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MINIMAL SURFACES IN ˜PSL2(R)

RAMI YOUNES

Abstract. We study minimal graphs in the homogeneous Rie-

mannian 3-manifold ˜PSL2(R) and we give examples of invariant

surfaces. We derive a gradient estimate for solutions of the min-
imal surface equation in this space and develop the machinery

necessary to prove a Jenkins–Serrin type theorem for solutions
defined over bounded domains of the hyperbolic plane.

1. Introduction

In recent years, there has been an increasing interest in the study of mini-
mal and constant mean curvature surfaces in simply connected homogeneous
Riemannian 3-manifolds with four dimensional isometry groups. Results in
[1], like the existence of a generalized Hopf-differential or of a Schwarz reflec-
tion principle in such manifolds, suggest that these manifolds are the proper
setting for studying global properties of minimal and cmc surfaces. The ge-
ometries of such manifolds have been classified by Thurston to be either those
of the product spaces S2 × R and H2 × R, the Heisenberg group Nil(3), or the

fiber spaces Berger sphere and ˜PSL2(R) (see [14]).
Certain aspects of the theory of minimal and cmc surfaces in S2 × R, H2 × R

and Nil(3) have been studied for example in, [1], [5], [7], [12] and [13] among
others.

In this paper, we study minimal graphs in ˜PSL2(R), known to be a Rie-
mannian fibration over the hyperbolic plane, and we obtain a Jenkins–Serrin
type theorem for such graphs over convex bounded domains in the hyperbolic
plane. We emphasize that ˜PSL2(R) is not a product space and so one should
ask what is meant by graph in such a space.
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A graph in ˜PSL2(R) will be the image of a section of the Riemannian sub-

mersion π : ˜PSL2(R) → H2. A Jenkins–Serrin type theorem gives necessary
and sufficient conditions for the solvability of the Dirichlet problem for the
minimal surface equation allowing infinite boundary values, prescribed on arcs
of the boundary of a convex bounded domain in H2, and continuous data on
the rest of the boundary. However, boundary arcs of a bounded domain in H2,
where a solution of the minimal surface equation in ˜PSL2(R) admits infinite
values, have to be geodesics (see Section 7).

Then more precisely, let Ω be a convex bounded domain in H2 whose
boundary consists of (open) geodesic arcs A1, . . . ,An,B1, . . . ,Bm, together
with their end points and convex open arcs C1,C2, . . . ,Cs. We suppose that
no two geodesics Ai and no two geodesics Bi have a common end point. We
give necessary and sufficient conditions for the existence of a minimal section
s : Ω → ˜PSL2(R) of the Riemannian submersion, taking values +∞ on the arcs
A1, . . . ,An, −∞ on the arcs B1, . . . ,Bm and arbitrary prescribed continuous
data on the arcs C1, . . . ,Cs.

For a simple closed geodesic polygon P , whose vertices are chosen from
among the endpoints of the segments Ai and the segments Bi, let α and β be,
respectively, the total H2-length of the geodesics Ai and the total H2-length
of the geodesics Bi which are part of P . Let γ be the perimeter of P . Note
that in the case {Cs} = ∅, P could be the whole boundary of Ω.

We have the following theorem.

Theorem 1.1. If the family of arcs {Cs} is nonempty, then there exists

a unique section of the bundle π : ˜PSL2(R) → H2 defined in Ω and taking the
boundary values +∞ on the geodesics Ai, the value −∞ on the geodesics Bi

and arbitrary continuous data fs on Cs if and only if

2α < γ and 2β < γ

for each polygon P chosen as above.
If the family of arcs {Cs} is empty, the condition on the polygons P is the

same except that in the case when P is the entire boundary of Ω then the
condition is α = β. Moreover, uniqueness is up to additive constants.

In R3, this theorem corresponds to that of Jenkins and Serrin proved in
[9], and in H2 × R a corresponding result was obtained in [12] by Nelli and
Rosenberg. In their paper, Jenkins and Serrin make use of the a priori esti-
mates for solutions of the minimal surface equation, proved in [15], to obtain
a compactness principle for sequences of solutions and to study limit behavior
of monotone sequences of solutions. They also make use of the Scherk surface
as a barrier, which is fundamental to most of the results. The techniques
developed by Serrin in [15] were adapted in [12] to show a Jenkins–Serrin
type theorem in H2 × R. To obtain a priori gradient estimates for solutions of
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the minimal surface equation and to prove a compactness principle, we adapt
a result in Spruck’s [16] and we construct explicit barriers adequate to our
space.

The paper is organized as follows: in Section 2, we give a model for
˜PSL2(R), compute its metric in the coordinates and give the expression of its

Levi–Civita connection. We then characterize the isometry group of ˜PSL2(R)
based on ideas from [2] and [14]. We show that this group is generated by the
lifts of isometries of H2 and translations along the fibers.

In Section 3, we derive the minimal surface equation in ˜PSL2(R) and furnish
examples of minimal graphs invariant under actions of one-parameter groups
of isometries generated by lifts of isometries of H2. The rest of the paper
is dedicated to develop the machinery necessary to prove our Jenkins–Serrin
type theorem where we follow the main lines in [9].

In Section 4, we prove an estimate for the gradient of a solution of the
minimal surface equation which implies a compactness principle for sequences
of solutions of the minimal surface equation in ˜PSL2(R) uniformly bounded
on compacts of a bounded open subset of H2.

In Section 5, we prove the existence of a solution of the Dirichlet problem
for the minimal surface equation in ˜PSL2(R) in a convex bounded open subset
of H2 with boundary data having possibly a finite number of discontinuities.

In Sections 6 and 7, we prove a series of lemmas and propositions which
will serve as machinery to prove our Jenkins–Serrin type theorem. Once
this machinery is established, the lines of proof are similar to that of the
corresponding Jenkins–Serrin theorem in [9] and the reader will be referred
to that paper for further details.

2. The space ˜PSL2(R)

The 3-dimensional Lie group of 2 × 2 real matrices of determinant 1 is
denoted SL2(R). The quotient Lie group SL2(R)/{±Id} is denoted PSL2(R)

and its universal covering ˜PSL2(R). Of course, ˜PSL2(R) is a Lie group itself
and so admits left invariant metrics. For our purposes, it will be convenient
to introduce a model for ˜PSL2(R) and write down explicitly the metric that

interests us. In fact, we shall show that ˜PSL2(R) is a Riemannian fibration
over the hyperbolic plane, the reader can refer to [14].

Remark 2.1. A homogeneous simply connected 3-manifold M with a 4-
dimensional isometry group, is a Riemannian fibration over a 2-dimensional
space form, and whose fibers are geodesics tangent to a unitary Killing field,
say ξ. These manifolds are classified, up to isometries, by the curvature κ of
the fibration base and the bundle curvature τ . The number τ is such that
∇Xξ = τX × ξ, for any vector field X (∇ is the Levi–Civita connection of M ).
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As we shall see in what follows, ˜PSL2(R) belongs to this class of manifolds
and that the parameters κ and τ have the values −1 and − 1

2 , respectively.

2.1. A model for ˜PSL2(R). It is known that the group of orientation
preserving isometries of the hyperbolic plane H2 is PSL2(R). Let UH2 denote
the unit tangent bundle of H2, that is, the submanifold of TH2 consisting of
tangent vectors of unit length. It is easy to see that PSL2(R) acts transitively
on UH2 and the stabilizer of each point under this action is trivial. This
allows us to identify PSL2(R) and UH2 and consequently ˜PSL2(R) and ŨH2.

The submanifold UH2 is diffeomorphically a trivial circle bundle over H2,
meaning that UH2 � H2 × S1. This implies that ˜PSL2(R) � H2 × R again
from a diffeomorphic point of view.

2.2. Metric on ˜PSL2(R). A Riemannian metric on a manifold M induces a
natural metric on the tangent bundle TM . We explain how this is generally
done and we fix some terminology on the way, the reader can refer to [6].
Let (p, v) ∈ TM and V a tangent vector to TM at (p, v). Choose a curve
α : t → (p(t), v(t)) with p(0) = p, v(0) = v and V = α′(0). Define

‖V ‖2
(p,v) = ‖dπ(V )‖2

p +
∥∥∥∥Dv

dt
(0)

∥∥∥∥2

p

,

where π : TM → M is the bundle projection and D
dt is the covariant derivative

along the curve t → p(t). The value of ‖V ‖(p,v) is independent of the choice
of the curve α.

A vector at (p, v) ∈ TM which is orthogonal to the fiber π−1(p) � TpM
is said to be horizontal, and one which is tangent to the fiber is said to be
vertical. We identify the vertical tangent space in T(p,v)(TM) to TpM . We
have:

(i) ‖V ‖(p,v) = ‖V ‖p if V is vertical,
(ii) ‖V ‖(p,v) = ‖dπ(V )‖p if V is horizontal.

Horizontal tangent spaces have the same dimension as tangent spaces to M
which implies, together with the identity (ii), that dπ induces isometries be-
tween horizontal tangent spaces and spaces tangent to M , that is,

dπ : TM → M

is a Riemannian submersion.
Now the metric on H2 induces a metric on TH2 which restricts to a metric

on UH2. So we have a metric on PSL2(R) which lifts to a metric on its

universal covering ˜PSL2(R). The fact that PSL2(R) acts on UH2 by isometries
implies that the metric induced on PSL2(R) is left invariant. This metric lifts

obviously to a left invariant metric on ˜PSL2(R).



MINIMAL SURFACES IN ˜PSL2(R) 675

To see that ˜PSL2(R) is a Riemannian fibration over H2, note that the fibres
of UH2 are 1-dimensional, hence horizontal tangent spaces to UH2 coincide
with those of TH2 and π restricts to a Riemannian submersion on UH2. As
ŨH2 and UH2 are locally isometric we deduce that π induces a Riemannian
submersion on ŨH2 onto H2. The metric on ˜PSL2(R) being left invariant

(hence complete) we have ˜PSL2(R) a complete homogeneous simply connected
Riemannian manifold.

At this point, we have given a model for ˜PSL2(R) and assigned it a metric.
We next express this metric in coordinates, the reader can refer to [5]. Let
(x, y) → ξ(x, y) be a conformal parametrization of H2 and let λ be the con-
formal factor so that the metric of H2, in these coordinates, is λ2(dx2 + dy2).
As v ∈ UH2 is identified with its base point and the angle θ it makes with ∂x

we have the following local parametrization of UH2

(x, y, θ) →
(

ξ(x, y),
1
λ

(cosθ∂x + sinθ∂y)
)

.

Let V be a tangent vector to ˜PSL2(R) at a point (p, v) and let α : t →
(p(t), v(t)) be a curve passing through (p, v) at t = 0 and tangent to V over
there. We write p(t) = (x(t), y(t)) and v(t) = 1

λ (cosθ(t)∂x +sinθ(t)∂y)). Using
properties of the covariant derivative along the curve t → p(t), we compute

Dv

dt
= − λ′

λ2
(cosθ∂x + sinθ∂y) +

θ′

λ
(− sin θ∂x + cosθ∂y)

+
1
λ

(
cosθ∇p′(0)∂x + sin θ∇p′(0)∂y

)
,

with λ′ = x′λx + y′λy, p′(0) = x′∂x + y′∂y, ∇p′(0)∂x = x′ ∇∂x∂x + y′ ∇∂y∂x

and ∇p′(0)∂y = x′ ∇∂x∂y + y′ ∇∂y∂y . The Christoffel symbols for the metric
λ2(dx2 + dy2) on H2 are

Γ1
11 = −Γ1

22 = Γ2
12 = Γ2

21 =
λx

λ
,

−Γ2
11 = Γ2

22 = Γ1
12 = Γ1

21 =
λy

λ
.

We finally obtain

Dv

dt
=

1
λ2

(λθ′ + y′λx − x′λy)(cosθ∂y − sin θ∂x).

Thus,

‖V ‖2
(p,v) = λ2(x′2 + y′2) +

1
λ2

(λθ′ + y′λx − x′λy)2.
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Setting z = θ on the universal covering we get the following expression for the
metric on ˜PSL2(R):

ds2 = λ2(dx2 + dy2) +
(

− λy

λ
dx +

λx

λ
dy + dz

)2

.

Remark 2.2. We can see that in our model the fibers are the vertical
lines and that a unitary vector field tangent to the fibers is ξ = ∂z . We can
also see that translations along the fibers (x, y, z) → (x, y, z +a) are isometries
generated by ξ. Thus, the fibers are the trajectories of a unit Killing field and
so are geodesics.

2.3. An orthonormal frame on ˜PSL2(R). Let {e1, e2} be the orthonormal
frame on H2 with e1 = λ−1∂x and e2 = λ−1∂y and let E3 be the vector field

on ˜PSL2(R) whose expression in coordinates is ξ. Denote by E1 and E2 the

horizontals lifts to ˜PSL2(R) of e1 and e2, that is,

dπ(Ei) = ei and 〈Ei,E3〉 = 0, 1 ≤ i ≤ 2.

We remark that dπ(∂x) = ∂x and dπ(∂y) = ∂y, then a simple computation
gives the expression of Ei in coordinates,

E1 =
1
λ

∂x +
λy

λ2
∂z, E2 =

1
λ

∂y − λx

λ2
∂z and E3 = ∂z.

In what follows, let X̃ denote the horizontal lift to ˜PSL2(R) of a vector field
X on H2; recall that ∇X̃ Ỹ = ∇̃XY + 1

2 [X̃, Ỹ ]v for vector fields X,Y on H2.

Then the Riemannian connection of ˜PSL2(R) is calculated in the basis {Ei}
as follows:

∇E1E1 = ∇̃e1e1 = − λy

λ2
E2, ∇E2E2 = ∇̃e2e2 = − λx

λ2
E1.

As E3 is a unitary killing field, we have for 1 ≤ i ≤ 3,

〈∇E3E3,Ei〉 = −〈 ∇EiE3,E3〉 = 0,

hence,
∇E3E3 = 0.

For i, j ∈ {1,2}, we have

〈∇Ej Ei,Ej 〉 = −〈∇Ej Ej ,Ei〉 and 〈∇Ej Ei,Ei〉 = 0,

2〈∇EiEj ,E3〉 = 〈[Ei,Ej ],E3〉 − 〈[Ei,E3],E3〉 − 〈[Ej ,E3],E3〉,
and

[Ei,E3] = 0.

A direct computation of [E1,E2] gives

[E1,E2] =
λy

λ2
E1 − λx

λ2
E2 + ΛE3



MINIMAL SURFACES IN ˜PSL2(R) 677

with

Λ =
λ2

x + λ2
y

λ4
− λxx + λyy

λ3
= − Δlogλ

λ2
.

The last term of the equality is known to be the expression of the curvature,
of H2 in this case, in terms of the conformal factor in isothermal parameters.
Therefore, Λ = −1 and

〈 ∇E1E2,E3〉 = −〈 ∇E2E1,E3〉 = − 1
2
.

We thus obtain

∇E1E2 =
λy

λ2
E1 − 1

2
E3,

∇E2E1 =
λx

λ2
E2 +

1
2
E3.

Moreover the facts that for 1 ≤ i ≤ 2,

[Ei,E3] = 0, 〈 ∇E3Ei,Ei〉 = 0,

〈∇E3Ei,E3〉 = −〈∇E3E3,Ei〉 = 0,

〈∇E3E1,E2〉 = 〈∇E1E3,E2〉 = −〈 ∇E1E2,E3〉 =
1
2
,

〈∇E3E2,E1〉 = 〈∇E2E3,E1〉 = −〈 ∇E2E1,E3〉 = − 1
2

conclude that

∇E3E1 = ∇E1E3 =
1
2
E2,

∇E3E2 = ∇E2E3 = − 1
2
E1.

We resume our computation

∇E1E1 = − λy

λ2
E2, ∇E2E2 = − λx

λ2
E1,

∇E3E3 = 0,

∇E1E2 =
λy

λ2
E1 − 1

2
E3,

∇E2E1 =
λx

λ2
E2 +

1
2
E3,

∇E3E1 = ∇E1E3 =
1
2
E2,

∇E3E2 = ∇E2E3 = − 1
2
E1.

Remark 2.3. The equation ∇E3E3 = 0 is the geodesic equation for vertical
fibers.
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Remark 2.4. The fact that [E1,E2] is not horizontal implies that the
horizontal plane field generated by E1 and E2 is not integrable, meaning that
there exists no horizontal surfaces in ˜PSL2(R).

2.4. Isometries of ˜PSL2(R). It is known that ˜PSL2(R) has a four dimen-
sional isometry group. See [14] for example, a standard reference on the
geometries of 3-manifolds. However in [14] this group is characterized using
Lie group theory. In what follows is what the author of this paper found
a worth while simplified geometric characterization of this group based on
ideas from [14] and [2].

The metric induced on the tangent bundle TM of a Riemannian manifold
M is intrinsic enough that it is respected by the lifts of isometries of M to
TM . In fact, each map f ∈ C∞(M,M) lifts to a map df ∈ C∞(TM,TM) such
that df(p, v) = (f(p), dpf(v)). When f is an isometry, df induces isometries
on tangent spaces of TM . This can be easily seen as follows. Let (p, v) ∈ TM
and V ∈ T(p,v)(TM) and choose a curve α(t) = (p(t), v(t)) in TM such that
α(0) = (p, v) and α′(0) = V . We have,

‖dv(df)V ‖2
(f(p),dpf(v) = ‖dpf(p′(0))‖2

f(p) +
∥∥∥∥Ddf(v)

dt
(0)

∥∥∥∥2

f(p)

,

where D
dt is the covariant derivative along the curve β(t) = df(α(t)). As dpf

is an isometry and
Ddf(v)

dt
= df

(
Dv

dt

)
it follows directly that

‖d(p,v)(df)V ‖(f(p),dpf(v)) = ‖V ‖(p,v),

proving our claim.
In particular, the isometry group of ˜PSL2(R) contains the lifts of the

isometries of H2. We note also that vertical translations along the fibers
are isometries of ˜PSL2(R). These isometries read in coordinates as (x, y, z) →
(x, y, z + a). So the isometry group of ˜PSL2(R) contains the group G gener-
ated by the lifts of isometries of H2 and vertical translations. In fact, we shall
show that G contains all the isometries of ˜PSL2(R). We begin with proving
the following proposition found in [2].

Proposition 2.5. The sectional curvature along a plane
P ⊂ T(p,v)( ˜PSL2(R)) is maximal when P contains the line L(p,v), the line
tangent to the fiber at (p, v), and is minimal when P is orthogonal to L(p,v).

Proof. Let P be a plane generated by two orthonormal vectors X and Y .
Then the sectional curvature along P is given by 〈R(X,Y )X,Y 〉, where R is
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the curvature tensor of ˜PSL2(R). We have 〈R(X,Y )X,Y 〉 = −7
4 +2(〈X,ξ〉2 +

〈Y, ξ〉2) (see [5], Proposition 2.1). As ξ is unitary we have 〈X,ξ〉2 + 〈Y, ξ〉2 ≤ 1.
So the sectional curvature will be maximal when 〈X,ξ〉2 + 〈Y, ξ〉2 = 1, and this
is possible only when 〈ξ,Z〉 = 0 for any vector Z such that {X,Y,Z} forms an

orthonormal basis of the tangent space to ˜PSL2(R) at (p, v). This means that
the sectional curvature will be maximal when ξ ∈ P , that is, when P contains
the vertical line tangent to the fiber. Similarly, we show that the sectional
curvature is minimal when P is orthogonal to the vertical line tangent to the
fiber. �

We next show that isometries of ˜PSL2(R) are fiber preserving. The proposi-
tion above implies that the differential of an isometry ϕ sends L(p,v) to Lϕ(p,v).
This follows from the fact that the differential of an isometry will send two
planes along which the sectional curvature is maximal, to two planes along
which the curvature is maximal. As the fiber π−1(p), tangent at the point
(p, v) to L(p,v), is a geodesic, its image under ϕ is the geodesic tangent to
the line Lϕ(p,v) at the point ϕ(p, v). The fiber through ϕ(p, v) is a geodesic
tangent to the former line at ϕ(p, v), so we conclude that it is the geodesic in
question. We have then the following proposition.

Proposition 2.6. The isometries of ˜PSL2(R) are fiber preserving, that is,
the images by an isometry of two points lying on the same fiber belong to the
same fiber.

This property will allow each isometry of ˜PSL2(R) to induce an isometry
on H2 the following manner.

Lemma 2.7. Every isometry ϕ on ˜PSL2(R) induces an isometry f on H2

such that f ◦ π = π ◦ ϕ.

Proof. The equation f ◦ π = π ◦ ϕ defines f the obvious way as ϕ is fiber
preserving. For a vector v ∈ TpH2 such that v = d(p,v)π(V ), V is the horizontal
lift of v, we have dpf(v) = dpf(d(p,v)π(V )) = dϕ(p,v)π(d(p,v)ϕ(V )). As V is
horizontal and ϕ is an isometry, we have d(p,v)π(V ) also horizontal. The fact
that π is a Riemannian submersion concludes that f is indeed an isometry. �

We proceed to show the following technical lemma found in [14], which will

aid giving the finishing touch to our characterization of isometries of ˜PSL2(R).

Lemma 2.8. Fix a point (p, v) ∈ ˜PSL2(R). We may compose any isome-

try α of ˜PSL2(R) with isometries lying in G to obtain an isometry β which
fixes (p, v) and whose differential at (p, v) is the identity on the horizontal
tangent plane at (p, v).
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Proof. Let f be the isometry induced by α on H2. We compose α with
a vertical translation sending α(p, v) to (f(p), dpf(v)) to obtain an isometry α′

of ˜PSL2(R). Let df −1 denote the lift of f −1 to ˜PSL2(R) and set β = df −1 ◦ α′.

This is an isometry of ˜PSL2(R) fixing (p, v) and leaving each horizontal vector
at (p, v) invariant. In fact, for a horizontal vector V at (p, v) we have

d(p,v)β(V ) = d(f(p),dpf(v)) df −1
(
d(p,v)α(V )

)
.

We denote the restriction of dπ to horizontal tangent planes by dπ◦ and we
set w = dpπ(V ), so we have

d(p,v)α(V ) = dpf(w) and d(f(p),dpf(v)) df −1
(
d(p,v)α(V )

)
= dpπ

−1
◦ (w) = V.

We used the fact that d(p,v)dg(V ) = dpπ
−1

◦ (dpg(w)), for any lift dg of an
isometry g of H2. �

At this point, it is easy to prove our claim that G contains all the isome-
tries of ˜PSL2(R). Let ϕ be an isometry and (p, v) a point of ˜PSL2(R). We
compose ϕ with isometries in G and we obtain an isometry ψ which fixes
(p, v), and whose differential at (p, v) is the identity on the horizontal plane
at (p, v). Consequently, ψ leaves invariant the fiber through (p, v) as it is fiber
preserving.

Let � be a piecewise geodesic loop in H2 based at p with nontrivial holonomy
and �̃ be its horizontal lift to ˜PSL2(R) starting at (p, v). Let (p,w) denote
the other end of �̃. Now, ψ(�̃) is piecewise geodesic since so is �̃ and as ψ is
an isometry (see Remark 2.11 below). Since ψ fixes (p, v) and the horizontal
plane over there, we deduce that ψ(�̃) passes through (p, v) and has the same
horizontal tangent vector as �̃ there. Hence, ψ(�̃) equals �̃ and in particular
ψ must fix (p,w).

As ψ is an isometry and the points (p, v) and (p,w) are distinct, due to
nontrivial holonomy of the geodesic loop based at p below in H2, it follows
that ψ fixes each point of the fiber through (p, v). Then ψ is an isometry which
fixes a point and whose differential over there is the identity.This implies that
ψ leaves invariant geodesics through (p, v). As our manifold is complete, we
can join (p, v) to any other point by a geodesic. Being an isometry ψ fixes
each point of these geodesics and so ψ is the identity. This allows us to deduce
that ϕ is a composition of elements of G.

We resume the result in the following theorem.

Theorem 2.9. The isometry group of ˜PSL2(R) is generated by the lifts of
the isometries of H2 together with the vertical translations along the fibers.

Remark 2.10. Theorem 2.9 implies that the isometry group of ˜PSL2(R)
is four dimensional and contains no orientation reversing isometries.
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Remark 2.11. Assume that γ : t → γ(t) is a geodesic in H2 starting at

a point p. We can lift γ to a horizontal geodesic in ˜PSL2(R), one whose
velocity vector at each point is horizontal, starting at any point (p, v) in the
fiber above p. Fix such a point (p, v) and let v(t) be the parallel transport of
v along γ. The curve γ̄ : t → (γ(t), v(t)) starts at (p, v). The fact that v(t) is
parallel implies that γ̄ is horizontal. To show that γ̄ a geodesic, we suppose to
the contrary that it is not. We choose convex neighborhoods W ⊂ ˜PSL2(R)
of (p, v) and U ⊂ H2 of p such that π(W ) = U . Take two points Q1 = (q1,w1)
and Q2 = (q2,w2) in γ̄ ∩ W , joined by an arc ᾱ such that L(ᾱ) < L(γ̄) = L(γ).
In H2, γ is a minimizing geodesic joining q1 and q2. The arc α = π(ᾱ) verifies
L(α) ≤ L(ᾱ), which contradicts the fact that γ is length minimizing (see [6],
p. 79).

3. Minimal graphs in ˜PSL2(R)

We fix our model of ˜PSL2(R) as H2 × R endowed with the metric

ds2 = λ2(dx2 + dy2) +
(

− λy

λ
dx +

λx

λ
dy + dz

)2

,

as described above.
We denote by S◦ ⊂ ˜PSL2(R) the surface defined by z = 0. We identify

a domain Ω ⊂ H2 and its lift to S◦. We define the graph Σ(u) of u ∈ C0(Ω̄)
on Ω as

Σ(u) = {(x, y,u(x, y)) ∈ ˜PSL2(R)|(x, y) ∈ Ω}.

These graphs are basically images of sections of the bundle projection

π : ˜PSL2(R) → H2,

that is, images of maps s : Ω ⊂ H2 → ˜PSL2(R) with π ◦ s = IH2 . For such
a map let u(x, y) be the signed distance from the lift of (x, y) ∈ H2, the point

of ˜PSL2(R) whose coordinates are (x, y,0), to s(x, y) ∈ π−1(x, y) along the
geodesic fiber through (x, y,0). The fibers here being oriented positively by ξ.
This function u defined by s defines a graph, in the sense of the above def-
inition, which is the image of s. Clearly, each function u ∈ C0(Ω̄),Ω ⊂ H2,
defines a section of the bundle projection.

For a smooth function u set F (x, y, z) = z − u(x, y) so that Σ(u) = F −1(0).
As F is smooth, we will have

η =
∇F

| ∇F |
a unit normal field to Σ(u).
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A simple computation shows that

∇F =
(

λy

λ2
− ux

λ

)
E1 +

(
− λx

λ2
− uy

λ

)
E2 + E3.

Set

α =
λy

λ2
− ux

λ
, β = − λx

λ2
− uy

λ
and W = | ∇F | =

√
1 + α2 + β2,

so that

η =
α

W
E1 +

β

W
E2 +

1
W

E3.

We parameterize the graph of a smooth function u by

(x, y) → φ(x, y) = (x, y,u(x, y)),

with (x, y) ∈ Ω the domain of definition of u. It is easy to see that for the

metric on ˜PSL2(R) we have

〈φx, φx〉 = λ2(1 + α2), 〈φx, φy 〉 = λ2αβ, 〈φy, φy 〉 = λ2(1 + β2),

giving the metric induced on the graph

g = λ2
(
(1 + α2)dx2 + αβ dxdy + αβ dy dx + (1 + β2)dy2

)
.

To calculate the mean curvature H of Σ(u), with respect to the upwards point-

ing normal η, choose v1, v2 ∈ T ( ˜PSL2(R)) so that {v1, v2, η} is an orthonormal

basis of T ( ˜PSL2(R)). As η is a unitary field, we have 〈∇ηη, η〉 = 0 and

2H = −
2∑
1

〈∇viη, vi〉

= −
2∑
1

〈∇viη, vi〉 − 〈∇ηη, η〉

= − div (η).

Therefore 2H = − div( ∇F
|∇F| ), where div and ∇ denote respectively, the diver-

gence and the Levi–Civita connection in ˜PSL2(R).
Since E1 and E2 are the horizontal lifts of e1 and e2, the facts that ∇E3E3 =

0 and that π is a Riemannian submersion allow us to write

div
(

α

W
E1 +

β

W
E2

)
=

2∑
1

〈
∇Ei

(
α

W
E1 +

β

W
E2

)
,Ei

〉
˜PSL2(R)

=
2∑
1

〈
∇ei dπ

(
α

W
E1 +

β

W
E2

)
, ei

〉
H2

= divH2

(
α

λW
∂x +

β

λW
∂y

)
.
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Since E3 is a Killing field, we have div(E3) = 0, and

div
(

1
W

E3

)
=

〈
∇

(
1
W

)
,E3

〉
+

div(E3)
W

=
∂

∂z

(
1
W

)
= 0.

Therefore,

2H = divH2

(
α

λW
∂x +

β

λW
∂y

)
= divH2(dπ(η)).

We also have,

2H =
1
λ2

divR2

(
λα

W
∂x +

λβ

W
∂y

)
,

as divH2(X) = 1
λ2 divR2(λ2X) for any vector field X on H2. The equation of

a minimal graph is then

(3.1) divR2

(
λα

W
∂x +

λβ

W
∂y

)
= 0.

3.1. Examples of minimal surfaces and minimal graphs in ˜PSL2(R).
In this section, we find minimal graphs invariant under the action of the one
parameter groups of isometries of ˜PSL2(R) generated by the lifts of rotations,
parabolic and hyperbolic isometries of H2. We also determine the minimal
surfaces invariant under translation along the fibers.

Example 3.1. Let γ be a geodesic of H2. The vertical cylinder over γ,
Cγ = π−1(γ) ⊂ ˜PSL2(R), is a minimal surface and this can be seen as follows:
Let T and η be respectively a unit tangent field and a unit normal field to γ,
and let T̃ and η̃ be their corresponding horizontal lifts to ˜PSL2(R). We then
have {T̃ ,E3} an orthonormal basis on Cγ and η̃ a unit normal to Cγ . The
mean curvature of Cγ at a point v is then

2H = −〈∇̄T̃ η̃, T̃ 〉 − 〈 ∇̄E3 η̃,E3〉 − 〈 ∇̄η̃ η̃, η̃〉

= 〈∇̃H2

T T , η̃〉 = 〈∇H2

T T, η〉
= the geodesic curvature of γ at the point π(v),

and as γ is a geodesic we deduce that H = 0, and the cylinder Cγ is thus
minimal. We notice that these minimal surfaces are invariant under vertical
translations and they are in fact the only ones. A minimal surface invariant
under vertical translations is π−1(γ), where γ is a curve of H2. The geodesic
curvature of γ is shown again by the above computation to be zero and hence
γ is geodesic.

Example 3.2. The 1-parameter group of isometries of H2, given in the
half plane model of H2 by (x, y) → (εx, εy), induces a 1-parameter group of

isometries on ˜PSL2(R). In our model of ˜PSL2(R), these isometries read as
(x, y, z) → (εx, εy, z). A minimal graph invariant by this group of isometries is
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that of a solution u of (3.1) verifying u(r, θ) = u(θ), (r, θ) are polar coordinates
on the upper half plane. Here, we have

λ =
1
y
, α = −yux − 1 and β = −yuy, y > 0.

Let ω := W 2 = 1 + α2 + β2, equation (3.1) then implies

(3.2) ω

(
∂

∂x
(λα) +

∂

∂y
(λβ)

)
− λ

2
(αωx + βωy) = 0.

An invariant solution u verifies

ux =
∂θ

∂x
uθ = − sin θ

r
uθ,

uy =
∂θ

∂y
uθ =

cosθ

r
uθ,

ω = 2 − 2 sin2 θuθ + sin2 θu2
θ,

uxx =
(

∂θ

∂x

)2

uθθ +
∂2θ

∂2x
uθ =

sin2 θ

r2
uθθ + 2

sinθ cosθ

r2
uθ,

uyy =
(

∂θ

∂y

)2

uθθ +
∂2θ

∂2y
uθ =

cos2 θ

r2
uθθ − 2

sinθ cosθ

r2
uθ.

Equation (3.2) implies that

(3.3) ωuθθ − 1
2
ωθ(uθ − 1) = 0

from which we deduce that either:
(i) uθ = 1, or
(ii) 2 uθθ

uθ −1 = ωθ

ω

which is equivalent to
(uθ − 1)2

ω
= C, C ≥ 0.

The cases (i) and (ii) are resumed in

(1 − C sin2 θ)(u2
θ − 2uθ) = 2C − 1, C ≥ 0.

For 0 ≤ C < 1, this first integral defines a 1-parameter family of graphs over
the hyperbolic plane, given up to an additive constant by

u(r, θ) = u(θ) = ±
√

C

∫ θ

0

√
1 + cos2 θ√
1 − C sin2 θ

dθ + θ, 0 < θ < π.

For example, when C = 0 we obtain up to vertical translations, half a (Eu-
clidean) Helicoid over the hyperbolic plane.

When C = 1
2 the above solutions simplify to u(r, θ) = θ ± θ + constant. So

on the one hand we obtain up to vertical translations, half a Helicoid stretched
in the vertical direction. It is the surface over the hyperbolic plane obtained
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by rotating, in Euclidean terms, the x-axis about the z-axis, and translating
it vertically twice as fast. On the other hand we obtain translates of the
plane {z = 0} as invariant minimal surfaces which correspond to the solutions
u(r, θ) = constant.

For C = 1, we obtain solutions defined in the first and the second quadrants
of the hyperbolic plane. The solutions are

u(r, θ) = u(θ) =
∫ θ

0

√
1 + cos2 θ

cosθ
dθ + θ(

= −
∫ θ

0

√
1 + cos2 θ

cosθ
dθ + θ, respectively

)
, 0 < θ <

π

2
,

defined in the first quadrant and taking values 0 on the positive x-axis and
+∞ (−∞ respectively) on the y-axis. On the other hand, the solutions

u(r, θ) = u(θ) =
∫ θ

π
2

√
1 + cos2 θ

cosθ
dθ + θ(

= −
∫ θ

π
2

√
1 + cos2 θ

cosθ
dθ + θ, respectively

)
,

π

2
< θ < π,

defined in the second quadrant and taking values +∞ (−∞ respectively) on
the y-axis and 0 on the negative x-axis. The solutions obtained so far define
complete minimal graphs.

For C > 1, the equation 1 − C sin2 θ = 0 has two solutions, say θ1 and
θ2 = π − θ1, in ]0, π[ such that θ1 < π

2 < θ2. The first integral defines a
one-parameter family of disconnected graphs defined in the region {0 < θ <
θ1}

⋃
{θ2 < θ < π}. We have, up to additive constants, the solutions

u(r, θ) = u(θ) =
√

C

∫ θ

0

√
1 + cos2 θ√
1 − C sin2 θ

dθ + θ(
= −

√
C

∫ θ

0

√
1 + cos2 θ√
1 − C sin2 θ

dθ + θ, respectively
)

, 0 < θ < θ1,

and

u(r, θ) = u(θ) =
√

C

∫ π

θ

√
1 + cos2 θ√
1 − C sin2 θ

dθ + θ(
= −

√
C

∫ π

θ

√
1 + cos2 θ√
1 − C sin2 θ

dθ + θ, respectively
)

, θ2 < θ < π.

One can see easily that the solutions have finite values over the lines θ = θ1 and
θ = θ2 and admit vertical tangent planes over there. However, the solutions
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obtained for these values of the parameter C do not define complete minimal
graphs.

One obtains complete minimal surfaces above the region {0 < θ ≤ θ1} for
example, when one considers unions of graphs u(r, θ) above that region. We
consider the graphs obtained for both factors ±

√
C of the integral in the above

expression of u and translate them vertically to take values θ1 over θ = θ1.
To see that the union defines a regular surface above θ = θ1, we simply show
that θ is a smooth function of z near z = θ1.

We have z = u(θ) which implies that the derivatives of θ with respect to z
are given by

∂u

∂θ
=

1
θ′ and

∂2u

∂θ2
= − θ′ ′

θ′3 .

We compute ω and ωθ in terms of θ and its derivatives then substitute in
(3.3) to obtain after necessary simplifications,

(3.4) θ′ ′(2 − sin2 θ) + sinθ cosθ(θ′ − 1)(2θ′ − 1) = 0.

As the graphs u(r, θ) admit vertical tangent planes at the points z = θ1, θ
defines a C1-function of z and the equation (3.4) shows then that θ is in fact
smooth.

Example 3.3. Consider the disc model for the hyperbolic plane. Rotations,
in Euclidean terms, about the center of the disc are isometries of H2. The
lifts of these isometries to ˜PSL2(R), seen in our model, are Euclidean screw
motions. The image of a point (x, y, z) is obtained by rotating the (x, y) part
around the z-axis then translating it along the z-axis by the same amount.
We can then compose the lift of a rotation on H2 with a translation along
a vertical fiber to obtain an isometry of ˜PSL2(R) which is rotation about the

fiber. So, we have a 1-parameter group of isometries of ˜PSL2(R) which are,
in our model, rotations about the z-axis.

A minimal graph invariant by this group is that of a solution u of (3.2)
verifying u(r, θ) = u(r), (r, θ) polar coordinates on the disc.

Here we have,

λ =
1

1 − x2+y2

4

, α = − ux

λ
+

y

2
and β = − uy

λ
− x

2
, x2 + y2 < 4.

An invariant solution verifies

ux =
∂r

∂x
ur =

x

r
ur,

uy =
∂r

∂y
ur =

y

r
ur,

ω = 1 +
r2

4
+

1
λ2

u2
r,
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uxx =
(

∂r

∂x

)2

urr +
∂2r

∂2x
ur =

x2

r2
urr +

y2

r3
ur,

uyy =
(

∂r

∂y

)2

urr +
∂2r

∂2y
ur =

y2

r2
urr +

x2

r2
ur.

Equation (3.2) implies that

ω

(
urr +

1
r
ur

)
− 1

2
urωr = 0,

from which we deduce that either

(i) u ≡ constant, or
(ii) 2urr

ur
+ 2

r = ωr

ω

which is equivalent to

r2u2
r = Cω, C > 0.

This implies that

ur = ±2

√
r2 + 4

Cr2 − (r2 − 4)2
,

with C > 0 and 0 < r◦ < r < 2, r◦ =
√

8+C−
√

(8+C)2−64

2 .
Remark that ur(r◦) = ±∞ and that the solutions are either increasing or

decreasing in r. In a fashion similar to that in the above example, we show
that the union of the graphs corresponding to both values of ur and taking
the value 0 at r◦ define a regular surface. Then this first integral defines up
to vertical translations, a family of minimal surfaces of catenary type. As C
varies in ]0,+∞[ the asymptotic angles at infinity between the members of
the family and the cylinder ∂H2 × R assume all the values in ]0, π[.

Remark also that up to a vertical translation, when C → +∞, r◦ → 0 and
the limit surface is the doubly covered hyperbolic plane (identified with z = 0).
When C → 0, r◦ → 2 and up to a vertical translation the family degenerates
to the circle at infinity ∂H2 (doubly covered).

Example 3.4. The 1-parameter group of isometries of H2, given in the
half plane model of H2 by (x, y) → (x + a, y), induces a 1-parameter group of

isometries on ˜PSL2(R). In our model of ˜PSL2(R), these isometries read as
(x, y, z) → (x + a, y, z).

A minimal graph invariant by this group of isometries is that of a solution
u of (3.1) verifying u(x, y) = u(y), y > 0.

We have

λ =
1
y
, α = −1, β = −yuy and ω = 2 + y2u2

y,
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and so equation (3.2) implies that

ωuyy − 1
2
uyωy = 0.

We deduce that either u ≡ constant, or uy = ±
√

2√
C2−y2

,C > 0. This equation

defines up to additive constants, surfaces symmetric (in Euclidean terms) with
respect to {z = 0}. These surfaces are the union of the two graphs

u(x, y) = ±
√

2arcsin
(

y

C

)
∓

√
2π

2

over the region {0 < y ≤ C}. As C → +∞ the limit surface is {z = 0} (doubly
covered).

Remark 3.5. There exists no compact complete minimal surface in
˜PSL2(R). For otherwise, if such a surface Σ exists, we may then trans-

late down any minimal surface z = constant not intersecting Σ until there
is a first contact point. This implies that the two surfaces are tangent and
one above the other. By the maximum principle, Σ will be equal to a surface
z = constant. This is a contradiction as the surfaces z = constant are not
compact.

4. Gradient estimates

We will next prove an estimate for the gradient of a solution u : Ω ⊂ H2 → R

of (3.1) following the lines of proof of Theorem 1.1 in [16], which will be
fundamental for proving later results. For this aim, we will need the following
formulae which hold for surfaces in 3-manifolds and in particular for surfaces
Σ ⊂ ˜PSL2(R):

| ∇Σf |2 = | ∇f̃ |2 − 〈∇f̃ , η〉2,(4.1)

ΔΣf = 2〈∇f̃ , η〉H + Δf̃ − 〈∇η ∇f̃ , η〉,(4.2)

ΔΣg(f) = g′(f)ΔΣf + g′ ′(f)| ∇Σf |2,(4.3)

where f is a function defined on Σ, or the restriction to Σ of a function

f̃ : ˜PSL2(R) → R2,

H is the mean curvature of Σ and η a unit normal field on Σ. We will also
need the following fact, if X : M → N is a constant mean curvature isometric
immersion of a surface M in a 3-manifold N , and if η is a unit normal field to
M and ξ a Killing field on N then the function n = 〈η, ξ〉 verifies the following
equation

(4.4) ΔΣn = −
(

|A|2 + Ric(η)
)
n,

where |A| is the norm of the second fundamental form of M and Ric is the
Ricci curvature of N .
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For minimal graphs in ˜PSL2(R), n = 1
W , so that

(4.5) ΔΣ
1
W

= −
(

|A|2 + Ric(η)
) 1
W

with
Ric(η) = − 3

2
+

2
W 2

,

which we compute using the equations of Proposition 2.1 in [5].

Remark 4.1. Equation (4.5) implies that minimal graphs in ˜PSL2(R) are
stable. This follows directly from the definition of stability of a minimal
surface and Theorem 1 in [8].

We finally note that a function φ : Ω → R lifts as a section of π to a function
on ˜PSL2(R), whose restriction to Σ will be also denoted by φ. Then using
(4.1) we obtain

| ∇Σφ|2Σ =
1

λ2W 2

(
(φ2

x + φ2
y) + (βφx − αφy)2

)
which implies that

(4.6) | ∇Σφ|2Σ ≥ 1
W 2

|Dφ|2H2 .

Theorem 4.2. Let u be a nonnegative solution of the minimal surface
equation (3.1) in a bounded domain Ω ⊂ H2. Then at each point p ∈ Ω we
have

W (p) ≤ C,

where C is a positive constant which depends only on u(p), the distance of p
to ∂Ω and on bounds of λ and its derivatives on Ω.

Proof. We fix a point p ∈ Ω. We introduce the function f = μ(x)W on a
geodesic ball Bρ(p) ⊂ Ω ⊂ H2, for which we will derive a maximum principle
by computing ΔΣf . The function μ is to be defined. We have

ΔΣf = WΔΣμ + 2〈∇ΣW, ∇Σμ〉 + μΔΣW

= WΔΣμ +
2
W

(〈∇ΣW, ∇Σf 〉 − μ| ∇ΣW |2) + μΔΣW.

We then obtain

ΔΣf − 2
W

〈∇ΣW, ∇Σf 〉 = μ

(
ΔΣW − 2

W
| ∇ΣW |2

)
+ WΔΣμ.

However, from (4.3), we get

ΔΣ
1
W

= − 1
W 2

ΔΣW +
2

W 3
| ∇ΣW |2,

and (4.4) then implies that

ΔΣW − 2
W

| ∇ΣW |2 =
(

|A|2 + Ric(η)
)
W,
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so that

ΔΣW − 2
W

| ∇ΣW |2 ≥ Ric(η)W ≥ − 3
2
W.

We get

ΔΣf − 2
W

〈∇ΣW, ∇Σf 〉 ≥ W

(
ΔΣμ − 3

2
μ

)
.

The idea is to define μ so that ΔΣμ − 3
2μ > 0.

We set

μ(x) = eKφ − 1 and φ(x) = − u(x)
2u◦

+ 1 −
(

d(x)
ρ

)2

on the ball B(p, ρ), where u◦ = u(p), d is the geodesic distance from p and
K > 0 a constant to be determined. We next bound ΔΣμ − 3

2μ from below.
Using (4.3), we obtain

ΔΣμ = KeKφΔΣφ + K2eKφ| ∇Σφ|2.

As u = h|Σ , h = z in the given model of ˜PSL2(R) and Σ minimal, (4.2) implies
that

ΔΣu = Δh − 〈 ∇η ∇h, η〉,
showing that we can bound ΔΣu by a constant independent of u. Similarly,
we bound ΔΣd2 which shows that

ΔΣφ ≥ −C1

(
1
u◦

+
1
ρ2

)
,

where C1 is a constant. The inequality (4.6) implies that in Bρ(p)

| ∇Σφ|2Σ ≥ 1
W 2

|Dφ|2H2 ≥ 1
W 2

( |Du|2
H2

4u2
◦

− 2
u◦ρ

|Du|H2

)
,

which implies that when

|Du|H2 ≥ 16u◦
ρ

we have

| ∇Σφ|2Σ ≥ |Du|2
H2

8u2
◦W 2

.

Now as

(4.7) W 2 ≤ 1 + 2|Du|2H2 + 2
((

λx

λ2

)2

+
(

λy

λ2

)2)
we obtain

|Du|2
H2

W 2
≥ C2

|Du|2
H2

1 + |Du|2
H2

,
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where C2 is a positive constant which depends only on bounds of λ and its
derivatives over Ω. Hence, on the set where |Du|H2 > max(1, 16u◦

ρ ) we find

ΔΣμ − 3
2
μ ≥ C ′eKφ

(
C

u2
◦
K2 −

(
1
u◦

+
1
ρ2

)
K − 1

)
,

where C and C ′ are positive constants which depend on bounds of λ and its
derivatives. We next choose

K >
u2

◦
2C

(
1
u◦

+
1
ρ2

+

√(
1
u◦

+
1
ρ2

)2

+
4C

u2
◦

)
so that ΔΣμ − 3

2μ > 0 on the set |Du|H2 > max(1, 16u◦
ρ ).

If

|Du|H2 ≤ max
(

1,
16u◦

ρ

)
then inequality (4.7) proves our claim on W (p). Otherwise, we consider the
open set

U =
{

x ∈ Bρ(p)/φ > 0, |Du|H2 > max
(

1,
16u◦

ρ

)}
,

and note that p ∈ U . Then by the maximum principle, the point p◦ where
f achieves its maximum on U belongs to ∂U with f(p◦) > 0. As φ < 0 on
∂Bρ(p), we have

∂U ∩ ∂Bρ(p) = ∅
and therefore

p◦ ∈
{

|Du|H2 = max
(

1,
16u◦

ρ

)}
∩ {φ > 0}.

Therefore,

f(p) = μ(p)W (p) ≤ Cμ(p◦)

√
1 + max2

(
1,

16u◦
ρ

)
and

W (p) ≤ Ce
K
2

√
1 + max2

(
1,

16u◦
ρ

)
,

where C is a positive constant which depends only on bounds of λ and its
derivatives. The proof is completed. �

Corollary 4.3. Let u be a bounded solution of the minimal surface equa-
tion (3.1) in a domain Ω ⊂ H2. Then at any point p ∈ Ω we have

W (p) ≤ C,

where C is a positive constant which depends only on max∂Ω |u|, the distance
of p to ∂Ω and on bounds of λ and its derivatives on Ω.
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Theorem 4.4. Let u be a solution of the minimal surface equation (3.1)
in Ω with W ≤ M at a point p ∈ Ω. Then there exists R, which depends only
on M,u(p) and d(p, ∂Ω), such that W ≤ 2M on D(p,R).

Proof. We shall derive an estimate on ‖ ∇W ‖, the norm of the R2-gradient
of W , from which the bound on W follows readily. The graph of u is
parametrized by

(x, y) −→ ψ(x, y) = (x, y,u(x, y)),
and a unit normal field to the graph is

η =
α

W
E1 +

β

W
E2 +

1
W

E3.

The partial derivatives of ψ,

ψx = ∂x + ux∂z = λE1 − λαE3

and
ψy = ∂y + ux∂z = λE2 − λβE3,

are such that

‖ψx‖2
˜PSL2(R)

≤ λW and ‖ψy ‖2
˜PSL2(R)

≤ λW.

We shall estimate the partial derivatives of α and β by applying the Schoen
curvature estimate. For this purpose, we need to calculate ‖∇ψxη‖,

∇ψxη =
∂

∂x

(
α

W

)
E1 +

α

W
(λ∇E1E1 − λα∇E3E1)

+
∂

∂x

(
β

W

)
E2 +

β

W
(λ∇E1E2 − λα∇E3E2)

+
∂

∂x

(
1
W

)
E3 +

1
W

(λ∇E1E3 − λα∇E3E3),

so that
∇ψxη = U + V

with

U =
(

∂

∂x

(
α

W

)
+

λy

λ

β

W

)
E1

+
(

∂

∂x

(
β

W

)
− λy

λ

α

W

)
E2

+
∂

∂x

(
1
W

)
E3

and

V =
λαβ

2W
E1 +

λ(1 − α2)
2W

E2 − λβ

2W
E3.
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It is easy to see that

‖U ‖2
˜PSL2(R)

≤ 2
(

‖ ∇ψxη‖2
˜PSL2(R)

+ ‖V ‖2
˜PSL2(R)

)
.

We wish to estimate ‖U ‖ ˜PSL2(R)
as it is the term which contains derivatives

of α and β. We have
∂

∂x

(
α

W

)
=

1
W 3

(
(1 + β2)αx − αββx

)
,

∂

∂x

(
β

W

)
=

1
W 3

(
(1 + α2)βx − αβαx

)
,

∂

∂x

(
1
W

)
= − ααx + ββx

W 3
.

Therefore,

‖U ‖2
˜PSL2(R)

=
1

W 4
(α2

x + β2
x) +

(
1

W 2
(αxβ − αβx) +

λy

λ

)2

−
(

λy

λ

)2 1
W 2

.

Its easy to see that
‖V ‖ ˜PSL2(R)

≤ λW.

The shape operator of the graph, which is stable (cf. Remark 4.1), is Ãψx =
−∇ψxη. Schoen’s curvature estimate implies that |Ã| ≤ C in a disc about each

point on the graph, where C is a constant which depends only on the ˜PSL2(R)
distance of the point from the boundary of the graph. The inequality

‖Ãψx‖ ˜PSL2(R)
≤ |Ã| ‖ψx‖ ˜PSL2(R)

,

implies that at each point p ∈ Ω

α2
x + β2

x ≤ λ2CW 6 + λ2W 6 +
(

λy

λ

)2

W 2,

and yet
α2

x + β2
x ≤ CW 6,

C is a constant which depends only on u(p), the distance of p from ∂Ω and
on bounds of λ and its derivatives over compacts of Ω.

Similarly, we obtain
∇ψyη = U ′ + V ′

with

U ′ =
(

∂

∂y

(
α

W

)
− λx

λ

β

W

)
E1

+
(

∂

∂y

(
β

W

)
+

λx

λ

α

W

)
E2

+
∂

∂y

(
1
W

)
E3,
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and

V ′ =
λ(β2 − 1)

2W
E1 − λαβ

2W
E2 +

λα

2W
E3.

The facts

‖U ′ ‖2
˜PSL2(R)

=
1

W 4
(α2

y + β2
y) +

(
1

W 2
(αβy − βαy) +

λx

λ

)2

−
(

λx

λ

)2 1
W 2

,

and
‖V ′ ‖ ≤ λW

imply that
α2

y + β2
y ≤ CW 6,

C is a constant which depends only on Ω, u(p) and the distance of p from the
boundary of Ω.

Note that ∇W = 1
W (ααx + ββx, ααy + ββy), hence the estimates obtained

on the partial derivatives of α and β imply that at each point p ∈ Ω,

‖ ∇W ‖ ≤ CW 3.

This estimate will allow us to conclude our proof. Let R = 1
2dR2(p, ∂Ω) and

introduce the function f(r) = W (r, θ) in D(p,R) ⊂ Ω, where r and θ are the
polar coordinates with origin p. We fix θ �= 0 and we remark that f(0) =
W (p) ≤ M and

f ′(r) =
∂W

∂r
≤ ‖ ∇W ‖ ≤ Cf(r)3.

Integrating this inequality, we obtain that f(r) ≤ 2M for r ∈ [0, 3
8M2C [, which

reads into W is bounded by 2M on D(p,min(R, 3
8M2C )). �

The above estimates imply that the first and second derivatives of a solution
u at a point p, admit bounds which depend only on the value of u at p, the
distance of p from the boundary and on Ω. Then the classical Ascoli theorem
implies the following.

Compactness principle. Let (un) be a uniformly bounded sequence of
solutions of the minimal surface equation (3.1) in a domain Ω. Then there
exists a subsequence which converges to a solution in Ω, the convergence being
uniform on every compact subset of Ω.

5. Preliminary existence theorems

In what follows, C will denote a rectifiable Jordan curve in ˜PSL2(R). Let

D denote the solution of the Plateau problem for C (exists as ˜PSL2(R) is
homogeneous, see [11]), a compact minimal disc with least area, having C as
boundary. It is known that D has a tangent plane at each interior point, see
[10]. Let h denote the function defined on ˜PSL2(R) whose expression in the
model described above is h = z and set mC = minC(h) and MC = maxC(h).
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We suppose that m < M for our curve C for otherwise D will be a piece of
a surface defined by h = constant.

For a curve γ ⊂ H2, we denote C(γ) the convex hull of γ, that is, the smallest
(geodesically) convex subset of H2 containing γ and RC = π−1(C(π(C))), the

region in ˜PSL2(R) above the convex hull of the projection of C. Note that C
is contained in RC . The following proposition corresponds in R3 to the result
that a minimal surface is contained in the convex hull of its boundary.

Proposition 5.1. The minimal disc D is contained in RC

⋂
{mC ≤ h ≤

MC }.

Proof. There exists a minimal disc Δ defined by h = constant not inter-
secting D. If D had an interior point p above (respectively below) all other
points of C, we would translate Δ downwards (respectively, upwards) along
vertical fibers so that Δ is eventually tangent to D. This is impossible by
the maximum principle as we assume h non-constant on C. Therefore, D
is contained in {mC ≤ h ≤ MC }. Similarly, we show that D is contained in
RC , except that instead of considering minimal discs h = constant, we con-
sider cylinders above geodesics of H2 and instead of vertical translation we
use the fact that these cylinders foliate ˜PSL2(R). Note that the interior of D
is strictly contained in the interior of RC

⋂
{mC ≤ h ≤ MC }. �

The next proposition asserts the existence of a solution for the Dirichlet’s
problem for the minimal surface equation in ˜PSL2(R), over a convex bounded
domain of H2 with prescribed continuous boundary data.

Proposition 5.2 (Rado’s lemma in ˜PSL2(R)). If C admits a one-to-one
projection onto a convex curve in H2, then the interior of D can be obtained
as the image of a minimal section of π.

Proof. Let C be a curve in H2 × R, as described above, which has a one-to-
one projection onto a convex curve of H2. We want to prove that the interior
of D is a graph over Ω, the open convex subset of H2 bounded by the π(C).

Consider a vertical translate D ′ of D, above D, such that D ∩ D ′ = ∅. We
suppose that D ◦ is not a graph, so that there are two distinct points P and
Q of D ◦, say P above Q, lying on the same fiber. Let P ′ and Q′ be the
corresponding translates of P and Q on D ′. We can translate D ′ down as
to have P ≡ Q′. So at one point, when translating D ′ down, a translate D ′

will have a first point of contact with D without having D ≡ D ′. By the
maximum principle, this point of contact is not interior to both discs. So
either the interior of one disc will touch the boundary of the other, or the
boundaries of both discs touch at first. However, the above proposition shows
that the interior of each disc lies in R◦

C , and the boundaries lie on ∂RC as they
have convex projections to H2. So we are left with the only possibility that
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the first point of contact is a boundary point for both, which is a contradiction
for the boundary is projected one-to-one into S◦. �

In the next proposition, we show that it is possible to claim existence of
solutions when boundary data has a finite set of discontinuities. We will first
prove the existence of a particular minimal graph which will be of use as
a barrier later on.

Lemma 5.3. Let T be an isosceles geodesic triangle in H2 with (open)
sides Si such that length(S1) = length(S2), and c ∈ R∗. Let Δ denote the
open bounded region of H2 bounded by T . There exists a solution u of the
minimal surface equation (3.1) defined in Δ ∪ {T − vertices of Si} such that
u = 0 on S1 and S2, and u = c on S3.

Proof. Consider such a triangle in S◦ and let C ⊂ ˜PSL2(R) be the Jordan
curve formed by S1, S2, the translate of S3 to height h = c, and the two fiber
segments joining the vertices of S3 to those of its translate. Let Σ be the
interior of the solution of the Plateau problem for C. We shall show that Σ is
a graph, thus showing the existence of our minimal section with the desired
values on ∂T .

Assume to the contrary that Σ is not a graph, so that there exist two
points P and Q of Σ lying on the same fiber, say P above Q, with d(P,Q) =
d > 0. Let fε be a family of isometries of H2 converging to the identity in
C1-topology, such that

fε(Si)
⋂

C(T ) = ∅, i = 1,2.

Let f̃ε denote the lift of fε to ˜PSL2(R) as explained in Section 2.4, and
Σε,t = f̃ε(Σ) + (0,0, t), c · t > 0. For |t| ≥ d and ε small enough, we have

Σε,t ∩ C = ∅ and ∂Σε,t ∩ Σ = ∅.

We suppose, without loss of generality, that c > 0 and we remark that for ε
small enough we’ll have ∥∥f̃ε − Id ˜PSL2(R)

∥∥
∞ <

d

2
.

To see the former equality, we remark that the boundary of Σε,d is composed of
the arcs Cε,i = f̃ε(Si)+(0,0, d), plus the fiber segments joining the extremities
of Cε,1 to Cε,3 and Cε,2 to Cε,3. We can see that

h|Cε,i >
d

2
(i = 1,2) and h|Cε,3 > c +

d

2
.

Then these inequalities show that for ε small enough Σε,d is above z = d
2 and

hence
Σε,d ∩ Si = ∅.
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Moreover, Σε,d lies in π−1(fε(T )) by Proposition 5.1, so that

Σε,d ∩ CS3 = ∅,

where CS3 is the cylinder above S3, completing the proof that Σε,d ∩ C = ∅.
To show that ∂Σε,d ∩ Σ = ∅, we first need to remark that Σ ⊂ π−1(T ). This

implies that Σ cannot intersect but possibly Cε,3 of ∂Σε,d. However, the fact
that z|Cε,3 > c+ d

2 shows no intersection in this case either as Σ is below z = c.
Therefore,

∂Σε,d ∩ Σ = ∅.

Now the maximum principle implies that for ε small enough we have

Σε,d ∩ Σ = ∅.

If we let ε → 0 we shall thus obtain that the limit surface, Σd = Σ + (0,0, d),
tangent to Σ at P ∈ Σ. By the maximum principle, the two surfaces should
be equal; a contradiction. Therefore, Σ is a graph as was claimed. �

We now extend the result of Proposition 5.2 to include Jordan curves con-
taining finitely many vertical fiber segments.

Proposition 5.4. Let Ω be a bounded convex domain in H2 and consider
a finite set of boundary points of Ω. Let C denote the remaining boundary of
Ω, which consists of a finite number of open arcs. Then there exists a solution
of the minimal surface equation in Ω taking preassigned bounded continuous
data on the arcs C.

Proof. Let f be the bounded continuous data on C and fn a bounded
sequence of continuous functions on ∂Ω which converges uniformly to f on
compacts of C. Let un be the solution of the minimal surface equation in
Ω with boundary values fn. Proposition 5.1 implies that the sequence un

is uniformly bounded on compact sets of Ω, and hence by the compactness
principle admits a subsequence which converges to a solution u in Ω.

The function u takes the values f on C as shown below using a standard
barrier technique. Indeed, there exist barriers at each point of C, i.e., at
each point P of C and for each pair of positive numbers K and δ, there exist
a neighborhood V of P and a nonnegative solution v in V ∩ Ω such that:

(i) V ∩ Ω is contained in the geodesic disc of radius δ about P ,
(ii) v ≥ K on ∂V ∩ Ω,
(iii) v = 0 at P .

We may take V to be an isosceles triangle, having its equal sides intersecting
in Ω and tangent to ∂Ω at P on its third side, and v the solution in this
triangle which takes values K on the equal sides and 0 on the third side. The
existence of v is assured by Lemma 5.3. We shall show that u extends by
continuity to f along C. Let P ∈ ∂Ω, fix ε > 0 and let v be a barrier at P
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defined in a triangle V as described above. As fn is continuous at P , then
∂Ω contains a neighborhood of P on which

fn < f + ε.

The continuity of f at P allows us to assume that in this neighborhood

fn < f(P ) + 2ε

and hence in this neighborhood

fn < v + f(P ) + 2ε.

We choose K such that

sup
∂V ∩Ω

(un) < K + f(P )

for the maximum principle would then imply the following inequality

un < v + f(P ) + 2ε in V ∩ Ω.

Taking n → ∞ implies that

u(x) ≤ v(x) + f(P ) + 2ε in V ∩ Ω.

By a similar argument, we obtain the inequality

u(x) ≥ w(x) + f(P ) − 2ε in V ∩ Ω,

where w is the barrier in the triangle V , chosen as for v above, except that w
takes values −K on the equal sides and 0 on the third side. The constant K
is chosen such that

inf
∂V ∩Ω

(un) > −K + f(P ).

Taking ε → 0 and x → P , we get that limx→P u(x) = f(P ) and the proof is
completed. �

6. The conjugate function

Let u be a solution of the minimal surface equation in a simply connected
domain Ω. The equation

divR2

(
λα

W
∂x +

λβ

W
∂y

)
= 0

amounts to the fact that the differential

ω =
−λβ

W
dx +

λα

W
dy

is exact in Ω. We may then consider the function ψ defined in Ω, such that
dψ = ω, and we shall call it the conjugate function of u. The gradient of ψ,
for the H2-metric, is

Dψ =
−β

λW
∂x +

α

λW
∂y
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and

|Dψ|H2 =

√
α2 + β2

W
< 1,

it follows that ψ is Lipschitz continuous and hence extends continuously to
the closure of Ω and hence dψ may be integrated along boundary arcs of Ω
regardless of the boundary values of u. The following is obvious.

Lemma 6.1. Let u be a solution of the minimal surface equation in a
bounded domain Ω ⊂ H2 and C a piecewise smooth curve lying in the clo-
sure of Ω. Then, ∣∣∣∣∫

C

dψ

∣∣∣∣ ≤ |C|,

where |C| denotes the H2-length of C.
Moreover, if C is a simple closed curve then∫

C

dψ = 0.

We remark that if C lies in Ω, the fact that |Dψ| < 1 implies that∣∣∣∣∫
C

dψ

∣∣∣∣ < |C|.

We show next that this will be the case when C is a convex arc of the boundary
of Ω, provided that u is continuous there.

Lemma 6.2. Let u be a solution of the minimal surface equation in a do-
main Ω and C a convex arc of the boundary of Ω. If u is continuous on C,
then ∣∣∣∣∫

C

dψ

∣∣∣∣ < |C|.

Proof. It is clearly enough to prove the result for a sub-arc of C; this allows
us to assume, without loss of generality, that Ω is convex with u continuous
on its boundary. Let C ′ denote the open sub-arc of the boundary which
is complementary to C and let a be a real constant. The minimal surface
equation admits a solution u∗ which is equal to u on C ′ and u + a on C, as
guaranteed by the above results.

We set
ũ = u∗ − u and ψ̃ = ψ∗ − ψ.

Observe that ũx = −λ(α∗ − α) and ũy = −λ(β∗ − β), then integration by parts
and a standard “approximation” at the end-points of C show that∫

∂Ω

ũ dψ̃ = −
∫

Ω

[
ũx

(
λα

W
− λα∗

W ∗

)
+ ũy

(
λβ

W
− λβ∗

W ∗

)]
dxdy

= −
∫

Ω

λ2(β − β∗)
(

β

W
− β∗

W ∗

)
+ λ2(α − α∗)

(
α

W
− α∗

W ∗

)
dxdy
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= −
∫

Ω

〈Wη − W ∗η∗, η − η∗ 〉 ˜PSL2(R)
dAH2

= −
∫

Ω

(W + W ∗)
2

(η − η∗)2 dAH2 ,

where α∗, β∗, W ∗ and η∗ are defined in terms the partial derivatives of u∗ in
the same fashion we defined α, β, W and η in terms of the partial derivatives
of u. The field η∗ is normal to the graph of u∗.

The above computation then implies that

a

∫
C

dψ̃ < 0.

Using the fact that ∣∣∣∣∫
C

dψ∗
∣∣∣∣ ≤ |C|

and giving a the values ±1 complete the proof. �

Lemma 6.3. Let Ω be a domain in H2 whose boundary contains a geodesic
segment Γ. Suppose that ∂Ω is oriented so that the orientation on Γ coincides
with that induced by the outward pointing normal to Γ. If u is a solution of
the minimal surface equation in Ω assuming boundary value plus infinity on
Γ, then ∫

Γ

dψ = |Γ|.

Proof. We consider the half plane model for the hyperbolic plane. We
can suppose that Ω ⊂ {x < 0, y > 0} and that Γ is a segment of the geodesic
{x = 0, y > 0} of H2.

We remark that the H2-gradient of ψ, the conjugate function of u, is

Dψ = Rot π
2

dπ(η),

where η is the upwards pointing unit normal to the graph Σ of u, and we
show that η extends continuously to the boundary segment Γ.

We think of ˜PSL2(R) as a subset of R3 and we choose a sequence (pn) of
points with constant ordinates in Ω which converges to an interior point p
of Γ. We set μn = d(p, pn) and qn = (pn, u(pn)) and we consider the affine
transformations hn(X) = 1√

μn
(X − qn) on R3.

Let Σn = hn(Σ) and note that 0 ∈ Σn, for all n, and that the normal ηn to
Σn at the origin is the same as that of Σ at the point qn. It is then enough
to show ηn(0) admits a limit as n → ∞ and define η(p) as this limit.

We admit for now that the sequence (An), An the second fundamental
form of Σn for the Euclidean metric, is uniformly bounded in a neighborhood
of the origin, a claim we will prove below. Hence, the sequence Σn converges
on this neighborhood, up to a subsequence. As Σn is contained in {x ≤ √

μn}
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and asymptotic to the plane {x =
√

μn}, the limit surface will be tangent to
the plane {x = 0} at the origin.

The sequence (Nn), Nn the normal to Σn for the Euclidean metric at the
origin, therefore converges to ∂x. However the equality

ηn =
G−1Nn√

〈G−1Nn,Nn〉
R3

,

where the matrix G is such that 〈X,Y 〉 ˜PSL2(R)
= 〈GX,Y 〉R3 , implies that ηn

is also convergent and this proves our claim that η extends by continuity to
the interior of Γ.

The facts that at interior points of Γ

〈η,E3〉 ˜PSL2(R)
= lim〈ηn,E3〉 ˜PSL2(R)

=
〈∂x,E3〉R3√

〈G−1∂x, ∂x〉R3

= 0

and

〈dπ(η), e2〉H2 = 〈η,E2〉 ˜PSL2(R)

=
〈∂x,E2〉R3√

〈G−1∂x, ∂x〉R3

= 0

imply that the extension of η to the boundary is such that

〈dπ(η), e1〉H2 = −1,

e1 being also the outwards pointing normal to Γ.
Now as Rot π

2
preserves the metric on tangent spaces of H2 and as Γ is

oriented by e1 we obtain,∫
Γ

dψ = −
∫

Γ

〈Dψ,e2〉H2 ds

= −
∫

Γ

〈Rot π
2

dπ(η), e2〉H2 ds

= −
∫

Γ

〈dπ(η), e1〉H2 ds

= |Γ|.

To complete the proof, we now estimate the second fundamental form An

of Σn. Since u → ∞ when p → Γ we may choose discs D(qn,R) centered at
qn in Σ with intrinsic radius R independent of n, and since minimal graphs
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in ˜PSL2(R) are stable (see Remark 4.1), Schoen’s curvature estimate implies
that

|Ã| ≤ C in D
(

qn,
R

2

)
,

where Ã is the second fundamental form of Σ for the ˜PSL2(R) metric and C
is an absolute constant.

However, if N and A denote the normal and the second fundamental form
of Σ with respect to the Euclidean metric we have

Ã(X,Y ) = 〈∇XY, η〉 ˜PSL2(R)

=
〈∇XY,N 〉R3√

〈G−1N,N 〉R3

=
1√

〈G−1N,N 〉R3

(〈∇XY,N 〉R3 + 〈 ∇XY − ∇XY,N 〉R3),

where ∇ is the Levi–Cevita connection of Σ for the Euclidean metric. Then
Ã controls A as follows

A(X,Y ) ≤
√

〈G−1N,N 〉R3Ã(X,Y ) − 〈∇XY − ∇XY,N 〉R3 .

The tensor ∇XY − ∇XY can be easily seen to be controlled by ‖X‖, ‖Y ‖
and the Christofel symbols of ˜PSL2(R) which shows that |A| is bounded in
a neighborhood of qn. Then Ãn, the second fundamental form of Σn with
respect to ˜PSL2(R) metric, is bounded by C

√
μn in the disc D(0, R

2
√

μn
). In

a similar fashion, one obtains the following estimates

An(X,Y ) ≤
√

〈G−1Nn,Nn〉Ãn(X,Y ) − 〈∇XY − ∇XY,Nn〉,

which imply that (An)n is uniformly bounded in a neighborhood of the origin
and the proof is completed. �

Lemma 6.4. Let Ω be a domain in H2 as in Lemma 6.3 and let (un) be
a sequence of solutions of (1) in Ω. Assume that each (un) is continuous in
Ω ∪ Γ and that (un) diverges uniformly to infinity on compact subsets of Γ
while remaining uniformly bounded on compact subsets of Ω. Then

lim
n→∞

∫
Γ

dψn = |Γ|.

On the other hand, if the sequence diverges uniformly to infinity on compact
subsets of Ω while remaining uniformly bounded on compact subsets of Γ, then

lim
n→∞

∫
Γ

dψn = −|Γ|.
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Proof. We follow the same lines of proof as in Lemma 6.3 except that we
choose the points qn = (pn, un(pn)) instead, where (pn) is in Ω and converges
to an interior point of Γ. We consider the surfaces Sn = hn(Σn) in R3, where
Σn is the graph of un and hn is as defined in the proof of Lemma 6.3, for
purposes similar to those in that proof. We let An denote the second funda-
mental form of Sn and ηn the normal to Sn at the origin, which is the same
as that to Σn at qn.

The facts that un is continuous in Ω ∪ Γ and that the sequence (un) diverges
uniformly on compacts of Γ, allow us to choose discs centered at qn on Σn, of
radius R independent of n, as in the proof of Lemma 6.3.

Moreover, we note that the sequence (un) converges to a solution in Ω
with u taking the value +∞ on Γ. This fact together with Schoen’s curvature
estimate for each Σn, imply in a similar way as in the proof of Lemma 6.3
that (An)n is uniformly bounded in a D(0,R). The sequence (ηn) can then
be proved to converge to a horizontal vector η along Γ with

〈dπ(η), e1〉 = −1

and then

lim
n→∞

∫
Γ

dψn = −
∫

Γ

〈dπ(η), e1〉 ds = |Γ|.

To prove the second part of the lemma, we make the obvious adjustments to
the proof and further details are left to the reader. �

7. The monotone convergence theorem

Later existence results depend on the limit behavior of monotone sequences
of solutions of the minimal surface equation. In this section, we develop the
necessary tools to deal with these sequences. These are similar, as well as the
last two sections above, to the results in [9].

Lemma 7.1 (Straight Line lemma). Let Ω ⊂ H2 be a bounded domain whose
boundary consists of a geodesic segment γ and an arc C, with Ω lying on one
side of γ. Then for any compact K ⊂ Ω there exists N , depending only on the
distance from K to γ, such that

m − N ≤ u ≤ M + N in K,

for any solution u of the minimal surface equation (3.1) which is bounded in
Ω, with m ≤ u ≤ M on C.

Proof. Let f1 and f2 be two isometries of H2 sending the positive y-axis
to the geodesic Γ which contains γ such that the image of the quadrant Q1 =
{(x, y) | x > 0, y > 0} by f1 will contain Ω, and the image of the quadrant
Q2 = {(x, y) | x < 0, y > 0} will contain Ω. Let O = f1(Q1) = f2(Q2) and note
that the minimal graphs of Example 3.2 can be used to obtain a positive
solution and a negative solution of the minimal surface equation in O, which
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take respectively, the value +∞ and −∞ on Γ. Simply, let f̃1 and f̃2 denote
the respective lifts of f1 and f2 to ˜PSL2(R) and consider the images by f̃1 and
f̃2 of the graphs in Example 3.2, which correspond to C = 1 and defined over
Q1 and Q2 respectively. We obtain two graphs on O which, up to vertical
translations, have the desired properties. Assume these graphs to be those of
solutions v1 ≥ 0 and v2 ≤ 0 of (3.1).

Let u a solution of the minimal surface equation in Ω with m ≤ u ≤ M
on C. Then on the boundary of Ω we shall have

m + v2 ≤ u ≤ M + v1.

The maximum principle then implies that the inequalities hold in Ω. Now, for
any compact K of Ω ∪ C, let N = max{maxK v1, | minK v2| } which depends
only on the distance from K to γ. We clearly have that

m − N ≤ u ≤ M + N in K,

which concludes our proof. �

Remark 7.2. One direct consequence of this lemma is that no solution
of the minimal surface equation can take infinite values on a nongeodesic
boundary arc of a convex domain. Assume to the contrary that there exists
a solution u of (3.1) in a convex domain Ω taking the value +∞ (−∞) on
a nongeodesic open boundary arc C. By restricting ourselves to proper parts
of C we may assume U , the convex hull of C in Ω, bounded by C and its
end points and an open geodesic segment γ contained in Ω. We shall obtain
a contradiction by showing that u must be equal to +∞ (−∞) in U .

Let a = infγ u (= supγ u) which may be assumed a positive (negative) real
number (if we restrict ourselves to proper parts of C). For each n, let un be
the solution of the minimal surface equation in U taking the values n (−n)
on C and a on γ. By the maximum principle, we have then un ≤ u (un ≥ u)
in U . Hence, by the Straight Line lemma we have that on each compact in
U ∪ C and for each n, n − N ≤ un ≤ u (−n+N ≥ un ≤ u) with N independent
of n. Letting n → ∞ implies that u has infinite values in U which is absurd.

The following two theorems are essential for studying convergence of mono-
tone sequences of solutions.

Theorem 7.3 (Monotone convergence theorem). Let (un) be a monoton-
ically increasing sequence of solutions of the minimal surface equation in
a domain Ω. If the sequence is bounded at a point p ∈ Ω, then there exists
a nonempty open set U ⊂ Ω such that the sequence (un) converges to a solu-
tion in U , and diverges to infinity on the complement of U . The convergence
is uniform on compacts of U , and the divergence is uniform on compacts of
V = Ω − U .
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Proof. Assume that |u0| ≤ c near p, and consider the sequence of nonneg-
ative solutions (vn) such that vn = un + c. Hence, each Wn(p) ≤ Cn, where
Cn is the constant given by Theorem 4.2. Then Theorem 4.4 implies that
each Wn is bounded in a disc centered at p and of radius Rn, with Rn de-
pending on un(p), d(p, ∂Ω) and bounds of λ and its derivatives. As (un(p)) is
bounded, then we can find a disc D centered at p on which (Wn) is uniformly
bounded. The mean value theorem then implies that (un) is then uniformly
bounded in this disc. The compactness principle therefore implies that (un)
has a convergent subsequence and as (un) is monotone it converges on this
disc. The compactness principle implies also that the limit is a solution of the
minimal surface equation and so U is a nonempty open set. The divergence
is uniform on compacts of V as the sequence is monotonically increasing. �

The divergence set V is by no means arbitrary, it has a very particular
geometric structure. We resume the properties of V in the following theorem.

Theorem 7.4 (Divergence set structure theorem). Let (un) be a monoton-
ically increasing sequence of solutions in Ω. If the divergence set V �= ∅, then
int(V ) �= ∅, and ∂V is composed of nonintersecting geodesic segments of Ω
and possibly parts of ∂Ω. Moreover, no two interior geodesic segments of ∂V
can have a common end point at a convex corner of V , nor any component of
V consist only of a geodesic segment of Ω.

Furthermore, if Ω is bounded in part by a convex arc C with each un contin-
uous in Ω ∪ C and (un) either diverges to infinity on C or remains uniformly
bounded on compacts of C, then no interior geodesic segment Γ forming part
of the boundary of V can terminate at an interior point of C.

For the proof of this theorem, one can employ the lemmas of Section 6 above
in ways similar to those in the proofs of Lemma 5 and Lemma 6 in [9]. In
fact, Remark 7.2 above implies that, if V �= ∅, ∂V consists of nonintersecting
geodesic segments of Ω and possibly parts of the boundary of Ω. To prove
that no component of ∂V is only a geodesic segment T of Ω, one applies
Lemma 6.4 above to Ω1 and Ω2, the components of Ω on either side of T .
A contradiction is obtained since in Ω1, say, one obtains

lim
n→∞

∫
T

dψn = |T |

and in Ω2 one obtains

lim
n→∞

∫
T

dψn = −|T |.

To see that no interior geodesic segments of ∂V can have a common end
point, we notice that Remark 7.2 above implies that such a point must be in
∂Ω. We suppose then ∂V admits two geodesic segments T1 and T2 in Ω with
a common end point Q in ∂Ω and we choose two points Q1 and Q2 on T1 and
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T2 respectively, so that the open geodesic triangle Δ, with vertices Q, Q1 and
Q2, lie in Ω. By Lemma 6.1 above,∫

QQ1

dψn +
∫

Q1Q2

dψn +
∫

Q2Q

dψn = 0.

The triangle may lie in U or V , since no component of ∂V is only a geodesic
segment. In the former case, one applies Lemma 6.4 above to obtain

lim
n→∞

∫
QQ1

dψn = |QQ1| and lim
n→∞

∫
QQ2

dψn = |QQ2|

assuming that QQ1Q2 determines the positive orientation of Δ. However,
Lemma 6.1 implies ∣∣∣∣∫

Q1Q2

dψn

∣∣∣∣ ≤ |Q1Q2|

which is a contradiction with the triangle inequality in H2. If Δ lies in V , one
obtains a similar contradiction by applying the second part of Lemma 6.4.
To prove the second part of the theorem, we notice that if C is not geodesic,
Lemma 7.1 implies that on compacts in the convex hull of C

min
C

(un) − N ≤ un ≤ max
C

(un) + N

with N independent of n, and the proof of the claim is immediate since the
above inequality implies that the interior of the convex hull of C lies either in
U or in V .

We then assume that C is geodesic, and that Γ terminates at an interior
point Q of C. Suppose first that the sequence diverges on C. Let P be a point
of Γ, and choose a point R on C such that the geodesic segment RP lies in U .
The results we have proved in the first part of the theorem allow this choice.
We apply Lemma 6.1 and Lemma 6.4 in the triangle QPR in a fashion similar
to that in the triangle Δ, to obtain a contradiction with the triangle inequality
in H2. In case the sequence remains uniformly bounded on compacts of C,
a similar contradiction results by choosing the segment RP in V .

8. A Jenkins–Serrin type theorem

This is Theorem 1.1 stated in the Introduction. We note that a section s

of π : ˜PSL2(R) → H2 takes the value +∞ (−∞ resp.) on a geodesic segment
Ai (Bj resp.) if the image by s of each geodesic t → γ(t) of Ω ending at Ai

(Bj resp.) gets out of every compact and if 〈γ′(t), ξ〉 > 0(< 0, resp.), where

ξ = ∂z in our model of ˜PSL2(R).

As was remarked above, having fixed the model for ˜PSL2(R) the existence
of the section s on Ω with the prescribed boundary data is equivalent to the
existence of a real function u defined in Ω with corresponding data on the
boundary. The function u is constructed as a limit of monotone sequence of
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solutions of the minimal surface equation whose behavior is studied using the
monotone convergence theorem, the divergence set structure theorem and the
properties of the differential dψ corresponding to u. Once the convergence
is established, we need to show that the limit will assume the appropriate
boundary values. This will be assured by the Boundary Values lemma below.

We proceed to prove the existence of particular solutions of (3.1) which will
be used as barriers in the proof of the Boundary Values lemma.

Lemma 8.1. Let P be a convex quadrilateral in H2, formed by geodesic
segments A1, A2, C1 and C2 such that A1 ∩ A2 = ∅ and |A1| + |A2| < |C1| +
|C2|. Then there exists a solution of (3.1) in P which takes the boundary
values +∞ on A1 ∪ A2 and nonnegative values on C1 ∪ C2.

Proof. Let P be a convex quadrilateral in H2, formed by geodesic segments
A1, A2, C1 and C2 such that A1 ∩ A2 = ∅ and |A1| + |A2| < |C1| + |C2|. Let
un be the solution of the minimal surface equation in P taking boundary
values n on each Ai and 0 on each Ci. The sequence un is seen to converge to
a solution u in P as follows. Let V denote the divergence set and remark that
either the interior of V is equal to that of P , or otherwise by Theorem 7.4 an
interior geodesic segment bounding V must have its endpoints from amongst
those of the Ai’s.

The interior of V cannot be equal to that of P for otherwise:∫
A1∪ A2

dψn +
∫

C1∪ C2

dψn = 0

and then one takes the limit as n → +∞ and uses Lemma 6.4 and Lemma 6.1
to obtain∫

C1∪ C2

dψn = −(|C1| + |C2|) and
∫

A1∪ A2

dψn ≤ |A1| + |A2|.

This implies that |A1| + |A2| ≥ |C1| + |C2| which is not true.
Thus, assume that V is nonempty and bounded by a geodesic triangle Δ

whose vertices are endpoints of the Ai’s. Let δ denote the perimeter of Δ.
One would obtain ∫

Δ−Ai

dψn +
∫

Ai

dψn = 0.

Again passing to the limit and using Lemma 6.4 and Lemma 6.1, the following
holds ∫

Δ−Ai

dψn = −(δ − |Ai|) and
∫

Ai

dψn ≤ |Ai|,

which leads to a contradiction with the triangle inequality.
Therefore, V = ∅ and the sequence (un) converges on compact sets of P to

a solution of (3.1). We note that since (un) is increasing (by the maximum
principle), u takes the value +∞ on the segments Ai. Although at this point
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we do not know yet that u = 0 on the Ci’s, a fact which we will be able to
prove later, we remark that u ≥ 0 on each Ci. �

Lemma 8.2. Let P be a convex quadrilateral in H2 formed by geodesic
segments A1, A2, C1 and C2 such that A1 ∩ A2 = ∅. If |A1| + |A2| < |C1| + |C2|,
then there exists a solution v of the minimal surface equation in P taking the
boundary values +∞ on A1 ∪ A2 and has bounded values on C1 ∪ C2.

Proof. Let C̃i be a horizontal lift of Ci to ˜PSL2(R) and let un be the
solution of the minimal surface equation in P taking boundary values n on
each Ai and boundary values given by C̃i on Ci. One may translate vertically
each of the C̃i, so that each un ≥ 0. The sequence un is increasing and
converges to a solution u in P by arguments similar to those in Lemma 8.1.

The limit u takes the boundary value +∞ on each Ai as the sequence (un)
is increasing. The boundary values of u on Ci are given by C̃i and this follows
by standard barrier techniques, as in the proof of Proposition 5.4, once we
show the sequence (un) to be uniformly bounded near each point of Ci. We
complete the proof by showing this last point.

As C̃i is a horizontal geodesic, observations in [1] ensures that the graph of
un extends by symmetry about C̃i to a graph (a graph since otherwise by the
maximum principle, the surface obtained by symmetry would coincide with
the cylinder π−1(Ci)).

Let p be a point of Ci and choose a sufficiently small geodesic rectangle
R as in Lemma 8.1, which has two of its sides orthogonal to Ci and which
contains p in its interior. Let v denote the solution of (3.1) in R taking the
values +∞ on the sides orthogonal to Ci and nonnegative values on the other
two sides, say Sj , 1 ≤ j ≤ 2. The existence of v is assured by Lemma 8.1.
The maximum principle then implies that for each n, un ≤ v + M over R,
where M = sup |un| and the supremum is taken over the Sj ’s. One considers
a small neighborhood of p in R, and the preceding inequality proves that un

is bounded around p. �

Lemma 8.3 (Boundary values lemma). Let Ω be a domain and C a compact
convex arc in its boundary. Let (un) be a sequence of solutions of the minimal
surface equation, which converges uniformly on compacts of Ω to a solution u.
Suppose that, on the one hand, each (un) is continuous in Ω ∪ C and that the
boundary values converge uniformly on compacts of C to a limit function f .
Then u is continuous in Ω ∪ C and takes the values f on C. If C, on the other
hand, were a geodesic segment where the boundary values diverge uniformly
to infinity, then u will take on the boundary value infinity on C.

Proof. For the first part where the boundary values of (un) converge uni-
formly on compact subsets of C it suffices to show the sequence (un) uniformly
bounded in the neighborhood of any interior point of C and then employ
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a standard argument of the theory of barriers (again similar to that in the
proof of Proposition 5.4 above). If C is not geodesic then the result follows
by the Straight Line lemma. In case C is a geodesic segment, the preceding
lemma furnishes the ingredient necessary to show the required boundedness
of (un) near interior points of C in a fashion similar to that of Lemma 7 in
[9] or the corresponding Boundary Values lemma in [4].

The part where C is geodesic and (un) taking infinite values there can be
proved in a fashion similar to that of Lemma 8 in [9]. However, to prove
(un) bounded from below as is done in [9] we may prove a lemma simi-
lar to Lemma 8.2 above except that the solution takes values −∞ on the
sides Ai. Then we follow the same lines of proof of the Boundary Values lemma
in [4]. �

Remark 8.4. Let P be a geodesic rectangle as in Lemma 8.2. In order to
prove the existence of a solution of (3.1) in P taking bounded values on the
Ci’s and values −∞ on the Ai’s, one can proceed as follows. Let r denote
the reflection of H2 in A1, and r̃ its lift to ˜PSL2(R). Consider the image P ′

of P by r, and find by Lemma 8.2 a solution v in P ′ taking the values +∞
on A1 and r(A2), and bounded values on each r(Ci). The image by r̃ of the
graph of v is the graph of a solution u of (3.1) over P , which takes the sought
boundary values.

Having developed the necessary machinery in this paper, the existence part
of Theorem 1.1 could be proved following the same lines of proof in [9] and [12].
To see that the conditions in Theorem 1.1 are necessary, we let u be a solution
of the minimal surface equation in a domain Ω and we consider a polygon P ,
such that Ω and P are as described in that theorem. By Lemma 6.1 above∫

P − {Ai ∈P }
dψ +

∑
Ai ∈P

∫
Ai

dψ = 0,

with P oriented by the outward pointing normal. Lemma 6.3 implies that∑
Ai ∈P

∫
Ai

dψ = α,

and if P �= ∂Ω then Lemma 6.2 implies that∫
P − {Ai ∈P }

dψ < γ − α.

If P = ∂Ω, which is possible only if the family {Ci} = ∅, then again by
Lemma 6.3, one would obtain∫

P − {Ai ∈P }
dψ = −β.
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This argument shows that the conditions 2α < γ for all possible polygons
P �= ∂Ω chosen as in Theorem 1.1, and that α = β when P = ∂Ω are neces-
sary. A similar argument shows that the conditions on the segments Bi are
necessary as well.

To show that the conditions of Theorem 1.1 are sufficient, we employ the
Monotone Convergence theorem, the Divergence Structure theorem and the
lemmas of Sections 6–8 in the same fashion as in [9] or [12]. We furnish only
a sketch of the proof and we refer the reader to Section 5 in [9] for further
details, where the constructions of solutions held in that paper carry word for
word to our case. The proof can be broken down into proving existence of
solutions of Dirichlet problems related to the one stated in Theorem 1.1.

Step 1. We consider the Dirichlet problem in Theorem 1.1, and we suppose
that the family {Bi} is empty. Assume also that the assigned data on the arcs
{Ci} is bounded below. Then the conditions 2α < γ for each simple closed
polygon P whose vertices are chosen from among the endpoints of the Ai’s
are sufficient for the existence of a solution.

Step 2. We consider the Dirichlet problem in Theorem 1.1, and we suppose
that the family {Ci} �= ∅. Then the conditions 2α < γ and 2β < γ for each
simple closed polygon P whose vertices are chosen from among the endpoints
of the Ai’s and the Bi’s are sufficient for the existence of a solution.

Step 3. We consider the Dirichlet problem in Theorem 1.1, and we suppose
the family {Ci} = ∅. Then the conditions α = β when P = ∂Ω and 2α < γ

and 2β < γ for each simple closed polygon P whose vertices are chosen from
among the endpoints of the Ai’s and the Bi’s are sufficient for the existence
of a solution.

To complete the proof of Theorem 1.1, we next give a proof of the unique-
ness, which is up to an additive constant when the family {Ci} = ∅, inspired
by [3].

Proof of uniqueness. Let u1 and u2 be two different solutions of the min-
imal surface equation with the same boundary data (possibly infinite). If
{Ci} = ∅ we suppose that u1 − u2 is not a constant. Note that either of
the subset of Ω, {u1 > u2} or {u1 < u2} is nonempty. We suppose without
loss of generality that {u1 > u2} �= ∅ and we choose ε small enough so that
Ωε = {u1 − u2 > ε} is nonempty and that ∂Ωε is regular.

We consider the closed differential dΨ = dψ1 − dψ2, ψ1 and ψ2 the conjugate
functions of u1 and u2 respectively, and we obtain a contradiction by showing
that

∫
∂Ωε

dΨ �= 0.
As u1 and u2 have the same boundary data, ∂Ωε does not intersect ∪Ci,

besides Lemma 6.3 implies that dΨ = 0 on ∪Ai

⋃
∪Bj . Then the only part of



MINIMAL SURFACES IN ˜PSL2(R) 711

∂Ωε which contributes to the integral
∫

∂Ωε
dΨ, denoted ∂̃Ωε, is that contained

in Ωε defined by u1 − u2 = ε. Then the vector

v = Rot π
2

(
∇(u1 − u2)

)
= −λ(β1 − β2)∂x + λ(α1 − α2)∂y

is tangent to ∂̃Ωε and the integral
∫

∂Ωε
dΨ reduces to integrating dΨ · v.

However, a computation similar to that of Lemma 6.2 shows that

dΨ.v = λ2 (W1 + W2)
2

(η1 − η2)2

which is a positive quantity (ηi is the normal to the graph of ui). This leads
to a contradiction and the proof is completed. �
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