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To Don Burkholder, with the greatest respect and admiration for his personal
kindness and his mathematical accomplishments.

Abstract. This paper presents an overview of some of the ap-
plications of the martingale inequalities of D. L. Burkholder to

Lp-bounds for singular integral operators, concentrating on the

Hilbert transform, first and second order Riesz transforms, the

Beurling–Ahlfors operator and other multipliers obtained by pro-
jections (conditional expectations) of transformations of stochas-
tic integrals. While martingale inequalities can be used to prove

the boundedness of a wider class of Calderón–Zygmund singular

integrals, the aim of this paper is to show results which give op-
timal or near optimal bounds in the norms, hence our restriction
to the above operators.

Connections of Burkholder’s foundational work on sharp mar-
tingale inequalities to other areas of mathematics where either

the results themselves or techniques to prove them have become

of considerable interest in recent years, are discussed. These in-
clude the 1952 conjecture of C. B. Morrey on rank-one convex

and quasiconvex functions with connections to problems in the

calculus of variations and the 1982 conjecture of T. Iwaniec on

the Lp-norm of the Beurling–Ahlfors operator with connections

to problems in the theory of qasiconformal mappings. Open ques-
tions, problems and conjectures are listed throughout the paper
and copious references are provided.
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4. Lévy processes and Fourier multipliers . . . . . . . . . . . . . 843
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1. Introduction

In 1966, D. L. Burkholder published a landmark paper titled “Martin-
gale Transforms” [32]. Among some of the results contained in this paper
is the now celebrated Lp-boundedness of martingale transforms. In his 1984
paper [36] “Boundary value problems and sharp inequalities for martingale
transforms,” also a landmark in martingale theory, Burkholder proved sharp
versions of the 1966 martingale inequalities. These results lie at the heart
of the applications of martingales to many areas in probability and analysis
where their influence has been deep and lasting.
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The 1966 paper led to the explosion of martingale inequalities that pro-
duced, among many other influential results, the celebrated “Burkholder–
Davis–Gundy” inequalities which have been indispensable in the development
of stochastic analysis and its applications to so many areas of mathematics.
For a historical overview of martingale inequalities beginning with the 1966
paper, see [15]. The purpose of the present paper is to describe some of the ap-
plications of Burkholder’s sharp martingale inequalities to singular integrals
arising from his 1984 paper and to elaborate on how his method of proof,
now commonly referred to it simply as “the Burkholder method,” has led to
many other sharp martingale inequalities with interesting applications. In
particular, we describe applications to a well-known conjecture of T. Iwaniec
concerning the Lp-norm of the Beurling–Ahlfors operator. We also discuss
how Burkholder’s work on sharp martingale inequalities has come into play
in the investigation of rank-one convex and quasiconvex functions and its re-
lation to a longstanding open problem of Morrey. The connections to the last
two problems arise not only from the results proved in the 1984 paper, but
from the techniques used in the proofs.

Absent from this paper are the numerous applications of Burkholder’s in-
equalities to singular integrals and other operators for functions taking val-
ues in Banach spaces with the unconditional martingale difference sequences
(UMD) property. This has been a very active area of research with contribu-
tions by many mathematicians since the appearance of Burkholder’s seminal
paper [33] “A geometrical characterization of Banach spaces in which mar-
tingale difference sequences are unconditional.” These applications are not
discussed here. For some of Burkholder’s other contributions to UMD spaces,
we refer the reader to [35] and [48]. We also refer the reader to [28], [71],
[89], [90], [91] and [92], which contain many results and further references on
singular integrals and other operators with values in Banach spaces with the
UMD property and to G. Pisier’s overview paper “Don Burkholder’s work on
Banach spaces” [136].

The techniques introduced by Burkholder in [36] were so novel that only
in recent years has their full and wider impact in areas far removed from
their original applications to martingales begun to emerge. We hope this
paper will serve as a starting point for further explorations and applications
of sharp martingale inequalities.

1.1. The foundational inequalities. Let f = {fn, n ≥ 0} be a martingale
on a probability space (Ω, F , P ) with respect to the sequence of σ-fields Fn ⊂
Fn+1, n ≥ 0, contained in F . The sequence d = {dk, k ≥ 0}, where dk =
fk − fk−1 for k ≥ 1 and d0 = f0, is called the martingale difference sequence
of f . Thus fn =

∑n
k=0 dk. Given a sequence of random variables {vk, k ≥

0} uniformly bounded by 1 for all k and with vk, k ≥ 1, measurable with
respect to Fk−1 and v0 constant (such sequence is said to be predictable), the
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martingale difference sequence e = {vkdk, k ≥ 0} generates a new martingale
called the martingale transform of f and denoted here by v ∗ f . Thus, (v ∗
f)n =

∑n
k=0 vkdk. The maximal function of a martingale is denoted by f ∗ =

supn≥0 |fn|. We also set ‖f ‖p = supn≥0 ‖fn‖p. Burkholder’s 1966 result in [32]
asserts that the operator f → v ∗ f is bounded on Lp, for all 1 < p < ∞, and
that it is weak-type (1,1). More precisely, he proved the following theorem.

Theorem 1.1.1. Let f = {fn, n ≥ 0} be a martingale with difference se-
quence d = {dk, k ≥ 0}. Let {vk, k ≥ 0} be a predictable sequence with |vk | ≤ 1
a.s. for all k. There is a universal constant C1 and a constant Cp depending
only p such that

(1.1.1) ‖v ∗ f ‖p ≤ Cp‖f ‖p, 1 < p < ∞,

and

(1.1.2) P {(v ∗ f)∗
> λ} ≤ C1

λ
‖f ‖1, λ > 0.

Let {hk, k ≥ 0} be the Haar system in the Lebesgue unit interval [0,1).
That is, h0 = [0,1), h1 = [0,1/2) − [1/2,1), h3 = [0,1/4) − [1/4,1/2), h4 = [1/2,
3/4) − [3/4,1), . . . , where we use the same notation for an interval as its indi-
cator function. By considering dyadic martingales, inequality (1.1.1) contains
the classical inequality of R. E. A. C. Paley [130] which asserts that there is a
constant Cp depending only p such that for any sequence of real numbers ak,

(1.1.3)

∥∥∥∥∥
n∑

k=0

εkakhk

∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥
n∑

k=0

akhk

∥∥∥∥∥
p

, 1 < p < ∞,

whenever εk ∈ {1, −1}. We should note that Paley’s original inequality was
given in terms of the Walsh system of functions in the unit interval and that
Marcinkiewicz [107] derived the equivalent formulation given here in terms
Haar functions.

It is difficult to overstate the importance of Burkholder’s 1966 paper [32]
in the subsequent developments of martingale theory and its application to
so many different areas of mathematics. For a historical overview of these
developments, we refer the reader to [15] and [136]. For the purpose of this
paper, we skip directly to another groundbreaking paper of Burkholder [36]
where he identified the best constants C1 and Cp in Theorem 1.1.1. First, for
1 < p < ∞ we let p∗ denote the maximum of p and q, where 1

p + 1
q = 1. Thus,

p∗ = max
{

p,
p

p − 1

}
and

(1.1.4) p∗ − 1 =

{
p − 1, 2 ≤ p < ∞,

1
p−1 , 1 < p ≤ 2.
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This notation will be used throughout the paper.

Theorem 1.1.2. Let f = {fn, n ≥ 0} be a martingale with difference se-
quence d = {dk, k ≥ 0}. Let v ∗ f be the martingale transform of f by a real
predictable sequence v = {vk, k ≥ 0} uniformly bounded in absolute value by 1.
Then

(1.1.5) ‖v ∗ f ‖p ≤ (p∗ − 1)‖f ‖p, 1 < p < ∞.

The constant (p∗ − 1) is best possible. Furthermore, in the nontrivial case when
0 < ‖f ‖p < ∞, equality holds if and only if p = 2 and

∑∞
k=0 v2

kd2
k =
∑∞

k=0 d2
k,

almost surely.

There are many other sharp martingale transform inequalities proved in
[36]. As an illustration, we list the following which even though less relevant
to the topic of this paper than the Lp-inequalities, still serves as motivation
for some of the questions and problems we will raise below.

Theorem 1.1.3. Let 1 ≤ p ≤ 2 and let f and v be as in Theorem 1.1.2.
Then

(1.1.6) sup
λ>0

λpP {(v ∗ f)∗ > λ} ≤ 2
Γ(p + 1)

‖f ‖p
p.

The constant 2
Γ(p+1) is best possible. Furthermore, strict inequality holds if

0 < ‖f ‖p < ∞ and 1 < p < 2, but equality can hold if p = 1 or p = 2.

Remark 1.1.1. An immediate consequence of (1.1.5) is the fact that the
constant Cp in Paley’s inequality (1.1.3) can be replaced by (p∗ − 1). In
fact, Burkholder (see [36, p. 697]) also shows that this is best possible, hence
proving that the real unconditional constant of the Haar basis {hk;k ≥ 0} of
Lp

R
[0,1], 1 < p < ∞, is (p∗ − 1).

The proof of Theorem 1.1.2 in [36], which after some preliminary work
reduces to the case when the predicable sequence {vk } ∈ {−1,1}, is extremely
difficult. It rests on solving the nonlinear PDE

(1.1.7) (p − 1)[yFy − xFx]Fyy − [(p − 1)Fy − xFxy]2 + x2FxxFyy = 0

for F nonconstant and satisfying some suitable boundary conditions in certain
domains of R2. The solutions to such equation leads to a system of several
nonlinear differential inequalities with boundary conditions. From this sys-
tem, a function u(x, y, t) is constructed in the domain

Ω =
{

(x, y, t) ∈ R3 :
∣∣∣∣x − y

2

∣∣∣∣p < t

}
with certain convexity properties for which, using the techniques of [33],
Burkholder proves that

(1.1.8) u(0,0,1)‖gn‖p
p ≤ ‖fn‖p

p
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for 1 < p ≤ 2. He then shows that u(0,0,1) = (p − 1)p, which gives the bound
in Theorem 1.1.2 for this range of p. The case 2 < p < ∞ follows by duality.
The research announcement [34] contains a nice summary of the methods used
in [36]. Even today, the proof given in [36] remains quite difficult.

In a series of papers following [36], which included many applications to
various other sharp inequalities for discrete martingales and stochastic in-
tegrals, Burkholder simplified the proofs in [36] considerably by giving an
explicit expression for his “magical” function U . This simpler proof also led
to a more general theorem that has several applications. In particular, in [41]
Burkholder proved the following extension of Theorem 1.1.2.

Theorem 1.1.4. Let H be a (real or complex) Hilbert space. For x ∈ H, let
|x| denote its norm. Let f = {fn, n ≥ 0} and g = {gn, n ≥ 0} be two H-valued
martingales on the same filtration with martingale difference sequence d =
{dk, k ≥ 0} and e = {ek, k ≥ 0}, respectively, and satisfying the subordination
condition

(1.1.9) |ek | ≤ |dk |,
almost surely for all k ≥ 0. Then

(1.1.10) ‖g‖p ≤ (p∗ − 1)‖f ‖p, 1 < p < ∞
and the constant (p∗ − 1) is best possible. Furthermore, in the nontrivial case
when 0 < ‖f ‖p < ∞, equality holds if and only if p = 2 and equality holds in
(1.1.9) almost surely for all k ≥ 0.

Remark 1.1.2. In [131], A. Pe�lczyński conjectured that the complex un-
conditional constant for the Haar system is the same as the unconditional
constant for the real case. Given Remark 1.1.1, this amounts to proving that

(1.1.11)

∥∥∥∥∥
n∑

k=0

eiθkckhk

∥∥∥∥∥
p

≤ (p∗ − 1)

∥∥∥∥∥
n∑

k=0

ckhk

∥∥∥∥∥
p

, 1 < p < ∞,

for all ck ∈ C and θk ∈ R. But this follows from Theorem 1.1.4. For more on
this, see [40].

To prove the inequality (1.1.10), Burkholder considers the function V : H ×
H → R defined by

(1.1.12) V (x, y) = |y|p − (p∗ − 1)p|x|p.
The goal is then to show that EV (fn, gn) ≤ 0. Burkholder then introduces
his now famous function

(1.1.13) U(x, y) = αp

(
|y| − (p∗ − 1)|x|

)
(|x| + |y|)p−1,

where

αp = p

(
1 − 1

p∗

)p−1
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and proves that this function satisfies the following properties:

V (x, y) ≤ U(x, y) for all x, y ∈ H,(1.1.14)
EU(fn, gn) ≤ EU(fn−1, gn−1), n ≥ 1,(1.1.15)
EU(f0, g0) ≤ 0.(1.1.16)

A nice explanation of Burkholder’s PDE and other ideas in [36] in terms of
the theory of Bellman functions was subsequently given by F. Nazarov, S. Treil
and A. Volberg. For this connection and some of the now very extensive
literature on this subject, we refer the reader to [116], [117], [118], [153].
Quoting from [117]: “It is really amazing that Burkholder was able to solve
these PDE’s: they are really complicated.” In the Bellman function language
of Nazarov and Volberg, Burkholder gives an explicit expression for the “true”
Bellman function of the above PDE. Quoting from [116], “the most amazing
thing is that the true Bellman function is known! This fantastic achievement
belongs to Burkholder.”

Explicit solutions to Bellman problems that arise in many of the applica-
tions to harmonic analysis are very challenging problems. For more on this,
see [109], [110], [150], and specially the recent papers [149], [151] which con-
tain a treatment, based on the Monge–Ampère equation, on how to solve
many Bellman equations, including Burkholder’s. While Bellman functions
had been used in the area of control theory for many years, Burkholder pio-
neering paper [36] was the first to use Bellman functions in problems related
to harmonic analysis.

In addition to the results we will discuss in Section 2 below, there are
many other extensions and refinements of Theorem 1.1.2 in the literature
now. Many of these results are due to Burkholder himself; see, for example,
his work in [37], [38], [39], [40], [42], [43], [44], [45], [46], [47], [49]. Some other
applications (including many recent ones) are contained in [51], [52], [53], [54],
[85], [86], [121], [122], [123], [124], [125], [126], [127], [154], [155], [156]. The
interested reader is further encouraged to consult many of the other papers
of A. Osȩkowski on sharp martingale inequalities not listed here. Osȩkowski’s
work further elucidates “the Burkholder method” and also removes some the
mystery of his “miracle” functions.

1.2. Outline of the paper. The outline of this paper is as follows. In Sec-
tion 2, we present versions of Burkholder’s inequalities for continuous-time
martingales. These are used for the applications to the Hilbert transform,
orthogonal harmonic functions, Riesz transforms in Rn and Wiener space,
and the Beurling–Ahlfors operator in the complex plane and Rn. In addition
to martingales satisfying the Burkholder subordination condition, we discuss
versions of these inequalities for martingales satisfying an orthogonality con-
dition. The orthogonality condition was introduced in this context in [23] to
prove the sharp Lp-bounds for the Riesz transforms. The applications of the
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sharp inequalities to singular integrals are given in Section 3. In Section 4,
we describe a more recent connection between Burkholder’s inequalities and
a class of Fourier multipliers which we called Lévy multipliers. These multi-
pliers arise from transformations of the Lévy symbol of the process via the
Lévy–Khintchine formula.

A key property of the Burkholder function U (proved in [41]) is that for
all x, y,h, k ∈ H with |k| ≤ |h|, the function t → U(x + th, y + tk) is concave
in R, or equivalently the function t → −U(x + th, y + tk) is convex in R.
The concavity property of t → U(x + th, y + tk) is crucial in the proof of the
properties in (1.1.14) and (1.1.15). Properly formulated, this property means
that the function U is rank-one convex which then brings connections to a
long standing open problem in the calculus of variations known as Morrey’s
conjecture. This connections are discussed in Section 5.

Finally, it should be mentioned here that the fact that many singular in-
tegrals can be studied by martingale transform techniques applied to martin-
gales arising from composition of harmonic functions with Brownian motion
has been well known for many years and the literature on this topic is very
large indeed. We refer the reader to, for example, [35], and especially [108]
where it is shown that under suitable smoothness conditions the Hörmander
Lp-multiplier theorem [140, p. 96] follows from discrete-time martingale trans-
forms, and that it holds even in the setting of UMD Banach spaces. But in
such general settings, and without an “almost exact” representation of the op-
erators in terms of stochastic integrals, it is not possible to obtain the type of
information on the Lp-constants we want (need) for some of the applications
described in this paper.

2. Sharp inequalities for continuous-time martingales

We begin by recalling several inequalities for continuous-time martingales
based on variants of Burkholder’s differential subordination. Let H be a sep-
arable (real or complex) Hilbert space with norm |x| and inner product x · y
for vectors x, y ∈ H. For this paper, we can (and will) assume that the Hilbert
space is just �2. In fact, since all the inequalities derived in this paper hold
with universal constants independent of the dimension of the space where the
martingales take their values, we can just as well work on either Rn or Cn.
Thus, from this point on, we will either just work on �2 and even at time just
specify the martingales by coordinates either real or complex, depending on
our needs. The presentation could be simplified and streamlined somewhat
by introducing a more uniform notation. But since we want to make reference
back to papers in the literature where either �2, Rd or Cd are regularly used,
we prefer to keep it at this somewhat informal level.
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We consider then two �2-valued semi-martingales X and Y which have
right-continuous paths with left-limits (r.c.l.l.). We denote their common fil-
tration by F ={Ft}t≥0 which is a family of right-continuous sub-σ fields in
the probability space {Ω, A, P } and for which F0 contains all sets of proba-
bility zero. We denote the quadratic covariation process between X and Y by
[X,Y ] = {[X,Y ]t; t ≥ 0}. For notational simplicity, we use [X] = {[X]t; t ≥ 0}
to denote [X,X]. As in the case of discrete time martingales, we set ‖X‖p =
supt≥0 ‖Xt‖p.

2.1. Differential subordination. We say that the martingale Y is differ-
entially subordinate to the martingale X if |Y0| ≤ |X0| and [X]t − [Y ]t is a
nondecreasing and nonnegative function of t. We use the notation Y 
 X
to indicate this subordination property. This notion of differential subordi-
nation is inspired by the differential subordination property introduced by
Burkholder for discrete martingales as in Theorem 1.1.4 and also by the ap-
plications to singular integrals. For martingales with continuous paths, it was
introduced in [23]. The inequalities in [23] were extended under this con-
dition to general continuous-time parameter martingales by Wang in [157].
Various other sharp martingale inequalities (including exponential inequali-
ties and inequalities for submartingales) proved by Burkholder in [34], [41]
and [45], were extended in [157] from the discrete time setting (and stochastic
integrals) to general continuous-time parameter martingales under the above
definition of differential subordination. More precisely, we have the following
theorem proved in [23].

Theorem 2.1.1. Let X and Y be two �2-valued continuous-time parameter
martingales with continuous paths. That is, the function t → Xt is continuous
almost surely. Suppose that Y 
 X . Then

(2.1.1) ‖Y ‖p ≤ (p∗ − 1)‖X‖p, 1 < p < ∞.

The inequality is sharp and strict if p �= 2 and 0 < ‖X‖p < ∞.

We also have the following extension proved in [157].

Theorem 2.1.2. Let X and Y be two �2-valued continuous-time parameter
martingales such that Y 
 X . Then

(2.1.2) ‖Y ‖p ≤ (p∗ − 1)‖X‖p, 1 < p < ∞.

The inequality is sharp and strict if p �= 2 and 0 < ‖X‖p < ∞. In addition,
for all λ ≥ 0,

(2.1.3) P
(
sup
t≥0

(|Xt| + |Yt|) > λ
)

≤ 2
λ

‖X‖p,

and this is also sharp.
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Except for the results proved in Section 4 for Lévy multipliers, Theo-
rem 2.1.1 suffices for all the applications presented in this paper. In particular,
an important application of Theorem 2.1.1 arises when the martingales are
transformations of stochastic integrals of Brownian motion. Because of its
importance for our application, we state this case as a separate theorem. Let

Xt = (X1
t ,X2

t , . . .), Yt = (Y 1
t , Y 2

t , . . .)

be two �2-valued martingales on the filtration of n-dimensional Brownian mo-
tion. We assume they both start at 0 and that they have the stochastic
integral representation (see [68])

(2.1.4) Xi
t =
∫ t

0

Hi
s · dBs, Y i

t =
∫ t

0

Ki
s · dBs,

where Bt is n-dimensional Brownian motion and Hs and Ks are Rn-valued
processes adapted to its filtration. As usual,

〈X〉t =
∞∑

i=1

〈Xi〉t =
∞∑

i=1

∫ t

0

|Hi
s|2 ds

denotes the quadratic variation process of Xt with a similar definition for
〈Y 〉t. Also,

〈Xi, Y j 〉t =
∫ t

0

Hi
s · Kj

s ds

denotes the covariation process. We set

‖X‖p = sup
t≥0

∥∥∥∥∥
( ∞∑

i=1

|Xi
t |2
)1/2∥∥∥∥∥

p

with a similar definition for ‖Y ‖p. Of course, this is nothing more than supt>0

|Xt|�2 ‖p where |x|�2 is the norm of the vector x ∈ �2.

Theorem 2.1.3. Suppose Xt = (X1
t ,X2

t , . . .) and Yt = (Y 1
t , Y 2

t , . . .) are two
�2-valued martingales on the Brownian filtration with d〈Y 〉t =

∑∞
i=1 |Ki

t |2 ≤∑∞
i=1 |Hi

t |2 = d〈X〉t, a.e. for all t > 0. Then Y 
 X and

(2.1.5) ‖Y ‖p ≤ (p∗ − 1)‖X‖p, 1 < p < ∞.

This inequality is sharp.

Given a martingale of the form

Xt =
∫ t

0

Hs · dBs

as above and an n × n matrix-valued predictable process A(s), we define the
martingale transform

(2.1.6) (A ∗ X)t =
∫ t

0

(A(s)Hs) · dBs.
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We set
‖A‖ =

∥∥∥sup
s>0

|A(s)|
∥∥∥

L∞
,

where
‖A(s)‖ = sup{ |A(s)v| : v ∈ Rn, |v| ≤ 1},

Our standing assumption throughout is that ‖A‖ < ∞. For any t > s,

〈A ∗ X〉t − 〈A ∗ X〉s ≤ ‖A‖2〈X〉t − ‖A‖2〈X〉s = ‖A‖2(〈X〉t − 〈X〉s).

We remark that this definition extends to complex valued martingales and
matrices with complex entries. The quantity ‖A‖ just has to be modified by
defining

|A(s)| = sup{ |A(s)v|Cn : v ∈ Cn, |v|Cn ≤ 1}.

Similarly, if A(s) = {Ai(s)}∞
j=1 is a sequence of n × n matrix-valued predictable

processes, we set

| A(s)|2 = sup

{ ∞∑
i=1

|Ai(s)v|2 : v ∈ Rn, |v| ≤ 1

}
and ‖ A ‖ = ‖ sups>0 | A(s)| ‖L∞ , with a similar definition when the matrices Aj

have complex entries. Again, we always assume ‖ A ‖ < ∞. The next corollary
is an immediate consequence of Theorem 2.1.1.

Corollary 2.1.1. Let Xt = (X1
t ,X2

t , . . .) be an �2-valued martingale and
A = {Ai(s)}∞

i=1 predictable processes with ‖Ai‖ ≤ M , for all i. Define A ∗ Xt =
(A1 ∗ X1

t ,A2 ∗ X2
t , . . .). Then A ∗ Xt 
 MXt and

(2.1.7) ‖A ∗ X‖p ≤ (p∗ − 1)M ‖X| ‖p, 1 < p < ∞.

Furthermore, if Xt is either an R-valued or C-valued martingale and this time
we define A ∗ Xt = (A1 ∗ Xt,A2 ∗ Xt, . . .), then A ∗ Xt 
 ‖ A ‖Xt and

(2.1.8) ‖A ∗ X‖p ≤ (p∗ − 1)‖ A ‖ ‖X‖p, 1 < p < ∞.

These inequalities are sharp.

2.2. Differential subordination and orthogonality. Applications of the
above inequalities to the Hilbert transform and to first order Riesz trans-
forms motivated the notion of orthogonality given here. While conformal
martingales (see below) had been studied by several authors before in con-
nection with the theory of Hardy Hp spaces and harmonic functions in C

and Cn and other applications (see [77], [72], [73], [74], [129]), the notion
of orthogonality and subordination used below was introduced in [23] to
study martingale inequalities which arise from the Riesz transforms in Rn.
We say Xt = (X1

t ,X2
t , . . .) and Yt = (Y 1

t , Y 2
t , . . .) are orthogonal if for each

i, j, [Xi, Y j ]t = 0 for all t ≥ 0. While this definition is for general �2-valued
martingales, below we just recall the results the for real-valued martingales.
These follow from [23], [24], [25].
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Theorem 2.2.1. Let X and Y be two R-valued continuous-time orthogonal
martingales with Y 
 X . Then

‖Y ‖p ≤ cot
(

π

2p∗

)
‖X‖p, 1 < p < ∞,(2.2.1)

∥∥√|X|2 + |Y |2
∥∥

p
≤ csc

(
π

2p∗

)
‖X‖p, 1 < p < ∞.(2.2.2)

These inequalities are sharp and strict if p �= 2 and 0 < ‖X‖p < ∞. In addi-
tion, for any λ ≥ 0,

(2.2.3) λP (|Y | ≥ λ) ≤ D1‖X‖1,

where

(2.2.4) D1 =
1 + 1

32 + 1
52 + 1

72 + 1
92 + · · ·

1 − 1
32 + 1

52 − 1
72 + 1

92 − · · ·
=

π2

8β(2)
≈ 1.328434313301,

with β(2) the so called “Catalan” constant whose value is approximately
0.9159655. The inequality (2.2.3) is sharp.

The following extension of the above theorem was given by Janakiraman
in [101].

Theorem 2.2.2. Let X and Y be two R-valued continuous-time parameter
orthogonal martingales such that Y 
 X . Then for any λ > 0,

λpP (|Y | ≥ λ) ≤ Dp‖X‖p
p, 1 ≤ p ≤ 2,

where

Dp =
(

1
π

∫ ∞

− ∞

| 2
π log |t||p

t2 + 1
dt

)−1

.

This inequality is sharp.

In [128], Osȩkowski identifies the best constant in the inequalities ‖Y ‖p ≤
Cp,∞ ‖X‖ ∞ and ‖Y ‖1 ≤ C1,p‖X‖p under the assumption of orthogonality and
differential subordination. His precise result is the following theorem.

Theorem 2.2.3. Let X and Y be two R-valued continuous-time parameter
orthogonal martingales such that Y 
 X . Then for 1 < p < ∞,

(2.2.5) ‖Y ‖1 ≤ C1,p‖X‖p and ‖Y ‖p ≤ Cp,∞ ‖X‖ ∞,

where

Cp,∞ = 1, 1 < p ≤ 2,

Cp,∞ =

(
2p+2Γ(p + 1)

πp+1

∞∑
k=0

(−1)k

(2k + 1)p+1

)1/p

, 2 < p < ∞,

and
C1,p = C p

p−1 ,∞.
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These inequalities are sharp.

Problem 1. Determine the best constant for 2 < p < ∞ in Theorem 2.2.2.

Remark 2.2.1. If we drop the assumption of orthogonality and assume
only differential subordination, we have the bound 2/Γ(p + 1), for 1 ≤ p ≤ 2,
due to Burkholder [36], and for 2 ≤ p < ∞, the bound pp−1/2 due to Suh [144];
see also, [157]. We should also point out here that Janakiraman’s result was
inspired by Choi’s result in [52] which proves a version of Theorem 2.2.2 for
p = 1 for differentially subordinate orthogonal harmonic functions as in (3.1.7)
below. There are also more recent versions of the inequalities of Burkholder
and Suh by Osȩkowski [123] for nonnegative martingales X .

In terms of martingales on the n-dimensional Brownian motion, the above
results give the following corollary.

Corollary 2.2.1. Let Xt =
∫ t

0
Hs · dBs and Yt =

∫ t

0
Ks · dBs be two R-

valued martingales on the filtration of n-dimensional Brownian motion with
Kt · Ht = 0 and |Ks| ≤ |Hs| a.e. for all t > 0. Then

‖Y ‖p ≤ cot
(

π

2p∗

)
‖X‖p, 1 < p < ∞,(2.2.6)

∥∥√|X|2 + |Y |2
∥∥

p
≤ csc

(
π

2p∗

)
‖X‖p, 1 < p < ∞,(2.2.7)

and for any λ > 0,

(2.2.8) λpP (|Y | ≥ λ) ≤ Dp‖X‖p
p, 1 ≤ p ≤ 2.

These inequalities are all sharp.

Stated in terms of the martingale transform by predictable matrices, we
have

Corollary 2.2.2. Let A(s) be a n × n matrix-valued predictable process
with real entries with the property that [A(s)v] · v = 0, for all v ∈ Rn. Then

‖A ∗ X‖p ≤ cot
(

π

2p∗

)
‖A‖‖X‖p, 1 < p < ∞,

∥∥√|A ∗ X|2 + |X|2
∥∥

p
≤ csc

(
π

2p∗

)
‖A‖ ‖X‖p, 1 < p < ∞,

and for any λ > 0,

λpP (|A ∗ X| ≥ λ) ≤ Dp‖A‖p‖X‖p
p, 1 ≤ p ≤ 2.

These inequalities are all sharp.

The inequalities (2.2.1), (2.2.2) and (2.2.3) are the martingale versions of
the inequalities of Pichorides [134], Essén–Verbitsky [69], [152] and Davis [57],
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respectively, for harmonic and conjugate harmonic functions. We should note
here that

cot
(

π

2p∗

)
< (p∗ − 1)

and that asymptotically,

cot
(

π

2p∗

)
≈ 2

π
(p∗ − 1),

as p → 1 or p → ∞. Thus orthogonality decreases the constants in Theo-
rem 2.1.2.

Motivated by the structure of the R2-valued martingales that arise in the
martingale representation for the Beurling–Ahlfors operator, the following
theorem is proved in [17].

Theorem 2.2.4. Let Xt = (X1
t ,X2

t , . . . ,Xm
t ) and Yt = (Y 1

t , Y 2
t , . . . , Y m

t ) be
two Rm-valued martingales on the filtration of n-dimensional Brownian mo-
tion with a representation as in (2.1.4). We assume m ≥ 2. Let Y satisfy

|Ki
s|2 = |Kj

s |2 for all i, j ≥ 1 and Kj
s · Ki

s = 0, for i �= j. Suppose
√

m+p−2
p−1 Y1

is differentially subordinate to X . That is

d

〈√
m + p − 2

p − 1
Y1

〉
t

=
m + p − 2

p − 1
|K1

t |2 ≤
m∑

j=1

|Hj
t |2 = d〈X〉t,

a.e. for all t > 0. Then

(2.2.9) ‖Y ‖p ≤ (p − 1)‖X‖p, 2 ≤ p < ∞.

Following the now standard terminology (see [77]), we give the following
definition for R2 (or complex C) valued martingales.

Definition 2.2.1. An R2-valued martingale Yt = Y 1
t + iY 2

t with Y j
t =∫ t

0
Kj

s · dBs, j = 1,2, on the filtration of n-dimensional Brownian motion is
said to be a conformal martingale if K1

s · K2
s = 0 and |K1

s | = |K2
s |, a.e. for all

s > 0.

From Theorem 2.2.4, we have:

Corollary 2.2.3. Suppose Yt = (Y 1
t , Y 2

t ) is a conformal martingale and
Y 
 X where X = (X1

t ,X2
t ) is any R2-valued martingale. Then

(2.2.10) ‖Y ‖p ≤
√

p(p − 1)
2

‖X‖p, 2 ≤ p < ∞.

As pointed out in Borichev, Janakiraman and Volberg [30], the proof in [17]
also gives the following inequality: If Xt = (X1

t ,X2
t ) is an R2-valued conformal

martingale and Y 
 X , where Y = (Y 1
t , Y 2

t ) is any R2-valued martingale, then

(2.2.11) ‖Y ‖p ≤
√

2
p(p − 1)

‖X‖p, 1 < p ≤ 2.
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The article [29] contains a sharp version of the inequality (2.2.10) for 1 <
p ≤ 2. More precisely, Borichev, Janakiraman and Volberg prove the following
theorem.

Theorem 2.2.5. Suppose X and Y are two R2-valued martingales.
(i) (Left conformality) Suppose Y is conformal and Y 
 X . Then

(2.2.12) ‖Y ‖p ≤ 1√
2

zp

1 − zp
‖X‖p, 1 < p ≤ 2,

where zp is the least positive root in the interval (0,1) of the bounded Laguerre
function Lp. This inequality is sharp.

(ii) (Right conformality) Suppose X is conformal and Y 
 X . Then

(2.2.13) ‖Y ‖p ≤
√

2
1 − zp

zp
‖X‖p, 2 ≤ p < ∞,

where zp is the least positive root in the interval (0,1) of the bounded Laguerre
function Lp. This inequality is sharp.

The cases of the sharp constants for 2 < p < ∞ and 1 < p < 2 in (2.2.12)
and (2.2.13), respectively, remain open. Here we also refer the reader to the
recent paper [21] which contains various extensions and refinements of the
results in [30].

The following problem was raised in [23, p. 599]

Problem 2. Let Xj
t =
∫ t

0
Hj

s · dBs, j = 1,2,3, be three R-valued mar-
tingales on the filtration of n-dimensional Brownian motion which satisfy
H1

s · H2
s = 0, and |H1

s | = |H2
s | ≤ |H3

s |. Find the best constant Cp in the in-
equality ∥∥√|X1|2 + |X2|2

∥∥
p

≤ Cp‖X3‖p, 1 < p < ∞.

The result in Borichev, Janakiraman and Volberg [29] solves this problem
for the range of 1 < p ≤ 2. We take this opportunity to acknowledge the fact
that our guess in [23] for the best constant Cp was incorrect.

It is well known that weak-type inequalities for martingales do not give
information (at least not in any direct way) about weak-type inequalities
for singular integrals. Nevertheless, the following problem is interesting as a
martingale problem.

Problem 3. Suppose Yt = Y 1
t + iY 2

t is a conformal martingale and Y 
 X ,
where X = (X1

t ,X2
t ) is any R2-valued martingale. Find the best constant Cp

in the inequality

λpP
(
sup
t≥0

|Yt| ≥ λ
)

≤ Cp‖X‖p
p, 1 ≤ p < ∞.
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Other variants of this question are also possible as in (2.1.3). In addition,
given that conformal martingales are time change of complex (2-dimensional)
Brownian motion, this problem and others can be stated purely in terms of
Brownian motion; see also Remark 2.2.1.

2.3. Outline of proofs. In order to illustrate Burkholder’s techniques for
obtaining sharp inequalities, we give an outline of the proof of Theorem 2.1.1
for p > 2 for R2-valued martingales as well as an outline of the proof of the
inequality (2.2.1) in Theorem 2.2.1 for martingales with continuous paths.
This outline follows [23]. Let

V (x, y) = |y|p − (p∗ − 1)p|x|p.

Our goal is to show that EV (Xt, Yt) ≤ 0 for all t ≥ 0. Consider Burkholder’s
function U : R2 × R2 → R introduced in (1.1.13) which we recall here again.

(2.3.1) U(x, y) = p(1 − 1/p∗)p−1(|y| − (p∗ − 1)|x|
)
(|x| + |y|)p−1.

As in (1.1.14),

(2.3.2) V (x, y) ≤ U(x, y)

for all x, y ∈ R2. Thus to prove EV (Xt, Yt) ≤ 0, it suffices to prove that
EU(Xt, Yt) ≤ 0. We follow the notation of [23]. In particular, Ux = ∇Ux,
with a similar definition for Uy . The function Uxx = (Uxixj ) is the matrix of
second partials and similarly for Uxy and Uyy .

The function U has various structural advantages over the function V . In
particular (see [41] and [23]) for all x, y, h, k ∈ R2, if |x| |y| �= 0, then

(2.3.3) [Uxx(x, y)h] · h+2[Uxy(x, y)h] · k + [Uyy(x, y)k] · k = −cp(A+B +C),

where cp > 0 is a constant depending only on p. Furthermore, for p > 2,

A = p(p − 1)(|h|2 − |k|2)(|x| + |y|)p−2,(2.3.4)
B = p(p − 2)[|k|2 − (y′, k)2]|y| −1(|x| + |y|)p−1,(2.3.5)
C = p(p − 1)(p − 2)[(x′, h) + (y′, k)]2|x|(|x| + |y|)p−3,(2.3.6)

where we have used the notation y′ = y/|y| for y �= 0. In addition,

(2.3.7) U(x, y) ≤ 0, |y| ≤ |x|.

The left side quantity in (2.3.3) is the directional concavity in direction
(h,k). That is, if G(t) = U(x + ht, y + kt), then

G′ ′(0) = [Uxx(x, y)h] · h + 2[Uxy(x, y)h] · k + [Uyy(x, y)k] · k.

Thus, for instance, G′ ′(0) ≤ 0 whenever |k| ≤ |h|. Burkholder uses this prop-
erty to prove the (p∗ − 1) bound for discrete martingales. In [23], this property
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is explored in combination with the Itô’s formula and the differential subor-
dination as described above in the following way. Apply Itô’s formula to the
function U to get

U(Xt, Yt) = U(X0, Y0) +
∫ t

0

Ux(Xs, Ys) · dXs(2.3.8)

+
∫ t

0

Uy(Xs, Ys) · dYs +
It

2
,

where

dIt =
2∑

i,j=1

(
Uxixj (Xt, Yt)d〈Xi,Xj 〉t(2.3.9)

+ 2Uxiyj (Xt, Yt)d〈Xi, Y j 〉t + Uyiyj (Xt, Yt)d〈Y i, Y j 〉t

)
.

Recall that we want to prove that

(2.3.10) EU(Xt, Yt) ≤ 0.

Since |Y0| ≤ |X0|, we have EU(X0, Y0) ≤ 0, by (2.3.7). Since∫ t

0

Ux(Xs, Ys) · dXs and
∫ t

0

Uy(Xs, Ys) · dYs

are both martingales, their expectation is 0. Therefore,

EU(Xt, Yt) ≤ 1
2
EIt.

Replacing hihj → d〈Xi,Xj 〉, kikj → d〈Yi, Yj 〉 and hikj → d〈Xi, Yj 〉, in
(2.3.3) and observing as in Burkholder [41] that the terms B and C are always
nonnegative, it follows that

It ≤ −p(p − 1)cp

∫ t

0

(|Xs| + |Ys|)p−2 d(〈X〉s − 〈Y 〉s) ≤ 0,

provided Y is differentially subordinate to X . Hence, EIt ≤ 0. This proves
(2.3.10) and hence the inequality in Theorem 2.1.1 for R2-valued martingales
with continuous paths.

The proof of Theorem 2.2.4 in [17] for m = 2 follows from a simple mod-
ification of this argument. Our assumptions are: Yt satisfies d〈Y 1

t 〉 = d〈Y 2
t 〉,

d〈Y 1
t , Y 2

t 〉 = 0, and
√

p
p−1Y 1

t is differentially subordinate to Xt. As above,

our goal is to show that EU(Xt, Yt) ≤ 0. The above method adapted from
[41] and [23] was to drop B and C, then change the norm square terms to
quadratic variation terms and just keep A. We now include B of (2.3.5) and
verify the calculation again. Observe that the term

(y′, k)2 = (k1y1/|y|)2 + (k2y2/|y|)2 + 2k1k2(y1/|y|)(y2/|y|)
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in (2.3.5) converts to(
Y 1

t

|Yt|

)2

d〈Y 1〉t +
(

Y 2
t

|Yt|

)2

d〈Y 2〉t + 2
Y 1

t

|Yt|
Y 2

t

|Yt| d〈Y 1, Y 2〉t.

Since d〈Y 1〉 = d〈Y 2〉t and d〈Y 1, Y 2〉t = 0, this gives d〈Y 1〉t = 1
2 d〈Y 〉t.

Given that |Y | −1(|X| + |Y |) is greater than or equal to 1, we find that the
contribution from B is bounded below by

p(p − 2)(|Xt| + |Yt|)p−2(1/2)d〈Y 〉t.

So,

A + B ≥ p(p − 1)(|Xt| + |Yt|)p−2

(
d〈X〉t −

(
p

2(p − 1)

)
d〈Y 〉t

)
= p(p − 1)(|Xt| + |Yt|)p−2

(
d〈X〉t −

(
p

p − 1

)
d〈Y 1

t 〉
)

≥ 0,

where the last inequality takes into account our assumption on differential sub-
ordination. It follows that the term It in (2.3.8) is nonpositive, and therefore
EU(Xt, Yt) ≤ 0 as required. This proves the special case m = 2 for Theo-
rem 2.2.4.

We now give an outline of the proof of the inequalities (2.2.1) and (2.2.2) in
Theorem 2.2.1 for real-valued martingales on the filtration of n-dimensional
Brownian motion. Let us assume that 1 < p ≤ 2. Then p∗ = p/(p − 1),
cot( π

2p∗ ) = tan( π
2p ) and csc( π

2p∗ ) = sec( π
2p ). The reverse Minkowski’s inequal-

ity implies that √
‖X‖2

p + ‖Y ‖2
p ≤ ‖

√
|X|2 + |Y |2‖p.

Thus, inequality (2.2.1) follows from (2.2.2) and the fact that

sec2

(
π

2p

)
= tan2

(
π

2p

)
+ 1.

To prove (2.2.2), define

(2.3.11) V (x, y) = |y|p − secp

(
π

2p

)
|x|p.

Our task is to show that under the orthogonality and differential subordination
conditions, EV (Xt, Yt) ≤ 0. As above, we look for a function U with V (x, y) ≤
U(x, y) for all x, y ∈ R. Such function comes from examining Pichorides’ paper
[134]. Namely, take

(2.3.12) U(x, y) = − tan
(

π

2p

)
Rp cos(pθ),
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with |x| = R cos(θ), y = R sin(θ), −π/2 ≤ θ ≤ π/2. It is proved in [23] that
indeed V (x, y) ≤ U(x, y) and that U(x0, y0) ≤ 0 for |y0| ≤ |x0|. Furthermore,
U has the following property:

(2.3.13) Uxx(x, y)|h|2 + Uyy(x, y)|k|2 ≤ −C(x, y)(|h|2 − |k|2),
where C(x, y) is a nonnegative function for all x, y ∈ R. With this it follows
from (2.3.9) that under the assumption of orthogonality and differential sub-
ordination, EIt ≤ 0 which gives that EU(Xt, Yt) ≤ 0 and proves the desired
result.

We should note here, however, that to make all of the above precise and
justify the application of Itô’s formula, one needs some approximations which
are presented in Lemma 1.1 and Proposition 1.2 of [23]. For full details, we
refer the reader to [23], [24].

2.4. The Burkholder method. Here, we summarize the basic strategy of
Burkholder for finding best constants in martingale problems, using examples
from above. Suppose X and Y are two continuous martingales, with special
properties and relations yet to be specified. We wish to find the best constant
Cp in the inequality

(2.4.1) ‖Y ‖p ≤ Cp‖X‖p, 1 < p < ∞.

Let V (x, y) = |y|p − cp|x|p. We must find the minimal c so that EV (Xt, Yt) ≤
0. Written in terms of Itô’s formula,

V (Xt, Yt) =
∫ t

0

dVs +
1
2

∫ t

0

d〈V 〉s,

where the first term is a martingale and the second quadratic-variation process
is of bounded variation. Therefore

EV (Xt, Yt) =
1
2

∫ t

0

E d〈V 〉s,

and EV (Xt, Yt) ≤ 0 would follow if we can show for instance that Ed〈V 〉s ≤ 0
for all s > 0. In general, however, the quadratic term d〈V 〉s can take both
positive and negative values and its expectation is just as difficult to estimate
as that of V (Xt, Yt).

Enter Burkholder. We find the minimal constant c such that there exists
a function U(x, y) satisfying V (x, y) ≤ U(x, y), U(0,0) = 0 and

d〈U(X,Y )〉s ≤ 0(2.4.2)

for all s, for all (Xt, Yt) satisfying the required conditions. The last condition
is equivalent to requiring that the process U(Xt, Yt) is a supermartingale. We
now have

(2.4.3) EV (Xt, Yt) ≤ EU(Xt, Yt) ≤ EU(X0, Y0) = U(0,0) = 0



808 R. BAÑUELOS

as required. But also the condition d〈U 〉s ≤ 0 is equivalent to requiring that
U is a supersolution for a family of second-order partial differential opera-
tors. Hence, Burkholder’s approach essentially replaces the martingale prob-
lem with an obstacle problem in the calculus of variations setting. It is here
that Bellman functions enter.

It is often the case that this family of operators has a few extremal operators
which give the general solution. Consider the special case where X and Y are
real-valued and satisfying the subordination condition d〈Y 〉s ≤ d〈X〉s. Then
d〈U 〉s ≤ 0 implies

Uxx d〈X〉s + 2Uxy d〈X,Y 〉s + Uyy d〈Y 〉s ≤ 0.

It can be shown that an extreme case is d〈Y 〉s = d〈X〉s, and hence we must
find a U function that satisfies

Uxx + 2aUxy + Uyy ≤ 0,

where −1 ≤ a ≤ 1. Again, it follows that it suffices for U to satisfy

Uxx ± 2Uxy + Uyy = (∂x ± ∂y)2U ≤ 0.

Thus, we are looking for the minimal majorant of V that is biconcave in the
± π

4 directions.
Burkholder (see [41, p. 81]) finds that when c = p∗ − 1, the majorant U ≥ V

exists and equals

(2.4.4) U(x, y) =

{
αp

(
|y| − (p∗ − 1)|x|

)
(|x| + |y|)p−1, |y| > (p∗ − 1)|x|,

V (x, y), |y| ≤ (p∗ − 1)|x|,
where

αp = p

(
1 − 1

p∗

)p−1

.

He also shows by finding near extremals that (p∗ − 1) is the best possible
constant.

We next illustrate Burkholder’s approach to the weak-type (p, p) constant
for orthogonal martingales. Suppose the R2-valued martingale (X,Y ) is con-
formal. That is, d〈X〉 = d〈Y 〉 and d〈X,Y 〉 = 0 and that we wish to find the
best constant Dp in the inequality

(2.4.5) sup
λ>0

λpP (|Y | > λ) ≤ Dp‖X‖p
p, 1 ≤ p < ∞.

This is equivalent to

(2.4.6) P (|Y | > 1) ≤ Dp‖X‖p
p.

Consider the function

(2.4.7) W (x, y) =

{
1 − cp|x|p, |y| ≥ 1;
−cp|x|p, |y| < 1.
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We have to find the minimal c such that EW (X,Y ) ≤ 0 whenever (X,Y ) is
conformal. Again, we look for the minimal majorant U ≥ W so that U(0,0) =
0 and such that U(Xt, Yt) is a supermartingale. This means that

d〈U 〉s = Uxx d〈X〉s + 2Uxy d〈X,Y 〉s + Uyy d〈Y 〉s

= d〈X〉s(Uxx + Uyy) ≤ 0.

Thus, we want to find the least constant c so that the minimal superharmonic
majorant U of W has U(0,0) = 0. When 1 ≤ p ≤ 2, U is obtained by har-
monically extending its boundary values into the strip |y| < 1. Janakiraman
and Choi for (p = 1) thus find the best constant; see [101]. For 2 < p < ∞,
as stated in Problem 1, the best weak-type (p, p)-constant remains unknown.
However, we note that it is likely that Burkholder’s approach is applicable in
exactly the same manner and that the solution will involve finding information
on the minimal superharmonic majorant of W .

For more on these techniques and the connections to Bellman functions,
see the recent papers of Borichev, Janakiraman and Volberg [29], [30]. As
already mentioned in Section 1, [151] is also highly recommended.

Remark 2.4.1. The Itô formula was used in [23] to deal specifically with
martingales with continuous paths and in Wang [157] to deal with more gen-
eral continuous-time parameter martingales. Similar use of Itô’s formula was
employed by Burkholder in [39]. As seen in the above presentation, Itô’s
formula allows us to simplify some of Burkholder’s original analysis and also
leads quickly to the necessary conditions that U must satisfy. Of course, find-
ing such functions, and especially the explicit expression given by Burkholder,
is quite a different matter.

3. Singular integrals

In this section, we present some applications of the sharp martingale in-
equalities in Section 1 to singular integrals. While the most recent applica-
tions and those of current interest to many researchers are to the Beurling–
Ahlfors operator, there are also interesting applications to the Hilbert and
Riesz transforms. These applications raise other interesting questions that we
shall mention along the way. We begin with the Hilbert transform.

3.1. The Hilbert transform. The most basic example of singular integrals
is the Hilbert transform on the real line defined by

Hf(x) = p.v.
1
π

∫
R

f(y)
x − y

dy.

The celebrated inequalities of M. Riesz and Kolmogorov assert that

(3.1.1) ‖Hf ‖p ≤ Cp‖f ‖p, 1 < p < ∞,
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and that for all λ > 0,

(3.1.2) λm{x ∈ R : |Hf(x)| > λ} ≤ C1‖f ‖1,

where m is the Lebesgue measure on R. Inequalities of this type hold for very
general Calderón–Zygmund singular integrals as detailed in Stein [140]. In
[134], Pichorides showed that the best constant in the Riesz inequality (3.1.1)
is cot( π

2p∗ ) and in [57], Davis proved that the best constant in Kolmogorov’s
inequality (3.1.2) is the constant D1 given by (2.2.4). It is interesting to note
here, in relation to the topic of this paper, that Davis’ original proof used
Brownian motion. There are now several proofs of these sharp inequalities.
The Pichorides proof has been greatly simplified; see [78, Ex. 4.1.13, p. 264],
as has the Davis proof; see [68]. In [152] and [69], Verbitsky and Essén proved
the sharp related inequality:

(3.1.3)
∥∥√|Hf |2 + |f |2

∥∥
p

≤ csc
(

π

2p∗

)
‖f ‖p, 1 < p < ∞.

Theorem 2.2.1 provides martingale proofs of the inequalities (3.1.1), (3.1.2)
and (3.1.3). On the other hand, we should also acknowledge here that the
martingale inequalities were inspired by the analysis inequalities. However,
because of the universality of the martingale inequalities when we applied
them back to analysis they provide more information, and have wider ap-
plications, than just for the Hilbert transform. In particular, they contain
information for orthogonal harmonic functions which are not necessarily the
real and imaginary parts of analytic functions. But much, much, more than
that. The martingale inequalities apply to Riesz transforms in various set-
tings, as we shall discuss below. In addition, we have the following Theorem
of Janakiraman [101] which follows from his Theorem 2.2.2. It extends Davis’
inequality.

Theorem 3.1.1. For all λ > 0,

λpm{x ∈ R : |Hf(x)| > λ} ≤ Dp‖f ‖p
p, 1 ≤ p ≤ 2,(3.1.4)

Dp =
(

1
π

∫ ∞

− ∞

| 2
π log |t||p

t2 + 1
dt

)−1

.

This constant is best possible.

The following open problem is of interest. (See the related Problem 1.)

Problem 4. Determine the best constant in the inequality (3.1.4) for the
range 2 < p < ∞.

Let D be an open connected set in Rn. Let u, v : D → R be two harmonic
functions. Following Burkholder [44], we say that v is differentially subordi-
nate to u if for all x ∈ D,

| ∇v(x)| ≤ | ∇u(x)|.
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We will also say that u is orthogonal to v if for all x ∈ D,

∇u(x) · ∇v(x) = 0.

As in Burkholder [44], we also define for 1 ≤ p < ∞,

‖u‖p = sup
D0

(∫
∂D0

|u|p dμ

)1/p

,

where the supremum is taken over all subdomains D0 of D, with D0 ⊂ D,
containing a fixed point ξ0 and μ is the harmonic measure on ∂D0 based
at ξ0. We assume that u(ξ0) = v(ξ0) = 0. The next theorem follows from
Corollary 2.2.1. It is the analogue of Theorem 5.1 in Burkholder [44] with
the extra assumption of orthogonality. As before, orthogonality reduces the
constant.

Theorem 3.1.2. Suppose u and v are two real-valued harmonic functions
in a domain D ⊂ Rn which are orthogonal and with v differentially subordinate
to u. Then

(3.1.5) ‖v‖p ≤ cot
(

π

2p∗

)
‖u‖p, 1 < p < ∞,

and

(3.1.6)
∥∥√|v|2 + |u|2

∥∥
p

≤ csc
(

π

2p∗

)
‖u|p, 1 < p < ∞.

Furthermore, for all λ > 0,

(3.1.7) λpμ{ξ ∈ ∂D0 : |v(ξ)| > λ} ≤ Dp

∫
∂D0

|u|pdμ, 1 ≤ p ≤ 2.

These inequalities are sharp.

If F (z) = u(z) + iv(z) is analytic in the unit disc in the complex plane C,
the inequalities above are again the classical inequalities of Pichorides, Essén-
Verbitsky and the extension of the inequality of Davis by Janakiraman. For
p = 1, the inequality (3.1.7) was first proved by Choi in [52].

There is also a version of Theorem 2.2.3 for harmonic functions which im-
plies sharp versions of the classical LlogL inequality of Zygmund for conjugate
harmonic functions in the disk; see [128].

3.2. First order Riesz transforms. The Riesz transforms in Rn are the
natural generalizations of the Hilbert transform to higher dimensions. Given
that these operators all fall into the general category of Calderón–Zygmund
singular integrals, it follows that they are bounded on Lp, for 1 < p < ∞, and
that they are weak-type (1,1). Here, we are interested in sharp bounds. For
this purpose, we can define these operators for functions which are C∞ and
of compact support. We denote this class by C∞

0 (Rn). The results below
are all stated for such functions. In addition, since the Riesz transforms are
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operators which take real-valued functions to real-valued functions, in dealing
with their norms we could just as well assume that the functions are real-
valued. Once norm estimates for such functions are obtained, the same holds
for functions taking values in the complex plane or even in a Hilbert space;
see, for example, [97]. We start by defining

Rjf(x) = p.v.Cn

∫
Rn

(xj − yj)
|x − y|n+1

f(y)dy, j = 1,2, . . . , n,

where Cn = Γ(n+1
2 )/π

n+1
2 is chosen so that as Fourier multipliers

R̂jf(ξ) =
iξj

|ξ| f̂(ξ).

We use the normalization

(3.2.1) f̂(ξ) =
∫

Rn

e2πiξ·xf(x)dx

and

(3.2.2) f(x) =
∫

Rn

e−2πix·ξf̂(ξ)dξ

for the Fourier transform. For y > 0, let

py(x) =
Cny

(|x|2 + |y|2) d+1
2

be the Poisson kernel in Rn with Fourier transform

(3.2.3) p̂y(ξ) = e−2πy|ξ|.

For any j = 1,2, . . . , n, set ∂j = ∂
∂xj

and ∇ = (∂1, ∂2, . . . , ∂n). With this, we
see that

∂̂jf(ξ) = −2πiξj f̂(ξ),

for any f ∈ C∞
0 (Rn). Since∫ ∞

0

(2πiξj)e−2πy|ξ| dy =
iξj

|ξ|
it follows that

(3.2.4) Rjf(x) =
∫ ∞

0

∂jPyf(x)dy,

where, for any function f , Pyf(x) is the Poisson semigroup acting on the func-
tion. That is, Pyf is the convolution of py with f . With this expression and
the relationship between the generator of the semigroup and the semigroup
itself, we see that

(3.2.5) Rjf =
∂

∂xj
(−Δ)−1/2f.
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In addition, we have the following semigroup representation for the vector of
Riesz transforms involving the gradient and the Laplacian.

(3.2.6) Rf = (R1f,R2f, . . . ,Rnf) = ∇(−Δ)−1/2f.

While this identity can be verified with the aid of the Fourier transform, it is
useful to have it in terms of the semigroup because it permits generalizations
of the Riesz transforms to various other settings, see, for example, [4], [5],
[12], [63] and [81].

3.3. Background radiation. In their groundbreaking paper [84], Gundy
and Varopoulos gave a stochastic integral representation for Riesz transforms
using the so-called “background radiation” process. Using this representation,
one can transfer questions about Lp-boundedness of the Riesz transforms to
Lp-boundedness of martingale transforms. From this point of view, the Riesz
transforms appear as basic examples of a more general class of operators which
we call TA. Before we describe these operators more precisely, let us give the
basic idea for this procedure following the presentation in [18]. The process
can be summarized by the following diagram

Lp(Rn) �−→ Har(Rn+1
+ ) �−→ Mp �−→ Mp �−→ Lp(Rn),(3.3.1)

f �−→ Uf (x, y) �−→ Uf (Bt) �−→ A ∗ ft �−→ E[A ∗ f |B0 = x].

In words, with the upper half-space written as

Rn+1
+ = {(x, y) : x ∈ Rn, y > 0},

we let Uf (x, y) = Pyf(x) be the harmonic extension of f to Rn+1
+ . We compose

this function with a Brownian motion Bt in Rn+1
+ to obtain a martingale

Uf (Bt). We then transform this martingale by a matrix A to obtain a new
martingale (A ∗ f)t which is then projected by conditional expectation to
finally arrive at a function in Lp(Rn) which we denote by TAf .

We now describe the procedure in more detail. Fix a > 0. Let Bt be
Brownian motion in the upper-half space starting on the hyperplane Rn × {a}
with the Lebesgue measure as its initial distribution. That is, we define
measures P a on paths by

P a(Bt ∈ Θ) =
∫

Rn

P(x,a)(Bt ∈ Θ)dx

for any Borel set Θ ⊂ Rn+1
+ and where P(x,a) are the probability measures

associated with the Brownian motion Bt starting at the point (x,a). Of
course, the measures P a are no longer probability measures. If we let

τ = inf{t > 0 : Bt /∈ Rn+1
+ }

be the first exit time of the Brownian motion form the upper half-space and
use Fubini’s theorem to integrate out the Poisson kernel, we find that (using
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the notation Ea for the expectation associated with the measure P a)

(3.3.2) Eaf(Bτ ) =
∫

Rn

f(x)dx,

for all nonnegative functions f .
In the same way, integrating away the heat kernel and computing the

Green’s function for the half-line (see [10]), gives that

(3.3.3) Ea

∫ τ

0

F (Bs)ds = 2
∫ ∞

0

∫
Rn

(y ∧ a)F (x, y)dxdy,

for all nonnegative functions F on Rn+1
+ . Both (3.3.2) and (3.3.3) continue to

hold for those f and F for which the integrals are finite.
We would now like to let a → ∞ so that we can use the Littlewood–Paley

identities as in [140]. But since the initial distribution of B0 depends on a, we
would have to make sense of this as a limit of processes. In [84], Gundy and
Varopoulos used time-reversal to construct a filtered probability space and a
process {Bt} indexed by t ∈ (−∞,0], called the background radiation process.
Heuristically speaking, the paths of Bt are Brownian paths which originate
from {y = ∞} at time t = −∞ and exit Rn+1

+ at t = 0 with Lebesgue measure
as distribution. Letting E be the expectation with respect to the measure
associated with the background radiation process, the identities (3.3.2) and
(3.3.3) become,

(3.3.4) Ef [(B0)] =
∫

Rd

f(x)dx

and

(3.3.5) E

∫ 0

− ∞
F (Bs)ds = 2

∫ ∞

0

∫
Rn

yF (x, y)dxdy.

For a different construction using the “entrance” law of Bessel processes, see
Gundy and Silverstein [83]. Here it is also interesting to point out P. Meyer
[111, p. 185] where he describes the duality between the killed Brownian
motion on the half-line [0, ∞] and the 3-dimensional Bessel process: “D’une
manière intuitive, on peut donc dire que le retourné du processus de Bessel
issu de λ0 est le mouvement brownien venant de l’infini et tué en 0.” The usual
rules of stochastic integration and potential theory apply to this process. For
this, see Varopoulos [148] where details on the stochastic integrals are given.
Also, a more elementary procedure can be found in [10].

3.4. The operators TA and Riesz transforms. We now consider martin-
gale transforms and their projections arising from functions on Rn. For f ∈
C∞

0 (Rn), let Pyf(x) = Uf (x, y). If A(x, y), x ∈ Rd, y > 0, is an (n+1) × (n+1)
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matrix-valued function, we define the martingale transform of f by the sto-
chastic integral

A ∗ f =
∫ 0

− ∞
[A(Xs, Ys)∇Uf (Xs, Ys)] · dBs.

Here and below, we use ∇ to denote the “full” gradient of functions defined
on Rn+1

+ . That is, with ∂0 = ∂
∂y , we set

∇Uf = (∂0Uf , ∂1Uf , . . . , ∂nUf ).

Also, here and below we use the notation dBs for

dBs = (dYs, dX1
s , . . . , dXn

s ).

We define the operator taking function in Rn into functions in Rn, called the
projection of the martingale transform, by the conditional expectation

(3.4.1) TAf(x) = E[A ∗ f |B0 = (x,0)].

If A(x, y) is a (n + 1) × (n + 1) matrix valued function on Rn+1
+ , we define

‖A‖ = sup
(x,y)∈Rn+1

‖A(x, y)‖

where ‖A(x, y)‖ = sup{ |A(x, y)v| : v ∈ Rn+1, |v| ≤ 1}. If A = {Ai(x, y)}∞
i=1 is

a sequence of such functions we define ‖ A ‖ similarly as in Corollary 2.1.1.
We assume ‖A‖ and ‖ A ‖ are both finite. Using the fact that the conditional
expectation is a contraction in Lp, for 1 < p < ∞, we have the following
corollaries which follow immediately from Corollaries 2.1.1 and 2.2.2. We
recall again the fact that the distribution of B0 is the Lebesgue measure.

Theorem 3.4.1. Let {fi} ∞
i=1 be a sequence of functions in C∞

0 (Rn) and
A = {Aj(x, y)}∞

i=0 a sequence of (n + 1) × (n + 1) matrix-valued functions
such that ‖ A ‖ < ∞ and ‖Ai‖ ≤ M , for all i. Then

(3.4.2)

∥∥∥∥∥
( ∞∑

i=1

|TAifi(x)|2
)1/2∥∥∥∥∥

p

≤ (p∗ − 1)M

∥∥∥∥∥
( ∞∑

i=1

|fi|2
)1/2∥∥∥∥∥

p

,

for 1 < p < ∞. Furthermore, for any f ∈ C∞
0 (Rn),

(3.4.3)

∥∥∥∥∥
( ∞∑

i=1

|TAif(x)|2
)1/2∥∥∥∥∥

p

≤ (p∗ − 1)‖A‖‖f ‖p, 1 < p < ∞.

Theorem 3.4.2. Let A(x, y) be an (n+1) × (n+1) matrix with real entries
and suppose that for all (x, y) ∈ Rn+1

+ , [A(x, y)v] · v = 0, for all v ∈ Rn+1. Then

(3.4.4) ‖TAf ‖p ≤ cot
(

π

2p∗

)
‖A‖ ‖f ‖p, 1 < p < ∞,
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and

(3.4.5)
∥∥√|TAf |2 + |f |2

∥∥
p

≤ csc
(

π

2p∗

)
‖A‖‖f ‖p, 1 < p < ∞.

These inequalities are sharp.

Before we give the consequences of the above representation for Rj as TAj ,
we state the following interesting Littlewood–Paley identity which follows ex-
actly as in the proof given below for the representation of Rj by first remov-
ing the conditional expectation and then using the occupation-time formula
(3.3.5).

Theorem 3.4.3. For all f, g ∈ C∞
0 (Rn) and all (n + 1) × (n + 1) matrix-

valued functions A(x, y) in Rn+1 with ‖A‖ < ∞, we have∫
Rd

TAf(x)g(x)dx(3.4.6)

= E

(∫ 0

− ∞
[A(Xs, Ys)∇Uf (Xs, Ys)] · ∇Ug(Xs, Ys)ds

)
= 2
∫ ∞

0

∫
Rn

y[A(x, y)∇Uf (x, y)] · ∇Ug(x, y)dxdy.

The following corollary is immediate from this, Hölder’s inequality and the
fact that ‖TAf ‖p ≤ ‖A‖(p∗ − 1)‖f ‖p.

Corollary 3.4.1. For all f, g ∈ C∞
0 (Rn) and all (n+1) × (n+1) matrix-

valued functions A(x, y) in Rn+1 with ‖A‖ < ∞, we have

2
∣∣∣∣∫ ∞

0

∫
Rn

y[A(x, y)∇Uf (x, y)] · ∇Ug(x, y)dxdy

∣∣∣∣≤ ‖A‖(p∗ − 1)‖f ‖p‖g‖q,

for all 1 < p < ∞. Here q is the conjugate exponent of p. In addition, if A
has the orthogonality property as in Theorem 3.4.2 for all (x, y) ∈ Rn+1, then

2
∣∣∣∣∫ ∞

0

∫
Rn

y[A(x, y)∇Uf (x, y)] · ∇Ug(x, y)dxdy

∣∣∣∣≤ ‖A‖ cot
(

π

2p∗

)
‖f ‖p‖g‖q.

With the matrix

A(x, t) =
∇Uf (x, t) ⊗ ∇Ug(x, t)

| ∇Uf (x, t)| | ∇Ug(x, t)| ,

the first inequality in the corollary gives

Corollary 3.4.2. For all f, g ∈ C∞
0 (Rn),

(3.4.7) 2
∫ ∞

0

∫
Rn

y| ∇Uf (x, t)| | ∇Ug(x, t)| dxdt ≤ (p∗ − 1)‖f ‖p‖g‖q,

for all 1 < p < ∞.

This is a “Poisson extension” version of Corollary 3.9.2 below.
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Remark 3.4.1. It is also interesting here to record the following expression
for the operator TA as a convolution with a kernel. More precisely, for any
(n + 1) × (n + 1) matrix A(x, y) with ‖A‖ < ∞ we have

TAf(x) =
∫

Rn

K(x − x̃)f(x̃)dx̃,

where

K(x) = 2
∫ ∞

0

∫
Rn

yA(x, y)∇py(x) · ∇py(x − x)dxdy.

Problem 5. While we know the boundedness of these convolution op-
erators from the martingale transforms, it would be interesting to study
their properties as Calderón–Zygmund operators, including their weak L1-
boundedness which does not follow from the corresponding martingale in-
equalities.

Now let Aj = (aj
�m), j = 1,2, . . . , n, be the (n+1) × (n+1) matrix given by

(3.4.8) aj
�m =

⎧⎪⎨⎪⎩
1, � = 1,m = j + 1,

−1, � = j + 1,m = 1,

0, otherwise.

Then

(3.4.9) Aj ∗ f =
∫ 0

− ∞
∂jUf (Xs, Ys)dYs −

∫ 0

− ∞
∂0Uf (Xs, Ys)dXj

s .

It follows from [84] that with this Aj , TAj f = Rjf . We give the proof of this
important fact to illustrate these computations which are used in many places
in the literature. Let g ∈ C∞

0 (Rn). By the Itô formula (since Ug vanishes at
∞),

g(B0) =
∫ 0

− ∞
∇Ug(Xs, Ys) · dBs.

Thus, using the properties of the conditional expectation, the fact that the
distribution of B0 is the Lebesgue measure, (3.3.4) above, and that the Green’s
function for the process is 2y [the identity (3.3.5) above], and recalling that

∂̂jUf (ξ, y) = −2πiξje
−2πy|ξ|f̂(ξ)

and
∂̂0Ug(ξ, y) = −2π|ξ|e−2πy|ξ|ĝ(ξ),

we have, ∫
Rd

E

(∫ 0

− ∞
∂jUf (Xs, Ys)dYs

∣∣∣B0 = x

)
g(x)dx

= E

(
g(B0)

∫ 0

− ∞
∂jUf (Xs, Ys)dYs

)
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= E

(∫ 0

− ∞
∂jUf (Xs, Ys)∂0Ug(Xs, Ys)ds

)
=
∫ ∞

0

∫
Rd

2y ∂jUf (x, y)∂0Ug(x, y)dxdy.

If we continue with this string of identities and apply Plancherel’s theorem,
we see that the last quantity above equals∫ ∞

0

2y

∫
Rd

∂̂jUf (ξ, y) ∂̂0Ug(ξ, y)dξ dy(3.4.10)

= 8π2

∫ ∞

0

y

∫
Rd

iξj |ξ|e−4πy|ξ|f̂(ξ)ĝ(ξ)dξ dy

= 8π2

∫
Rd

iξj |ξ|f̂(ξ)ĝ(ξ)
(∫ ∞

0

ye−4πy|ξ| dy

)
dξ

=
1
2

∫
Rd

R̂jf(ξ)ĝ(ξ)dξ =
1
2

∫
Rd

Rjf(x)g(x)dx.

In a similar way, we can prove that

−
∫

Rd

E

(∫ 0

− ∞
∂0Uf (Xs, Ys)dXj

s

∣∣∣B0 = x

)
g(x)dx =

1
2

∫
Rd

Rjf(x)g(x)dx.

We observe that the matrix Aj is has the orthogonality property of Theo-
rem 3.4.2 and that ‖Aj ‖ = 1. Therefore (3.4.4) and (3.4.5) give the following
corollary.

Corollary 3.4.3. For all f ∈ C∞
0 (Rn) and all 1 < p < ∞,

(3.4.11) ‖Rjf ‖p ≤ cot
(

π

2p∗

)
‖f ‖p

and

(3.4.12)
∥∥√|Rjf |2 + |f2|

∥∥
p

≤ csc
(

π

2p∗

)
‖f ‖p.

These are the inequalities of Pichorides [134] and Essén–Verbitsky [69],
[152] for the Riesz transforms proved in [23].

The inequality (3.4.11) follows, as pointed out by Iwaniec and Martin in
[97], from the Calderón–Zygmund method of rotations. These authors also
proved that the inequality is sharp by showing that the Riesz transforms are
Fourier multiplier extensions of the Hilbert transform; see [97] for details.
The inequalities for orthogonal martingales also lead to inequalities for Riesz
transforms on compact Lie groups with the same constants; see, for example,
[4, Theorem 1]. In the same way it follows that the constant in (3.4.12) is also
best possible.
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If we take the matrices Ãj = (aj
�m) with aj

�m = 1, if � = 1,m = j + 1, we
have TÃj

f = 1
2Rjf . For this sequence of matrices, ‖−→

A ‖ = 1 in (3.4.3). This
gives the following corollary.

Corollary 3.4.4. For all 1 < p < ∞,

(3.4.13) ‖∇(−Δ)−1/2f ‖p =

∥∥∥∥∥
(

n∑
j=1

|Rjf |2
)1/2∥∥∥∥∥

p

≤ 2(p∗ − 1)‖f ‖p.

This inequality is proved in Iwaniec and Martin [97] for 2 ≤ p < ∞ with the
constant

√
π cot( π

2p ) replacing the 2(p∗ − 1). As p → ∞, the Iwaniec–Martin
constant is slightly better than 2(p∗ − 1).

There is now a large literature showing that various Lp-constants for oper-
ators in Rn are independent of the dimension n. That the constant in Corol-
lary 3.4.4 is independent of the dimension has been known for many years.
For some of this literature, we refer the reader to [10], [11], [23], [63], [67],
[97], [137], [142], [143]. Given all the technology available these days to study
Riesz transform, we believe the following problem is interesting and that its
solution may lead to new techniques that could be useful in other problems.

Problem 6. Find the best constant Cp in the inequality

(3.4.14)

∥∥∥∥∥
(

n∑
j=1

|Rjf |2
)1/2∥∥∥∥∥

p

≤ Cp‖f ‖p, 1 < p < ∞.

The obvious conjecture, of course, is that Cp = cot( π
2p∗ ).

We next consider the Ornstein–Uhlenbeck operator L = 1
2Δ − x · ∇ in Rn

equipped with the Gaussian measure

dμ =
e− |x|2

2

(2π)n/2
dx

and the Gaussian Riesz transforms

(3.4.15) Rgf = ∇(−L)−1/2f,

for f ∈ C∞
0 (Rn). Using techniques from probabilistic Littlewood–Paley–Stein

theory, P. A. Meyer [113] proved that ‖Rg(f)‖p ≤ Cp‖f ‖p, for 1 < p < ∞,
where the constant does not depend on the dimension. The inequalities remain
true on the “truly” infinite dimensional Wiener space equipped with Wiener
measure. In [137], Pisier gave an alternative proof of Meyer’s result using the
Calderón–Zygmund method of rotations. From Pisier’s result, it follows that
Cp = O(p), as p → ∞, and that Cp = O(1 − p)−3/2, as p → 1. In [82] (see
also [81]), Gundy adapts the martingale representation from [84] to prove
Meyer’s theorem. A different proof can be found in [87]. By adapting the
proof of (3.4.13) in [23] to prove an inequality for Riesz transforms on the
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n-dimensional spheres in Rn, Arcozzi [4] proves Meyer’s theorem with Cp ≤
2(p∗ − 1), for all 1 < p < ∞. Asymptotically (as p → ∞ or 1), this bound
is best possible as shown in [102]. Arcozzi also treats more general compact
groups. See also [5].

The literature on Riesz transform for more general diffusions, and for Brow-
nian motion on manifolds, is very large and it would be impossible for us to
review it here. In addition to the already mentioned examples presented in [4]
where Burkholder’s inequalities play a crucial role, we refer the reader to the
recent papers of X. D. Li [104], [105], [106] where the martingale inequalities
are use to obtain Riesz transform inequalities for Riemannian manifolds and
generalized Ornstein–Uhlenbeck operator on abstract Wiener space yielding
the same bounds of 2(p∗ − 1) as in (3.4.13). In particular, see Corollaries 1.5
and 1.6, page 254, of [106].

As the reader no doubt has noticed, while we prominently featured the
weak-type inequalities for martingales and the Hilbert transform, nothing has
been mentioned about such results for the Riesz transform. Unfortunately, the
weak-type inequalities (which in general follow from the Calderón–Zygmund
theory) do not follow from the martingale inequalities due to the simple fact
that the conditional expectation does not preserve weak-type estimates. We
should also point out here that due to the Cauchy–Riemann equations and the
Itô formula, in the case of the Hilbert transform the conditional expectation
plays no role and the stochastic integral representation is exact. It is for
this reason that weak-type inequalities for the Hilbert transform follow from
those on orthogonal martingales. For more on this, see [10]. Related to the
discussion in this paragraph, we have the following problem.

Problem 7. Find the optimal constant Cp in the inequality

(3.4.16) λpm{x ∈ Rn : |Rjf | > λ} ≤ Cp‖f ‖p
p, 1 ≤ p < ∞,

for all λ > 0.

Of considerable interest is the case p = 1. For this, it is not even known if
the inequality holds with a constant independent of the dimension n. To the
best of our knowledge, the best available result is that of Janakiraman [100]
which proves that C1 ≤ C log(n), where C is independent of n. This result
follows from a more general results for singular integrals with certain homo-
geneous kernels. The proof in [100] is via the Calderón–Zygmund machinery
with various modifications.

We also refer the reader to [63] where Bellman functions techniques are used
to obtain various dimension free estimates and where one finds the following
interesting statement (p. 171): “We hope that the properties of the Bellman
function could also be utilized in a way to obtain dimension free estimates of
the weak type 1–1.” We also share this hope and belief but as the authors of
[63] conclude, “so far this has eluded us.”
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Remark 3.4.2. Another problem of considerable interest is to investigate
the weak-type inequality (3.4.16) for p = 1 for the Riesz transforms on Wiener
space. This amounts to proving the inequality for the Gaussian Riesz trans-
forms in Rn (with respect to the Gaussian measure μ) with a constant inde-
pendent n. While some estimates are known (see [70]), this problem seems to
be wide open.

Here is the problem more precisely.

Problem 8. Let Rgf = ∇(−L)−1/2f be the Gaussian Riesz transforms in
Rn defined by (3.4.15). Prove that there is a constant C independent of n
such that

(3.4.17) λμ{x ∈ Rn : |Rgf | > λ} ≤ C‖f ‖1,

for all λ > 0.

To further whet the readers appetite, we mention that the martingale trans-
form techniques presented in this paper can be used to study the bounded-
ness of Riesz transforms on manifolds under curvature assumptions. This
has been done in [106] by extending the Gundy–Varopolous representation
to manifolds and applying the martingale inequalities following [23]. Li’s
results hold for Riesz transforms on complete Riemannian manifolds (M,g)
with metric g for the Ornstein–Uhlenbeck operator L = ΔM − ∇ϕ · ∇ with
volume measure dμ(x) = e−ϕ(x)

√
det(g(x))dx and under the assumption that

Ric(L) = Ric(M) + ∇2ϕ ≥ 0.
As in the case of the sphere in Rn treated by Arcozzi in [4] to obtain

the Meyer’s ([113]), Riesz transforms inequality for the Ornstein–Uhlenbeck
operator on the classical Wiener space, the fact that the inequalities in Li’s
results have constants independent of the dimension gives an extension of
P. Meyer’s theorem to the abstract Wiener space defined by Gross in [80].

We have already mentioned that as p → 1 or p → ∞, asymptotically, the
constant 2(p∗ − 1) is best possible in the classical Meyer’s inequality; see
[102]. More precisely, it is proved that ‖R‖p grows, within constant factors,
like 1/(p − 1), as p → 1, and like p, as p → ∞. For more on this subject
and references to some of the literature on Riesz transforms on manifolds, see
[104], [105], [106].

3.5. Multipliers of Laplace transform-type; Poisson semigroup. We
now consider the case when the matrix A = a(y)I , where I is the (n+1) × (n+
1) identity matrix and a(y) is a function defined on (0, ∞) with ‖a‖ ∞ < ∞.
It follows exactly as in (3.4.10) that the operator TA, which this time we just
denote by Ta, is the Fourier multiplier operator

(3.5.1) T̂af(ξ) =
(

16π2|ξ|2
∫ ∞

0

ya(y)e−4πy|ξ| dy

)
f̂(ξ).
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As in (3.2.4), we can conveniently rewrite this as

(3.5.2) Taf(x) =
∫ ∞

0

ya(y)∂2
0P2yf(x)dy.

These operators have been studied by many authors including those of [112],
[141] and [148]. From Theorem 3.4.1, we have the following theorem first
proved in [11, p. 123] but with better constants.

Theorem 3.5.1. Let {fj } ∞
j=1 be a sequence of functions in C∞

0 (Rn) and
{aj(y)}∞

i=0 a sequence of functions such that ‖aj ‖ ∞ ≤ M < ∞, for all j. Then

(3.5.3)

∥∥∥∥∥
( ∞∑

j=1

|Taj fj(x)|2
)1/2∥∥∥∥∥

p

≤ (p∗ − 1)M

∥∥∥∥∥
( ∞∑

j=1

|fj |2
)1/2∥∥∥∥∥

p

,

for 1 < p < ∞. Furthermore, set

a(y) =

( ∞∑
j=1

|aj(y)|2
)1/2

and suppose that ‖a‖ ∞ < ∞. The for any f ∈ C∞
0 (Rn),

(3.5.4)

∥∥∥∥∥
( ∞∑

i=1

|Taj f(x)|2
)1/2∥∥∥∥∥

p

≤ (p∗ − 1)‖a‖ ∞ ‖f ‖p, 1 < p < ∞.

This leads to the following corollary for the so called “imaginary powers”
of the Laplacian.

Corollary 3.5.1. Suppose

a(y) =
(2y)−2iγ

Γ(2(1 − iγ))
.

Then
Taf(x) = (−Δ)iγf(x)

and

(3.5.5) ‖(−Δ)iγf(x)‖p ≤ (p∗ − 1)
|Γ(2 − 2iγ)| ‖f ‖p, 1 < p < ∞.

For other interesting and more recent work related to these multipliers,
see Hytönen [91], [92], and the many references contained therein to related
applications of martingale inequalities in UMD spaces. In particular, the
inequality (3.5.5) is proved in [92] for Hilbert space valued functions as a
corollary of more general results for UMD Banach spaces (see Corollary 5.1,
p. 354). However, note that our constant here is better (twice better) than
the constant given there. This improvement comes from the fact that we used
the full identity matrix I while in [92] the matrix Ĩ = (ajk) which has a11 = 1
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and ajl = 0, for all other j, k, is used. With Ĩ one obtains only half of (−Δ)iγ

and hence the function a(y) above has to be multiplied by 2.

Remark 3.5.1. Theorem 3.5.1 has a version for Laplace transform-type
multipliers in terms of the projections of space–time Brownian martingale
transforms discussed in the next section. In particular, the imaginary powers
of the Laplacian (−Δ)iγ can be obtained in an even more direct way from
those projections and the constant in (3.5.5) can be improved; see (3.11.1)
and (3.11.3) below.

Remark 3.5.2. Other interesting Fourier multipliers arise if we take ma-
trices of the form a(y)A, where A has constant coefficients and a is a bounded
function on (0, ∞). For example, with A = Aj , j = 1,2, . . . , n, as in (3.4.8),
which gives the first-order Riesz transforms, we obtain the multipliers

(3.5.6) T̂jf(ξ) =
(

16π2iξj |ξ|
∫ ∞

0

ya(y)e−4πy|ξ| dy

)
f̂(ξ),

j = 1,2, . . . , n, which can then be written as

(3.5.7) Tjf(x) = 2
∫ ∞

0

ya(y)∂j∂0P2yf(x)dy.

For these operators, assuming that a is real-valued, we have even the better
estimate from Theorem 3.4.2,

(3.5.8) ‖Tjf ‖p ≤ cot
(

π

2p∗

)
‖a‖ ∞ ‖f ‖p,

for any 1 < p < ∞. We also note here that from (3.5.1) and (3.5.6), Tj(f)(x) =
TaRjf(x), where Rj is the jth Riesz transform and Ta is the operator in
(3.5.2).

3.6. Second order Riesz transforms. In this section, we present the
space–time martingale approach introduced in the joint paper with Méndez
[19] to study the norms of second order Riesz transforms. This is a modifica-
tion of the Gundy–Varopoulos background radiation process approach. The
novelty in [19] is the use of space–time Brownian motion and “heat” mar-
tingales to obtain better estimates for singular integrals of second-order. It
is interesting to observe that this construction is technically much simpler
than the Gundy–Varopoulos [84] construction. That the author of this paper
missed this simple heat martingale construction for so many years after his
work with Gang in [23] is one of those facts of life that he must just accept
and learn to live with!

The second-order Riesz transforms in Rn are defined by iteration of the
first-order Riesz transforms. Thus, proceeding via the Fourier transform we
have

R̂2
jf(ξ) =

−ξ2
j

|ξ|2 f̂(ξ) and R̂jRkf(ξ) =
−ξjξk

|ξ|2 f̂(ξ).
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These operators, just like the first-order ones, can be written in terms of the
background radiation process used in Section 3.2 above. In fact, it follows
exactly as in the proof of (3.4.10) that if we define the matrix

Ajk = (ajk
�m), j, k = 1,2, . . . , n, j �= k,

by

ajk
�m =

⎧⎪⎨⎪⎩
−1, � = k + 1,m = j + 1,

−1, � = j + 1,m = k + 1,

0, otherwise,

we have TAjk
f = RjRkf . With the matrices Ãjj = (ãj

�m), j = 1,2, . . . , n, de-
fined by

ãj
�m =

{
−1, � = j + 1,m = j + 1,
1, � = m,� �= j + 1,m �= j + 1,

we have TAjj f = R2
jf . Since ‖Ajk ‖ = 1 and ‖Ajj ‖ = 1, we obtain the following

estimates for RjRk from (3.4.2). This was proved in [23].

Theorem 3.6.1. Let f ∈ C∞
0 (Rn). For all 1 < p < ∞,

‖RjRkf ‖p ≤ (p∗ − 1)‖f ‖p,

for all j �= k, and
‖R2

jf ‖p ≤ (p∗ − 1)‖f ‖p,

for all j = 1,2, . . . , n.

3.7. The Beurling–Ahlfors operator and the Iwaniec Conjecture.
The Beurling–Ahlfors operator is the singular integral operator (Fourier mul-
tiplier) on the complex plane C (or R2) defined for f ∈ C∞

0 (C) by

(3.7.1) Bf(z) = − 1
π

p.v .

∫
C

f(w)
(z − w)2

dm(w).

In terms of the Fourier multiplier, B̂f(ξ) = ξ
2

|ξ|2 f̂(ξ). This means that we can
write it in terms of second order Riesz transform as

(3.7.2) B = R2
2 − R2

1 + 2iR1R2.

This operator is of fundamental importance in several areas of analysis
including PDE’s and the geometry of quasiconformal mappings [6], [7], [60],
[93], [94], [95], [96], [97], [133]. As a Calderón–Zygmund singular integral, it
is bounded on Lp(C), for 1 < p < ∞. The computation of its operator norm
‖B‖p has been an open problem for almost thirty years now. In [103], Lehto
showed that ‖B‖p ≥ p∗ − 1. Inspired in part by the celebrated Gehring–Reich
conjecture [76] on the area distortion of quasiconformal mappings in the plane
(proved by K. Astala [6]), T. Iwaniec [93] made the following:
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Conjecture 1. For all f ∈ C∞
0 (C) and 1 < p < ∞, it holds that

(3.7.3) ‖Bf ‖p ≤ (p∗ − 1)‖f ‖p.

From Theorem 3.6.1 and formula (3.7.2), we immediately get the following
theorem proved in [23].

Theorem 3.7.1. For all f ∈ C∞
0 (C) and 1 < p < ∞, we have

(3.7.4) ‖Bf ‖p ≤ 4(p∗ − 1)‖f ‖p.

Let us observe that the matrix that gives the full operator B as a TA

operator (TB in this case) is given by

(3.7.5) B =

⎡⎣0 0 0
0 2 −2i
0 −2i −2

⎤⎦ .

When acting on real vectors (vectors whose components are all real), this
matrix has norm 2

√
2 but when acting on complex vectors has norm 4. This

observation and a more direct application of the inequality (3.4.2) give the
following result also proved in [23].

Theorem 3.7.2. For all f ∈ C∞
0 (C) with f : C → R and 1 < p < ∞, we

have

(3.7.6) ‖Bf ‖p ≤ 2
√

2(p∗ − 1)‖f ‖p.

The following question immediately arises from (3.7.4) and (3.7.6).

Question 1. Is it possible to find a matrix of lower norm that also repre-
sents the Beurling–Ahlfors operator, thereby improving the bound in (3.7.4)?

To answer this question, we set R0 = Id and let M(n+1)×(n+1)(C) denote
the space of (n + 1) × (n + 1) matrices with complex entries and let

Φ : M(n+1)×(n+1)(C) →
{

n∑
i,j

aijRiRj , aij ∈ C

}
be the mapping A → TA. This is a surjective linear mapping, and so a basis
for the kernel can be computed. In fact, when n = 2, we let

K1 =

⎡⎣−1 0 0
0 1 0
0 0 1

⎤⎦ , K2 =

⎡⎣0 0 0
0 0 1
0 −1 0

⎤⎦
and

K3 =

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦ , K4 =

⎡⎣0 0 1
0 0 0
1 0 0

⎤⎦ .

It is proved in [18] that

ker(Φ) = span{K1,K2,K3,K4}.
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From this, we can prove the following theorem which completely answers the
above question. We refer the reader to [18, pp. 237 and 252] for complete
proofs.

Theorem 3.7.3.

(3.7.7) inf
α1,α2,α3,α4∈C

‖B + α1K1 + α2K2 + α3K3 + α4K4‖ = ‖B‖ = 4.

Thus using the background radiation process of Gundy–Varopoulos, the
bound 4(p∗ − 1) cannot be improved simply by picking a matrix of smaller
norm that also represents B. Nevertheless, this bound, proved in [23], was
the first estimate on the Lp-norm of B with an explicit constant involving the
(p∗ − 1) conjectured bound and the result ignited considerable interest on the
conjecture and on the probabilistic techniques used to derive the bound.

3.8. The Nazarov–Volberg estimate. In [119], Nazarov and Volberg
improved the bound in (3.7.4) to

Theorem 3.8.1. For all f ∈ C∞
0 (C) and 1 < p < ∞, we have

(3.8.1) ‖Bf ‖p ≤ 2(p∗ − 1)‖f ‖p.

The proof involved a nice application of techniques from Bellman functions.
As it turns out, however, the existence of the Bellman function in this case
also depends on Burkholder’s inequalities in [36] for Haar martingales. Before
we give the key inequality of Nazarov and Volberg, we give a definition of the
second-order Riesz transforms in terms of the heat semigroup. If we set

(3.8.2) ht(x) =
1

(2πt)n/2
e− |x|2

2t

whose Fourier transform is given by ĥt(ξ) = e−2π2t|ξ|2 , we see that

R̂2
jf(ξ) =

−ξ2
j

|ξ|2 f̂(ξ) =
1
2

∫ ∞

0

(−4π2ξ2
j )e−2π2t|ξ|2 f̂(ξ)dt(3.8.3)

=
1
2

∫ ∞

0

e−2π2t|ξ|2(−4π2ξ2
j )f̂(ξ)dt

=
1
2

∫ ∞

0

∂̂2
j Htf(ξ)dt

=
1
2

∫ ∞

0

Ĥt(∂2
j f)(ξ)dt,

where for any function f ∈ C∞
0 (Rn), Htf(x) is the heat semigroup with gen-

erator − 1
2Δ acting on the function f . That is, the convolution of ht and f ,

Ht(f)(x) =
∫

Rn

ht(x − y)f(y)dy.
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Thus,

R2
j (f)(x) =

1
2

∫ ∞

0

∂2
j Htf(x)dt =

1
2

∫ ∞

0

Ht(∂2
j f)(ξ)dt(3.8.4)

= −∂2
j (−Δ)−1f(x)

= −(−Δ)−1∂2
j f(x).

Similarly,

RjRk(f)(x) =
1
2

∫ ∞

0

∂2
jkHtf(x)dt =

1
2

∫ ∞

0

Ht(∂2
jkf)(x)dt

= −∂2
jk(−Δ)−1f(x)

= −(−Δ)−1 ∂2
jkf(x).

If we restrict ourselves to R2 = C, we can verify that

B(f)(z) =
1
2

∫ ∞

0

∂2Htf(z)dt = −(∂2(−Δ)−1f(z))(3.8.5)

where here and for the rest of the paper we use the notation

(3.8.6) ∂f =
∂f

∂x1
− i

∂f

∂x2
, ∂f =

∂f

∂x1
+ i

∂f

∂x2

for the Cauchy–Riemann operators ∂ and ∂. (Note that our notation for
∂ and ∂ differs from the “standard notation” by a factor of a half.) By
Plancherel’s theorem, for all f, g ∈ C∞

0 (Rn),∫ ∞

0

∫
Rn

∂jHtf(x)∂jHt(g)(x)dxdt(3.8.7)

=
∫ ∞

0

∫
Rn

∂̂jHtf(ξ) ̂∂jHt(g)(ξ)dξ dt

=
∫ ∞

0

∫
Rn

(4π2ξ2
j )e−2π2t|ξ|2e−2π2t|ξ|2 f̂(ξ)ĝ(ξ)dξ dt

=
∫ ∞

0

∫
Rn

(4π2ξ2
j )e−4π2t|ξ|2 f̂(ξ)ĝ(ξ)dξ dt

= −
∫

Rn

R̂2
jf(ξ)ĝ(ξ)dξ = −

∫
Rn

R2
jf(x)g(x)dx.

Remark 3.8.1. It is interesting to note here that this Littlewood–Paley
identity can also be proved by first integrating by parts and then using the self-
adjointness of Ht, the semigroup property Ht on L2, and the representation
of R2

j given in (3.8.4). A similar identity can be written down for RjRk. This
then leads to more general expressions for second order Riesz transforms on
manifolds and semigroups where one does not have the Fourier transform so
easily available. For more on this, we refer the reader to the paper [12] where
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in addition to second order Riesz transforms on manifolds, results are given
also for second order Riesz transforms of Schrödinger operators.

The following is the key Littlewood–Paley inequality of Nazarov and Vol-
berg [119]; see also Dragičević and Volberg [63], [64], [65], [66]. We state it
here as in [119] for R2 but a similar inequality holds in Rn.

Theorem 3.8.2. For all f, g ∈ C∞
0 (R2), 2 ≤ p < ∞,∫ ∞

0

∫
R2

[|∂1Htf(x)| |∂1Ht(g)(x)| + |∂2Htf(x)| |∂2Htg(x)|]dxdt(3.8.8)

≤ (p∗ − 1)‖f ‖p‖g‖q.

We remind the reader that when comparing the formulas in this paper to
those of Nazarov and Volberg, and Dragičević and Volberg, one needs to keep
in mind that in this paper we use the heat kernel for 1

2Δ, while they use the
heat kernel for Δ. This changes the formulas by a factor of 2.

Nazarov and Volberg prove (3.8.8) by applying Green’s theorem to the
function

b(x, t) = B(|Htf(x)|p, |Htg(x)|p,Htf(x),Htg(x)),
where B(X,Y, ξ, η) is a “Bellman” function for the domain

Dp = {(X,Y, ξ, η) ∈ R × R × R2 × R2 : ‖ξ‖p < X, ‖η‖p < Y }.

The construction (existence) of this Bellman function ultimately depends
on Burkholder’s inequality for the Haar system, hence their approach, while
avoiding the stochastic integrals used in [23] and bringing new insights and
ideas into the problem, is not independent of martingales.

Duality, (3.8.7) and (3.8.8) led Nazarov and Volberg [119] to the following
theorem.

Theorem 3.8.3.

(3.8.9) ‖(R2
1 − R2

2)f ‖p ≤ (p∗ − 1)‖f ‖p, ‖2R1R2f ‖p ≤ (p∗ − 1)‖f ‖p,

for any 1 < p < ∞.

From this, Nazarov and Volberg obtained the following improvement of
(3.7.4).

Corollary 3.8.1.

(3.8.10) ‖B‖p ≤ 2(p∗ − 1), 1 < p < ∞.

3.9. Space–time Brownian motion and the operators SA. The mar-
tingale transform techniques of [23] based on the background radiation pro-
cess of Gundy and Varopoulos do not give the Nazarov–Volberg estimate
(3.8.10). The Nazarov–Volberg heat kernel approach suggests, however, that
one should look into the possibility of deriving a “probabilistic” Littlewood–
Paley approach to the second order Riesz transforms based on space–time
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Brownian motion. As it turns out, such approach is successful and leads to
improvements on (3.8.10) and to many other applications. This approach,
which first appeared in [19], is what we now discuss.

We again follow the procedure depicted in the diagram (3.3.1). Fix a
large T > 0 and consider the space–time Brownian motion Zt = (Bt, T − t),
0 < t ≤ T , started at (x,T ) ∈ Rn × (0, ∞), where Bt is Brownian motion in Rn

with initial distribution the Lebesgue measure m. For the rest of the paper,
unless otherwise explicitly stated, n ≥ 2. Thus, the process Zt starts on the
hyperplane Rn × {T } with initial distribution m ⊗ δT . Px and Ex will denote
the probability and expectation for processes starting at the point x and let
PT denote the “probability” measure associated with the process with initial
distribution m ⊗ δT and denote by ET the corresponding expectation. For
any function f ∈ C∞

0 (Rn), we consider the heat extension function

Vf (x, t) = Htf(x) = Ex[f(Bt)].

It then follows that

Vf (Zt) = Vf (Bt, T − t), 0 < t < T,

is a martingale (a “heat” martingale). The Itô formula gives

(3.9.1) Vf (Zt) − Vf (Z0) =
∫ t

0

∇xVf (Zs) · dBs, 0 < t ≤ T,

where
∇xVf (·) = (∂1Vf (·), ∂2Vf (·), . . . , ∂dVf (·))

denotes the gradient of Vf in the x-variable. That is, what is referred to
in some places as the horizontal gradient. Furthermore, if A(x, t) is a n × n
matrix-valued function defined for (x, t) ∈ Rn+1

+ (with real or complex entries),

(3.9.2) (A ∗ Vf )t =
∫ t

0

[A(Zs)∇xVf (Zs)] · dBs, 0 < t ≤ T,

is the martingale transform of Vf (Zt). As before the martingale, (A ∗ Vf )t

is differentially subordinate to the martingale ‖A‖Vf (Zt). We notice that for
any f and t > 0 [recall ht is as in (3.8.2)],∫

Rn

Exf(Bt)dx =
∫

Rn

∫
Rn

f(x)ht(x − y)dxdy(3.9.3)

=
∫

Rn

f(x)dx.

This gives that the distribution of the random variable BT under PT is the
Lebesgue measure and this turns the Lp-norm of the random variables f(BT )
into the Lp(Rn) norm of the function f . Defining the projection of A ∗ Vf on
Rn by

S T
Af(x) = ET [(A ∗ Vf )T |ZT = (x,0)] = ET [(A ∗ Vf )T |BT = x],(3.9.4)
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we obtain the family of operators

{ S T
A ,A ∈ Mn×n, T > 0}

defined on C∞
0 (Rn), where as before Mn×n is the collection of all n × n matrix-

valued functions on Rn+1
+ with real or complex entries and with ‖A‖ < ∞.

The following theorem is proved exactly as Proposition 2.2 in [19]. The
reader should compare this with Theorem 3.4.3 in Section 3.2.

Theorem 3.9.1. For all f ∈ C∞
0 (Rn), S T

Af → SAf in L2, as T → ∞, and
for all f, g ∈ C∞

0 (Rn) and all n × n matrix-valued functions A(x, t) in Rn+1

with ‖A‖ < ∞, we have

lim
T →∞

∫
Rn

S T
Af(x)g(x)dx(3.9.5)

=
∫

Rn

SAf(x)g(x)dx

=
∫ ∞

0

∫
Rn

[A(x, t)∇xVf (x, t)] · ∇xVg(x, t)dxdt.

By Corollary 2.1.1, for any 1 < p < ∞ and any f ∈ C∞
0 (Rn),

‖S T
Af ‖p ≤ ‖A‖(p∗ − 1)

∥∥∥∥∫ T

0

∇xVf (Zs) · dBs

∥∥∥∥
p

(3.9.6)

= ‖A‖(p∗ − 1)‖Vf (ZT ) − Vf (Z0)‖p

≤ 2‖A‖(p∗ − 1)‖f ‖p,

which is valid for all T > 0 and the right-hand side does not depend on T .
With a more careful argument, it is shown in [19, p. 984] that

lim
T →∞

‖Vf (ZT ) − Vf (Z0)‖p ≤ ‖f ‖p

which then gives that

(3.9.7) ‖SAf(x)‖p ≤ ‖A‖(p∗ − 1)‖f ‖p, 1 < p < ∞.

In fact, from the arguments in [19] and Corollary 2.1.1, we obtain the same
result as Theorem 3.4.1 which we restate here to summarize.

Theorem 3.9.2. Let {fi} ∞
i=1 be a sequence of functions in C∞

0 (Rn) and
{Ai(x, y)}∞

i=0 a sequence of n × n matrix-valued functions such that ‖Ai‖ ≤ M ,
for all i. Then, for all 1 < p < ∞,

(3.9.8)

∥∥∥∥∥
( ∞∑

i=1

| SAifi(x)|2
)1/2∥∥∥∥∥

p

≤ (p∗ − 1)M

∥∥∥∥∥
( ∞∑

i=1

|fi|2
)1/2∥∥∥∥∥

p

.
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Furthermore, suppose A = {Ai(x, t)}∞
i=1 is a sequence of n × n matrix-valued

functions and f ∈ C∞
0 (Rd). Then

(3.9.9)

∥∥∥∥∥
( ∞∑

i=1

| SAif(x)|2
)1/2∥∥∥∥∥

p

≤ (p∗ − 1)‖A‖‖f ‖p,

where ‖ A ‖ < ∞ and defined as in Corollary 2.1.1.

As in Section 3.1, Theorem 3.9.1 and inequality (3.9.7) give the following
corollary.

Corollary 3.9.1. For all f, g ∈ C∞
0 (Rn) and all n × n matrix-valued func-

tions A(x, t) in Rn+1
+ with ‖A‖ < ∞, we have∣∣∣∣∫ ∞

0

∫
Rn

[A(x, t)∇xVf (x, t)] · ∇xVg(x, t)dxdt

∣∣∣∣≤ ‖A‖(p∗ − 1)‖f ‖p‖g‖q,

for all 1 < p < ∞.

The choice of the matrix

A(x, t) =
∇xVf (x, t) ⊗ ∇xVg(x, t)

| ∇xVf (x, t)| | ∇xVg(x, t)|
gives

Corollary 3.9.2. For all f, g ∈ C∞
0 (Rn),

(3.9.10)
∫ ∞

0

∫
Rn

| ∇xVf (x, t)| | ∇xVg(x, t)| dxdt ≤ (p∗ − 1)‖f ‖p‖g‖q,

for all 1 < p < ∞.

This is the Dragičević–Volberg inequality proved in [65] for R2 using Bell-
man functions; see their Theorem 1.4. This inequality implies the Nazarov–
Volberg inequality (3.8.8). We also refer the reader to [88] and [132] for an
even more general version of this inequality for functions f : Rn → Rm which
also follow from these methods.

We now give the outline of the proof of the equality (3.9.5) in Theorem 3.9.1;
the reader can see [19] for the full details. The first equality below is the fact
that the distribution of BT is the Lebesgue measure, the second is the Itô
formula (3.9.1) applied to Vg .∫

Rn

S T
Af(x)g(x)dx = ET

(
g(BT )

∫ T

0

[A(Zs)∇xVf (Zs)] · dBs

)
= ET

(
Vg(Z0)

∫ T

0

[A(Zs)∇xVf (Zs)] · dBs

)
+ ET

(∫ T

0

∇xVg(Zs) · dBs

∫ T

0

[A(Zs)∇xVf (Zs)] · dBs

)
.
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We now observe that the first quantity in the last equality is actually zero.
Indeed, by the definition of ET , this quantity is simply∫

Rn

Ex

(
HT g(B0)

∫ T

0

[A(Zs)∇xVf (Zs)] · dBs

)
dx

=
∫

Rn

HT g(x)Ex

(∫ T

0

[A(Zs)∇xVf (Zs)] · dBs

)
dx

= 0,

by the martingale property of the stochastic integral. On the other hand, the
Itô isometry gives that∣∣∣∣ET

(∫ T

0

∇xVg(Zs) · dBs

∫ T

0

[A(Zs)∇xVf (Zs)] · dBs

)∣∣∣∣(3.9.11)

=
∣∣∣∣∫ T

0

ET
(
[A(Zs)∇xVf (Zs)] · ∇xVg(Zs)

)
ds

∣∣∣∣
=
∣∣∣∣∫ T

0

∫
Rn

Ex[A(Bs, T − s)∇xVf (Bs, T − s)]dxds

∣∣∣∣
=
∣∣∣∣∫ T

0

∫
Rn

[A(x,T − s)∇xVf (x,T − s)] · ∇xVg(x,T − s)dxds

∣∣∣∣
=
∣∣∣∣∫ T

0

∫
Rn

[A(x, t)∇xVf (x, t)] · ∇xVg(x, t)dxdt

∣∣∣∣.
By Hölder’s inequality and (3.9.6), we have∣∣∣∣ET

(∫ T

0

∇xVg(Zs) · dBs

∫ T

0

[A(Zs)∇xVf (Zs)] · dBs

)∣∣∣∣
≤ 4(p∗ − 1)‖A‖ ‖f ‖p‖g‖q,

independent of T . Thus the right-hand side of (3.9.11) is uniformly bounded
independent of T . This proves that

lim
T →∞

∫
Rn

S T
Af(x)g(x)dx(3.9.12)

=
∫ ∞

0

∫
Rn

[A(x, t)∇xVf (x, t)] · ∇Vg(x, t)dxdt,

as asserted by (3.9.5).
For these operators we also have the analogue of Remark 3.4.1 as well as a

problem similar to Problem 5.

Remark 3.9.1. As in the case of the operators TA obtained by projections
of background radiation martingale transforms, the operators SA can also be
written as convolutions operators, this time in terms of the heat semigroup.
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More precisely, for any n × n matrix A(x, t) with ‖A‖ < ∞ we have

SAf(x) =
∫

Rn

KA(x − x̃)f(x̃)dx̃,

where

KA(x) =
∫ ∞

0

∫
Rn

A(x, t)∇xht(x) · ∇xht(x − x)dxdy.

When A = A(t) is independent of x, it follows from (3.9.12) and Plancherel’s
theorem that

(3.9.13) ŜAf(ξ) =
(

4π2

∫ ∞

0

[A(t)ξ] · ξe−4π2t|ξ|2 dt

)
f̂(ξ).

Furthermore, if A is constant we have

(3.9.14) ŜAf(ξ) =
Aξ · ξ

|ξ|2 f̂(ξ).

3.10. Space–time Brownian motion and the Beurling–Ahlfors op-
erator. If we now consider R2 and take the matrix

(3.10.1) A11 =
[
1 0
0 −1

]
,

it follows from (3.8.7) and (3.9.5) [or simply from (3.9.14)] that

SAf = R2
2f − R2

1f.

With

(3.10.2) A12 =
[

0 −1
−1 0

]
,

we have

SAf = 2R1R2f.

Since both of these matrices have norm 1, the Nazarov–Volberg Theorem 3.8.9
and Corollary 3.8.10 follow from (3.9.7). In the same way, if

A =
[

a −b
−b −a

]
,

with a, b ∈ R such that a2 + b2 ≤ 1, we get the following bound (proved in
[19]) which incorporates both bounds in (3.8.9).

Corollary 3.10.1. For all f ∈ C∞
0 (Rn) and 1 < p < ∞,

(3.10.3) ‖a(R2
2 − R2

1)f + 2bR1R2f ‖p ≤ (p∗ − 1)‖f ‖p.
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The matrix

(3.10.4) B = A11 + iA12 =
[

1 −i
−i −1

]
which gives SBf = Bf has norm ‖ B ‖ = 2 when acting on vectors with complex
entries. That is, ‖B ‖ = sup{ ‖ Bz‖C2 : z ∈ C2, ‖z‖C2 ≤ 1} = 2. On the other
hand, ‖B ‖ = sup{‖Bx‖R2 : x ∈ R2, ‖x‖R2 ≤ 1} =

√
2. This then gives that

(3.10.5) ‖Bf ‖p ≤
√

2(p∗ − 1)‖f ‖p,

for smooth functions of compact support with f : C → R. However, unlike the
Riesz transforms which take real-valued functions to real-valued functions, the
Beurling–Ahlfors operator takes real-valued functions to complex-valued func-
tions. Hence, we cannot convert this estimate to cover any function f : C → C

with the usual Hilbert space techniques which apply to the Riesz transforms.
With B = R2

2 − R2
1 + 2iR1R2, we denote by �(Bf) the real part of the

complex-valued function Bf . Note that for us this is not the same as what is
called in some papers “the real part of B” which in our notation is the operator
R2

2 − R2
1. We also introduce the conjugation operator τ(f) = f̄ defined for

any function f : C → C. One checks easily that τBτ = B, where B = R2
2 −

R2
1 − 2iR1R2. We summarize various estimates from [19] and improvements

from those in [18] which can be obtained using the space–time Brownian
motion in the next two theorems. (The inequalities in Theorem 3.10.2 and
the connections with Essén’s inequality were first discussed in [18, pp. 228–
229].) We leave the computation of the norms of the relevant matrices to the
interested reader.

Theorem 3.10.1. Let f ∈ C∞
0 (Rn) and 1 < p < ∞. Suppose {vj }n

j=1 is a
sequence of scalars such that |vj | ≤ 1 for all j. Then

(i) ‖
∑d

j=1 vjR
2
jf ‖p ≤ (p∗ − 1)‖f ‖p.

Furthermore, if n is even, say n = 2m, then
(ii) ‖

∑m
j=1 v2jR2j−1R2jf ‖p ≤ 1

2 (p∗ − 1)‖f ‖p.

Theorem 3.10.2. Let f ∈ C∞
0 (R2) and 1 < p < ∞. Then

(i) ‖
√

|Bf |2 + |τBτf |2 + |
√

2f |2‖p ≤
√

6(p∗ − 1)‖f ‖p,

(ii) ‖
√

|Bf |2 + |τBτf |2‖p ≤ 2(p∗ − 1)‖f ‖p,

(iii) ‖�(Bf)‖p ≤
√

2(p∗ − 1)‖f ‖p.

From (i), (ii) in the previous theorem and Minkowski inequality it follows
that

(3.10.6) ‖Bf ‖2
p + ‖Bf ‖2

p + 2‖f ‖2
p ≤ 6(p∗ − 1)2‖f ‖2

p, 1 < p ≤ 2,

and

(3.10.7) ‖Bf ‖2
p + ‖Bf ‖2

p ≤ 4(p∗ − 1)2‖f ‖2
p, 1 < p ≤ 2,
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for all f ∈ C∞
0 (R2). From this, we get the following interesting looking corol-

lary.

Corollary 3.10.2. For all f ∈ C∞
0 (R2) and 1 < p ≤ 2, at least one of the

following inequalities holds:

‖Bf ‖p ≤
√

2(p∗ − 1)‖f ‖p,(3.10.8)

‖Bf ‖p ≤
√

2(p∗ − 1)‖f ‖p.(3.10.9)

Note that a similar conclusion can be made with the bound
√

3(p∗ − 1)2 − 1
if we use (3.10.6) instead of (3.10.7).

Recall that the Essén inequality from (3.1.3) for the Hilbert transforms
reads

(3.10.10)
∥∥√|Hf |2 + |f |2

∥∥
p

≤ csc
(

π

2p∗

)
‖f ‖p, 1 < p < ∞.

Since the Hilbert transform anti-commutes with the dilation operator
(δ−1f)(x) = f(−x), the Essén inequality is trivially equivalent to∥∥√|Hf |2 + |δ−1Hδ−1f |2 + |

√
2f |2
∥∥

p
≤

√
2csc
(

π

2p∗

)
‖f ‖p, 1 < p < ∞,

and this motivates the inequality (i) in Theorem 3.10.2. We note that for
p = 2 the Fourier transform gives the inequality (i) with

√
6 replace by

√
4 = 2,

instead. Thus, as usual, our inequality is not sharp even at p = 2. The obvious
conjecture is that the best bound in (i) should be 2(p∗ − 1) and

√
2(p∗ − 1) in

(ii). For better bounds related to Theorem 3.10.2, see [99].
In [65], Dragičević and Volberg reproved the inequality (3.10.3) with a =

cos(θ) and b = sin(θ), θ ∈ [0,2π] and use it to obtain the following improve-
ments on the bounds for B on both real and complex valued functions. Their
results is as follows.

(3.10.11) ‖Bf ‖p ≤ σ(p)p‖f ‖p, f : C → R,

and

(3.10.12) ‖Bf ‖p ≤
√

2σ(p)p‖f ‖p, f : C → C,

where

σ(p) =
(

1
2π

∫ 2π

0

| cos(θ)|p dθ

)−1
p

,

and σ(p) → 1 as p → ∞.
In [75], Geiss, Montgomery-Smith and Saksman used arguments similar

to those used by Bourgain in [27] to show that Burkholder’s UMD property
is equivalent to the boundedness of the Hilbert transform to prove that the
Lp(Rn)-norms of 2RjRk, and R2

j − R2
k, j �= k, are bounded below by (p∗ − 1).

Together with the above upper bound estimates, this shows that

‖2RjRk ‖p = (p∗ − 1)
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and
‖R2

j − R2
k ‖p = (p∗ − 1)

for j �= k. (The question of the computation of the norm of these operators
was first raised in [18, p. 260]; see Section 5.2 below for more on this.)

This somewhat surprising result gives the first examples of singular inte-
grals whose Lp norms are exactly those of martingale transforms. The re-
sult also shows that in the plane the real and imaginary components of the
Beurling–Ahlfors operator B have norm equal to (p∗ − 1). The proof in [75]
adapts to other combinations of Rj and Rk (and much, much, more; see [22]).
A different method for proving the sharpness of these bounds which avoids
the Bourgain method altogether based on so called “laminates” is presented
in [31]; see also [151].

In [54], K. P. Choi uses the Burkholder method to identify the best constant
in the martingale transforms where the predictable sequence vk takes values
in [0,1] instead of [−1,1], as in the work of Burkholder. While this constant
is not as explicit as the p∗ − 1 constant of Burkholder, one does have a lot of
information about it.

Theorem 3.10.3. Let f = {fn, n ≥ 0} be a real-valued martingale with dif-
ference sequence d = {dk, k ≥ 0}. Let v ∗ f be the martingale transform of f
by a predictable sequence v = {vk, k ≥ 0} with values in [0,1]. Then

(3.10.13) ‖v ∗ f ‖p ≤ cp‖f ‖p, 1 < p < ∞,

with the best constant cp satisfying

cp =
p

2
+

1
2

log
(

1 + e−2

2

)
+

α2

p
+ · · · ,

where

α2 =
[
log
(

1 + e−2

2

)]2
+

1
2

log
(

1 + e−2

2

)
− 2
(

e−2

1 + e−2

)2

.

As in the proof of Burkholder’s inequalities, Choi’s proof adapts to sto-
chastic integrals and in particular it follows from his proof and the space–time
Brownian motion (heat martingale) representation used in this section for sec-
ond order Riesz transforms that an upper bound for ‖R2

j ‖p is the constant in
Choi’s Theorem 3.10.3. However, much more interesting is the fact that this
bound is sharp. This and more is proved in the paper [22] of Osȩkowski and
the author. In particular, the following theorem is a special case of the results
in [22].

Theorem 3.10.4. Let J be a nonempty subset of {1,2, . . . , d}, J �= {1,2, . . . ,
d}. Then

(3.10.14)
∥∥∥∥∑

j∈J

R2
j

∥∥∥∥
p

= cp, 1 < p < ∞.
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This result once again shows that singular integrals (as “tame” as they
appear to be in comparison to martingales) can achieve the same norms as
those for martingales. The proof is an adaptation of the techniques of Geiss,
Montgomery-Smith and Saksman.

As observed by Choi,

(3.10.15) cp ≈ p

2
+

1
2

log
(

1 + e−2

2

)
,

with this approximation becoming better for large p. It also follows trivially
from Burkholder’s inequalities that (even without knowing explicitly the best
constant cp)

(3.10.16) max
(

1,
p∗

2
− 1
)

≤ cp ≤ p∗

2
.

In the same way, the fact that the best constant in (3.10.14) has the same
bounds follows trivially even without knowing its value or that it is the same as
the Choi’s constant. For example, in R2, ‖R2

1 − R2
2‖p = p∗ − 1 and R2

1 + R2
2 =

−I give the bound in (3.10.16) for the best constant in (3.10.14).
It follows from the result of Geiss, Montgomery-Smith and Saksman that

for the family of operators { SA,A ∈ Mn×n} the bound

(3.10.17) ‖ SA‖p ≤ ‖A‖(p∗ − 1)

cannot be improved in general. Thus, via this general approach it is not
possible to improve the bound 2(p∗ − 1) from martingale inequalities without
a more careful study of the structure of the martingale transform B ∗ X arising
from the matrix in (3.10.4). This possibility (already observed in [23, p. 599])
motivated the results in [17] and leads to an improvement on the norm bound
for B. The idea is to find this additional structure and apply Corollary 2.2.3.
Again, set f = f1 + if2. We consider the martingale

Xt =
∫ t

0

∇xVf (Zs) · dBs

and its martingale transform

B ∗ Xt =
∫ t

0

B ∇xVf (Zs) · dBs

where B is the Beurling–Ahlfors matrix as in (3.10.4). We can easily check
that B ∗ Xt = (Y 1

t , Y 2
t ) is the R2-valued martingale with

Y 1
t =
∫ t

0

(
A11∇xVf1(Bs) − A12∇xVf2(Bs)

)
· dZs

and

Y 2
t =
∫ t

0

(
A11∇xVf2(Bs) + A12∇xVf1(Bs)

)
· dZs.
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From here, we easily verify that B ∗ Xt is an R2-valued conformal martingale
as in Definition 2.2.1 in Section 2.2. Indeed,

〈Y 1〉t =
∫ t

0

∣∣(A11∇xVf1(Bs) − A12∇xVf2(Bs)
)∣∣2 ds

=
∫ t

0

((
∂1Vf1(Bs) − ∂2Vf2(Bs)

)2 +
(

−∂2Vf1(Bs) − ∂1Vf2(Bs)
)2)

ds

=
∫ t

0

|∂Vf (Bs)|2 ds,

where

|∂Vf |2 = |(∂1 + i∂2)Vf |2 = | ∇xVf
2 − 2(∂1Vf1∂2Vf2 − ∂2Vf1∂2Vf2)|.

Next, computing the same for Y 2 we find that

〈Y 2〉t =
∫ t

0

∣∣(A11∇xVf1(Bs) + A12∇xVf2(Bs)
)∣∣2 ds

=
∫ t

0

((
∂2Vf1(Bs) + ∂1Vf2(Bs)

)2 +
(
∂1Uf1(Bs) − ∂2Uf2(Bs)

)2)
ds

=
∫ t

0

|∂Vf (Bs)|2 ds.

Hence, 〈Y 1〉t = 〈Y 2〉t, for all t ≥ 0.
In the same way, one verifies (see [17]) that 〈Y 1, Y 2〉t = 0 for all t ≥ 0.

Thus, B ∗ Xt is a conformal martingale. Since B ∗ Xt 
 2Xt, we can apply
Corollary 2.2.3 to conclude that

‖B ∗ XT ‖p ≤
√

2p(p − 1)‖XT ‖p, 2 ≤ p < ∞.

This gives the following result proved in [17].

Theorem 3.10.5. Suppose 2 ≤ p < ∞. For all f ∈ C∞
0 (C), f : C → C,

‖Bf ‖p = lim
T →∞

‖ SBf ‖p(3.10.18)

≤
√

2p(p − 1) lim
T →∞

‖Vf (ZT ) − Vf (Z0)‖p

=
√

2p(p − 1)‖f ‖p.

If instead we restrict to f : C → R, we obtain the bound

‖Bf ‖p ≤
√

p(p − 1)‖f ‖p,

for 2 ≤ p < ∞.

As remarked in [17], we note that the bound ‖B‖p ≤
√

2(p2 − p), 2 ≤ p <

∞, is already asymptotically better than (3.10.12). To see this, divide both
terms by

√
2(p − 1) and raise this to the power p and let p → ∞. The σ(p)

term diverges and the estimate from (3.10.18) converges to
√

e.
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Since ‖B‖2→2 = 1, we can use the Riesz–Thorin interpolation theorem and
our estimate (3.10.18) to improve the bound for all p. The following result is
proved in [17].

Theorem 3.10.6. For all f ∈ C∞
0 (C), f : C → C,

(3.10.19) ‖Bf ‖p ≤ 1.575(p∗ − 1)‖f ‖p, 1 < p < ∞.

This theorem represents the best known estimate for the norm of the
Beurling–Ahlfors operator and the best progress toward the Iwaniec’s con-
jecture as of now. However, the significance of this result is more than just
the fact that we have come numerically closer to the desired conjecture than
previous estimates. Other arguments in the literature up to this point essen-
tially estimate the norm of B by estimating the norm of R2

1 − R2
2 and R1R2,

individually, and adding them up. This is what is done, for example, to obtain
the bound 2(p∗ − 1). Such approach will not even provide the best constant
for p = 2. The estimate in Theorem 3.10.6 for the first time treats the op-
erator B as a single unit and takes into account some (but perhaps not all)
the interactions between the martingales representing the second-order Riesz
transforms and the operator B itself.

Remark 3.10.1. As in the case of the first-order Riesz transforms, sharp
weak-type (1,1) inequalities are unknown for second-order Riesz transforms
and for the Beurling–Ahlfors operator. Of great interest (see [7, Ch. 4]) is
the case of the Beurling–Ahlfors operator. For this, it is shown in [16] and
[79] that a lower bound for the best weak-type (1,1) constant is 1

log 2 and it
is conjectured in [16] that this is best possible.

Remark 3.10.2. There are also several papers in the literature which study
the behavior of the Lp-constants for powers (iterations) of the Beurling–
Ahlfors operator. For some of this literature, we refer the reader to [61]
and [62].

Remark 3.10.3. Finally, we should also remark here that just as in the
case of the background radiation process (see Theorem 3.7.3), it is not possible
to pick a 2 × 2 matrix which represents the operator B and which has a norm
smaller than 2 using the space–time Brownian motion employed in this section.
In fact, it is easy to see that in this case the kernel of the operator A → SA is
the linear span of the orthogonal matrix

(3.10.20) K =
[
0 −1
1 0

]
and an easy computation shows that

(3.10.21) inf
α∈C

‖ B + αK‖ = ‖ B ‖ = 2,

where B is the 2 × 2 matrix in (3.10.4) that represents the operator B.
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3.11. Multipliers of Laplace transform-type; heat semigroup. Re-
turning to (3.9.13), if A(t) = a(t)I , where I is the identity n × n matrix, we
again obtain the Laplace-type transform multipliers as in Section 3.3

(3.11.1) Saf(x) = −
∫ ∞

0

a(t)ΔH2tf(x)dt = −
∫ ∞

0

a(t)
∂

∂t
H2tf(x)dt

with Fourier transform

(3.11.2) Ŝaf(ξ) =
(

4π2|ξ|2
∫ ∞

0

a(t)e−4π2t|ξ|2 dt

)
f̂(ξ)

and a result similar to Theorem 3.5.1 holds but this time with better constants.
More precisely, we have the following corollary.

Corollary 3.11.1. Suppose

a(t) =
t−iγ

Γ(1 − iγ)
.

Then
Saf(x) = (−Δ)iγf(x)

and

(3.11.3) ‖(−Δ)iγf(x)‖p ≤ (p∗ − 1)
|Γ(1 − iκ)| ‖f ‖p, 1 < p < ∞.

We should now compare this bound with (3.5.5). For this, consider the ratio
of the Gamma factor in (3.5.5) and the one in (3.11.3). Using the doubling
property of the Gamma function, we see that

(3.11.4)
|Γ(2 − 2iγ)|

|Γ(1 − iγ)| =
2√
π

∣∣∣∣Γ(3
2

− iγ

)∣∣∣∣.
At γ = 0, we see that this ratio is 1. On the other hand, for all z ∈ C the
product formula gives that

Γ(z) =
e−κz

z

∞∏
n=1

(
1 +

z

n

)−1

ez/n,

where κ ≈ 0.57721 is the Euler–Mascheroni constant. From this, it follows
trivially (by examining each factor separately) that the right-hand side of
(3.11.4) is a decreasing function of γ on (0, ∞). Since Γ(z) = Γ(z), we see that
the above ratio is always smaller than 1 for all γ �= 0. (The basic identities
used above for the Gamma function can all be found in [1].) Thus the bound
in (3.11.3) is better than the bound in (3.5.5). To the best of our knowledge
this bound, which appeared for the first time in [88, Eq. (7.3)], is the best
available in the literature. This raises the following challenging problem.

Problem 9. Find the best constant in the inequality (3.11.3). That is,
what is the norm of the operators (−Δ)iγ on Lp(Rn), for 1 < p < ∞?
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With A(t) = a(t)Ĩ , where Ĩ is an n × n matrix as in the Laplace transform
multipliers of Section 3.3 (1 in the first entry and 0 else) and a is a bounded
function on R+, we have the operator

Saf(x) = −
∫ ∞

0

a(t)∂2
1H2tf(x)dt,

with similar versions for ∂j and even for the Cauchy–Riemann operators ∂

and ∂ in C.
With the matrix

(3.11.5) Aa =
[

a(t) −ia(t)
−ia(t) −a(t)

]
,

where a is a bounded function on (0, ∞), we obtain the multipliers on C

(3.11.6) SAaf(x) = −
∫ ∞

0

a(t)∂2H2tf(x)dt,

where the operator ∂ is the Cauchy–Riemann operator as in (3.8.6). From
this, it follows that

(3.11.7) ŜAaf(ξ) =
(

4π2ξ
2
∫ ∞

0

a(t)e−4π2t|ξ|2 dt

)
f̂(ξ).

Combining with (3.11.2), we have

SAaf(x) = B ◦ SAaf(x).

As in (3.5.8), we obtain

(3.11.8) ‖B ◦ SAaf ‖p ≤ 2(p∗ − 1)‖a‖ ∞ ‖f ‖p,

for all 1 < p < ∞.

Remark 3.11.1. Similar versions of (3.11.8) can be obtained for compo-
sitions of second-order Riesz transforms with Laplace transforms-type multi-
pliers by replacing ∂2 in (3.11.6) with ∂2

j or ∂j∂k.
Finally, we should also note here that with the function a taking real values

the better bound of
√

2p(p − 1) for 2 ≤ p < ∞ given in Theorem 3.10.5 above
holds for the operator B ◦ SAa .

3.12. Beurling–Ahlfors in Rn and the Iwaniec–Martin conjecture.
From the Fourier transform of B in (3.8.5), we know that in terms of the
Laplacian and the Cauchy–Riemann operator ∂ we have B = −∂2(−Δ)−1.
From this, it follows (see [7]) that the Iwaniec conjecture is equivalent to
proving that ‖∂f ‖p ≤ (p∗ − 1)‖∂f ‖p, for all f ∈ C∞

0 (C). In their study of
Quasiconformal 4-manifolds [60], Donaldson and Sullivan defined a version of
B in higher dimensions acting on differential forms in terms of the Laplacian,
the Hodge operator δ, and its adjoint δ∗. Recall that the k-form

ω(x) =
∑

I

ωI dxI , dxI = dxi1 ∧ · · · ∧ dxik
,



842 R. BAÑUELOS

in Rn, k = 1,2, . . . , d, is in Lp(Rn, ∧k) if

‖ω‖Lp(Rn,∧k) =
∥∥∥∥(∑

I

|ωI |2
)1/2∥∥∥∥

p

< ∞.

We set

Lp(Rn, ∧) =
n⊕

k=0

Lp(Rn, ∧k).

The Donaldson–Sullivan “signature” operator is defined by

Sω = (δδ∗ − δ∗δ) ◦ (−Δ)−1ω,

where the Laplacian acts on forms by acting on its coefficients. This is again
a Calderón–Zygmund singular integral operator and as such it follows from
[140] that

S : Lp(Rn, ∧) → Lp(Rn, ∧),
for all 1 < p < ∞. The Lp operator norm ‖S‖p is directly connected to the
regularity of quasiregular mappings, as well as conditions for a closed set to
be removable under such maps. Identification of the norm, as in the two
dimensional case, would also have implications for the existence of minimizers
of conformally invariant energy functionals and regularity of solutions to the
generalized Beltrami system, see [7], [97], [98].

In R2, acting on one forms, S reduces to B, up to a sign. In [97], Iwaniec
and Martin proved that

(p∗ − 1) ≤ ‖S‖p ≤ C(n + 1)p2,

where C is a universal constant independent of n and made the far reaching

Conjecture 2. For all n ≥ 2, ‖S‖p = (p∗ − 1),1 < p < ∞.

The operator S has a representation as a sparse, block–diagonal matrix of
second-order Riesz transforms. In [18], this representation is used to give a
representation of S in terms of (“harmonic”) martingale using the background
radiation processes as in Section 3.2 above. From this and Burkholder’s mar-
tingale inequalities as presented in Section 2.1, the following estimate is ob-
tained in [18]

‖S‖p ≤

⎧⎪⎨⎪⎩
(n + 2)(p∗ − 1), 2 ≤ n ≤ 14, and even,

(n + 1)(p∗ − 1), 3 ≤ n ≤ 13, and odd,

( 4n
3 − 2)(p∗ − 1), otherwise.

Using the space–time Brownian motion representation in Section 3.3 and
the exact same proofs as in [18], one obtains the bound (2n

3 − 1)(p∗ − 1), for n ≥
15, and other similar improvements for n below 15. By a much more careful
analysis of the arguments in [18] and using again the space–time martingale
as above, Hytönen [88] has improved the bound to ‖S‖p ≤ (n

2 +1)(p∗ − 1), for
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all n ≥ 2. Other improvements of the bounds in [18] using Bellman function
techniques were obtained in [132].

The resolution of Conjecture 2 seems out of reach at this point to this
author. The following less ambition problem seems more plausible, but even
this has eluded us so far.

Problem 10. Prove that for all n ≥ 2, ‖S‖p ≤ C(p∗ − 1), 1 < p < ∞, for
some constant C independent of the dimension n.

Finally, we mention the very recent applications of the space–time martin-
gale inequalities by X.-D. Li [105] (see also [104], [106]) to establish the weak
Lp-Hodge decomposition theorem and to prove the Lp-boundedness of the
Beurling–Ahlfors operator on complete noncompact Riemannian manifolds
with the so-called nonnegative Weitzenböck curvature operator. In these pa-
pers, Li shows that the formulas we discussed above for Riesz transforms
in Rn when properly formulated continue to holds on manifolds under very
general conditions. In this context Theorem 3.4 in [105] is particularly inter-
esting as it shows that the martingale representation for the Beurling–Ahlfors
operator in [19] (which is a corollary of Theorem 3.9.1 above) continues to
hold on manifolds. The proof of such a representation on manifolds, while
much more technical, retains many of the features of the proof for the classi-
cal Beurling–Ahlfors operator in R2 as given in [19]. These applications are
yet another example of the power of Burkholder’s ideas and their range of
applications in areas of mathematics that on the surface seem far removed
from the martingale transforms of Theorem 1.1.1.

4. Lévy processes and Fourier multipliers

When we view “heat” martingales as those arising by composing the heat
extension of the function with space–time Brownian motion and “harmonic”
martingales as those arising by composing the Poisson extension of the func-
tion with killed Brownian motion, the natural question arises: Is it possible
to use other symmetric stable processes of order 0 < α < 2 to investigate the
quantity ‖B‖p? This question was raised in [19, p. 989]. Even more, is there
a theory similar to that of Brownian motion that would lead to martingale
transforms and Fourier multipliers arising from more general Lévy processes
and their semigroups? Some answers to these questions are provided in [13],
[14] where a general class of multipliers is obtained by transformations of the
Gaussian and jump parts of Lévy processes. We call these Lévy multipliers.

4.1. Lévy multipliers. Consider a measure ν ≥ 0 on Rn with ν({0}) = 0
and

(4.1.1)
∫

Rn

|x|2
1 + |x|2 dν(x) < ∞.
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A measure with these properties is called a Lévy measure. For any finite Borel
measure μ ≥ 0 on the unit sphere S ⊂ Rn and functions ϕ : Rn → C, ψ : S → C

with ‖φ‖ ∞ ≤ 1 and ‖ψ‖ ∞ ≤ 1, we consider the (multiplier) function

(4.1.2) M(ξ) =

∫
Rn(1 − cos(ξ · x))ϕ(x)dν(x) + 1

2

∫
S

|ξ · θ|2ψ(θ)dμ(θ)∫
Rn(1 − cos(ξ · x))dν(x) + 1

2

∫
S

|ξ · θ|2 dμ(θ)
.

To emphasize the connections to the Lévy–Khintchine formula given below,
note that

M(ξ) =

∫
Rn(cos(ξ · x) − 1)ϕ(z)dν(x) − 1

2Aξ · ξ∫
Rn(cos(ξ · x) − 1)dν(x) − 1

2Bξ · ξ
,

where

A =
[∫

S

ψ(θ)θiθj dμ(θ)
]

i,j=1,...,d

and B =
[∫

S

θiθj dμ(θ)
]

i,j=1,...,d

and where both A and B are n × n symmetric matrices and B is nonnegative
definite. We observe that ‖ M ‖∞ ≤ 1. We call M a Lévy multiplier. For
reasons that will become clear later, we call ϕ a Lévy jumps transformation
function and ψ a Lévy Gaussian transformation function.

Theorem 4.1.1. The Fourier multiplier ŜMf(ξ) = M(ξ)f̂(ξ) on L2(Rn)
extends to an operator on Lp(Rn), 1 < p < ∞, with

(4.1.3) ‖ SMf ‖p ≤ (p∗ − 1)‖f ‖p.

As it turns out, this class of multipliers also includes the second-order Riesz
transforms R1R2 and hence, again, by the result of Geiss, Montgomery-Smith
and Saksman [75], the constant (p∗ − 1) cannot be improved in general.

Theorem 4.1.1 is proved in [14] for symmetric ν and with μ = 0 and in [13]
for general ν and μ. By a symmetrization and approximation argument, the
general case reduces to the special case of ν symmetric and μ = 0. While we
will not give the details here, we present some ideas on how these Fourier
multipliers arise from Lévy processes.

Lévy processes provide a rich class of stochastic processes which generalize
several of the basic processes in probability, including Brownian motion, Pois-
son and compound Poisson processes, stable processes and other processes
subordinated to Brownian motion. They have been widely used in many ar-
eas of pure and applied mathematics, including stochastic control, financial
mathematics, potential analysis, geometry and PDE’s. We refer the reader to
[55], [120] and to the survey article [3] where some of these connections and
applications are discussed. Here we are interested in projections (conditional
expectations) of martingale transforms arising by modifying the symbol ρ.
These operators lead to Theorem 4.1.1.

Recall that a Lévy process {Xt} in Rn is a stochastic process with indepen-
dent and stationary increments which is stochastically continuous. That is,



BURKHOLDER INEQUALITIES AND APPLICATIONS 845

for all 0 < s < t < ∞, Borel sets Θ ⊂ Rn, P0{Xt − Xs ∈ Θ} = P0{Xt−s ∈ Θ},
and for any given sequence of ordered times 0 < t1 < t2 < · · · < tm < ∞, the
random variables Xt1 − X0,Xt2 − Xt1 , . . . ,Xtm − Xtm−1 are independent. Fur-
thermore, for all ε > 0, limt→s P0{ |Xt − Xs| > ε} = 0. The celebrated Lévy–
Khintchine formula [139] guarantees the existence of a triple (b,B, ν) such
that the characteristic function of the process is given by E0[eiξ·Xt ] = etρ(ξ),
where

(4.1.4) ρ(ξ) = ib · ξ − 1
2
Bξ · ξ +

∫
Rn

[
eiξ·x − 1 − i(ξ · y)IB(0,1)(x)

]
dν(x).

Here, b ∈ Rn, B is a nonnegative n × n symmetric matrix, IB(0,1) is the indica-
tor function of the unit ball B(0,1) ⊂ Rn and ν is a measure on Rn satisfying
(4.1.1).

The triplet (b,B, ν), referred to here as a Lévy triplet, is called the char-
acteristics of the process and the measure ν is called the Lévy measure of
the process. Conversely, given (b,B, ν) with such properties there is Lévy
process corresponding to it. We will refer to ρ(ξ) as the Lévy symbol. The
Lévy triplet (0, I,0), where I is the n × n identity matrix gives the standard
Brownian motion in Rn and (0,B,0) gives more general Gaussian processes
with covariance bjk min(s, t), where B = (bjk). Brownian motion plus drift
Xt = bt + Bt arises from (b, I,0).

The Poisson process πλ(t) of intensity λ arises from (0,0, λδ1), where δ1

is the Dirac delta at 1. If we let Y1, Y2, . . . be i.i.d. with distribution ν and
independent of πλ(t), we get the compound Poisson process

(4.1.5) Xt = Y1 + Y2 + · · · + Yπt(λ) = Sπλ(t).

By independence,

E[eiξ·Xt ] =
∞∑

m=0

P {πλ(t) = m}E[eiξ·Sm ] =
∞∑

m=0

e−λt(λt)m

m!
(ν̂(ξ))m

= eλt(ν̂(ξ)−1).

Hence, Xt is a Lévy process with Lévy symbol

(4.1.6) ρ(ξ) = λ

∫
Rn

(eix·ξ − 1)dν(x).

A class of Lévy processes which has been widely studied is rotationally
invariant (symmetric) stable processes. These are self-similar processes with
Lévy symbols ρ(ξ) = −|ξ|α, 0 < α ≤ 2, and Lévy measures

dνα =
cα,n

|x|n+α
dx

for 0 < α < 2 and να = 0 for α = 2. Here, cα,n is a normalizing constant
depending only on α and n. For α = 1, this gives the Cauchy process and
α → 2, gives Brownian motion.
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We assume that f ∈ C∞
0 (Rn). The semigroup of the Lévy process {Xt}

with Lévy symbol ρ acting on f is given by

Ptf(x) = E0[f(X(t) + x)] = E0

(∫
Rn

e−2πi(Xt+x)·ξf̂(ξ)dξ

)
(4.1.7)

=
∫

Rn

etρ(−2πξ)e−2πix·ξ f̂(ξ)dξ.

Differentiating with respect to t gives that the infinitesimal generator of the
semigroup for Lévy process is the Fourier integral operator

(4.1.8) Af =
∫

Rn

ρ(−2πξ)e−2πix·ξ f̂(ξ)dξ.

With ρ(ξ) = −|ξ|α we obtain the fractional Laplacian A = −(−Δ)α/2.
To more clearly illustrate the origins of Theorem 4.1.1 and to avoid several

technical points, let us assume that the semigroup is self-adjoint on L2(Rn).
As is well known (see [2]), this happens if and only if the Lévy process Xt

is symmetric. That is, if and only if P {Xt ∈ Θ} = P {Xt ∈ −Θ} for all Borel
sets Θ ∈ Rn. This leads to Tt being self-adjoint if and only if

(4.1.9) ρ(ξ) = − 1
2
ξ · Bξ +

∫
Rn

(
cos(z · ξ) − 1

)
dν(z),

where B a symmetric matrix and is ν a symmetric (ν(Θ) = ν(−Θ)) Lévy
measure. It is then clear that for symmetric Lévy measures ν, the Fourier
multipliers M(ξ) in Theorem 4.1.1 are obtained from “transformations” (or
“modulations”) of the above Lévy symbol normalized by the symbol itself.
To make the connection to martingales as clearly as possible, we illustrate
two different instances of these multipliers. The case when ν = 0 (the purely
Gaussian case under the assumption that B is strictly positive definite) and
the case when B = 0 (the purely compound Poisson case). For the first, we
observe that from (4.1.7) we have

P̂tf(ξ) = etρ(−2πξ)f̂(ξ) = e−2π2tBξ·ξ f̂(ξ).

If as in (3.9.13), we consider the operator this time with Fourier multiplier
defined by

(4.1.10) ŜAf(ξ) =
(

4π2

∫ ∞

0

[A(t)ξ] · ξe−4π2tBξ·ξ dt

)
f̂(ξ)

we see that it arise from the projections of the martingale transform this time
defined by

(4.1.11) S T
Af(x) = ET

[∫ T

0

A(T − s)∇xPT −sf(Xs) · dBs

∣∣∣XT = x

]
,
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where this time Xt is the diffusion (Gaussian process) associated with the
operator

A =
1
2

n∑
j,k=1

bjk
∂2

∂xj ∂xk
.

If the matrix A is constant as in (3.9.14), this gives the multipliers

(4.1.12) ŜAf(ξ) =
Aξ · ξ

Bξ · ξ
f̂(ξ)

and under the assumption that |Aξ · ξ| ≤ |Bξ · ξ| for all ξ ∈ Rn, we get that
these operators again have

‖ SAf ‖ ≤ (p∗ − 1)‖f ‖p, 1 < p < ∞.

Thus, for the Gaussian case there is (essentially) no change from the Brow-
nian motion case except for the replacement of the identity matrix I by the
symmetric matrix B.

We now consider the case when

(4.1.13) ρ(ξ) =
∫

Rn

(
cos(z · ξ) − 1

)
dν(z),

where ν is symmetric and finite. The process Xt is then a symmetric com-
pound Poisson process as in (4.1.5). With T > 0 and Zt = (Xt, T − t), 0 <
t < T , we set Vf (Zt) = Vf (Xt, T − t) where Vf (x, t) = Ptf(x). Then Vf (Zt) =
Vf (Xt, T − t), 0 < t < T , is a martingale (see [14], Lemmas 1–4) and it follows
from the general Itô formula ([59], [138]) that

Vf (Zt) − Vf (Z0) =
∑

0<s≤t

[Vf (Xs, T − s) − Vf (Xs− , T − s)]

−
∫ t

0

∫
Rn

[Vf (Xs− + z,T − s) − Vf (Xs− , T − s)]dν(z)ds.

Let ϕ : Rd → C be such that ‖ϕ‖∞ ≤ 1. Consider the new martingale

ϕ ∗ Vf (Zt) =
∑

0<s≤t

[Vf (Xs, T − s) − Vf (Xs− , T − s)]ϕ(ΔXs)

+
∫ t

0

∫
Rn

[Vf (Xs− + z,T − s) − Vf (Xs− , T − s)]ϕ(z)dν(z)ds

on 0 < t < T . Then

[ϕ ∗ Vf (Z)]t =
∑

0<s≤t

|Vf (Xs, T − s) − Vf (Xs− , T − s)|2|ϕ(ΔXs)|2

and it follows that ϕ ∗ Vf (Zt) 
 Vf (Zt). From Theorem 2.1.2, it follows that
the “martingale transform” ϕ ∗ Vf (Zt) is in Lp for all 1 < p < ∞ and that

(4.1.14) ‖ϕ ∗ Vf (Zt)‖p ≤ (p∗ − 1)‖f ‖p.
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As in the case of space–time Brownian motion, we define the family of oper-
ators in Rn by

S T
ϕ f(x) = ET [ϕ � Vf |ZT = (x,0)].

As in the case of the Brownian motion, the boundedness of the martingale
transform Vf (Zt) → ϕ ∗ Vf (Zt) (inequality (4.1.14)), the contraction in Lp of
the conditional expectation gives that

(4.1.15) ‖ Sϕf ‖p ≤ (p∗ − 1)‖ϕ‖ ∞ ‖‖f ‖p.

The following proposition identifies the Fourier multiplier for the operator
S T

ϕ and hence we obtain the special case of Theorem 4.1.1 proved in [14].

Proposition 4.1.1. The operators S T
ϕ are Fourier multipliers on L2(Rn)

and
ŜT

ϕ f(ξ) = MT (ξ)f̂(ξ),
where

(4.1.16) MT (ξ) =
(
e2Tρ(ξ) − 1

) 1
ρ(ξ)

∫
Rn

(
1 − cos(z · ξ)

)
ϕ(z)dν(z).

As T → ∞, the operators S T
ϕ generate Fourier multipliers Sϕ, with Ŝϕf(ξ) =

M(ξ)f̂(ξ) and

M(ξ) =
1

ρ(ξ)

∫
Rn

(
cos(z · ξ) − 1

)
ϕ(z)dν(z).

We outline the proof here for the convenience of the reader. For (4.1.16),
we use the following Littlewood–Paley type identity.

Lemma 4.1. Integrating againts a function g ∈ C∞
0 (Rn) gives∫

Rn

ST
ϕ f(x)g(x)dx

= E[ϕ ∗ Vf (ZT )Vg(ZT )]

=
∫ T

0

∫
Rn

∫
Rn

∫
Rn

{Vg(x + y + z,T − s) − Vg(x + y,T − s)}

× {Vf (x + y + z,T − s) − Vf (x + y,T − s)}ϕ(z)dν(z)pT (dy)dxds.

Proof. We recall again that

V̂f (ξ, t) = P̂tf(ξ) = etρ(ξ)f̂(ξ)

We then, by Fubini’s theorem, perform the integration with respect to
{dxpT (dy)} first and change variables t = T − s to obtain∫ T

0

∫
Rn

∫
Rn

{Vg(x + z,T − s) − Vg(x,T − s)}

× {Vf (x + z,T − s) − uf (x,T − s)} dxϕ(z)dν(z)ds
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=
∫ T

0

∫
Rn

∫
Rn

{Vg(x + z, t) − Vg(x, t)}

× {Vf (x + z, t) − Vf (x, t)} dxϕ(z)dν(z)dt

=
∫ T

0

∫
Rn

∫
Rn

{eiz·ξ ĝ(ξ) − ĝ(ξ)}etρ(ξ)

× {eiz·ξ f̂(ξ) − f̂(ξ)}etρ(ξ) dξϕ(z)dν(z)dt

=
∫ T

0

∫
Rn

∫
Rn

|eiz·ξ − 1|2f̂(ξ)ĝ(ξ)e2tρ(ξ) dξϕ(z)dν(z)dt

=
∫

Rn

∫
Rn

2
(
1 − cos(z · ξ)

)(
e2Tρ(ξ) − 1

) 1
2ρ(ξ)

f̂(ξ)ĝ(ξ)dξϕ(z)dν(z)

=
∫

Rn

(
e2Tρ(ξ) − 1

) 1
ρ(ξ)

(∫
Rn

(
1 − cos(z · ξ)

)
ϕ(z)dν(z)

)
f̂(ξ)ĝ(ξ)dξ,

which identifies the multiplier. �

The proof of Theorem 4.1.1 follows from this proposition by an approx-
imation argument to extend to general symmetric Lévy measures and by a
symmetrization arguments for measures and functions. We refer the reader
to [13] and [14] for full details.

4.2. Examples.

Example 4.2.1. If n = 2, ν = 0 and μ is point mass at 1, i, e−iπ/4, eiπ/4

and ψ(1) = 1, ψ(e−iπ/4) = i, ψ(i) = −1 and ψ(eiπ/4) = −i, we get∫
S

|ξ · θ|2ψ(θ)dμ(θ) = ξ2
1 − ξ2

2 + i

(
ξ1

1√
2

− ξ2
1√
2

)2

− i

(
ξ1

1√
2

+ ξ2
1√
2

)2

= ξ
2
,

and∫
S

|ξ · θ|2 dμ(θ) = ξ2
1 + ξ2

2 +
(

ξ1
1√
2

− ξ2
1√
2

)2

+
(

ξ1
1√
2

+ ξ2
1√
2

)2

= 2|ξ|2.

Thus,

M(ξ) =
ξ2

2|ξ|2

and hence

(4.2.1) SMf =
1
2
Bf,

which leads to the estimate ‖B‖p ≤ 2(p∗ − 1) as in (3.8.10).
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If instead μ is point mass at 1, i and ψ(1) = 1, ψ(i) = −1, we have

M(ξ) =
ξ2
1 −ξ2

2

|ξ|2 ,

and TMf = R2
2f − R2

1f . If μ is point mass at e−iπ/4, eiπ/4 and ψ(e−iπ/4) =
i, ψ(eiπ/4) = −i, we obtain TMf = 2R1R2. Hence, by the result of Geiss,
Montgomery-Smith and Saksman [75], the constant in Theorem 4.1.1 cannot
be improved in general.

As in the matrix representation for the second, we can ask the question:

Question 2. Exactly as in Theorem (3.7.3) and equation (3.10.21), one
may ask: Is it possible to pick a better ψ and μ such that the 1

2 in (4.2.1) can
be replaced with 1?

Unfortunately, the answer to this question is again “no” as shown by the
following proposition from [13]. This result should be compared with those in
Theorem 3.7.3 and Remark 3.10.3.

Proposition 4.2.1. If μ is a finite measure on the circle S1 in R2 and
ψ : S1 → C with ‖ψ‖ ∞ ≤ 1 and

(4.2.2)

∫
S1 |ξ · θ|2ψ(θ)dμ(θ)∫

S1 |ξ · θ|2 dμ(θ)
=

ξ2

c|ξ|2 , ξ ∈ R2 \ {0},

then |c| ≥ 2.

In the above example (4.2.1), the modulations are perform on the Gaussian
part of the Lévy processes. If, again with n = 2, we perform the modulations
on the jump part, this leads to another martingale representation for the
Beurling–Ahlfors operator.

Example 4.2.2. Assume μ = 0 and for 0 < α < 2, consider the stable mea-
sure in R2 (in polar coordinates)

dνα(r, θ) = r−1−α dr dθ

and a bounded function ϕ : S → C extended to all of C by ϕ(z) = ϕ(z/|z|).
Using polar coordinates, it follows that∫

R2

(
1 − cos(ξ · z)

)
ϕ(z)dνα(z) =

∫
S

∫ ∞

0

(
1 − cos(rθ · ξ)

)
ϕ(rθ)r−1−α dr dθ

=
∫

S

|ξ · θ|αϕ(θ)
∫ ∞

0

1 − cos(s)
s1+α

dsdθ

= cα

∫
S

|ξ · θ|αϕ(θ)dθ.

Thus,

(4.2.3) M(ξ) =

∫
S

|ξ · θ|αϕ(θ)dθ∫
S

|ξ · θ|α dθ
.
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Setting θ = (cos(t), sin(t)) and taking ϕ(cos(t), sin(t)) = e−i2t, a computation
(see [13]) yields

M(ξ) =
α

α + 2
ξ
2

|ξ|2 ,

and hence

(4.2.4) SMf =
α

α + 2
Bf.

Again, we can recover from this the bound 2(p∗ − 1) by letting α → 2.

Example 4.2.3. Finally, if we take μ = 0, ϕ = 0,

λ = δ(1,0,...,0) + δ(−1,0,...,0) + · · · + δ(0,0,...,1) + δ(0,0,...,−1).

and consider the Lévy measure (in polar coordinates)

να(dr, dθ) = r−1−α dr dλ(θ), 0 < α < 2

(the symmetric α-stable Lévy process with independent coordinates) we have∫
S

|ξ · θ|α dλ(θ) = Cα|ξ1|α + · · · + |ξd|α.

Let ψ(z1, . . . , zd) = 1 if zk = 0 for k �= j and zj �= 0, and let ψ = 0 otherwise.
(That is, observe only the jumps of the jth coordinate process.) The multiplier
is

M(ξ) =
|ξj |α

|ξ1|α + · · · + |ξd|α , ξ = (ξ1, . . . , ξn) ∈ Rd.

These are the Marcinkiewicz-type multipliers as in [140, p. 110].

Remark 4.2.1. From formulas (4.2.1) and (4.2.4) we see that the Beurling–
Ahlfors operator can be obtained by either Lévy jump transformations or Lévy
Gaussian transformations and that from either of these the bound 2(p∗ − 1)
follows. The obvious question arising from our second example is: Can one
obtain a similar representation where one could let α → ∞? The obvious an-
swer is that because of the probabilistic restriction of 0 < α ≤ 2, this does not
seem possible in any direct way. However, it may be that using additive Lévy
processes one could free oneself of this restriction and obtain further improve-
ments. At this point, this is only speculation (perhaps wishful thinking) on
this author’s part.

The calculations leading to (4.2.4) suggest the following conjecture which
would imply the desired sharp bound for the Beurling–Ahlfors operator.

Conjecture 3. Let ϕ : S → C, ‖ϕ‖L∞ ≤ 1. For any 0 < r < ∞, and any
n ≥ 2, set

(4.2.5) M(ξ) =

∫
S

|ξ · θ|rϕ(θ)dσ(θ)∫
S

|ξ · θ|r dσ(θ)
,
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where σ denotes the surface measure on the unite sphere S of Rn. Then

(4.2.6) ‖ SM ‖p ≤ p∗ − 1.

5. Burkholder, Iwaniec and Morrey

In this section, we discuss how the biconcavity properties of Burkholder’s
function U lead to connections with a problem of considerable interest in the
calculus of variations commonly referred to as Morrey’s conjecture and to a
conjecture which implies the Iwaniec conjecture.

5.1. Rank-one convexity and quasiconvexity. As we have already men-
tioned, it is well known [7] that proving ‖Bf ‖p ≤ (p∗ − 1)‖f ‖p, 1 < p < ∞, is
equivalent to proving that

(5.1.1) ‖∂f ‖p ≤ (p∗ − 1)‖∂f ‖p, 1 < p < ∞,

for all f ∈ C∞
0 (C).

Viewed in terms of the function V in (1.1.12), (5.1.1) is the same as proving
that

(5.1.2)
∫

C

V (∂f, ∂f)dm(z) ≤ 0, f ∈ C∞
0 (C).

Since by (1.1.14) the Burkholder function U of (1.1.13) satisfies V (z,w) ≤
U(z,w) for all w,z ∈ C, it is natural to make the following conjecture.

Conjecture 4. For all f ∈ C∞
0 (C),

(5.1.3)
∫

C

U(∂f, ∂f)dm(z) ≤ 0.

This conjecture arose naturally in [23] which uses, for the first time, the
function U in connections with the norm of B. The conjecture is written down
in [18] as Question 1 and we refer the reader to that paper where several other
related questions and problems are stated. The conjectured inequality (5.1.3)
and the convexity properties (listed below) satisfied by the function U lead to
other unexpected connections and applications of Burkholder’s ideas.

Denote by Mn×m the set of all n × m matrices with real entries. The
function Ψ : Mn×m → R is said to be rank-one convex if for each A,B ∈
Mn×m with rank B = 1, the function

(5.1.4) h(t) = Ψ(A + tB), t ∈ R,

is convex. The function is said to be quasiconvex if it is locally integrable and
for each A ∈ Mn×n, bounded domain Ω ⊂ Rn and each compactly supported
Lipschitz function f : Ω → Rm, we have

(5.1.5) Ψ(A) ≤ 1
|Ω|

∫
Ω

Ψ
(
A + Df(x)

)
dx,
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where Df is the Jacobian matrix of f = (f1, . . . , fm). That is

Df =

⎛⎜⎝∂1f1 · · · ∂nf1

...
. . .

...
∂1fm · · · ∂nfm

⎞⎟⎠ .

These properties arise in many problems in the calculus of variations, es-
pecially in efforts to extend the so-called “direct method” techniques from
convex energy functionals to nonconvex functionals. They were introduced
by C. B. Morrey (see [115]) and further developed by J. Ball [9]. For more
(much more) on the relationship between these properties and their conse-
quences in the direct method of the calculus of variations, we refer the reader
to Dacoronga [56]. If n = 1 or m = 1, then Ψ is quasiconvex or rank-one
convex if and only if it is convex. If m ≥ 2 and n ≥ 2, then convexity ⇒ quasi-
convexity ⇒ rank-one convexity. (See [56] where the notion of polyconvexity
which lies “between” convexity and quasiconvexity is also discussed.) In 1952,
Morrey [114] conjectured that rank-one convexity does not imply quasicon-
vexity when both m and n are at least 2. In 1992, Šverák [146] proved that
this is indeed the case if m ≥ 3 and n ≥ 2. The cases m = 2 and n ≥ 2 re-
main open. One of the difficulties with these notions of convexity is that it is
in general very difficult to construct nontrivial, interesting examples of such
functions.

Enter Burkholder’s function U . It is proved in [41] that for all z,w,h, k ∈ C

with |k| ≤ |h|, the function t → U(z + th,w + tk) is concave in R, or equiva-
lently that t → −U(z + th,w + tk) is convex in R. The concavity property of
t → U(z + th,w + tk) is crucial in the proof of the properties in (1.1.14) and
(1.1.15). Properly interpreted, this convexity property of U is equivalent to
rank-one convexity.

Let us explain this in more detail. First, recall that if n = m and h′, k′ ∈ Rn,
h′ ⊗ k′ denotes the n × n matrix h′k′ ∗. That is, if h′ = (h′

1, h
′
2, . . . , h

′
n) and

k′ = (k′
1, k

′
2, . . . , k

′
n) their tensor product is the matrix

h′ ⊗ k′ =

⎡⎢⎢⎢⎣
h′

1k
′
1 h′

1k
′
2 · · · h′

1k
′
n

h′
2k

′
1 h′

2k
′
2 · · · h′

2k
′
n

...
...

. . .
...

h′
nk′

1 h′
nk′

2 · · · h′
nk′

n

⎤⎥⎥⎥⎦ .

By [56, p. 100], the rank-one convexity of the function Ψ : Mn×n → R is
equivalent to the function

(5.1.6) t �→ Ψ(A + th′ ⊗ k′)

being convex in t for every A ∈ Mn×n and for every h′, k′ ∈ Rn. Restricting
now to n = 2, we define the function Γ : M2×2 → C × C by

Γ(A) = (z,w),
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where

A =
(

a b
c d

)
,

z = (a + d) + i(c − b) and w = (a − d) + i(c + b). We then set ΨU = −U ◦ Γ.
This gives

ΨU (A) = −αp{[(a + d)2 + (c − b)2]1/2 − (p − 1)[(a − d)2

+ (c + b)2]1/2} {[(a + d)2 + (c − b)2]1/2

+ [(a − d)2 + (c + b)2]1/2}p−1.

Then for any two vectors h′ = (h′
1, h

′
2) and k′ = (k′

1, k
′
2) in R2 we have

h′ ⊗ k′ =
(

h′
1k

′
1 h′

1k
′
2

h′
2k

′
1 h′

2k
′
2

)
and

ΨU (A + th′ ⊗ k′) = −U(z + th,w + tk),

where h = (h1, h2) ∈ R2 and k = (k1, k2) ∈ R2 are such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
h1 = h′

1k
′
1 + h′

2k
′
2,

h2 = h′
1k

′
2 − h′

2k
′
1,

k1 = h′
1k

′
1 − h′

2k
′
2,

k2 = h′
2k

′
1 + h′

1k
′
2.

Observing that |h| = |k|, we see that the rank-one convexity of ΨU follows from
Burkholder’s convexity property of t → −U(z + th, w + tk), for z,w,h, k ∈ C

with |k| ≤ |h|. The above argument follows [18]. For further clarity and insight
into this argument, see [95].

Now, if f = f1 + if2 ∈ C∞
0 (C), then

(5.1.7) Df =
(

∂1f1 ∂2f1

∂1f2 ∂2f2

)
and

(5.1.8) ΨU (Df) = −U(∂f, ∂f).

Thus, quasiconvexity of ΨU (at 0 ∈ R2×2) is equivalent to

(5.1.9) 0 ≤ −
∫

suppf

U(∂f, ∂f)dm(z),

which is equivalent to (5.1.3). Thus, the following remarkable question en-
compassing both problems arises.

Question 3. Is the Burkholder function U also quasiconvex in the sense
that ΨU is quasiconvex?
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Remark 5.1.1. This is a “win–win” question and its resolution would be
of great interest. In the positive it would imply Iwaniec’s 1982 conjecture, and
in the negative it would solve Morrey’s 1952 problem for the important case
n = m = 2. In either case, there is a great theorem here but we just simply
do not know which one holds. Of course, while we believe it is unlikely, it
could also be true that (5.1.2) holds while (5.1.3) does not. This would even
be better.

Remark 5.1.2. In their very recent paper [8], K. Astala, T. Iwaniec,
I. Prause and E. Saksman prove that Burkholder’s function is quasiconvex
(quasiconcave in their notation) when tested on certain deformations of the
identity. This result already has many interesting consequences. We refer the
reader to their paper for precise statements and details of results.

The article by A. Baernstein and S. Montgomery-Smith [26] presents var-
ious connections between the function U and another function L used by
Burkholder to prove sharp weak-type inequalities for martingales and har-
monic functions under the assumption of differential subordination, [42, p. 20].
This function L was subsequently, and independently, rediscovered by Šverák
in [147]. For more on these connections, we refer the reader to [7, pp. 518–523],
[95], [145], [146], [147] and [151].

We observe here that as shown by Burkholder the function U is not the
smallest majorant of V satisfying the important property that for all z,w,h,
k ∈ C with |k| ≤ |h|, the mapping t �→ U(z + th,w +hk) is concave on R which
is a key property for the proof of his inequalities. Indeed, as was already
pointed out in (2.4.4), the smallest majorant of V with this property [41,
p. 81] is

(5.1.10) Ũ(z,w) =

{
V (z,w), if |w| ≤ (p∗ − 1)|z|,
U(z,w), if |w| > (p∗ − 1)|z|

for 2 ≤ p < ∞ and with U and V interchanged for 1 < p ≤ 2.
It is interesting to compare the conjectured inequality (5.1.3) for U and Ũ

by calculating with the “extremals” used by Lehto [103] to show that ‖B‖p ≥
(p∗ − 1). Suppose 2 < p < ∞, 0 < θ < 1 and consider the functions

fθ(z) =

{
z|z|−2θ/p, for |z| < 1
z−1, for |z| ≥ 1.

Then a computation gives

‖∂fθ ‖p

‖∂fθ ‖p

=
(

(p − 1)(p − θ)p

(p − 1)θp + (1 − θ)pp

)1/p

.
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Since this holds as θ ↑ 1, one finds that ‖B‖p ≥ p − 1, for 2 < p < ∞. Using
the same family of functions, it is shown in [18] that for all 0 < θ < 1,

(5.1.11)
∫

C

U(∂fθ, ∂fθ)dm(z) = 0

while

(5.1.12)
∫

C

Ũ(∂fθ, ∂fθ)dm(z) = π[p(1 − 1/p)p−1 − (p − 1)p−1] < 0.

5.2. Riesz transforms and the Burkholder function U , revisited. To
the best of our knowledge, the problem of determining the norm of RjRk was
first raise in [18, p. 260] and a question (Question 3) similar to Conjecture 4
is in fact raised there. While we now know that 2‖RjRk ‖p = (p∗ − 1), this
question remains of interest. However, given what we currently know, the
question needs to be updated and reformulated. The proof given in [19] that
2‖RjRk ‖p ≤ (p∗ − 1) and ‖R2

j − R2
k ‖p ≤ (p∗ − 1), j �= k, can be stated in terms

of the functions V and U from (1.1.12) and (1.1.13) as follows.

Theorem 5.2.1. For f ∈ C∞
0 (Rn), consider the martingale

(5.2.1) Xt =
∫ t

0

∇xVf (Zs) · dBs, 0 < t ≤ T,

where Vf (x, t) is the heat extension f to Rn+1
+ (as in (3.9.1)). Then for j �= k,

the following inequalities hold:

(5.2.2)
∫

Rn

V (f,2RjRkf)dx ≤ lim
T →∞

ET [U(XT ,Ajk ∗ XT )] ≤ 0

and

(5.2.3)
∫

Rn

V
(
f, (R2

j − R2
k)f
)
dx ≤ lim

T →∞
ET [U(XT , Ãjk ∗ XT )] ≤ 0,

where Ajk ∗ XT and Ãjk ∗ XT are the martingale transforms of XT corre-
sponding to the operators 2RjRk and R2

j − R2
k, respectively, as constructed in

Section 3.4.

The proof of this theorem consist, basically, of two steps:
(i) We first remove the conditional expectation (the trivial step) on the

projection operators SA to obtain

(5.2.4)
∫

Rn

V (f,2RjRkf)dx ≤ lim
T →∞

ET [V (XT ,Ajk ∗ XT )]

and

(5.2.5)
∫

Rn

V
(
f, (R2

j − R2
k)f
)
dx ≤ lim

T →∞
ET [V (XT , Ãjk ∗ XT )].
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(ii) We then use the Burkholder machinery to prove that

(5.2.6) ET [V (XT ,Ajk ∗ XT )] ≤ ET [U(XT ,Ajk ∗ XT )] ≤ 0

and

(5.2.7) ET [V (XT , Ãjk ∗ XT )] ≤ ET [U(XT , Ãjk ∗ XT )] ≤ 0.

In fact, under the assumption that ‖A‖ ≤ 1, this is the basic strategy used
in Section 3.4 and Section 3.9 for the operators TA and SA, not just for Riesz
transforms.

One “deficiency” as of now in the investigations of the upper bounds for
the Lp-norms of the Beurling–Ahlfors operator and the second order Riesz
transforms is that there seems to be only one successful approach, the mar-
tingale approach. This approach has “done its job” for the Riesz transforms
but has (so far) falling short for the Beurling–Ahlfors operator. We believe it
would be of great interest to find a nonmartingale approach to these problems.
It is in this context that we raise the following question (as in [18, p. 260])
which even though it will not give any new information on the constants for
2RjRk and R2

j − R2
k than what we already have, it may shed new light on

Conjectures 1 and 4 and related problems.

Question 4. Fix f ∈ C∞
0 (Rn), n ≥ 2, j �= k. Is it the case that

(5.2.8)
∫

Rn

U(f,2RjRkf)dx ≤ 0

and

(5.2.9)
∫

Rn

U
(
f, (R2

j − R2
k)f
)
dx ≤ 0,

and that these inequalities can be proved without martingales?

Since RjRk = ∂2

∂xj ∂xk
Δ−1 with a similar definition for R2

j − R2
k, the inequal-

ities (5.2.8) and (5.2.9) can be stated as

(5.2.10)
∫

Rn

U

(
Δf,2

∂2f

∂xj ∂xk

)
dx ≤ 0

and

(5.2.11)
∫

Rn

U

(
Δf,

(
∂2f

∂2xj
− ∂2f

∂2xk

))
dx ≤ 0.

It may be that the recent methods of Volberg and his collaborators for
finding Burkholder functions via Monge–Ampère equation [149] and the “lam-
inates” method for proving that the bound (p∗ − 1) for the operator norm of
RjRk and R2

j − R2
k (and their perturbations) [31] is sharp, can shed some light

on this question.
If the function U is replaced by the function Ũ in (5.1.10) (which is convex

in w for fixed z), the inequalities (5.2.8) and (5.2.9) can be reduced to the
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martingale case. But this again produces no new techniques. This was pointed
out to us by P. Janakiraman in a private communication.

5.3. Quasiconformal mappings and the Burkholder function U . We
give a brief account of some recent developments in which quasiconformal
mappings (also nonlinear hyperelasticity) and Burkholder’s theory on sharp
martingale inequalities share common problems of compelling interest. (We
refer the reader to [95] and [7] for details.) By definition, a weakly differen-
tiable mapping f : Ω → Rn in a domain Ω ⊂ Rn (also referred to as hypere-
lastic deformation) is said to be K-quasiregular, 1 ≤ K < ∞, if its Jacobian
matrix Df(x) ∈ Mn×n (deformation gradient) satisfies the distortion inequal-
ity

(5.3.1) |Df(x)|n ≤ K detDf(x) where |Df(x)| = max
|v|=1

|Df(x)v|.

The Lp-integrability of the derivatives of K-quasiregular mappings relies
on a general inequality which is opposite to the distortion inequality in an
average sense. More precisely,

(5.3.2)
∫

Rn

{ |DF (x)|n − K detDF (x)} · |DF (x)|p−n dx ≥ 0,

for all mappings F ∈ W 1,p(Rn,Rn) with the Sobolev exponents p in a certain
interval α(n,K) < p < β(n,K), where α(n,K) < n < β(n,K). Iwaniec ([95])
conjectured that the largest such interval is

(5.3.3) α(n,K) =
nK

K + 1
< p <

nK

K − 1
= β(n,K).

Iwaniec (see again [7, pp. 518–523] and [95]) then observed that in dimension
n = 2 the integrand in (5.3.2) is none other than the Burkholder’s function U
(modulo constant factor), thus rank-one convex for all exponents p in (5.3.3).
Inspired by Burkholder’s results he proved, in every dimension n ≥ 2, that
(5.3.3) defines precisely the range of the exponents p for which the integrand
in (5.3.2) is rank-one convex; see [95]. Now, it may very well be that Iwaniec’s
n-dimensional analogue of Burkholder’s integral is also quasiconvex and, con-
jecturally, that (5.3.2) holds for all p in the range (5.3.3). This would give a
completion of the Lp-theory of quasiregular mappings in space.

While it is not clear at this point that martingale techniques will produce
the conjectured sharp bound (p∗ − 1) for ‖B‖p which motivated many of the
applications presented in this paper, it seems likely that the resolution of
Iwaniec’s conjecture will somehow involve the Burkholder function U and/or
his ideas originally developed for his martingale inequalities. We again refer
the reader to [8] which sheds some new light on this speculation.

In higher dimensions, it is plausible that Burkholder’s vision and his sharp
martingale inequalities will contribute to the further development of the Lp-
theory of quasiregular mappings with far reaching applications to geometric
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function theory in Rn and, in particular, mathematical models of nonlinear
hyperelasticity. What is certainly clear is that as of now all approaches (sto-
chastic integrals and Bellman functions) which have produced concrete bounds
close to the conjectured bound for ‖B‖p and for other operators, either com-
pletely rest upon or have been heavily influenced by the fundamental ideas of
Burkholder originally conceived to prove sharp martingale inequalities. These
ideas have led to deep and surprising connections in areas of analysis, geome-
try and PDE’s which on the surface seem far removed from martingale theory.
We hope this article will further elucidate some of this connections and that
it will serve as a starting point for further research explorations in this area
of mathematics. Finally, we hope that the many problems and conjectures
listed throughout the paper can be resolved, by these or other techniques, in
the near future.

6. UCLA/Caltech 1984, Urbana 1986

I first met Don Burkholder and heard him speak about his work on sharp
martingale inequalities during a visit he made to UCLA in early 1984. I was
then a graduate student writing a thesis (published in [10]) under the direc-
tion of Rick Durrett on the Lp-boundedness of the Riesz transforms based
on the Gundy–Varopoulos representation of these operators [84]. This ap-
proach led to the more general “TA” operators discussed in Section 3 whose
Lp-boundedness reduces to the Lp-boundedness of martingale transforms for
stochastic integrals. The bounds for the stochastic integrals came from the
Burkholder–Gundy square function inequalities [50]. While I certainly did
not follow Burkholder’s lecture in its entirety, it was clear that in obtaining
the (p∗ − 1)-constant Burkholder had bypassed the square function inequal-
ities used in his 1966 paper [32]. With some trepidation, given that I had
never met Burkholder before and that about the only thing I knew about
him was that he was a towering figure in probability and analysis, I decided
to approach him with some questions. In particular, I wanted to ask him
about the possibility of bypassing the square function inequalities to prove
the boundedness of the stochastic integrals needed in the applications to the
Riesz transforms. With the usual kindness and welcoming that characterizes
all his interactions with everyone he meets (from world famous mathemati-
cians to unknown graduate students like myself at that time), he listened with
interest and was very encouraging.

In September of 1984, I moved from UCLA to Caltech as a postdoc where I
learned the T. Iwaniec (p∗ − 1) conjecture (Conjecture 1 below) from the late
Tom Wolff. I immediately went back to the operators TA studied in my thesis
and realized that one could in fact represent the Beurling–Ahlfors operator
as one of these TA’s and thus prove its Lp boundedness from the martin-
gale inequalities. Even more, from this and the available estimates for the
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Burkholder–Gundy square function inequalities due to Davis [58], one could
already give a rather explicit bound for the Lp-norm of the Beurling–Ahlfors
operator. After many conversations with Tom about whether Iwaniec’s (p∗ −
1) had anything to do with Burkholder’s (p∗ − 1), my interest on bypassing the
Burkholder–Gundy square function inequalities to study the Lp boundedness
of the operators TA intensified. While some sharp stochastic integral inequal-
ities followed from [36] by reducing to the discrete-time martingale case, those
needed for the application to the Beurling–Ahlfors transform did not follow,
at least not in any direct way. In addition, the techniques in [36] were so diffi-
cult and so new at that time that it was not at all clear how to adapt them to
prove the needed martingale inequalities for the applications to the Beurling–
Ahlfors operator. (Nearly thirty years later the situation has changed and we
now have a much better understanding of Burkholder’s techniques thanks to
the work of many of those cited on this paper.)

In 1986, I received an NSF postdoctoral fellowship to go to the University
of Illinois at Urbana with Don as my “Sponsoring Senior Scientist,” to use
the language of the NSF. The timing could not have been better. In addi-
tion to the already exciting mathematical environment fostered by the many
distinguished local probabilists and analysts, 1986–87 was a “Special Year in
Modern Analysis” at Urbana with many lectures and mini-courses taught by
long-term and short-term outside visitors. There were also other postdoctoral
visitors and many graduate students with whom I interacted. All this and the
fact that I had no teaching duties created a superb mathematical environment
for me. During my first semester there I learned from Don of his discovery
of an explicit expression for the function U in (1.1.13). With this function at
hand and the Itô formula, one could then proceed to explore the sought-after
stochastic integral inequalities and their applications to the Beurling–Ahlfors
operator, finally bypassing the Burkholder–Gundy square function inequali-
ties used up to that point for these types of applications. This is what was
done in the paper [23] written jointly with G. Wang, a student of Don whom
I met during my 1986–87 year at Urbana.

While not related to the topic of this paper, I take this opportunity to
gratefully acknowledge the many mathematical conversations I had during
my year in Urbana, and in subsequent years, with our departed colleagues
and friends, Frank Knight and Walter Philipp. It was from Walter that year
that I learned about the power of the invariance principle [135] when applied
to weakly dependent “nonprobabilistic” objects, like lacunary trigonometric
series. This circle of ideas and basic philosophy of looking for (and finding)
probabilistic behavior such as central limit theorem and laws of the iterated
logarithm in nonprobabiltic objects, were invaluable in some of the work pre-
sented in [20]. Frank and Walter were both special individuals and I greatly
treasure the memories of my interactions with them and their hospitality and
kindness during my year in Urbana.
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[16] R. Bañuelos and P. Janakiraman, On the weak-type constant of the Beurling–Ahlfors
transform, Michigan Math. J. 58 (2009), 459–477. MR 2595549
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