
Illinois Journal of Mathematics
Volume 54, Number 2, Summer 2010, Pages 753–770
S 0019-2082

BILIPSCHITZ HOMOGENEOUS JORDAN CURVES,
MÖBIUS MAPS, AND DIMENSION

DAVID M. FREEMAN

Abstract. We characterize fractal chordarc curves in Euclidean
space by the fact that they remain bilipschitz homogeneous under

inversion. We illustrate this result by constructing two examples.

The techniques used in these constructions provide a means of

calculating various dimensions of bilipschitz homogeneous Jordan
curves.

1. Introduction

A homeomorphism f : (X,dX) → (Y,dY ) is L-bilipschitz provided that for
all x, y ∈ X ,

L−1dX(x, y) ≤ dY (f(x), f(y)) ≤ LdX(x, y).
A metric space X is L-bilipschitz homogeneous provided that for any two
points x, y ∈ X , there exists an L-bilipschitz self map of X sending x to y.

We focus our attention on bilipschitz homogeneous Jordan curves. There
is a large subcollection of such curves known as fractal chordarc curves (see
definitions and references in Section 2). Ghamsari and Herron proved that
the fractal chordarc property for Jordan curves is preserved by Möbius maps
[GH98, Theorems B, C], and discovered that bilipschitz homogeneity is equiv-
alent to the chordarc condition for a rectifiable curve [GH99, Theorem B]. In
the present paper, we utilize bilipschitz homogeneity and Möbius maps to
provide a new characterization of fractal chordarc curves.

Theorem 1.1. Let Γ̂ ⊂ R̂n be a Jordan curve of B-bounded turning. The
following three statements are quantitatively equivalent:

(i) Γ̂ is a (C,α)-fractal chordarc curve.
(ii) For every M ∈ Möb(R̂n), M(Γ̂) ∩ Rn is L-bilipschitz homogeneous.

Received September 9, 2009; received in final form November 18, 2009.
The author gratefully acknowledges support from the Henry Laws Fellowship.

2010 Mathematics Subject Classification. Primary 30C35. Secondary 51F99.

753

c©2011 University of Illinois

http://www.ams.org/msc/


754 D. M. FREEMAN

(iii) Both Γ̂ ∩ Rn and Γ̂∗ ∩ Rn are L-bilipschitz homogeneous, where Γ̂∗

denotes an inversion of Γ̂. If ∞ ∈ Γ̂, we require that ∞ /∈ Γ̂∗, and conversely.

We remark that by results from [Fre] we need not assume the bounded
turning condition in the case that Γ̂ ⊂ R̂2 and Γ̂ ∩ R2 is unbounded (see also
[Bis01, Theorem 1.1]). In Section 5, we prove Theorem 1.1 by use of the
following, which is proved in Section 4.

Theorem 1.2. Let Γ̂ ⊂ R̂n be a Jordan curve such that {0, ∞} ⊂ Γ̂. Then Γ̂
is (C,α)-fractal chordarc if and only if Γ̂ is of B-bounded turning and both Γ̂
and Γ̂ ∩ Rn are L-bilipschitz homogeneous. This equivalence is quantitative.

We remark that previous work of Bishop, Ghamsari, Herron, Mayer, and
Rohde is crucial to the above results. In Section 7, we illustrate Theorem 1.2
by constructing planar curves that are bilipschitz homogeneous with respect
to Euclidean distance but not chordal distance, and vice-versa. These con-
struction methods lead to a means of calculating the dimensions of planar
bilipschitz homogeneous Jordan curves, described in Section 8.

2. Preliminaries

Given a constant C, we write C = C(A,B, . . . ) to indicate that C is de-
termined solely by the numbers A,B, . . . . Given positive numbers A and B,
we write A � B to indicate the existence of a constant C ∈ [1,+∞) such that
C−1A ≤ B ≤ CA. Here we require that C be independent of A and B. We
write A � B to indicate that A ≤ CB. We say two conditions are quan-
titatively equivalent if the constants for each condition depend only on the
constants for the other.

We use N to denote the natural numbers and N0 to denote N ∪ {0}. The
integers are referred to by Z. The real line is R, Euclidean space is Rn,
and the upper half space is Hn ⊂ Rn. The unit circle is S, and the unit
sphere is Sn ⊂ Rn+1. We denote an open ball of radius r > 0 centered at a
point x by B(x; r). Then S(x; r) := ∂B(x; r). We define Bn := B(0; 1) ⊂ Rn; so
Sn = ∂Bn+1. For r < s, we write A(x; r, s) := {y ∈ X : r < d(x, y) < s}. When
working in two dimensions, we write D(x; r) to denote the disk of radius r
centered at x, and C(x; r) := ∂D(x; r).

We write R̂n to denote Rn ∪ { ∞} under the chordal distance χ, where

∀z,w ∈ Rn, χ(z,w) :=
2|z − w|√

1 + |z|2
√

1 + |w|2
, χ(z, ∞) :=

2√
1 + |z|2

.

Stereographic projection Φ : Rn → R̂n \ { ∞} is an isometry (by definition).
We also have the following (cf. [GH98, Lemma 2.4]).

Fact 2.1. The following statements are true:
(a) Stereographic projection is 2-bilipschitz on the unit ball.
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(b) Let R ∈ [2,+∞) be given. For z,w ∈ A(0;R/2,2R) ⊂ Rn,

|z − w|/8R2 ≤ χ(Φ(z),Φ(w)) ≤ 8|z − w|/R2.

(c) Given R ∈ (0,+∞), there is a 4-bilipschitz map ψ : A(0;R/2,2R) →
A(0;R/2,2R) such that for all z ∈ A(0;R/2,2R), ψ(z)/R2 = z/|z|2.

We write Möb(R̂n) to denote the collection of Möbius maps M : R̂n → R̂n

(see [Bea95, Chapter 3]). Given a point x ∈ Rn, we write ϕx : R̂n → R̂n to
denote inversion in the sphere S(x; 1) ⊂ Rn; thus, ϕx ∈ Möb(R̂n). For example,
ϕ0(z) = z/|z|2 (where 0 �→ ∞ and ∞ �→ 0).

A Jordan curve, generally denoted by Λ, is a proper homeomorphic image
of S or R; here proper means that closed and bounded sets are compact. We
reserve Γ̂ to denote a Jordan curve in R̂n, and write Γ := Γ̂ ∩ Rn.

Given Λ in (X,d), and two points x, y ∈ Λ, we write Λ[x, y] to denote the
smaller (with respect to diameter) closed subarc of Λ joining x to y. We say
that Λ is of B-bounded turning provided that for all x, y ∈ Λ, diam(Λ[x, y]) ≤
Bd(x, y). A curve Λ is (C,α)-fractal chordarc if there exist constants C ∈
[1,+∞) and α ∈ (0,+∞) such that, for x, y ∈ Λ, we have

C−1d(x, y)α ≤ Hα(Λ[x, y]) ≤ Cd(x, y)α.

Here Hα denotes α-dimensional Hausdorff measure. For a detailed study of
fractal chordarc curves, we direct the reader to [GH98] and [GH99]. In Rn,
such curves are of bounded turning and bilipschitz homogeneous, quantita-
tively (see [GH98, Theorem 4.5] and the proof of Theorem 1.2).

Given subset E of a metric space X and a scale r > 0, we define a covering
number as

N(r;E) := inf

{
k ∈ N : ∃{xi}k

i=1 ⊂ X such that E ⊂
k⋃

i=1

B(xi; r)

}
.

A metric space X is D-doubling if there exists D ∈ [1,+∞) such that for any
x ∈ X , we have N(r;B(x; 2r)) ≤ D. When X is doubling, E ⊂ X is compact,
and A ∈ [1,+∞), one can verify that

N(Ar;E) ≤ N(r;E) ≤ DAlog2(D)N(Ar;E).

Note that both Rn and R̂n are D-doubling, with D = D(n).
We say that a Jordan curve Λ possesses a bounded covering property pro-

vided there exists a constant C ∈ [1,+∞) with the following property: If
x, y, z,w ∈ Λ satisfy d(x, y) ≤ d(z,w), then for any r > 0 we have

N(r;Λ[x, y]) ≤ CN(r;Λ[z,w]).

A set S ⊂ X is r-separated provided that for every pair of distinct points
x, y ∈ S, we have d(x, y) ≥ r. Given r > 0 and a subset E of X , the packing
number P (r;E) is defined as the supremal cardinality of r-separated sets in E.
It is straightforward to check that N(r;E) ≤ P (r;E) ≤ N(r/2;E). A set E
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is (H,α)-homogeneous provided that for every x ∈ E and all 0 < r ≤ s <
diam(E), we have P (r;B(x;s)) ≤ H(s/r)α. It is well known (and not hard to
check) that this is equivalent to the doubling condition.

We say that sets E and F are L-bilipschitz equivalent if there exists an
L-bilipschitz homeomorphism from E to F .

Lemma 2.2. Let E and F be L-bilipschitz equivalent subsets of a D-doubling
metric space. Then for any r > 0, N(r;E) � N(r;F ), up to the constant
D3Llog2(D).

Proof. Assume E and F are bounded. Let {Bi}k
i=1 be a minimal (with

respect to cardinality) cover of F by balls Bi := B(xi, r), where xi ∈ F . Given
an L-bilipschitz map f : E → F , we know that {B(f −1(xi);Lr)} covers E.
Therefore, N(Lr;E) ≤ k ≤ D2N(r;F ), where the factor of D2 comes from the
requirement that each xi ∈ F . Using f −1 we obtain N(Lr;F ) ≤ D2N(r;E).
Via the doubling condition, we are done. �

3. Bilipschitz homogeneous curves in doubling spaces

We make frequent use of the following facts from [May95, Lemma 2.3] and
[Bis01, Corollary 1.2(6) ⇒ (10)], respectively.

Fact 3.1. Let Λ be an L-bilipschitz homogeneous B-bounded turning Jor-
dan curve in a D-doubling metric space:

(a) There exists a constant C = C(B,D,L) with the following property: if
x, y, z,w ∈ Λ and 0 < r ≤ s < +∞ are such that s = d(x, y) ≤ d(z,w), then

C−1N(r;Λ[z,w]) ≤ N(r;Λ[x, y])N(s;Λ[z,w]) ≤ CN(r;Λ[z,w]).

(b) For any constant C ∈ [1,+∞) and any two subarcs I1, I2 ⊂ Λ with
C−1 diam(I1) ≤ diam(I2) ≤ C diam(I1), there exists an M -bilipschitz map
f : Λ → Λ with f(I1) = f(I2). Here, M = M(B,C,D,L).

A dimension gauge is a nondecreasing function δ : (0,+∞) → (0,+∞) with
δ(t) → 0 as t ↘ 0. The generalized Hausdorff measure of a set E is G δ(E) :=
limr→0+ G δ

r (E), where

G δ
r (E) := inf

{∑
i

δ(diam(Ei)) : E ⊂
⋃
i

Ei,diam(Ei) ≤ r

}
.

When δ(t) = tα for all sufficiently small t, we have G δ = Hα. Given a Jordan
curve Λ and a dimension gauge δ, we say that Λ satisfies a (C,δ)-generalized
chordarc condition for C ∈ [1,+∞) provided that for every x, y ∈ Λ,

C−1δ(d(x, y)) ≤ G δ(Λ[x, y]) ≤ Cδ(d(x, y)).

We define canonical dimension gauges for bounded turning bilipschitz ho-
mogeneous Jordan curves in doubling metric spaces. When Λ is bounded,
for t ∈ (0,+∞), we define δΛ(t) := N(t;Λ)−1. When Λ is unbounded, choose
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some basepoint x0 and an orientation on Λ. Given t ∈ (0,+∞), we move
in the positive direction along Λ until we reach the first point xt such that
|xt − x0| = t. Then write Λt to denote the subarc Λ[x0, xt], and define

δΛ(t) :=

{
N(t;Λ1)−1, if t ≤ 1,
N(1;Λt), if t ≥ 1.

Clearly, this definition depends on the choice of x0. However, by Fact 3.1(a),
different choices of x0 change δΛ only up to a multiplicative constant. More-
over, this constant depends only on the bilipschitz homogeneity, bounded
turning and doubling constants. We have the following behavior for such
dimension gauges (see [FH, Proposition 3.20]).

Fact 3.2. Let Λ be an L-bilipschitz homogeneous Jordan curve of B-
bounded turning in a D-doubling metric space, with canonical dimension
gauge δ := δΛ. Then there exist constants C ∈ [1,+∞) and α ∈ [1,+∞) de-
pending only on B, D, and L, such that for all 0 < r ≤ s < diam(Λ) we have

(3.1) C−1 s

r
≤ δ(s)

δ(r)
≤ C

(
s

r

)α

.

The following fact from [HM99, Theorem E] ties together several of the
concepts we have discussed thus far.

Fact 3.3. For a Jordan curve Λ in a D-doubling metric space, the following
are quantitatively equivalent:

(1) Λ is L-bilipschitz homogeneous and of B-bounded turning.
(2) Λ enjoys an A-bounded covering property.
(3) Λ satisfies a (C,δ)-generalized chordarc condition for some dimension

gauge δ.

4. Proof of Theorem 1.2

We first prove necessity. Suppose that Γ̂ ⊂ R̂n is (C,α)-fractal chordarc.
Since Γ̂ is of B-bounded turning, with B := 2C1/α ([GH98, Theorem 4.5]),
Γ̂ is P -porous in R̂n, with P = P (B). Therefore, there exists r = r(B) ∈
(0,2) and some point x ∈ R̂n such that B(x; r) ⊂ R̂n \ Γ̂. We ‘rotate’ R̂n

so that x �→ ∞, obtaining Γ̂′. Then Γ̂′ is bilipschitz equivalent to Γ̂′ ∩ Rn,
with bilipschitz constant depending only on r. Therefore, Γ̂′ ∩ Rn is fractal
chordarc, with constants depending only on C and α. Since Γ̂′ ∩ Rn = M(Γ̂) ∩
Rn for some Möbius map M , by [GH98, Theorems B and C], Γ̂ ∩ Rn is also
fractal chordarc, with constants depending only on C and α. It follows from
[GH99, Proposition 4.1] and [GH98, Theorem B] that fractal chordarc curves
in Rn and R̂n are L-bilipschitz homogeneous, with L = L(C,α).

We now prove sufficiency. It follows from [HM99, Theorem E] (cf. [May95,
Lemme 4.2]) that an L-bilipschitz homogeneous D-doubling Jordan curve of
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B-bounded turning satisfies a generalized chordarc condition with respect to
its canonical dimension gauge. Moreover, the comparability constant depends
only on B, D, and L. Therefore, if the canonical dimension gauge for Γ is
comparable to a power function, then we conclude that Γ is fractal chordarc.

We write δ̂ and δ to denote the canonical dimension gauges for Γ̂ and
Γ = Γ̂ ∩ Rn, respectively. The proof breaks down into two main parts: We
first demonstrate that for any positive numbers s, t we have δ(st) � δ(s)δ(t).
This property is then used to obtain the desired conclusion that δ(t) � tα,
where α ∈ [1, n) is the Hausdorff dimension of Γ.

Part 1. For any positive numbers s, t, we have δ(st) � δ(s)δ(t), up to a
constant depending only on B,L, and n.

Step 1. Let 0 < r ≤ 1. We prove that δ(r) � δ̂(r), where the comparability
depends only on B,L,n. Let Γ1 be as in the definition of δ, choosing Γ1 ⊂ Bn.
By Fact 2.1(a), Fact 3.1(b), and Lemma 2.2, we have

δ(r) = N(r; Γ1)−1 � N(r;Φ(Γ1))−1 � N(r; Γ̂)−1 = δ̂(r).

Step 2. Let 0 < s ≤ 1 and 0 < t ≤ 1. We verify that δ(st) � δ(s)δ(t).
Again the comparability depends only on B,L,n. Begin by assuming that Γ1

has basepoint z0 with |z0| = 4s−1/2 ≥ 4. Therefore, any ball B of radius t
intersecting Γ1 must lie in the annulus A(0; |z0|/2,2|z0|). We assert that

(4.1) N(t; Γ1) � N(st;Φ(Γ1)).

Indeed, let {Bi} be a finite cover of Γ1 by balls of radius t. Then by Fact 2.1(b),
Φ maps each Bi to a ball of radius comparable to |z0| −2t � st. The assertion
then follows from the metric doubling property as in the proof of Lemma 2.2.

Again using Fact 2.1(b), we have

(4.2)
s

128
=

1
8|z0|2 ≤ diam(Φ(Γ1)) ≤ 8

|z0|2 =
s

2
.

Therefore,

1
δ(t)

� N(t; Γ1) � N(st;Φ(Γ1)) � N(st; Γ̂s) � N(st; Γ̂)
N(s; Γ̂)

� δ̂(s)

δ̂(st)
.

The first equality follows from the definition of δ. The second is (4.1). The
third follows from (4.2), Fact 3.1(b), and Lemma 2.2. The fourth is a conse-
quence of Fact 3.1(a). The final follows from the definition of δ̂.

Using these calculations along with Step 1, we conclude that

δ(st) � δ̂(st) � δ(t)δ̂(s) � δ(t)δ(s).

All comparability statements depend only on B,L, and n.
Step 3. Let 1 ≤ s ≤ t. We show that δ(s/t) � δ(s)/δ(t), with comparability

constant depending only on B,L,n. Choose Γt so that it has an endpoint z0
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with |z0| = 4t. By the definitions of δ and δ̂, and by Fact 3.1(a), we have

δ(t) = N(1;Γt) � N(1;Γs)N(s; Γt) = δ(s)N(s; Γt).

The comparability depends only on B,L, and n.
Suppose B ∩ Γt �= ∅, where B is a ball of radius s. Since s ≤ t and |z0| =

4t, we have B ⊂ A(0; |z0|/2,2|z0|). As in the verification of (4.1), we have
N(s; Γt) � N(s/|z0|2;Φ(Γt)). Using the metric doubling property, we then
have N(s/|z0|2;Φ(Γt)) � N(s/t2;Φ(Γt)). By Fact 2.1(b), diam(Φ(Γt)) � 1/t,
up to the constant 128. Then

N
(
s/t2;Φ(Γt)

)
� N(s/t2; Γ̂1/t) � N(s/t2; Γ̂)

N(1/t; Γ̂)
� δ̂(1/t)

δ̂(s/t2)
.

The first equality follows from Fact 3.1(b) and Lemma 2.2. The second follows
from Fact 3.1(a), and the final follows from the definition of δ̂. Using Steps 1
and 2,

δ̂(1/t)

δ̂(s/t2)
� δ(1/t)

δ(1/t)δ(s/t)
=

1
δ(s/t)

.

Stringing together the above observations yields δ(s/t) � δ(s)/δ(t). The com-
parability depends only on B,L, and n.

Step 4. Let s, t > 0. We confirm that δ(st) � δ(s)δ(t), up to a constant
depending only on B,L,n. We perform a case analysis in order to prove the
equivalent conclusion that for every s, t > 0 we have δ(s/t) � δ(s)/δ(t).

Case 1: s ≤ 1. Suppose first that t ≥ 1. Then

δ(s/t) � δ(s)δ(1/t) � δ(s)δ(1)/δ(t) � δ(s)/δ(t).

The first equality follows from Step 2 and the second from Step 3. The final
follows from the definition of δ.

Suppose now that t < 1. If s/t ≤ 1, then by Step 2 we have

δ(s) = δ
(
(s/t)t

)
� δ(s/t)δ(t).

If s/t > 1, then by Step 3,

(4.3) δ(1/s)/δ(1/t) � δ(t/s) = δ
(
1/(s/t)

)
� δ(1)/δ(s/t) � 1/δ(s/t).

Furthermore, since s ≤ 1, by Step 3 we have

δ(s) = δ
(
1/(1/s)

)
� δ(1)/δ(1/s) � 1/δ(1/s).

Similarly, δ(t) � 1/δ(1/t). Putting this together, we get δ(s/t) � δ(s)/δ(t),
where the comparability constant depends only on B,L, and n.

Case 2: s > 1. Suppose first that t ≥ 1. If s/t ≤ 1, then by Step 3

δ(s/t) � δ(s)/δ(t).

If s/t > 1, then again by Step 3 we have

δ(s/t) � 1/δ(t/s) � δ(s)/δ(t).
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Now suppose that t < 1 (so s/t > 1). By the calculations in (4.3), δ(s/t) �
1/δ(t/s). By Step 2, δ(t/s) � δ(t)δ(1/s). By Step 3, δ(1/s) � δ(1)/δ(s).
Putting this together yields δ(s/t) � δ(s)/δ(t). The comparability depends
only on B,L, and n.

Part 2. There exists α ∈ [1, n) such that for any t ∈ (0,+∞) we have
δ(t) � tα, up to a constant depending only on B,L, and n.

To this end, let α(t) := log(δ(t))/ log(t). Define

α := lim inf
t→+∞

α(t), α := limsup
t→+∞

α(t).

Using the definition of δ and the fact that Γ ⊂ Rn, one can check that 1 ≤
α ≤ α ≤ n. Furthermore, given any ε > 0 and s ≥ 1, there exists r0 ∈ [1,+∞)
such that for any r ≥ r0 and r ≤ t ≤ sr we have α(r) − ε ≤ α(t) ≤ α(r) + ε.
We refer to this property as asymptotic continuity at +∞.

To verify the asymptotic continuity property, fix ε > 0 and s ≥ 1. Let
D ∈ [1,+∞) and β ∈ [1, n) denote the constants from (3.1). Then for any
1 ≤ r ≤ t ≤ sr, we have

α(t) =
log(δ(t))
log(t)

≤ log(D(t/r)βδ(r))
log(t)

≤ log(Dsβδ(r))
log(t)

≤ log(Dsβ)
log(r)

+
log(δ(r))
log(r)

< α(r) + ε

for r > (Dsβ)1/ε. Similarly, for r ≥ max{s6/εs−1,D2/εs−1, δ(1)D} we have

α(t) ≥ log(D−1(t/r)δ(r))
log(t)

≥ log(D−1δ(r))
log(t)

≥ log(D−1)
log(sr)

+
log(δ(r))
log(sr)

=
log(D−1)
log(sr)

+
log(δ(r))
log(r)

log(r)
log(sr)

≥ α(r)
(

log(r)
log(sr)

)
− ε/2

= α(r) − α(r)
(

log(s)
log(sr)

)
− ε/2 ≥ α(r) − ε.

The final inequality is true because α(r) ≤ 3 when r ≥ δ(1)D (by (3.1)).
Step 1: We begin by demonstrating that α = α. We accomplish this by

way of contradiction; thus we assume α > α. Let 0 < ε < (α − α)/4. Fix s ≥ 2
for which α(s) > α − ε/2. Due to the asymptotic continuity of α, there exists
r0 ≥ s such that for any r ≥ r0, r ≤ t ≤ sr implies that α(r) − ε/2 ≤ α(t) ≤
α(r) + ε/2. We may also choose r0 such that α(r0) > α − ε/2.

Choose r1 > r0 such that α(r1) < α + ε/2. Let k ≥ 0 be the largest integer
such that α(skr0) > α + ε and skr0 ≤ r1. Note that α(s0r0) = α(r0) > α + ε,
so such a k does exist. If α(sk+1r0) > α(skr0), then by the choice of k we
must have sk+1r0 > r1, and then by asymptotic continuity,

α + ε/2 < α(skr0) − ε/2 ≤ α(r1) < α + ε/2.
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This contradiction reveals that α(sk+1r0) ≤ α(skr0). In fact, the same rea-
soning implies that α(sk+1r0) ≤ α + ε. Again using asymptotic continuity, it
follows that α(skr0) < α + 2ε.

By the above paragraph, we may assume that we have an r ≥ r0 such that
α + ε < α(r) < α + 2ε while α(sr) ≤ α(r). By Part 1,

(sr)α(sr) � sα(s)rα(r).

Here the comparability depends only on B,L,n. Notice that α(s) − α(sr) > ε
while α(sr) − α(r) ≤ 0. Therefore,

sε < sα(s)−α(sr) � rα(sr)−α(r) ≤ 1.

Since ε and the comparability constant are independent of s, we reach a
contradiction for a large enough choice of s. We conclude that α = α =: ω.

Step 2: Now we prove that δ(s) � sω , up to a constant depending only
on B,L,n. To this end, suppose s > 1 is such that α(s) > ω.

Case 1: There exist arbitrarily large numbers r such that α(r) > ω. Since
α(r) → ω as r ↗ +∞, we must be able to find arbitrarily large r such that
α(r) ≥ α(sr). To see this, suppose that there existed r0 ∈ (1,+∞) with the
property that r ≥ r0 ⇒ α(r) < α(sr). Since s > 1, for every r ≥ r0 and for
every k ∈ N, we would have α(r) < α(skr). Sending k ↗ +∞, we would have
α(r) ≤ ω for all r ≥ r0. This would contradict our assumption that there exist
arbitrarily large r for which α(r) > ω, so our claim is verified. Furthermore,
when r is large enough we also have α(s) ≥ α(sr). Thus, we choose r ≥ s such
that α(s) ≥ α(sr) and α(r) ≥ α(sr). For such r ≥ s we use Part 1 to conclude
that

rα(sr)−α(r) � sα(s)−α(sr) ≥ 1 ≥ rα(sr)−α(r).

Therefore, sα(s)−α(sr) � 1, or equivalently sα(s) � sα(sr), up to a constant that
depends only on B,L,n. Since there exist arbitrarily large r with the above
properties, sα(s) � sω .

Case 2: There exists r0 > 1 such that for all r ≥ r0, α(r) ≤ ω. If there
exist arbitrarily large r for which α(r) = ω, then the existence of arbitrarily
large r for which α(sr) ≤ α(r) and α(sr) ≤ α(s) is clear; as in Case 1, sα(s) �
sω . Therefore, we may assume that for all r ≥ r0, α(r) < ω. Since we have
arbitrarily large r for which α(r) < ω, the tactics used in Case 1 can be used
to verify that rα(r) � rω for any r > 1 such that α(r) < ω. Thus, for any
r ≥ r0, we have rα(r) � rω and (sr)α(sr) � (sr)ω . Using Part 1, we find that
sα(s) � sω . The comparability constant depends only on B,L,n.

The same strategy can be used to verify that for any s > 1 with α(s) < ω
we have sα(s) � sω . With straightforward adjustments, this strategy will also
yield such comparability for all 0 < s < 1. In conclusion, δ(s) � sω for all
s ∈ (0,+∞). The comparability constant depends only on B,L,n.
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5. Proof of Theorem 1.1

(i)⇒(ii). This follows from [GH98, Theorems B and C] as in the proof of
necessity in Theorem 1.2.

(ii)⇒(iii). This is immediate, as inversions are Möbius maps.
(iii)⇒(i). First, we assume that Γ = Γ̂ ∩ Rn is bounded, L-bilipschitz ho-

mogeneous, and there exists a point x ∈ Γ such that ϕx(Γ̂) ∩ Rn is also L-
bilipschitz homogeneous (recall the definition of ϕx in Section 2). Note that
if we apply the translation z �→ z − x to Γ and then apply ϕ0, the resulting
curve is a translation of ϕx(Γ̂) ∩ Rn. Therefore, we may assume x = 0 ∈ Γ and
ϕ0(Γ̂) ∩ Rn is L-bilipschitz homogeneous. Furthermore, for a set E ⊂ Rn and
c > 0, ϕ0(cE) = c−1ϕ0(E); here cE denotes the image of E under the map
z �→ cz. Since bilipschitz homogeneity in Rn is invariant under such rescalings
(and under rotations), we may also assume that Γ ⊂ B and 1 ∈ Γ without
affecting our assumption that ϕ0(Γ̂) ∩ Rn is L-bilipschitz homogeneous.

Write Γ̂∗ to denote ϕ0(Γ̂), then write Γ̂∗
0 to denote the image of Γ̂∗ under the

translation z �→ z − 1; so 0 ∈ Γ̂∗
0. Our goal is to show that Γ̂∗

0 is 100L-bilipschitz
homogeneous. By Fact 2.1(a), Γ̂ is 4L-bilipschitz homogeneous. Note that Γ̂
is isometric to Γ̂∗ via ϕ0. Furthermore, Γ̂∗ is 5-bilipschitz equivalent to Γ̂∗

0.
Therefore, Γ̂∗

0 is 100L-bilipschitz homogeneous.
Since both Γ̂∗

0 and Γ∗
0 = Γ̂∗

0 ∩ Rn are 100L-bilipschitz homogeneous, by
Theorem 1.2, we conclude that Γ̂∗

0 is (C,α)-chordarc, with C = C(B,L,n).
Since Γ̂ is 5-bilipschitz equivalent to Γ̂∗

0, it is (C ′, α)-chordarc; C ′ = C ′(C).
Next, we assume that Γ is unbounded, L-bilipschitz homogeneous, and

there exists a point x /∈ Γ such that ϕx(Γ̂) ∩ Rn is L-bilipschitz homogeneous.
As in the bounded case, we may translate, rotate, and rescale so that x = 0,
1 ∈ Γ, and Γ ∩ B = ∅ while maintaining the assumption that ϕ0(Γ̂) ∩ Rn is
L-bilipschitz homogeneous. Let Γ0 denote a translation of Γ so that 0 ∈ Γ0.

We demonstrate that Γ̂0 is 100L-bilipschitz homogeneous. Since Γ∗ =
ϕ0(Γ̂) ∩ Rn ⊂ B, by Fact 2.1(a) we conclude that Γ̂∗ is 4L-bilipschitz homo-
geneous. Furthermore, Γ̂∗ is isometric to Γ̂ via ϕ0. Because Γ̂ is 5-bilipschitz
equivalent to Γ̂0, it follows that Γ̂0 is 100L-bilipschitz homogeneous.

Since both Γ0 and Γ̂0 are 100L-bilipschitz homogeneous, Theorem 1.2 tells
us that Γ̂0 (and therefore Γ̂) is (C,α)-chordarc, with C = C(B,L,n).

6. Snowflake functions

The curves we construct in Section 7 involve elements of the catalogue H S
constructed in [Roh01]. We implement additional notation to precisely ana-
lyze such curves. Let σ : N0 → N0 be any function with the following proper-
ties: σ(0) = 0, and for all k, σ(k + 1) = σ(k) or σ(k + 1) = σ(k) + 1. We call
such a function a snowflake function.
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Figure 1. Subarcs I and Jp.

We let I and Jp be as pictured in Figure 1. Suppose σ(1) = 0. Then
we replace each side of S0 (the square centered at the origin with sides of
unit length parallel to the coordinate axes) with a similarity (scaled, ro-
tated, translated) copy of I to obtain S1. The linear subarcs of the similarity
copies of I form the 4 · 41 1-edges in S1, each of length 1/4. Suppose in-
stead that σ(1) = 1. Then we replace each side of S0 with a similarity copy
of Jp. Each similarity copy of Jp contains 41 1-edges, each of length p. In
all such replacements, we require the copies of Jp to ‘point out’ of the closed
curve S1.

We continue inductively. For k ≥ 2, let Sk be given, consisting of 4 · 4k

k-edges, each of length ak := pσ(k)4σ(k)−k. If σ(k +1) = σ(k), then we replace
each k-edge in Sk with a similarity copy of I to obtain Sk+1; each copy of I
contains four of the 4 · 4k+1 (k + 1)-edges in Sk+1, each of length ak+1 =
pσ(k+1)4σ(k+1)−(k+1). If σ(k + 1) = σ(k) + 1, then we replace each k-edge
in Sk with a similarity copy of Jp; Sk+1 consists of 4 · 4k+1 (k +1)-edges, each
of length ak+1 := pσ(k+1)4σ(k+1)−(k+1).

Therefore, given a parameter p ∈ [1/4,1/2) and a snowflake function σ,
we obtain a sequence (Sk) of Jordan curves that converge in the Hausdorff
distance to some Jordan curve S ⊂ R2. We call such a curve a (σ, p)-snowflake
curve. Note that H S is precisely the collection of all (σ, p)-snowflake curves as
such σ and p ∈ [1/4,1/2) assume all possible configurations. Indeed, given any
curve S ∈ H S , there exists a unique pair (σ, p) with its associated sequence
(Sk) converging to S. We also obtain a (σ, p)-sequence (ak) consisting of the
lengths (=diameters) of the k-edges in each Sk; so ak = pσ(k)4σ(k)−k. We use
the term k-arc to describe the smaller subarc of S whose endpoints coincide
with the corresponding k-edge in Sk. As a point of reference, note that if
p = 1/3 and σ = id, then (ak) = (3−k) and the sequence (Sk) converges to a
middle-third von Koch snowflake curve.

We can also apply this ‘snowflaking process’ to curves and arcs other than
the unit square. In particular, given any finite line segment I and a pair (σ, p)
as above, we can apply the same process to obtain a sequence of piecewise
linear arcs Ik that converge to a limit arc J . We call such a limit arc a
(σ, p)-snowflake arc.

The following items will be useful both in constructing examples and in
performing dimension calculations in Section 8.
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Lemma 6.1. Let S ∈ H S be given. Let (ak) denote the corresponding (σ, p)-
sequence. For any j ≤ k and any x ∈ S, P (ak;D(x;aj) ∩ S) � 4k−j , up to the
constant 64D2, where D is the doubling constant for R2.

Proof. Let k ≥ j and x ∈ S. Given an n-arc J ⊂ S, let I denote the n-edge
in Sn whose endpoints coincide with those of J . We write �(I) to denote
the right isosceles triangle with base I . Thus, H2(�(I)) = diam(I)2/4, and
�(I) ∩ S = J . Let z ∈ J , and let {Ji} denote the n-arcs of S. For every Ji

such that �(Ji) ∩ D(z;an) �= ∅, we must have �(Ji) ⊂ D(z; 2an). Therefore,
by area considerations, at most 16π < 64 n-arcs can intersect D(z;an).

Since every j-arc in S has diameter aj , D(x,aj) ∩ S contains at least one
j-arc of S, denoted by J . Note that J contains precisely 4k−j k-arcs. Since
every disk of radius ak centered in J can intersect at most 64 k-arcs from S,
we conclude that

N
(
ak;D(x;aj) ∩ S

)
≥ N(ak;J) ≥ 4k−j/64.

On the other hand, since at most 64 j-arcs of S can intersect D(x;aj), each
containing precisely 4k−j k-arcs, we have

N
(
ak;D(x;aj) ∩ S

)
≤ 64 · 4k−j .

The statement concerning packing numbers follows from the comparability of
packing and covering numbers in doubling spaces. �

We need a bit more notation. Let S ∈ H S be given, with corresponding
(σ, p)-sequence (ak). Given j < k, define

αj,k :=
[
1 − σ(k) − σ(j)

k − j
log4(4p)

]−1

.

A straightforward calculation verifies that 4k−j = (aj/ak)αj,k . We thus refer
to the numbers αj,k as (σ, p)-exponents.

Corollary 6.2. Let S ∈ H S be a (σ, p)-snowflake with corresponding se-
quence (ak) and exponents {αj,k }. For any 0 < r ≤ s ≤ 1 and x ∈ S, choose
j ≤ k such that ak ≤ r ≤ ak−1 and aj ≤ s ≤ aj−1. Then P (r;D(x;s) ∩ S) �
(s/r)αj,k , up to the constant 256D2, where D is the doubling constant for R2.

7. Curve constructions

Here, we construct two curves that illustrate Theorem 1.2.

Example 7.1. There exists a Jordan curve Γ̂ ⊂ R̂2 that is not bilipschitz
homogeneous while Γ̂ ∩ R2 is bilipschitz homogeneous.

Proof. Note that the identity function id : N0 → N0 is a snowflake function.
For each n ∈ Z, we use the identity function to construct a snowflake arc Kn

from the line segment [n,n + 1]; so Kn is a middle-third von Koch arc. Set
Γ =

⋃
n∈Z Kn. Thus, Γ is an unbounded Jordan curve in R2. Since each subarc
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Kn is 4-bounded turning (see [GH99, Fact 5.2]), it is straightforward to see
that Γ itself is 9-bounded turning. In addition, we note that each subarc Kn

satisfies an α-dimensional fractal chordarc condition, with α := log3(4) and
Hα(Kn) = 1.

We begin by demonstrating that Γ is bilipschitz homogeneous. By Fact 3.3,
it suffices to show that Γ satisfies a generalized chordarc condition with respect
to some doubling dimension gauge. Given r ∈ R+, define

δ(r) :=

{
rα, if r ≤ 1,
r, if r ≥ 1.

It is easy to verify that this dimension gauge is doubling, with constant 2α,
and that G δ = Hα.

Now let x, y ∈ Γ. Suppose first that |x − y| ≤ 1. Then we note that Γ[x, y] is
contained in at most 2 adjacent subarcs Kn−1,Kn with common endpoint zn.
If both points x and y are contained in the same subarc Kn−1, the fractal
chordarc property yields

Hα(Γ[x, y]) � |x − y|α.

Assume that x ∈ Kn−1 and y ∈ Kn. By additivity,

Hα(Γ[x, y]) = Hα(Γ[x, zn]) + Hα(Γ[zn, y]) � |x − zn|α + |zn − y|α.

We note that max{ |x − zn|, |zn − y| } ≤ |x − y|, and so Hα(Γ[x, y]) � 2|x − y|α.
Without loss of generality, |x − zn| ≥ |x − y|/2. Therefore, Hα(Γ[x, y]) �
2−α|x − y|α.

Now suppose that |x − y| > 1. Then let Kn, . . . ,Kn+m denote the minimal
collection of consecutive subarcs such that

⋃m
i=1 Kn+i joins x to y. Thus, x ∈

Kn and y ∈ Kn+m, where m > 0. Let zn+1 denote the right endpoint of Kn,
and let zn+m denote the left endpoint of Kn+m. Thus, x ≤ zn+1 ≤ zn+m ≤ y
in Γ. If m = 1, then we are in the situation described in the above paragraph,
so we assume m ≥ 2. Since Hα(Ki) = 1 for each i, we have

|x − y|/3 ≤ m − 1 ≤ Hα(Γ[x, y]) ≤ m + 1 ≤ 3|x − y|.
In conclusion, we find that for every x, y ∈ Γ, we have Hα(Γ[x, y]) � δ(|x −

y|), up to an absolute constant. Therefore, Γ satisfies a generalized chordarc
condition, and by Fact 3.3 we know that Γ is bilipschitz homogeneous.

Now we turn our attention to Γ̂ := Φ(Γ) ∪ { ∞} to show that it is not
bilipschitz homogeneous. Since Γ̂ is of bounded turning, by Fact 3.3 it suffices
to demonstrate that Γ̂ does not possess the bounded covering property.

Note that for R ≥ 1, ϕ0(Γ \ D(0;R)) ⊂ D(0; 1/R) ∩ (H \ D(i/2; 1/2)). Recall
that ϕ0 is inversion through S. Furthermore, D(0; 1/R) ∩ (H \ D(i/2; 1/2)) is
contained in a rectangle of base 2/R and height 2/R2. Therefore,

N
(
2/R2;D(0; 1/R) ∩ ϕ0(Γ)

)
≤ 2R + 1 ≤ 3R.
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For the remainder of this example, D̂(x; r) and Ĉ(x; r) denote disks and
circles in R̂2. Fix 0 < r ≤ 1/2. By Fact 2.1(a), Lemma 2.2, the doubling
property, and the above paragraph,

N
(
r2; D̂(∞; r) ∩ Γ̂

)
= N

(
r2; D̂(0; r) ∩ ϕ0(Γ̂)

)
� N

(
r2;D(0; r) ∩ ϕ0(Γ)

)
� 1/r.

We turn our attention to the point 0 ∈ Γ. Note that the sequence (ak)
derived from the construction of each Kn is given by (ak) = (3−k). By
Fact 2.1(a), Lemma 2.2, Lemma 6.1, and the metric doubling property, for
k ∈ N we have

N
(
3−2k; D̂(0;ak) ∩ Γ̂

)
� N

(
3−2k;D(0;ak) ∩ Γ

)
= N

(
a2

k;D(0;ak) ∩ Γ
)

= N
(
a2k;D(0;ak) ∩ Γ

)
� 4k = (4/3)ka−1

k .

Putting the above estimates together tells us that for k ∈ N,

N
(
a2k; D̂(0;ak) ∩ Γ̂

)
� (4/3)kN

(
a2k; D̂(∞;ak) ∩ Γ̂

)
.

Now let Îk denote the minimal subarc (with respect to inclusion) of Γ̂ that
contains D̂(0;ak) ∩ Γ̂. Since Γ̂ is B-bounded turning (for some absolute con-
stant B), diam(Îk) ≤ 2Bak. Let Ĵk ⊂ D̂(0;ak) denote a subarc of Îk with
left endpoint 0 and right endpoint on Ĉ(0;ak). Thus, diam(Ĵk) ≥ ak. By
Lemma 2.2 and Fact 3.1(b), N(a2k; Îk) � N(a2k; Ĵk) up to a constant depend-
ing only on B and L. We set xk, yk to be the endpoints of Ĵk; so Ĵk = Γ̂[xk, yk].

Finally, for each k ∈ N set zk = ∞ and choose wk to be the first point in
Ĉ(∞, ak) ∩ Γ̂ as we move from zk in the positive direction along Γ̂. Then
χ(xk, yk) = χ(zk,wk). These points and the scales a2k suffice to demonstrate
that Γ̂ does not possess a bounded covering property, and therefore is not
bilipschitz homogeneous. Indeed, for each k ∈ N we have χ(xk, yk) = χ(zk,wk)
while N(a2k; Γ̂[xk, yk]) � (4/3)kN(a2k; Γ̂[zk,wk]). �

Example 7.2. There exists a Jordan curve Γ̂ ⊂ R̂2 that is bilipschitz ho-
mogeneous while Γ̂ ∩ R2 is not bilipschitz homogeneous.

Proof. Similar to Example 7.1, we use a certain (σ, p)-snowflake curve as the
starting point for our construction of Γ. Set p := 1/3 and define q := log4(4p) =
log4(4/3) < 1. We define a snowflake function σ : N0 → N0, beginning with
σ(1) := 1. Given σ(k), let jk denote the smallest number such that σ(jk) =
σ(k). Note that jk may equal k; in particular, j1 = 1. Given an interval
[n,m] ⊂ N0, we say that σ is constant on [n,m] ⊂ N0 if σ(m) = σ(n). We say
that σ is strictly increasing on [n,m] if σ(m) = σ(n) + (m − n).

We use jk to define g(k) := �jk − qσ(jk)� ≥ 1; here �x� denotes the smallest
integer greater than or equal to x. We also define the number

hk := min{n ∈ N : n ≤ k, σ is strictly increasing on [n,k]}.

We now give a recursive definition for σ(k+1). Suppose first that jk < k. If
k − jk < g(k), then set σ(k + 1) := σ(k). If k − jk ≥ g(k), then set σ(k + 1) :=
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σ(k) + 1. Suppose now that jk = k. If k < 2hk, then set σ(k + 1) := σ(k) + 1.
If k ≥ 2hk then set σ(k + 1) := σ(k).

Using this recursion rule, we find that

σ(2) = 1, σ(3) = 2, σ(4) = 3, σ(5) = 3, σ(6) = 3,

σ(7) = 3, σ(8) = 3, σ(9) = 4, σ(10) = 5, . . . .

Let (kn) denote the subsequence of numbers k for which σ(k − 1) < σ(k) =
σ(k + 1). Thus, k1 = 1, k2 = 4, . . . . Moreover, kn ↗ +∞ as n ↗ +∞. It
follows from these definitions that σ is constant precisely on intervals of the
form [kn, kn + g(kn)]. In addition, σ is strictly increasing on the intervals of
the form [kn + g(kn), kn+1], each of length kn + g(kn).

While this recursive definition may seem cumbersome, it yields the fol-
lowing useful behavior for the (σ,1/3)-sequence (ak): for every n ∈ N it is
straightforward to verify that,

akn+g(kn) ≤ a2
kn

≤ 4akn+g(kn).

Let S denote the (σ,1/3)-snowflake curve obtained from the unit square
in S0 ⊂ R2. We define Γ̂′ := Φ(2S). Then we rotate Γ̂′ to obtain Γ̂, rotating
so that Φ(i) �→ 0 and Φ(−i) �→ ∞. Thus, ϕ0(Γ̂) = Γ̂. Since Γ̂ is 6-bilipschitz
equivalent to S ∈ H S , it is bilipschitz homogeneous. However, we claim that
Γ := Γ̂ ∩ R2 is not bilipschitz homogeneous.

To verify this claim, we first note that ϕ0(Γ̂) ∩ R2 = Γ̂ ∩ R2, and that Γ is B-
bounded turning for some finite constant B. For n ≥ 2, we choose points xn ∈
Γ ∩ C(0;a−1/2

kn
), where kn is defined as above. Let Γn ⊂ D(xn; 1) denote the

minimal subarc of Γ with left endpoint xn and right endpoint yn ∈ C(xn; 1).
Thus, |xn − yn| = 1.

We now estimate N(akn ; Γ[xn, yn]). To do this, we look at ϕ0(Γ[xn, yn]) ⊂
D. Note that any disk of radius akn which intersects Γ[xn, yn] must lie in the
annulus A(0;a−1/2

kn
/2,2a

−1/2
kn

). Therefore, using Fact 2.1(c) [cf. (4.1) in the
proof of Theorem 1.2], we have

N(akn ; Γ[xn, yn]) � N(a2
kn

;ϕ0(Γ[xn, yn]))
� N(akn+g(kn);ϕ0(Γ[xn, yn]))

≤ N
(
akn+g(kn);ϕ0(D(xn; 1)) ∩ Γ

)
.

Again by Fact 2.1(c), ϕ0(D(xn; 1)) is a disk centered at some point x′
n ∈ D of

radius no greater than 8akn . Since Γ ∩ D is bilipschitz equivalent to S ∩ H, we
can use Lemma 2.2 and Lemma 6.1 to verify that

N
(
akn+g(kn);D(x′

n; 8akn) ∩ Γ
)

� 4g(kn).

The comparability depends only on B and L.
Now we construct points x0, y0 ∈ Γ. Let x0 := 0 and let y0 be the first point

on Γ (as we move in the positive direction along Γ) such that |x0 − y0| = 1.
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Using Fact 3.1(b) and Lemma 2.2,

N(akn ; Γ[x0, y0]) � N(akn ;D ∩ Γ) � 4kn .

Therefore, for n ≥ 2, |x0 − y0| = |xn − yn| and

N(akn ; Γ[x0, y0]) � 4kn −g(kn)N(akn ; Γ[xn, yn]).

Here the comparability is independent of n. Note that kn − g(kn) = kn −
�kn − qσ(kn)� ≥ qσ(kn) − 1 → +∞. Therefore, Γ does not possess a bounded
covering property, and so is not bilipschitz homogeneous. �

8. Dimension calculations

In this section, we calculate the lower and upper Minkowski and Assouad
dimensions of compact bilipschitz homogeneous Jordan curves in R2. These
dimensions are denoted by dimM, dimM, and dimA, respectively. Recall that,
for a (bounded) metric space X ,

dimM(X) := lim inf
r→0

log(N(r;X))
log(1/r)

≤ limsup
r→0

log(N(r;X))
log(1/r)

=: dimM(X),

dimA(X) := inf{α : ∃H ∈ [1,+∞) such that X is (H,α)-homogeneous}.

By [May95, Proposition 4.3], the Hausdorff dimension of a bilipschitz homo-
geneous Jordan curve in R2 equals its lower Minkowski dimension.

Given a (compact) bilipschitz homogeneous Jordan curve Γ ⊂ R2, there
exists a curve S ∈ H S that is the image of Γ under a bilipschitz map of R2

(see [Roh01, Theorem 1.3]). Given S, there exists a unique snowflake function
σ : N0 → N0 and parameter p ∈ [1/4,1/2) such that S is a (σ, p)-snowflake
curve. We now proceed to calculate the various dimensions of S in terms of σ
and p. Since the dimensions under consideration are preserved by bilipschitz
maps, we obtain the dimensions of Γ.

Given a function f : N0 × N0 → R, we write

limsup
(k−j)→+∞

f(j, k) := lim
n→+∞

[sup{f(j, k) : k − j ≥ n}].

Theorem 8.1. Let S ∈ H S be a (σ, p)-snowflake curve with exponents αj,k.

dimA(S) = limsup
(k−j)→+∞

αj,k,

dimM(S) = lim inf
k→+∞

α0,k ≤ limsup
k→+∞

α0,k = dimM(S).

Proof. Write α := limsup(k−j)→+∞ αj,k. Since (1/p)k−j ≤ aj/ak ≤ 4k−j ,
(k − j) → +∞ if and only if aj/ak → +∞. Therefore, for any α > α, there
exists some M > 0 such that αj,k < α whenever aj/ak ≥ M .
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Let α < α < α + 1 and M be given as above. Let 0 < r ≤ s ≤ diam(S).
There exist j ≤ k with ak ≤ r ≤ 2ak−1 and aj ≤ s ≤ 2aj−1. In the case that
aj/ak ≥ M , the above paragraph and Corollary 6.2 yield

P
(
r;D(x, s) ∩ S

)
�

(
s

r

)αj,k

<

(
s

r

)α

.

If aj/ak < M , then again using Corollary 6.2, we have

P
(
r;D(x, s) ∩ S

)
�

(
s

r

)αj,k

=
(

s

r

)αj,k −α(
s

r

)α

� M2

(
s

r

)α

.

Therefore, for any α > α, there exists H ∈ [1,+∞) for which S is (H,α)-
homogeneous. It follows that dimA(S) ≤ α.

Now let 0 < α < α. For any N ∈ N, there exists some aj/ak ≥ N such that
αj,k > α + (α − α)/2. Then by Corollary 6.2,

P
(
ak;D(x,aj) ∩ S

)
�

(
aj

ak

)αj,k

=
(

aj

ak

)αj,k −α(
aj

ak

)α

≥ N (α−α)/2

(
aj

ak

)α

.

Since N ∈ N was arbitrary, we see that S is not (H,α)-homogeneous for any
finite H if α < α. Thus, dimA(S) ≥ α, and so dimA(S) = α.

Continuing, for k ∈ N, we have N(ak;S) � 4k = (1/ak)α0,k , up to the con-
stant 64 (cf. Lemma 6.1). For any 0 < r ≤ diam(S), there exists k such that
ak ≤ r ≤ 2ak−1. Therefore,

dimM(S) = limsup
r→0

log(N(r;S))
log(1/r)

= lim
j→+∞

[
sup

{
log(N(r;S))

log(1/r)
: r ≤ aj

}]

≤ lim
j→+∞

[
sup

{
log(N(ak;S))
log(1/2ak−1)

: k ≥ j

}]

≤ lim
j→+∞

[
sup

{
α0,k log(1/ak)
log(1/2ak−1)

+
log(64)

log(1/2ak−1)
: k ≥ j

}]
= lim

j→+∞
[sup{α0,k : k ≥ j}] = limsup

j→+∞
α0,j =: α.

By a similar argument one obtains dimM(S) ≥ α, and so dimM(S) = α. By
parallel methods, dimM(S) = lim infk→+∞ α0,k. �

As an application, these dimension calculations can be used to verify the
existence of bilipschitz homogeneous Jordan curves Γ ⊂ R2 for which

dimM(Γ) < dimM(Γ) < dimA(Γ),

dimM(Γ) = dimM(Γ) < dimA(Γ),

dimM(Γ) < dimM(Γ) = dimA(Γ).

Similar techniques yield a bilipschitz homogeneous Jordan curve that has
Assouad dimension 1 yet fails to satisfy a chordarc condition. The interested
reader may consult [Fre09] for the verification of these claims.
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