectation for VRJP
on the graph with vertices a, b, c and bonds (a, b) and (b, c), initial weights
w0

a = w0
b = ε and w0

c = θ, and started with probability 1
2 at a and probability

1
2 at b. We claim (wt

0,w
t
1), t ≥ 0, under P̃ and (wt

a +wt
c,w

t
b), t ≥ 0, under P̄ have

the same distribution. To see this, identify a and c. Note that whether X is at
a or c, it jumps to b at rate equal to the weight of b, and if X is at b it jumps
to {a, c} at rate the weight of a plus the weight of c. Let F = limt→∞

wt
a

wt
b
, G =

limt→∞
wt

c

wt
b
, and H = limt→∞

wt
0

wt
1
. Then the distribution of F + G under P̄ is

the distribution of H under P̃. Also F and G are independent under P̄, which
follows from the Poisson construction of VRJP given after Proposition 3.2.
Finally, this construction, and the fact that P̄(X0 = a) = P̄(X0 = b), shows
that F and 1

F have the same distribution under P̄, so that lnF has a symmetric
distribution about zero under P̄. Also, G ≥ 0. We claim

(3.23) P̄

(
G ≥ 1

2ε2

)
> C,
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if θ ≥ 1
ε . For, note that under P̄, G has the distribution of mε,θ

∞ . Now Emε,θ
∞ =

θ
ε , by (2.1) and E(mε,θ

∞ )2 = εθ2

ε3 + θ
ε3 , by (2.3), and so, since θ ≥ 1

ε , we have
E(mε,θ

∞ )2 ≤ 2(Emε,θ
∞ )2. Thus, by Lemma 3.7, P(mε,θ

∞ ≥ 1
2ε2 ) ≥ P(mε,θ

∞ ≥ θ
2ε ) ≥

C4. Finally, to prove (3.21), we drop the bar above the E for cosmetic purposes
and note that if θ ≥ 1

ε ,

E ln(F + G) = E[ln(F + G) − lnF ](3.24)
= EE

(
ln(F + G) − lnF |F

)
= EE

(
ln(F + G) − lnF |F

)
I(F > 1)

+ EE
(
ln(F + G) − lnF |F

)
I(F ≤ 1)

≥ EE
(
ln(F + G) − lnF |F

)
I(F ≤ 1)

≥ E(lnG + 1)I(F ≤ 1)

= E ln(G + 1) · 1
2

≥ C4 ln
(

1 +
1

2ε2

)

≥ C ln
(

1 +
1
ε2

)
.

To prove (3.22), we note G is nonnegative, and replace the last two inequalities
of (3.24) with “≥ 0.” �

Finally, we prove (3.20) which will complete the proof of (3.5). Let Xt be
VRJP on {0,1} with initial weight δ at both 0 and 1 and let X0 = 0. To prove
(3.20), we need to show

(3.25) E ln lim
t→∞

(
wt

0

wt
1

)
≥ C ln

(
1 +

1
δ2

)
.

Let τ be the time of the first jump of X from 0 to 1, so that τ is an
exponential(δ) random variable. Let Z be an exponential(δ) random variable
independent of the process Xt, t ≥ 0, and put Y = min(Z, τ). Note

P(Y = Z|Y = r) = P(Y = τ |Y = r) =
1
2
, r > 0.

Furthermore, on {Y = r}, wr
0 = δ+r and wr

1 = δ. Thus, conditioned on Y = r,
(Xt+r, t ≥ 0) has exactly the distribution of Xt, t ≥ 0, under P̃r,δ , as defined
in the statement of Lemma 3.8. Thus, by (3.21)

Ar := E

(
ln lim

t→∞

wt
0

wt
1

∣∣∣Y = r

)
≥ C ln

(
1 +

1
δ2

)
, r ≥ 1

δ
,
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and by (3.22) we have Ar ≥ 0 if r ≥ 0. Now Y is exp(2δ) and so P(Y > 1
δ ) =

e−2. Thus,

E ln
(

lim
t→∞

(
wt

0

wt
1

))
= EAY

= EAY I

(
0 < Y <

1
δ

)
+ EAY I

(
Y ≥ 1

δ

)

≥ EAY I

(
Y ≥ 1

δ

)

≥ C ln
(

1 +
1
δ2

)
P

(
Y ≥ 1

δ

)

= C ln
(

1 +
1
δ2

)
. �

Proof of (3.6). To prove (3.6), it suffices to establish

(3.26) E
(
(ln R̃n

i )2|R̃k, i < k ≤ n
)

≤ C
1

wiwi+1
, if wiwi+1 >

1
2

since E((ln δn
i )2|R̃k, i < k ≤ n) ≤ E((ln R̃n

i )2|R̃k, i < k ≤ n) while log(1 + x) >
Cx if 0 < x ≤ 2.

To prove (3.26), it suffices by Lemma 3.6 to show

(3.27) E((ln r̃a,b
T )2) ≤ C(ε)

1
ab

, if ab ≥ ε

for every random variable T ≥ τ , where τ is the time of the first jump to 1. In
this case we could restrict ourselves to T of the form: The first time ws

1 = t,
but we do not need to consider this restriction.

Proof of (3.27). We shorten r̃a,b
t to r̃t and m̃a,b

t to m̃t in the rest of Sec-
tion 3. Note that (lnx)2 ≤ (x − 1)2 + ( 1

x − 1)2. Therefore,

E(ln r̃T )2 ≤ E(r̃T − 1)2 + E

(
1
r̃T

− 1
)2

.

Now, for general x, y, we have the following simple inequality,

x2 ≤ x2 + (x − 2y)2 = 2x2 − 4xy + 4y2 = 2(x − y)2 + 2y2.

Here we let r̃T − 1 take the role of x and 1
m̃∞

− 1 the role of y.
Taking expectations,

E(r̃T − 1)2 ≤ 2E

(
(r̃T − 1) −

(
1

m̃∞
− 1

))2

+ 2E

(
1

m̃∞
− 1

)2

= 2E

(
r̃T − 1

m̃∞

)2

+ 2E

(
1

m̃∞

)2

− 4E

(
1

m̃∞

)
+ 2.
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The first and second moments of 1
m̃∞

are given in (2.5), and a bound for
the first term is given in (2.9). Therefore,

E(r̃T − 1)2 ≤ 32
1 + ab

a2b2
+ 2

(
1 +

3
ab

+
3

a2b2

)
− 4

(
1 +

1
ab

)
+ 2

= 34
1
ab

+ 38
1

a2b2
.

Similarly, we have

E

(
1
r̃T

− 1
)2

≤ 2E

((
1
r̃T

− 1
)

− (m̃∞ − 1)
)2

+ 2E(m̃∞ − 1)2

= 2E

(
1
r̃T

− m̃∞

)2

+ 2E(m̃∞)2 − 4E(m̃∞) + 2.

This time (2.6) and (2.5) give us the necessary bounds for each of the terms,
resulting in

E

(
1
r̃T

− 1
)2

≤ 2 · 16
1
ab

+ 2
(

1 +
1
ab

)
− 4 + 2

= 34
1
ab

.

Putting these back into our initial calculation, we can conclude that if ab ≥ 1
2 ,

E(ln r̃T )2 ≤ 68
1
ab

+ 38
1

a2b2

≤ C
1
ab

. �

Proof of (3.7). The following lemma together with Lemma 3.6 and the fact
that ln(x) < ln(1 + x) gives (3.7).

Lemma 3.9. Let ab = ε with ε ≤ 1
2 , and let s > b be given. If θ(s) is the

time the weight at 1 first reaches s, then,

E
(
ln

(
r̃θ(s)

))2
< C

(
ln

1
ε

)2

.

Proof. We show that E(ln(r̃θ(s)))2 < C(ln 1
ε )2 by showing

E sup
t≥τ

((ln r̃t)+)2 < C

(
ln

1
ε

)2

and(3.28)

E sup
t≥τ

((ln r̃t)−)2 < C

(
ln

1
ε

)2

,(3.29)
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where τ is the first jump to 1. Note θ(s) > τ . To prove (3.28), we use
Proposition 2.2, which gives us

(3.30) P

(
sup
t≥τ

∣∣∣∣r̃t −
(

1 +
1
ε

)∣∣∣∣ >
k

ε

)
<

C(1 + ε)
k2

≤ C

k2
, k ≥ 1,

so

P

(
sup
t≥τ

r̃t > 1 +
k + 1

ε

)
<

C

k2
, k ≥ 1.

Now we use summation by parts to prove (3.28). Let Z := (supt≥τ r̃t)+. Let
ak = 1 + k+1

ε . We have

E(lnZ)2 =
∫ ∞

1

(lnx)2 dP(Z ≤ x)(3.31)

≤ (lna0)2 +
∞∑

k=0

(lnak+1)2P
(
Z ∈ [ak, ak+1)

)

= (lna0)2 +
∞∑

k=0

(lnak+1)2
(
P(Z ≥ ak) − P(Z ≥ ak+1)

)
.

Summation by parts gives us, for sequences fk and gk such that limfngn

exists:
∞∑

k=0

fk(gk+1 − gk) = lim
n→∞

(fngn) − f0g0 −
∞∑

k=0

gk+1(fk+1 − fk).

Letting fk = (lnak+1)2 and gk = −P(Z ≥ ak) and noticing that

lim(lnan+1)2
(
P(Z ≥ an)

)
≤ lim

(
ln

(
1 +

n + 2
ε

))2(
C

n2

)
= 0,

we get from (3.31),

E(lnZ)2 ≤ (lna0)2 + (lna1)2P(Z ≥ a0) + (lna2)2P(Z ≥ a1)

+
∞∑

k=1

P(Z ≥ ak+1)
(
(lnak+2)2 − (lnak+1)2

)

≤ 3(lna2)2 +
∞∑

k=2

C

k2
(lnak+1)2

= 3(lna2)2 +
∞∑

k=2

C

k2

(
ln

(
1 +

k + 2
ε

))2

≤ 3(lna2)2 +
∞∑

k=2

C

k2

(
ln

k + 3
ε

)2 (
since ε ≤ 1

2

)

= 3(lna2)2 +
∞∑

k=2

C

k2

(
ln(k + 3) + ln

1
ε

)2
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= 3(lna2)2 +
∞∑

k=2

C(ln(k + 3))2

k2
+

∞∑
k=2

2C ln(k + 3) ln 1
ε

k2

+
∞∑

k=2

C(ln 1
ε )2

k2

= 3
(

ln
(

1 +
3
ε

))2

+ C1 + C2 ln
1
ε

+ C3

(
ln

1
ε

)2

≤ C

(
ln

1
ε

)2

.

To prove (3.29), since

(
ln r̃tI(r̃t < 1)

)2 =
(

ln
1
r̃t

I

(
1
r̃t

> 1
))2

,

(3.29) follows from (3.28) and the fact that supt≥0 r̃t = supt≥τ r̃t, and

(3.32) P

(
sup
t≥τ

1
r̃t

> λ

)
≤ P

(
sup
t≥0

r̃t > λ

)
, λ > 0.

The comments just after the proof of Theorem 2.3 imply that to prove (3.32),
we may assume a = b =

√
ε, which we do. Since

√
ε√
ε

= 1,

P

√
ε,

√
ε

(
sup
t≥τ

1
r̃t

> λ

)
= P

√
ε,

√
ε

(
sup
t≥τ

wt
1

wt
0

> λ

)
,

where the superscripts denote the initial weights on 0 and 1 respectively, while

P

√
ε,

√
ε

(
sup
t≥τ

wt
1

wt
0

> λ

∣∣∣∣τ = x

)
= P

√
ε,x+

√
ε

(
sup
t≥0

wt
0

wt
1

> λ

)
.

Thus, (3.32) follows from

(3.33) P

√
ε,

√
ε

(
sup
t≥0

wt
0

wt
1

> λ

)
≥ P

√
ε,x+

√
ε

(
sup
t≥0

wt
0

wt
1

> λ

)
, if x > 0.

A proof of (3.33) follows by considering VRJP on the graph with vertices α,
β, and γ and bonds (α,β) and (γ,β), started at β, with initial weights

√
ε at

α and β and x at γ. Then

P

(
sup
t≥0

wt
β

wt
α

> λ

)

is the left-hand side of (3.33), while

P

(
sup
t≥0

wt
β

wt
α + wt

γ

> λ

)

is the right-hand side of (3.33). �
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4. Comparisons of Diaconis and Werner walks

Recall that two processes are said to be the same if they have the same
distributions. In this section, we prove the following theorem.

Theorem 4.1. Let {wi, i ∈ Z} be a set of positive numbers and let c and d
be positive numbers. Define θi = cwi if i is odd and θi = dwi if i is even. Let
F δ and Gδ be Werner walks with reinforcement constant δ, started at 0, with
initial weights {wi, i ∈ Z} and {θi, i ∈ Z}, respectively. Then {F δ, δ > 0} =
{Gδ, δ > 0}.

Proof. We will prove the theorem by showing that the Werner walk cor-
responding to wi, i ∈ Z, with reinforcement parameter δ is the same as the
Werner walk corresponding to θi, i ∈ Z, with reinforcement parameter cdδ.

Once again the Poisson construction described after the statement of Propo-
sition 3.2 provides the simplest proof. Let Γ〈i,i+1〉

0 and Γ〈i+1,i〉
0 , i ∈ Z, be a

collection of independent Poisson processes. Use these processes both to con-
struct Werner walk (described just above) started at 0, with initial weights
θi (call this walk Y ), and to construct Werner walk started at 0 with initial
weights wi, denoted X . Construct X and Y exactly as prescribed in Section 3,
with the obvious modification to cover the cases where the reinforcement pa-
rameter is not equal to 1. Now, using the notation right after the statement
of Proposition 3.2 with superscripts X and Y added,

τX
1 = min

{
1
w1

T 0
〈0,1〉,

1
w−1

T 0
〈0,−1〉

}

and the direction of the first jump of X is determined by which of the two
random variables is this minimum. Also

τY
1 = min

{
1

cw1
T 0

〈0,1〉,
1

cw−1
T 0

〈0,−1〉

}
=

1
c
τX
1 ,

and the direction of the first jump of Y is similarly determined. Thus {X1 =
1} = {Y1 = 1}. Furthermore, L1,Y

j = cL1,X
j if j is odd, and L1,Y

j = dL1,X
j if

j is even. This is immediate unless j = 0, since the weights are unchanged,
while if j = 0 we have

L1,Y
0 = dw0 + δcdτY

1 = d

[
w0 + δc

τX
1

c

]
= dL1,X

0 .

Now, conditioned on, say, min{ 1
w1

T〈0,1〉,
1

w−1
T〈0,−1〉 } = 1

w1
T〈0,1〉 and on the

value of T〈0,1〉, we can repeat the entire reasoning above, and in fact we can
iterate forever, inductively showing the two Werner walks are exactly the
same, not only in the sense of having the same distribution but for each point
in the probability space being the same. �
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Diaconis walks on Z and on trees are random walks in a random envi-
ronment (RWRE), by which we mean they have the distribution of a mix-
ture of nearest neighbor Markov processes where the transition probabili-
ties pi,i+1, i ∈ Z, are independent (but not necessarily identically distributed).
Werner walk is not a RWRE. Suppose however, that we start a recurrent
Werner walk X on Z at 0. Then using the results of Section 2, we easily get
that limt→∞

wt
i+1
wt

i
exists and is positive and finite which immediately implies

limt→∞
wt

i

wt
0

:= wi is positive and finite. We call the random Markov process
with weights equal to wi the limiting Werner walk, a reasonable terminology
since, if Gk = σ(X0,X1, . . . ,Xk) then if τi is the time of the ith jump of the
associated VRJP,

P(Xk+1 = j + 1|Xk = j, Gk) =
wτk

j+1

wτk
j−1 + wτk

j+1

=

w
τk
j+1

w
τk
0

w
τk
j−1

w
τk
0

+
w

τk
j+1

w
τk
0

.

Thus, this limiting walk is a mixture of Markov chains, and while the transi-
tion probabilities

pj,j+1 :=
wj+1

wj+1 + wj−1
, j ∈ Z

are not independent, by the Poisson construction and the fact that

pj,j+1 = lim
t→∞

wt
j+1

wt
j

wt
j−1

wt
j

+
wt

j+1

wt
j

we see that pj,j+1 depends only on Γ〈j−1,j〉
0 , Γ〈j,j−1〉

0 , Γ〈j,j+1〉
0 , and Γ〈j+1,j〉

0 .
Thus {p2i−1,2i, i ∈ Z} are independent. This is of no help whatsoever in study-
ing Werner walk not known to be recurrent, in contradistinction to the Dia-
conis walk situation. However it is potentially useful if all initial weights are
1, especially since the distributions of pi,i+1 are explicitly derived in [DV02].
We note in passing that when a Diaconis walk is recurrent the (independent)
pj,j+1, which in this case govern the motion of the process from the beginning,

can be recovered as limt→∞
B

τk
j+1

B
τk
j +B

τk
j+1

, where Bτk
i is the weight of (i − 1, i)

after the kth jump.
Finally, we discuss some similarities and differences of Werner walk and

Diaconis walk on Z and on the binary tree, in the setting where all initial
bond weights or vertex weights equal 1. Diaconis walk on Z is a mixture
of positive recurrent Markov chains while the limiting Werner walk, with
the transition probabilities pj,j+1 defined above, is also a mixture of positive
recurrent Markov chains. This follows from the fact that the limiting weights
wi described above are shown in [DV02] to decrease more or less geometrically
both as i increases from 0 and as i decreases from 0, together with the fact
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that an unreinforced Markov process on Z described by positive vertex weights
wi, i ∈ Z, is positive recurrent if and only if

∞∑
i=− ∞

wiwi+1 < ∞.

The proof is easy, and we omit it.
On the binary tree (or more generally any b-ary tree, b ≥ 2), both Werner

walk and Diaconis walk are transient for small δ and recurrent for large δ
([DV04] and [Pem88]). But Pemantle’s Diaconis walk result is much stronger:
an explicit cutoff is provided. Davis and Volkov could not even prove that
there are not 0 < δ1 < δ2 < δ3 such that δ1-Werner walk and δ3-Werner walk
are recurrent and δ2-Werner walk is transient. Furthermore, below Pemantle’s
cutoff Diaconis walk is a mixture of positive recurrent Markov processes. It
is probably true that for large enough δ the limiting Werner walk is also
such a mixture. Also, on the b-ary tree, if δ is small enough (depending
on b), Collevecchio has shown in [Col06a], [Col09] that both Diaconis walk
and Werner walk approach ∞ at a limiting constant speed. In addition,
Collevecchio shows that a central limit theorem holds for both processes for
small enough δ. We remark that in [Col06b] Collevecchio employed techniques
used in [Col06a] and [Col09] to very good effect in the study of (ordinary)
random walk on Galton–Watson trees.

Remark. After this paper was submitted, the preprint Continuous time
vertex reinforced jump processes on Galton–Watson Trees by Anne-Laure Bas-
devant and Arvind Singh came to our attention. One of the results of their
paper gives for VRJP the analog of the Pemantle result for Diaconis walk on
trees which was mentioned just above in the last paragraph of this paper, by
finding an explicit cutoff for recurrence/transience.
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