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EXTENSION AND RESTRICTION OF HOLOMORPHIC
FUNCTIONS ON CONVEX FINITE TYPE DOMAINS

M. JASICZAK

Abstract. We consider holomorphic functions on a non-singular
subvariety of a smoothly bounded convex domain of finite type.

A sufficient and necessary condition is proved for such a function

to have an extension to a p-integrable holomorphic function on

the whole domain. This is shown under transversallity assump-
tion and certain non-degeneracy condition of the subvariety.

1. Introduction

In this paper, we study the extension problem for smoothly bounded con-
vex finite type domains in Cn, n > 1. Such a domain will be denoted by D
and assumed to be of type M . Throughout the paper, A stands for a com-
plex submanifold of some open neighbourhood of D̄. Since D is convex it is
pseudoconvex and, consequently, D is a domain of holomorphy. Therefore, it
is a consequence of the Cartan’s theorems A and B and the Oka’s Coherence
theorem that for each function f holomorphic in D ∩ A, there exists a holo-
morphic function F in D such that F |D∩A = f . Thus, the question whether
each function holomorphic in D ∩ A is the restriction of a function which is
holomorphic in D, has a positive answer in the case which we are considering.

The answer to the same question is more involved, if we impose more subtle
properties on functions which are taken into account. A good example is the
extension problem for bounded holomorphic functions in the same class of
domains, that is, smoothly bounded convex finite type domains. Namely, it
was proved recently in [1] that in this case the answer can be formulated in
terms of rather delicate properties of the nonisotropic pseudodistance. It is

Received July 25, 2008; received in final form January 11, 2010.
The author was supported in years 2007–2010 by The Ministry of Science and Higher

Education, Poland, grant no. N N 201 2740 33. The Author was supported in years
2008–2009 by the Foundation for Polish Science.

2010 Mathematics Subject Classification. 32A35, 32A36, 32F32, 32T25, 32T27.

509

c©2011 University of Illinois

http://www.ams.org/msc/


510 M. JASICZAK

worthy of mentioning at this moment that these conditions are satisfied if A
is a complex linear affine hypersurface [11].

In [19], the author considered the case when A is a complex linear affine
hypersurface and the functions belong either to the Hardy space or to some
weighted Bergman space. These results were used to obtain essentially sharp
pointwise estimates of the Szegö kernel from below on the diagonal in C2.
Also, it was proved that if the restriction operator maps the Hardy space
onto the Bergman space in D ∩ A, then D is strictly pseudoconvex. Here, we
intend to investigate a similar problem for a general complex submanifold A,
which is assumed to cut transversally the boundary of D.

There are two results which should be mentioned as a motivation for our
study. The celebrated theorem of Ohsawa [23] (cf. also [24] and [10] for an
alternative proof) states that each L2-integrable holomorphic function ad-
mits an extension to an L2-integrable holomorphic function provided D is a
bounded pseudoconvex domain. On the other hand, the finite type assumption
on D suggests that one may expect some gain of regularity. The gain should
be equal to 2

M , where M stands for the type of the domain, when measured
in an isotropic way on weighted Lp-spaces. The word ‘gain’ should be under-
stood in a correct way. Namely, under the finite type assumption one expects
that there is a strictly larger class of functions than H2(D ∩ A), which admit
an extension to an L2-integrable holomorphic function. However, the problem
which we consider is not of isotropic nature, since the geometry of a domain
D is not isotropic. This is the reason for considering measures different from
dist(·, bD)2/MdVA. The second source of motivation is the manuscript [12],
where the Authors investigated restrictions in the ‘gain of regularity’ principle
in the problem of extensions of holomorphic functions.

The results of the paper hold under the following assumptions on the vari-
ety A:

Assumption 1 (Non-singularity and transversallity condition). A is a non-
singular subvariety of Ṽ ⊃ D̄ of the form

A = {z ∈ Ṽ : f(z) = 0},

where f is a holomorphic function in an open neighbourhood Ṽ of D̄ satisfy-
ing:

(i) ∂f �= 0 in Ṽ ,
(ii) ∂f ∧ ∂r �= 0 in an open set Ũ containing bD.

The symbol r stands for a defining function of D, which is assumed to be
smooth, nondegenerate on bD. Also, without loss of generality, we may and
will assume that r = pD − 1, where pD stands for Minkowski functional of D.
We often use the symbol � to denote |r(·)|, which is uniformly comparable
with dist(·, bD).
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Observe that instead of assuming that A is the zero set of a function f
we might as well assume that A is a codimension one subvariety of an open
neighbourhood of D̄. Indeed, since D is convex it is a domain of holomorphy,
which would imply that A is a complete intersection.

Assumption 2 (Nondegeneracy condition I). A ⊂ Cn satisfies Assump-
tion 1 and either:
(i) n = 2, or
(ii) n > 2 and there exists an open set U and a constant ε > 0 such that

A ∩ bD ⊂ U and
|Zε

2f(p)| ≥ c > 0,

for each p ∈ U and 0 < ε < ε.

The symbol Zε
l f stands for the differential

Zε
l f(p) :=

∂

∂λ
f(p + λvl)

∣∣∣∣
λ=0

,

with vl equal to the lth vector in the ε-extremal basis at p.

Assumption 3 (Nondegeneracy condition II). A ⊂ Cn satisfies Assump-
tion 1 and either:
(i) n = 2, or
(ii) n > 2 and there exists an open neighbourhood U of the set N (Lr), where

N (Lr) :=

{
p ∈ bD : ∃ξ �=0

n∑
j,k=1

∂2r(p)
∂zj∂z̄k

ξj ξ̄k = 0

}
,

and a constant ε > 0, such that for each p ∈ U ∩ D ∩ A and 2 ≤ l ≤ n

(1) |Zε
l f(p)| ≥ c > 0

with a uniform constant c if 0 < ε < ε.

To make the meaning of these assumptions clear, we recall the definition
of the ε-extremal basis at a given point p ∈ D. The first vector of the ε-basis
is essentially equal to the normalized complex gradient, the second vector is
chosen in the following way: find a point q2 with r(q2) = r(p) + ε such that
q2 − p is perpendicular to the complex gradient and such that the maximal
distance from p to {r(ζ) = r(p) + ε} is achieved at q2. The vector v2 is
defined as a unit vector in the direction of the vector q2 − p. The procedure is
continued until the basis is complete (we invite the Reader to consult [21], [22]
for definitions and basic properties of the basis and to [17], [18] for a complete
discussion concerning these objects, cf. also [5]).

Before we proceed observe that Assumptions 3 and 2 do not depend on a
particular representation of the variety A. Let

(2) A = {z ∈ Ṽ : f1(z) = 0} = {z ∈ Ṽ : f2(z) = 0}
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with functions f1 and f2 which satisfy Assumption 1. Assume additionally
that either Assumption 3 or 2 is satisfied by the function f1. We claim that
then the same condition is satisfied by f2. Indeed, since ∂f1 �= 0 �= ∂f2 in Ṽ ,
it follows that f1/f2 is a zero free holomorphic function in Ṽ . Since D is
convex, we may assume that Ṽ is simply connected. Hence, there exists a
holomorphic function h such that f2 = ehf1. Consequently, it holds

|Zε
l f2(p)| = |(Zε

l h)ehf1(p) + ehZε
l f1(p)|

= |eh(Zε
l f1)(p)| ≥ c > 0

for p ∈ U ∩ D ∩ A, which proves the claim in both cases.
We can now formulate our main results. The symbol RA stands for the

operator of restriction to the hypersurface A and Hp
A(D) is the subspace of

Hp(D) consisting of all functions which vanish on A.

Theorem 1. Let D ⊂ Cn, n > 1 be a smoothly bounded convex finite type
domain and let f be a holomorphic function in some neighbourhood of D̄ and

A = {z ∈ Ṽ ⊃ D̄ : f(z) = 0}.

Assume that Assumption 2 holds.
Then, there exists a positive, finite Borel measure μ supported on A ∩ D

such that the following sequence

(3) 0 −→ Hp
A(D) ↪→ Hp(D) RA−→ Hp(D ∩ A,μ) −→ 0

is exact and splits for 1 ≤ p < 
, where, as usual, 
 refers to the BMO space.
The latter means that there exists a linear extension operator

EN : Hp(D ∩ A,μ) → Hp(D)

such that RAEN = idA∩D. As a result, in the category of Banach spaces, it
holds

(4) Hp(D) ∼= Hp(D ∩ A,μ) ⊕ Hp
A(D), 1 ≤ p < ∞.

Theorem 2. Let D ⊂ Cn, n > 1 be a smoothly bounded convex finite type
domain and let f be a holomorphic function in some neighbourhood of D̄ and

A = {z ∈ Ṽ ⊃ D̄ : f(z) = 0}.

Assume that Assumption 3 holds.
Then, there exists a positive, finite Borel measure μ supported on A ∩ D

such that the following sequence

(5) 0 −→ H1
A(D) ↪→ H1(D) RA−→ H1(D ∩ A,μ) −→ 0

is exact and splits, i.e. there exists a linear extension operator

EN : H1(D ∩ A,μ) → H1(D)
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such that RAEN = idA∩D. As a result, in the category of Banach spaces, it
holds

(6) H1(D) ∼= H1(D ∩ A,μ) ⊕ H1
A(D).

We will explain the notation now. Throughout the paper, the volume
measure in Cn, n > 1 is denoted by V and VA is the measure corresponding
to the canonical Riemannian volume form on A. The latter means that this
volume form is the volume form for the real part of the Hermitian metric on
A, which is the restriction to A of the euclidean metric in Cn. The symbol
Hκ,p(D) is the weighted Bergman space, that is,

Hκ,p(D) :=
{

f ∈ H(D) :
∫

D

|f |p�κ dV < ∞
}

,

and Hp(D ∩ A,μ) is by definition the space of all functions holomorphic in
D ∩ A, which are p-integrable with respect to the measure μ. Also, Hp

A(D)
stands for the subspace of Hp(D) consisting of all functions, which vanish on
A. We shall restrict our attention mostly to the case κ = 0. However, the
Reader easily notices that many results which are proved in the paper hold
or have a counterpart when κ > −1.

The first step in the proof of Theorem 1 is a result, which provides char-
acterization of positive measures for which the inclusion

RA[Hp(D)] ⊂ Hp(D ∩ A,μ)

:=
{

g ∈ H(D ∩ A) :
∫

D∩A

|g|p dμ < ∞
}

holds. Importantly, the proof of neither this result nor the next one requires
either Assumption 3 or Assumption 2—these results are proved solely under
the transversallity condition 1.

Theorem 3. Assume that D is a smoothly bounded convex domain of finite
type in Cn, n > 1 and A is a complex submanifold in some neighbourhood of
D̄ of the form

A = {z ∈ Ṽ : f(z) = 0},

satisfying the nonsingularity and transversallity Assumption 1.
Denote by RA the restriction operator to A and let μ be a positive Borel

measure supported on D ∩ A. Then

RA[H2(D)] ⊂ H2(D ∩ A,μ),

if and only if for sufficiently small c > 0

(7) sup
{

μ(P )
V (P )

: P = Pc�(ζ), ζ ∈ D

}
< ∞.

Furthermore, if condition (7) holds, then

RA[Hκ,p(D)] ⊂ Hp(D ∩ A,�κμ),
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for any 1 ≤ p < ∞ and κ > −1.

We will show that the measure |∂f |2κ dVA satisfies condition (7). The sym-
bol | · |κ stands for a suitably defined non-isotropic norm of a (1,0)-form. This
implies that

RA[Hp(D)] ⊂ Hp(D ∩ A, |∂f |2κ dVA)

=
{

g ∈ H(D ∩ A) :
∫

D∩A

|g|p|∂f |2κ dVA < ∞
}

.

We warn the Reader at this moment that although we use the same symbol
as in [4] for the non-isotropic norm, our definition differs from the one given
in that paper.

Notice that if A satisfies (2), that is, A is the zero set of functions f1 and
f2, each of which satisfies Assumption 1, then the Borel measures

|∂f1|2κ dVA and |∂f2|2κ dVA

are equivalent. Indeed, there exists a function h ∈ H(Ṽ ) such that f2 = ehf1

and, as a result, on D ∩ A

|∂f2|2κ dVA = |eh|2 · |∂f1|2κ dVA � |∂f1|2κ dVA.

Naturally, the same argument shows that on D ∩ A it holds |∂f1|2κ dVA �
|∂f2|2κ dVA and proves the claim.

Another obvious candidate for a measure μ satisfying condition (7) is
w(ζ)dVA, where the function w is equal to

w(ζ) := sup
{

V (P )
VA(P ∩ A)

: P = Pε(ζ), ε ≤ c�

}
∼ V (P�(ζ))

VA(P�(ζ) ∩ A)
.

One can easily show that this choice of the measure is actually equivalent to
|∂f |2κ dVA. Also, it is worth of noticing that condition (7) implies that the
positive Borel measure μ is finite—this fact is proved as Corollary 1 below.

Next, we prove that there always exists an extension operator of gain �2/M

with L1(D) as the target space.

Theorem 4. Assume that D is a smoothly bounded convex domain of finite
type in Cn, n > 1 and A is a complex submanifold in some neighbourhood of
D̄ of the form

A = {z : f(z) = 0},

with holomorphic f such that ∂f �= 0 in D̄ and ∂f ∧ ∂r �= 0 in some neigh-
bourhood of bD. For each sufficiently large N , there exists a measure νN and
an extension operator

EN : L1(D ∩ A,νN ) → L1(D).

Furthermore, the measure νN is equal to |∂f |2κ dVA +hN dVA with hN � �2/M .
The latter estimate is uniform with respect to N .
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In the next step, we shall show that Assumption 3 implies that the measures
νN from Theorem 4 satisfy condition (7) provided N is sufficiently large.

Theorem 5. Assume that D is a smoothly bounded convex domain of finite
type in Cn, n > 1 and A is a complex submanifold in some neighbourhood of
D̄ of the form

A = {z : f(z) = 0}.

(i) If A satisfies Assumption 2, then for each N the measure νN satisfies
condition (7).

(ii) If A satisfies Assumption 3, then there exists N0 ∈ N such that the mea-
sures νN defined in Theorem 4 satisfy condition (7) provided N ≥ N0.

Importantly, in both cases in Theorem 5 we prove that

νN � |∂f |2κ dVA.

The next step in the proof of Theorem 1 is the following theorem.

Theorem 6. Assume that D is a smoothly bounded convex domain of finite
type in Cn, n > 1 A is a complex submanifold in some neighbourhood of D̄ of
the form

A = {z : f(z) = 0},

with f satisfying Assumption 2. For any N the operator EN maps continu-
ously L∞(D ∩ A) into BMO(D).

Theorem 6 needs explanation. Namely the symbol BMO(D) stands for the
space of all locally integrable functions g for which

sup
1

V (P )

∫
P

|g − gP | dV < ∞,

where the supremum is taken over all polydisks P = Pε(ζ) with ε ≤ c�(ζ) and
as usual gP stands for the mean value of g over P . The constant c is chosen
according to conditions from Assumption 4 below. The proof of Theorem 1
is completed by the interpolation argument which we recall as Theorem 9.

The fact that the real interpolating spaces between BMO(Rn) and L1(Rn)
are isomorphic to Lp(Rn) is classic [16] (cf. also [6]). The case of spaces
of homogeneous type was studied in [20]. Unfortunately, we cannot simply
invoke this result, since we work in a domain. Consequently, in the definition
of BMO we took into account only polydisks Pε(ζ) with ε ≤ �(ζ). However,
hardly surprisingly, this is not an obstacle for the interpolation result to hold
true.

A Whitney type cover consisting of non-isotropic polydisks—the cover of
D ∩ A rather than D—is the main tool in Theorem 3. Although the cor-
responding argument is rather standard, there are two aspects of the proof,
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which should be emphasized. Namely, we cannot use any compactness ar-
gument, since the choice of an extremal basis is not continuous (cf. [17] for
an example). Secondly, the cover should be locally finite and, as is well-
known, this depends on the doubling property or more precisely on asymp-
totic behaviour of volumes of Pε as ε tends to 0. It was proved in [18] that
V (Pε(ζ)) ∼ ε

∑n
j=1 (1/mj) = εν , where (m1, . . . ,mn) is the multitype of bD� at

ζ (cf. [7]). Hence, the exponent ν may change abruptly from point to point.
As we shall see, both obstacles turn out to be of technical nature only.

The extension operator from Theorems 5 and 6 is the one constructed by
B. Berndtsson [3] (cf. also [2]) with the support function of K. Diederich and
J. E. Fornaess [8].

2. Preliminaries

The definition of the extremal basis was sketched in the Introduction. We
will not recall definitions of non-isotropic polydisks Pε(ζ) or directional dis-
tances τ , since they can be found in many places—most notably in [21], [22],
where they were defined or in [4], where their importance was established.
We refer the Reader to [17] and [18] for a complete discussion of properties of
these objects. We emphasize only that once they are defined D turns into a
space of homogeneous type (this statement should be taken with some care,
since there exist different notions of this object in the literature). We will
keep to the notation introduced in these papers. For instance, τk(ζ, ε) stands
as usual for τ(ζ, vk, ε), where vk is the kth vector of the ε-basis at ζ. Recall
that with this notation

(8) ε ∼ τ1(ζ, ε) ≤ τn(ζ, ε) ≤ · · · ≤ τ2(ζ, ε) � ε1/M ,

with uniform constants. The estimate explains, at least to some degree, the
meaning of Assumption 3.

Let δ : D̄ × D̄ → R+ be defined in the following way

δ(z, ζ) := inf{ε > 0 : ζ ∈ Pε(z)}.

The function δ is a pseudodistance, that is,

δ(z, ζ) = 0, if and only if z = ζ,

δ(z, ζ) ∼ δ(ζ, z),(9)
δ(z, ζ) � δ(z, ξ) + δ(ξ, ζ)

with uniform constants. These properties play an important role in the con-
struction of the Whitney cover. Importantly, properties stated in (9) hold up
to some uniform constant.

We will make use of the properties of the pseudoballs Pε(ζ), often without
explicitly referring to them. More specifically, for each c there exists b = b(c)
such that

Pcε(z) ⊂ bPε(z), cPε(z) ⊂ Pbε(z)
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for z ∈ D and ε > 0.
If Pε(w) ∩ Pε(z) �= ∅, then

(10) Pε(w) ⊂ CPε(z),

with a uniform constant C for each ε > 0. There exists c6 > 0 such that

(11) Pc6�(z)(z) ⊂⊂ D,

for each z ∈ D. In order to simplify the notation, we will assume that this
constant is equal to 1. Also,

τ(w,v, ε) ∼ τ(z, v, ε)

uniformly for w ∈ Pε(z). Since τ1(ζ, ε) ∼ ε, it follows from (11) that if z ∈
Pc6�(ζ)(ζ), then �(z) ∼ �(ζ).

Another important fact is that

(12) V (Pε(w)) ∼ V (Pε(z)),

if w ∈ Pε(z). Naturally, V (Pε(z)) stands for the euclidean volume of Pε(z).

Remark 1. In general, it is not true that if δ < ε, then Pδ(z) ⊂ Pε(z).
This is the reason for a specific construction of a cover {P i}i∈N below. This
fact is also important in the proof of Theorem 6 below.

Recall that BMO(D) is the space of all locally integrable functions in D
such that

sup
P

1
V (P )

∫
P

|g − gP | < ∞,

where the supremum above is taken over the family of all polydisks P = Pε(ζ)
centred at ζ ∈ D with ε ≤ c�(ζ).

Assumption 4. Given P = Pε(ζ) we denote by P ∗ the polydisk Pb(2)ε(ζ),
where b(2) is the constant which satisfies the following property

2Pε(ζ) ⊂ Pb(2)ε(ζ).

We will assume that c in the definition of the space BMO is chosen in such a
way that:

(i) for any P = Pε(ζ), it holds P ∗ ⊂⊂ D,
(ii) for any P = Pε(ζ) and z ∈ P , it holds CPε(z) ⊂⊂ D, where C here stands

for the constant in the engulfing property (10).

Next, we recall the concept of the multitype from [7]. Let Γn be the set of
all n-tuples Λ = (λ1, . . . , λn) of elements of closed real line such that:

(1) −∞ < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ ∞,
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(2) for each k either λk is infinite, or there is a set of nonnegative integers
{a1, . . . , an} with ak > 0, such that

k∑
j=1

aj

λj
= 1.

The set Γn is called the set of weights. It can be ordered lexicographically.
A weight Λ ∈ Γn is called distinguished if there exist holomorphic coordinates
(z1, . . . , zn) about p such that p is mapped to the origin and such that

n∑
j=1

αj + βj

λj
< 1 =⇒ ∂|α|+|β|r(p)

∂zα1
1 ∂z̄β1

1 · · · ∂zαn
n ∂z̄βn

n

= 0.

Definition 1. The multitype M(bD,p) of a point p is defined to be the
lexicographically smallest weight

M = (m1(p), . . . ,mn(p)) ∈ Γn

such that M ≥ Λ for every distinguished weight Λ.

The following fact was proved in [18].

Theorem 7 (Corollary 2.21 in [18]). Assume that D is a smoothly bounded
convex domain of finite type in Cn, n > 1 and (m1, . . . ,mn) is the multitype of
bD at ζ, then

V (Pε(ζ)) ∼ ε
∑n

j=1 (2/mj),

with uniform constants.

Crucial to our analysis is the construction of support functions from [8].
Although we shall rather make use of estimates on S and the corresponding
Leray decomposition, we recall the result below.

Theorem 8 (Diederich, Fornaess). Let D ⊂⊂ Cn be a smooth convex do-
main of finite type M and r a convex defining function of D in a neighbour-
hood U of bD. Then the function S(z, ζ) ∈ C∞(D̄ × U), holomorphic in z,
constructed in [9], has the following property:

Let, for ζ ∈ U,nζ denote the outer unit normal to the level set {r = r(ζ)}
and let v be any unit vector complex tangential to this level set at ζ.

Define

aαβ(ζ, v) :=
∂α+β

∂λα ∂λ̄β
r(ζ + λv)

∣∣∣∣
λ=0

.

Then there are constants K,c, d > 0, such that one has for all points z written
as z = ζ + μnζ + λv with μ,λ ∈ C the estimate

�S(z, ζ) ≤ −
∣∣∣∣ �μ

2

∣∣∣∣ − K

2
(�μ)2 − c

M∑
j=2

∑
α+β=j

|aαβ(ζ, v)| |λ|j

+ d sup{0, r(z) − r(ζ)}.
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Next, one defines C∞ functions Qj : D̄ × D̄ → C such that

S(z, ζ) =
n∑

j=1

Qj(z, ζ)(zj − ζj)

and Qj are holomorphic in the first variable. We will denote the corresponding
Leray form by Q, that is,

(13) Q =
n∑

j=1

Qj dζj .

Making use of the non-isotropic polydisks Pε(ζ) one constructs suitable covers.
Namely, there exist uniform constants C, c > 0 such that

P i = P i
ε(ζ) := CP2iε(ζ) \ cP2i−1ε(ζ),

i ∈ Z, i � �log2
ε0
ε � is a cover of Pε0(ζ). Also, the following estimate was proved

first in [9] but we repeat the formulation after [13] in a form more appropriate
for our study.

Lemma 1 (Lemma 3.2 in [13]). For all z, ζ ∈ U , where U stands for some
open neighbourhood of bD, it holds

|S(z, ζ)| � ε

for ζ ∈ P 0
ε (z) or z ∈ P 0

ε (ζ).

We will make heavy use of estimate on ∂Q in the ε-extremal coordinates.
Such estimates were obtained in [9] for the first time (Theorem 5.1 ibid.),
also in [13] (Lemma 3.3, Lemma 3.4 ibid.). However, since in our case both
variables may change, we shall refer to Lemma 3.1 in [14] most often.

Lemma 2 (Lemma 3.1 in [14]). Let Q be the form defined in (13) and
ζ0 ∈ D sufficiently close to bD. Assume that the ε-extremal coordinates have
been chosen at ζ0 and that Φ∗ is the unitary transformation such that w∗ =
Φ∗(z − ζ0). Also, let η∗ = Φ∗(ζ − ζ0) and define

(14) Q∗(w∗, η∗) := Φ̄∗Q
(
ζ0 + (Φ̄∗)T w∗, ζ0 + (Φ̄∗)T η∗)

.

There exists a uniform constant C such that

|Q∗
k(w∗, η∗)| � ε

τk(ζ0, ε)
,∣∣∣∣ ∂

w∗
i

Q∗
k(w∗, η∗)

∣∣∣∣ � ε

τk(ζ0, ε)τi(ζ0, ε)
,∣∣∣∣ ∂

∂η̄j
Qk(w∗, η∗)

∣∣∣∣ � ε

τk(ζ0, ε)τj(ζ0, ε)
,∣∣∣∣ ∂2

∂w∗
i ∂η∗

j

Q∗
k(w∗, η∗)

∣∣∣∣ � ε

τk(ζ0, ε)τi(ζ0, ε)τj(ζ0, ε)
,
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provided |ηj | ≤ Cτj(ζ0, ε) for all j, |w∗
1 | ≤ C and |wj | ≤ Cτj(ζ0, ε) for j =

2, . . . , n.

This lemma was proved in [14] under the assumption that ζ0 ∈ bD. How-
ever, the proof works also for ζ0 sufficiently close to bD. We shall refer to
estimates for Q given in Lemma 2 as estimates of Q at a point ζ0.

3. Proofs and auxiliary results

As was stated in the Introduction, we need to construct a Whitney type
cover of A ∩ D consisting of the non-isotropic polydisks.

Proposition 1. Assume that D is a smoothly bounded convex domain of
finite type in Cn, n > 1 and A is a subvariety satisfying Assumption 1.

For each C3 > 0 and for each c2,C2, c5,C5 there exists a family of non-
isotropic polydisks P and positive constants C1,C4 > 0 such that:

(i) The polydisks P ∈ P are disjoint.
(ii) The polydisks C1P,P ∈ P form a cover of A ∩ D and 100C1 < C3.
(iii) For any P = Pε(z) ∈ P

c2ε ≤ dist
(
z, b(D ∩ A)

)
∼ dist

(
P, b(D ∩ A)

)
≤ C2ε.

(iv)
sup
η∈D

#{P ∈ C3P : P � η} < C4.

(v) For any P = Pε(z) ∈ P

c5ε ≤ dist
(
z, b(D ∩ A)

)
∼ dist

(
C3P, b(D ∩ A)

)
≤ C5ε.

Proof. Fix now C3 > 0 and define a family of all polydisks

(15) Pc�(z)(z)

with z ∈ D ∩ A and c small enough to guarantee that C3Pc�(z)(z) ⊂⊂ D. Let
P̄ be a family of all those polydisks. Notice that we can choose c small enough
in order to guarantee that for any c5,C5

c5ε ≤ dist
(
C3P, b(D ∩ A)

)
≤ C5ε

for any P = Pε ∈ P̄. This follows from comments which appear in Preliminar-
ies after (11). As a result, the constant c in the definition of Pc�(z)(z) can be
chosen in such a way that for any c2,C2

c2ε ≤ dist
(
Pε(z), b(D ∩ A)

)
≤ C2ε.

Next, we pick a subcollection P ⊂ P̄ in the following way. Define

s0 = sup{ε : P = Pε ∈ P̄}
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and choose P 0 = Pε0 in such a way that ε0 ≥ s0/2. Assuming that P 0, . . . , P k−1

have been chosen define

sk = sup
{

ε : P = Pε ∈ P̄, P ∩
⋃

i≤k−1

P i = ∅
}

and choose P k = Pε with ε ≥ sk/2. This completes the construction of the
family

P = {Pε1(z1), Pε2(z2), . . . }.

Notice that properties (i), (iii) and (v) are satisfied automatically.
We will show that there exists C1 such that C1P is a cover of D ∩ A. In

order to prove this pick z ∈ D ∩ A and consider the polydisk P := Pc�(z)(z)
with c exactly the same as in (15) and denote ρ = c�(z). Pick the largest
natural number k such that εk ≥ ρ/2. Such a number k does exist since εk

tends to 0, since

V (D) ≥
∞∑

i=1

V (Pεi(zi)) �
∞∑

i=1

εn+1
i .

Here, we made use of the fact that V (Pε(z)) ∼
∏n

i=1 τ2
i (z, ε) and the estimates

τ1(z, ε) ∼ ε, τi(z, ε) � ε1/2, i ≥ 2.
With this choice of k, it must hold

(16) P ∩
k⋃

i=1

P i �= ∅.

Indeed, if (16) does not hold, then

εk+1 ≥ sk+1

2
≥ ρ

2
,

the latter inequality being a consequence of definition of sk+1 and (16). This
is impossible in view of definition of the number k.

This implies that there exists ζ and Pεi(zi) such that

δ(zi, ζ) ≤ εi,

δ(z, ζ) ≤ ρ.

As a result,

(17) δ(z, zi) ≤ C(ρ + εi) ≤ 3Cεi,

which means that there exists C1 such that z ∈ C1P
i. This completes the

proof of (ii). Notice that we may assume that for instance 100C1 < C3 chang-
ing if necessary c in (15), since the constant C in (17) is uniform.

To complete the proof, it suffices that to show (iv). In order to accomplish
this task, observe that

(18) δ(z) ∼ dist
(
z, b(D ∩ A)

)
∼ dist(z, bD),
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where
δ(z) := inf{δ(z, ζ), ζ ∈ bD}.

One should notice that it is here where we make use of Assumption 1.
Indeed, there exist constants c6 and C6 such that for any z ∈ D

Pc6�(z)(z) ∩ bD = ∅ and PC6�(z)(z) ∩ bD �= ∅.

Both statements are consequences of (11) and comments which follow after
(11).

The first property implies that for any ζ ∈ bD, it holds δ(z, ζ) ≥ c6�(z).
Thus, obviously δ(z) ≥ c6�(z). As for the second, if ζ ∈ PC6�(z)(z) ∩ bD, then

δ(z) ≤ δ(z, ζ) = inf{ε > 0 : Pε(z) � ζ}
≤ C6�(z).

This justifies (18).
We intend now to complete the proof of (iv). Fix η ∈ D ∩ A and denote

t = dist(η, b(D ∩ A)). Let P = Pρ(z) ∈ P satisfy η ∈ C3P . We have

c2ρ ≤ d
(
Pρ(z), b(D ∩ A)

)
∼ d

(
z, b(D ∩ A)

)
≤ Cδ(z) ≤ Cδ(z, ξ)

for any ξ ∈ bD. Thus,

c2ρ ≤ Cδ(z, ξ) ≤ C
(
δ(z, η) + δ(η, ξ)

)
and, as a result,

c2ρ ≤ C
(
δ(z, η) + δ(η)

)
≤ Cδ(z, η) + C dist

(
η, b(D ∩ A)

)
≤ CC3ρ + Ct.

Also,
t = dist

(
η, b(D ∩ A)

)
≤ Cδ(η) ≤ Cδ(η, z) + Cδ(z, ξ)

with ξ ∈ bD, and

t ≤ CC3ρ + C dist
(
z, b(D ∩ A)

)
≤ CC3ρ + CC2ρ.

Thus, if η ∈ C3Pρ(z), then

(19) ρ ≥ (CC3 + CC2)−1t.

Observe that for any ζ ∈ P = Pρ(z) with η ∈ C3P

δ(ζ, η) ≤ Cδ(ζ, z) + Cδ(z, η) ≤ Cρ + CC3ρ

and C−1(c2 − CC3)ρ ≤ t. Recall at this moment that we can make c5,C5 and
also c2 arbitrary large without affecting C3 whatsoever.

Denote
I = {i ∈ N : η ∈ P i = Pεi(zi) ∈ P}

and notice that we have proved so far that for any i, j ∈ I

δ(zi, zj) ≤ Cδ(zi, η) + Cδ(η, zj) ≤ C(1 + C3)εi + C(1 + C3)εj ≤ Ct.
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This means that for a universal constant C and any i, j ∈ I

Pεi(zi) ⊂ PCt(zj).

As a result, for any j ∈ I∑
i∈I

V (Pεi(zi)) ≤ V (PCt(zj)),

because Pεi(zi), εi = c�(zi) were chosen in Proposition 1 to be disjoint. It
is worth repeating at this moment that while C depends on C3, it does not
depend on η.

For any j ∈ I , it holds

(20)
∑
i∈I

V (Pεi(zi)) ≤ V (PCt(zj)) ∼ (Ct)
∑n

k=1 (2/mj
k),

where (mj
1, . . . ,m

j
n) stands for the multitype at zj . This implies that∑

i∈I

V (Pεi(zi)) ≤ C inf
{
(Ct)

∑n
k=1 (2/mj

k) : j ∈ I
}

≤ C(Ct)s,

where

(21) s := sup

{
n∑

k=1

2
mj

k

: j ∈ I

}
.

As for the left-hand side of (20), observe∑
i∈I

V (Pεi(zi)) � C
∑
i∈I

ε
∑

k (2/mi
k)

i �
∑
i∈I

t
∑

k (2/mi
k)

in view on estimates on ρ proved in (19). Notice that for any c > 0 there exists
C > 0 such that xs ≤ Cxs̃ for any x ∈ [0, c] and s̃ ≥ 2 + 2(n−1)

M – the number
s was defined in (21). Therefore, since D is bounded we may write

C(Ct)s ≥ card I · (ε)s � card I · ts.

This implies that
card I � Cs,

with uniform constants, where as above

s = sup

{
n∑

k=1

2
mj

k

: j ∈ I

}
.

Therefore, as might have been expected card I � Cn+1. �

Before we prove Theorem 3, we use Proposition 1 to show the following
easy observation.
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Corollary 1. Assume that D is a smoothly bounded convex domain of
finite type in Cn, n > 1 and A satisfies Assumption 1. Let μ be a positive Borel
measure supported on D ∩ A, which satisfies condition (7) from Theorem 3.
Then μ is a finite measure.

Proof. Choose a Whitney cover P as in Proposition 1 and observe that

μ(D ∩ A) ≤ C
∑

P ∈C1P

μ(P ) ≤ C
∑

P ∈C1P

V (P ) ≤ CV (D),

which proves the claim. �
Proof of Theorem 3. Let 1 ≤ p < ∞ and consider a cover P =

{Pc�(zk)(zk)}k∈N from Proposition 1. Without loss of generality, we may
assume that c in the definition of P is small enough to guarantee that for
P ∈ C1P condition (7) holds true, that is,

sup
{

μ(P ∩ A)
V (P )

: P ∈ C1P

}
< ∞.

For g = RAG, we have∫
D∩A

|g|p�κ dμ =
∫

D∩A

|G|p�κ dμ ≤ C
∑

P ∈C1P

∫
P ∩A

|G|p�κ dμ

≤ C
∑

P ∈C1P

sup
{

1
�κ(P̃ )V (P̃ )

∫
P̃

|G|p�κ dV

}
μκ(P ∩ A),

where the supremum for a given P ∈ C1P is taken over all polydisks P̃ centred
at a point ζ ∈ P with radius equal to c̃�(P ). This time the constant c̃ is chosen
in such a way that P̃ ⊂⊂ D and P̃ ⊂ C3P , where C3 is a constant from
Proposition 1. The symbol P̃(P ) below with P ∈ P stands for the family
of all polydisks P̃ = Pε(ζ) with ζ ∈ P and ε = c̃�(P ). Thus, if condition (7)
holds, then∫

D∩A

|g|p�κ dμ(22)

≤ C sup
{

μ(P ∩ A)
V (P̃ )

: P ∈ P, P̃ ∈ P̃(P )
} ∑

P ∈C1P

∫
C3P

|G|p�κ dV

≤ C sup
{

μ(P ∩ A)
V (P )

: P ∈ P

}∫
D

|G|p�κ dV

≤ C

∫
D

|G|p�κ dV

with uniform constants. The second inequality is a consequence of Proposi-
tion 1. Also, for any ζ ∈ Pε(z), it holds V (Pε(z)) ∼ V (Pε(ζ)) and, as a result,
if ζ ∈ P ∈ P and P = Pε, then

V (Pε(ζ)) ∼ V (P ).
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On the other hand, V (Pε(z)) ∼ V (Pcε(z)) with constants which depend only
on c—this follows from Theorem 7. This shows that V (P̃ ) ∼ V (P ) for any
P ∈ P and explains the second inequality in (22). We proved that condition
(7) implies that

RA[Hκ,p(D)] ⊂
{

g ∈ H(D ∩ A) :
∫

D∩A

|g|p�κ dμ < ∞
}

.

Now we intend to show the inverse implication provided p = 2 and κ = 0.
Assume that RA[H2(D)] ⊂ H2(D ∩ A,μ) for a positive Borel measure μ on
D ∩ A. This implies, by the closed graph theorem that RA maps continuously
H2(D) into H2(D ∩ A,μ). The proof of this part of the theorem will be
completed once we know that there exist constants c1, c2 > 0 such that for
each ζ ∈ D there is a function G ∈ H2(D) of norm 1 such that

(23) |G(z)|2 ≥ c1
1

V (P�(ζ))

for each z ∈ Pc2�(ζ)(ζ). Indeed, if such functions exist then for each ζ ∈ D

c1
μ(Pc2�(ζ) ∩ A)

V (P�(ζ))
≤

∫
Pc2�(ζ)∩A

|G|2 dμ ≤
∫

D∩A

|G|2 dμ ≤ C

∫
D

|G|2 dV ≤ C,

with uniform C > 0, which completes the proof. Thus, it suffices to show
existence of functions satisfying (23). An obvious candidate is the Bergman
kernel B(·, ζ). Namely, define for a fixed ζ ∈ D the function G as

G(z) :=
B(z, ζ)√
B(ζ, ζ)

.

Obviously G is of norm 1 in H2(D). Also, it is a consequence of Theorem 3.4
in [22] that G satisfies (23) when z = ζ. Theorem 5.2 ibid. gives a bound
for derivatives of B, which suffices to prove existence of c1, c2 for which (23)
holds on Pc2�. �

Now we intend to prove Theorems 4 and 6. First, decompose f as

(24) f(z) − f(ζ) =
n∑

i=1

hi(ζ, z)(zi − ζi)

with holomorphic functions hi. Since D is convex in order to obtain functions
hi, we may simply write

f(z) − f(ζ) =
∫ 1

0

d

dt
f
(
ζ + t(z − ζ)

)
dt

=
n∑

i=1

∫ 1

0

∂if
(
ζ + t(z − ζ)

)
dt · (zi − ζi).
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Obviously, functions hi are smooth in both variables in D̄. Denote by S the
support function constructed in [8]. Also, let φ be a smooth cut-off function
supported in some compact subset of D and identically equal to 0 outside a
larger compact subset of D. Define

Q(ζ, z) =
1

r(ζ)

((
1 − φ(ζ)

) n∑
i=1

Qi(z, ζ)dζi + φ(ζ)
n∑

i=1

∂r

∂ζi
(ζ)dζi

)
.

With this notation, one has the following result.

Proposition 2 ([3]). For any N > 1 the integral operator EN defined on
any function g ∈ H∞(D ∩ A) for any z ∈ D by

ENg(z)

:=
∫

D∩A

g(ζ)

×
[
(dV )#� rN+n−1(ζ)

(r(ζ) + (1 − φ(ζ))S(z, ζ) + φ(ζ)
∑n

i=1
∂r
∂ζi

(ζ)(ζi − zi))N+n−1

× (∂Q(ζ, z))n−1 ∧ ∂f(ζ) ∧
∑n

i=1 hi(ζ, z)dζi

|∂f |2
]

dVA(ζ)

is a linear extension operator. Furthermore, the function ENg is continuous
on D̄ \ (bD ∩ A).

We repeated the formulation after [11]. The symbol � above stands for the
interior multiplication. Also, # has the same meaning here as in differential
geometry, that is, dV # is the unique element of the exterior power ΛTD of
the tangent bundle such that (dV #, dV ) = 1, where here (·, ·) stands for the
duality between ΛTD and Λ∗TD induced by the standard Euclidean metric.

Observe that g in Proposition 2 is assumed to be bounded, which is not
the case in our situation. Obviously, this is not an obstacle if A is affine, since
we may assume that 0 ∈ D ∩ A and consider functions gt(ζ) := g(tζ), t < 1.
This suffices to complete the proof in that case, since D is convex and gt → g
in Lp(ν), p < ∞ for the measures which we will consider. This argument does
not work in case of a general variety A.

Instead, we may shrink the domain only, without changing A or g, in order
to be able to apply results from [3]. This is why we will divide the proof of
Theorem 4 into two steps. First, we will show that EN from Proposition 4
maps boundedly L1(D ∩ A,νN ) into L1(D). This fact will be used in the next
step to prove that RAEN = id on H1(D ∩ A,νN ), which also implies that
RAEN = id on Hp(D ∩ A,νN ) for 1 < p < ∞ since the measures νN are finite
(cf. Corollary 1). It is worth mentioning that this argument works because
the assumption g ∈ H1(D ∩ A,νN ) and the fact

H1(D ∩ A,νN ) ⊂ H1(D ∩ A,�2/MdVA)
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provides us with a bound on the growth of g in terms of �.

Proof of Theorem 4. We will show that the operator EN maps boundedly
L1(D ∩ A,νN ) into L1(D) for a suitably defined measure νN . Importantly, at
this moment we do not claim that EN is an extension operator on H1(D ∩
A,νN ) with values in H1(D).

We have∫
D

∣∣∣∣
∫

D∩A

g(ζ)EN (ζ, z)dVA(ζ)
∣∣∣∣dV (z)

≤
∞∑

i=0

∫
D∩A

|g(ζ)|
∫

P −i(ζ)

|EN (ζ, z)| dV (z)dVA(ζ)

+
∫

D∩A

|g(ζ)|
C�log2 (1/�)	∑

i=1

∫
P i(ζ)

|EN (ζ, z)| dV (z)dVA(ζ),

where P i = P i(ζ) := CP2i�(ζ) \ cP2i−1�(ζ), i ∈ N and, as usually, � = �(ζ). For
a fixed ζ ∈ D ∩ A the kernel EN can be estimated in the following way

|EN (ζ, z)| �
∑
l,k

�N

(� + 2i�)N+n−1
(25)

× (2i�)n−1∏
α �=l τα(ζ,2i�)

∏
β �=k τβ(ζ,2i�)

|Zζ,i
l f(ζ)hk(ζ, z)|

� 1
2iN

∑
l

( |Zζ,i
l f(ζ)|2∏

α �=l τ
2
α(ζ,2i�)

+
|hl(ζ, z)|2∏

β �=l τ
2
β(ζ,2i�)

)

provided z ∈ P i(ζ). The symbol Zζ,i
l stands for the derivative

Zζ,i
l f(ζ) :=

∂

∂λ
f(ζ + λvl)

∣∣∣∣
λ=0

,

where vl is the lth vector of the (2i�)-extremal basis at ζ. Notice that hl in
(25) is again the lth coordinate in the decomposition (24) of f in the (2i�)-
extremal basis.

Remark 2 (Technical assumption). In order to simplify the notation, we
will suppress denoting dependence of derivatives either on ζ or i. Thus, we
will often simply write ∂l below instead of Zζ,i

l once ζ and i are fixed.

In order to obtain estimate (25), one needs to express the kernel in (2i�)-
extremal coordinates at ζ choosing a suitable unitary transformation as in
(14) and invoke Lemma 1 and Lemma 2. We will proceed in a similar way in
other estimates from below without an explicit reference either to Lemma 1
or Lemma 2.
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We obtain∫
P i

|EN (ζ, z)| dV

≤ 1
2iN

∑
l

(
|∂lf(ζ)|2V (P i)∏

α �=l τα(ζ,2i�)
+

1∏
β �=l τβ(ζ,2i�)

∫
P i

|hl(ζ, z)|2 dV

)
.

As for the first term, we may write

1
2iN

∑
l

|∂lf(ζ)|2V (P i)∏
α �=l τα(ζ,2i�)

≤ 1
2iN

∑
l

|∂lf(ζ)|2τ2
l (ζ,2i�) � 1

2i(N −2/M)
|∂f |2κ,

where |ω|κ stands for the non-isotropic norm of (1,0)-covector ω, which is
defined in the following way∣∣∣∑ωk

(
Z

ζ,�(ζ)
k

)∗
∣∣∣
κ
(ζ) :=

(∑
|ωκ|2τ2

k (ζ, �)
)1/2

where the symbol (Zζ,�(ζ)
k )∗ stands for the covector dual to Z

ζ,�(ζ)
k .

If we denote

dh+ :=

[∑
l

�log2 (1/�)	∑
i=1

1
2iN

1∏
β �=l τ

2
β

(
ζ,2i�

) ∫
P i

|hk(ζ, z)|2 dV

]
dVA,

then we obtain the following estimate

�log2 (1/�)	∑
i=1

∫
D∩A

|g(ζ)|
∫

P i

|EN (ζ, z)| dV dVA

≤
∫

D∩A

|g(ζ)| · |∂f |2κ dVA +
∫

D∩A

|g(ζ)| dh+.

In P −i := CP2−i�(ζ) \ cP2−i−1�(ζ), we can estimate the kernel EN in a similar
way. Namely,

|EN (ζ, z)| ≤
∑

l

�N

�N+n−1

(2−i�)n−1∏
α �=l τ

2
α(ζ,2−i�)

(
|∂lf(ζ)|2 + |hl(ζ, z)|2

)

� 1
2i(n−1)

∑
l

|∂lf(ζ)|2 + |hl(ζ, z)|2∏
α �=l τ

2
α(ζ,2−i�)

,

and, as a result,∫
P −i(ζ)

|EN (ζ, z)| dV

≤ 1
2i(n−1)

∑
l

(
|∂f(ζ)|2κ +

1∏
α �=l τ

2
α(ζ,2−i�)

∫
P −i

|hl(ζ, z)|2 dV

)
.
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To sum this up, we have proved∫
D

|ENg(z)| dV ≤ C

∫
D∩A

|g(ζ)| |∂f |2κ(ζ)dV +
∫

D∩A

|g(ζ)|hdVA,

where,

h := h+ +
[ ∞∑

i=0

1
2i(n−1)

∑
l

1∏
α �=l τ

2
α(ζ,2−i�)

∫
P −i(ζ)

|hl(ζ, z)|2 dV (z)
]

dVA.

In other words, EN : L1(D ∩ A,ν) → L1(D), where dν := |∂f |2κ dVA + hdVA.
We shall prove the claims concerning the measure ν. For future reference,

we single out the following lemma.

Lemma 3. Assume that D is a smoothly bounded convex domain of finite
type in Cn, n > 1 and A satisfies Assumption 1. Then

sup
{

μf (P ∩ A)
V (P )

: P = P�(ζ)(ζ), ζ ∈ D ∩ A

}
< ∞,

where dμf = |∂f |2κ dVA.

Proof. Fix P and notice that

(26) |∂f |2κ(ζ) ∼ max{ |∂lf(ζ)|2τ2
l (ζ, �) : 1 ≤ l ≤ n}.

Recall that (26) is written according to the convention from Remark 2 and ∂l

in (26) is actually equal to Z
ζ,�(ζ)
l .

Recall that at a given point z with f(z) = 0 the volume form dVA can be
estimated by

(27) dVA � dx1 dy1 · · · d̂xi dyi · · · dxn dyn

|
∧

j �=i(dxj ∧ dyj) ∧ d�(f ◦ Φ∗) ∧ d�(f ◦ Φ∗)| ,

where v∗
j = dxj +

√
−1dyj are the ε-extremal coordinates and Φ∗ is the corre-

sponding unitary change of coordinates. The same estimate was used in [11]
in the proof of extension of H∞ functions.

We will denote by Pj a subset of P consisting of all z ∈ P such that

0 < max{|∂lf(z)|2τ2
l (z, �(z)) : 1 ≤ l ≤ n} = |∂jf(z)|2τ2

j (z, �(z)).

The first inequality is a consequence of Assumption 1.
Observe that with this notation (27) implies the following estimate∫

P

|∂f |2κ dVA

=
n∑

i=1

∫
Pi

|∂f |2κ dVA



530 M. JASICZAK

�
n∑

i=1

∫
|v∗

j | ≤τj(ζ,�)

j �=i,v∗=v∗(z),z∈Pj

|∂if(z)|2τ2
i (z, �(z))dx1 dy1 · · · d̂xi dyi · · · dxn dyn

|
∧

j �=i(dxj ∧ dyj) ∧ d�(f ◦ Φ∗) ∧ d�(f ◦ Φ∗)|

≤ nC
n∏

i=1

τ2
i (ζ, �) ∼ V (P ).

This proves the lemma. �

At this moment, it suffices to show that h � �2/M .

h(ζ) =
∑

l

�log2 (1/�)	∑
i=1

1
2iN

1∏
β �=l τ

2
β(ζ,2i�)

∫
P i

|hl(ζ, z)|2 dV (z)

+
∑

l

∞∑
i=0

1
2i(n−1)

1∏
β �=l τ

2
β(ζ,2−i�)

∫
P −i

|hl(ζ, z)|2 dV (z)

≤ C
∑

l

�log2 (1/�)	∑
i=1

τ2
l (ζ,2i�)

2iN
+ C

∑
l

∞∑
i=0

τ2
l (ζ,2−i�)
2i(n−1)

≤ C�2/M .

Thus, we have shown that EN maps L1(D ∩ A,νN ) into L1(D) and the mea-
sure νN constructed in the proof satisfies the required estimates. We also
need to show that EN is an extension operator on H1(D ∩ A,νN ), that is,
that RAEN = id on H1(D ∩ A,νN ). We intend to prove this fact now. The
Reader may want to skip this part of the proof. However, the author feels it
is reasonable at least to sketch the argument.

The main motivation behind the integral representations constructed in [3]
and [2] was to have kernels, which vanish on the boundary. Not surprisingly,
the equality

(28) RAEN |H1(D∩A,νN ) = id|H1(D∩A,νN ),

follows from the fact that for sufficiently large N a function �Ng is bounded
in D ∩ A for any g ∈ H1(D ∩ A,νN ).

It order to prove (28), we need to recall the setup from [3] and [11]. First,
let Dt = {z : r(tz) < 0} for t > 1 and define the following forms

s(ζ, z) = −r(z)
n∑

i=1

(ζ̄i − z̄i)dζi +
(
1 − φ(z)

)
S(ζ, z)

n∑
i=1

Qi(ζ, z)dζi,

Q1(ζ, z) =
1

r(ζ)

((
1 − φ(ζ)

) n∑
i=1

Qi(z, ζ)dζi + φ(ζ)
n∑

i=1

∂r

∂ζi
(ζ)dζi

)
,

Q2
ε(ζ, z) =

f(ζ)
∑n

i=1 hi(ζ, z)dζi

|f |2 + ε
.
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With these definitions for any g ∈ C1(D̄t) and z ∈ Dt, it holds

(29) g(z) = cn

(∫
bDt

g(ζ)Kε
0(ζ, z) −

∫
Dt

∂g(ζ) ∧ Kε
0(ζ, z) −

∫
Dt

g(ζ)P ε
0 (ζ, z)

)
,

where

P ε
0 (ζ, z) = Cn

1
(〈Q1, z − ζ〉 + 1〉)N+n

f(z)f(ζ) + ε

|f(ζ)|2 + ε
(∂Q1)n

+ Dn
1

(〈Q1, z − ζ〉 + 1〉)N+n−1
(∂Q1)n−1 ∧ (∂Q2

ε)

:= P 0,ε
0 (ζ, z) + P 1,ε

0 (ζ, z),

Kε
0(ζ, z)

:=
n−1∑
k=0

An,k
1

(〈Q1, z − ζ〉 + 1)N+k

f(z)f(ζ) + ε

|f(ζ)|2 + ε
(∂Q1)k ∧ s ∧ (∂s)n−k−1

〈s, ζ − z〉n−k

+
n−2∑
k=0

Bn,k
1

(〈Q1, z − ζ〉 + 1)N+k
(∂Q1)k ∧ s ∧ (∂s)n−k−2

〈s, ζ − z〉n−k−1
∧ (∂Q2

ε)

:= K0,ε
0 (ζ, z) + K1,ε

0 (ζ, z).

This corresponds to the choice G1(z) = z−N and G2(z) = z in [3].
Consider now a function g ∈ H1(D ∩ A,ν), where

H1(D ∩ A,ν) =
{

g ∈ H(D ∩ A) :
∫

D∩A

|g| dν < ∞
}

.

We construct now its extension gγ to a function which is smooth on D. This
task is accomplished as follows. It is a consequence of Assumption 1 that
we may treat f at each point p ∈ bD as one of the variables. Taking an
appropriate partition of unity, we may also assume, without loss of generality,
that f is the last variable zn. From the fact that ∂f ∧ ∂r �= 0 and convexity
of D, it follows that there exits a uniform a > 0 such that the lense

La := {z : |zn| ≤ a�(z), (z1, . . . , zn−1) ∈ D ∩ A}
is contained in D. The function g, defined on D ∩ A is now extended to a
function on La simply by putting g(z) := g(z1, . . . , zn−1). Next, we choose a
family of cut-off functions πγ such that πγ = 1 on {x ≤ γ/2} and πγ = 0 if
x ≥ γ and define for sufficiently small γ, gγ(z) = π( |zn |2

r2(z) )g(z).
Thus, the representation formula holds for gγ and t > 1, ε > 0. Therefore,∣∣∣∣gγ(z) −

∫
Dt

∂gγ(ζ) ∧ Kε
0(ζ, z) −

∫
Dt

gγ(ζ)P ε
0 (ζ, z)

∣∣∣∣
≤ C

∫
bDt

|gγ(ζ)Kε
0(ζ, z)| ≤ Cγ

ε
‖g‖H1(D∩A,νN )O(t − 1).
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The last estimate follows from the fact that the assumption

g ∈ H1(D ∩ A,νN ) ⊂ H1(D ∩ A,�2/M dVA)

gives a bound on growth of gγ and ∂gγ in terms of �, which is smaller than
the order of vanishing of Kε

0(ζ, z) for z ∈ D ∩ A and ζ approaching bD. The
constant Cγ tends to ∞ when γ → 0.

As a result, for these ε∣∣∣∣|g(z) − ENgγ(z)| −
∣∣∣∣ENgγ(z) −

∫
Dt

∂gγ(ζ) ∧ Kε
0(ζ, z) −

∫
Dt

gγ(ζ)P ε
0 (ζ, z)

∣∣∣∣
∣∣∣∣

≤ Cγ

ε
‖g‖H1(D∩A,νN )O(t − 1).

Now, let εm = 1
m and tm = 1 + 1

m2 ,m ∈ N and notice that with this choice we
obtain

|g(z) − ENgγ(z)|

= lim
m→∞

∣∣∣∣ENgγ(z) −
∫

Dtm

∂gγ(ζ) ∧ Kεm
0 (ζ, z) −

∫
Dtm

gγ(ζ)P εm
0 (ζ, z)

∣∣∣∣.
On the other hand, for z ∈ D, it holds

lim
m→∞

∫
Dtm

gγ(z)P εm
0 (ζ, z) =

∫
D

gγ(ζ)P0(ζ, z),

where

P0(ζ, z) = Cn
1

(〈Q1, z − ζ〉 + 1)N+n

f(z)
f(ζ)

(∂Q1)n

+ DndV #�
[

1
(〈Q1, z − ζ〉 + 1)N+n−1

(∂Q1)n−1

∧ ∂f(ζ) ∧
∑n

i=1 hi(ζ, z)
|∂f |2

]
dVA

:= P 0
0 (ζ, z) + P 1

0 (ζ, z).

Indeed, the fact that∫
Dtm

gγ(z)Cn
1

(〈Q1, z − ζ〉 + 1〉)N+n

f(z)f(ζ) + ε

|f(ζ)|2 + ε
(∂Q1)n

−→
∫

D

gγ(ζ)P 0
0 (ζ, z),

as ε → 0, follows from the Lebesgue theorem, since ∂f �= 0 in D. Also, the
growth restriction on g, which is a consequence of the fact that g ∈ H1(D ∩
A,�2/M dVA), guarantees that rN (ζ)gγ(ζ) vanishes as ζ → bD provided N is
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large enough. As for the second term, the proof in [3] relies on the following
fact. Namely, it holds

(30)
ε

(|f |2 + ε)2
→ dVA

|∂f |2 ,

weakly as distributions, as ε → 0. This implies that

(31) ∂Q2
ε = εC

∂f ∧
∑n

i=1 hi dζi

(|f |2 + ε)2
→ c

∑n
i=1 hi dζi ∧ ∂f

|∂f |2 dVA,

as ε → 0, this time weakly as currents. This means that for a fixed z ∈ D we
also have that

dV #�(∂Q1)n−1 ∧ (∂Q2
ε) → dV #�

[
(∂Q1)n−1 ∧

∑n
i=1 hidζi ∧ ∂f

|∂f |2
]

dVA

weakly as distributions. Therefore, for any compactly supported cut-off func-
tion ψ (

dV #�(∂Q1)n−1 ∧ (∂Q2
ε),

ψgγ

(〈Q1, z − ζ〉 + 1〉)N+n−1

)
−→

ε → 0
(

dV #�
[
(∂Q1)n−1 ∧

∑n
i=1 hidζi ∧ ∂f

|∂f |2
]

dVA,

× ψgγ

(〈Q1, z − ζ〉 + 1〉)N+n−1

)
,

where this time the bracket stands for duality between distributions and test
functions. Now we can find a cut-off function ψ such that

(32)
(

dV #�(∂Q1)n−1 ∧ (∂Q2
ε),

ψgγ

(〈Q1, z − ζ〉 + 1〉)N+n−1

)
is as close as we please to ∫

D

gγ(ζ)P 1,ε
0 (ζ, z),

uniformly with respect to ε > 0, while the right-hand side of (32) is close to
ENgγ(z). Both statements follow from the first part of the proof and are again
consequences of the fact that the growth of gγ can be controlled in terms of �.
In the proof of the former one also makes use of the fact that the growth of
∂gγ can also be controlled in terms of �. Also, for z ∈ D ∩ A∫

D

∂gγ(ζ) ∧ K0,ε
0 (ζ, z) → 0,

by Lebesgue theorem, since A = {f(z) = 0} and∫
D

∂gγ(ζ) ∧ K1,ε
0 (ζ, z) → 0,



534 M. JASICZAK

because on D ∩ A, it holds ∂gγ = 0. Therefore, we have

|g(z) − ENgγ(z)| = lim
m→0

∣∣∣∣ENgγ(z) −
∫

Dtm

gγ(ζ)P εm
0 (ζ, z)

∣∣∣∣ = 0.

Therefore, letting γ → 0 we obtain that g(z) = ENg(z) provided z ∈ D ∩ A
and g ∈ H1(D ∩ A,�2/M dVA). This completes the proof of Theorem 4. �

Proposition 3. Assume that D is a smoothly bounded convex and strictly
pseudoconvex domain in Cn, n > 1. Then

sup
{

h(P )
V (P )

: P = P�(ζ), ζ ∈ D ∩ A

}
< ∞,

where h(P ) stands for
∫

P
hdVA.

Proof. Under the assumption that D is strictly pseudoconvex one has
τα(ζ, �) ∼ �1/2 if α > 1. Therefore, we have

h(P ) �
∫

P ∩A

(�2 + �)dVA.

Also, since f = 0 cuts the boundary transversally ∂f ∧ ∂r �= 0 in some neigh-
bourhood U of bD. This implies that for each ζ ∈ U there exists 2 ≤ j ≤ n
such that |∂jf(ζ)| ≥ c with a uniform positive constant c. Hence, the method
of Lemma 3 proves this proposition, as well. �

Proof of Theorem 5. We will prove (ii) first. Assume first that n = 2 and
transversallity condition 1 holds. Then for each p ∈ U , it holds Tf(p) �= 0,
where L is defined in the following way

T :=
∂r

∂z1

∂

∂z2
− ∂r

∂z2

∂

∂z1
.

Indeed, notice that ∂f ∧ ∂r = (Tf)T ∗ ∧ ∂r with T ∗ denoting the (1,0)-form
dual to T . Hence, Assumption 1 implies that Tf �= 0 in some open neighbour-
hood of bD. Denote this neighbourhood by U—the same symbol will stand
for the neighbourhood from Assumption 3 in case n > 2.

Therefore, in both cases, that is, when n = 2 and n > 2 under Assumption 3,
there exists t0 < 1 such that{

ζ ∈ D ∩ A : �(ζ) < t0,

Lr(ζ; ξ) =
n∑

j,k=1

∂2r(ζ)
∂zj ∂z̄k

ξj ξ̄k = 0 for some ξ ∈ Cn, ξ �= 0
}

⊂ U.

This follows from the assumption that r is of the form pD − 1.
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Thus, if ζ ∈ D ∩ A and the null space of Lr(ζ, ·) is of positive dimension,
then either ζ ∈ U or �(ζ) ≥ t0 > 0. Observe that if �(ζ) ≥ t0, then h(ζ) ≤ C
for some positive constant C. As a result, we obtain in this case

sup
{

νN (P )
V (P )

: P = P�, � ≥ t0

}
≥ c > 0.

Hence, we may assume that �(ζ) < t0. There are two possibilities: either ζ ∈ U
or ζ /∈ U . In the latter case, it holds τl(ζ, �) ∼ �1/2 with a uniform constant.
The fact that constants are uniform is a consequence of the following formula

(33) τ(z, v, ε) ∼ min
1≤k≤M

{(
ε∑

i+j=k |aij(z, v)|

)1/k}
,

where

aij(z, v) =
∂i+j

∂λi ∂λ̄j
r(z + λv)

∣∣∣∣
λ=0

.

Therefore, if �(ζ) < t0 and ζ /∈ U then we can proceed as in Proposition 3.
Thus, we may assume that ζ ∈ U . We will show that for sufficiently large

N , it holds hN (ζ) � |∂f |2κ(ζ). In view of Lemma 3, this suffices to complete
the proof. Consider first the term h+

h+(ζ) =
∑

l

�log2 (1/�)	∑
i=1

1
2iN

1∏
β �=l τ

2
β(ζ,2i�)

∫
P i

|hl(ζ, z)|2 dV (z)

≤ C
∑

l

�log2 (1/�)	∑
i=1

1
2iN

V (P i)∏
β �=l τ

2
β(ζ,2i�)

≤ C
∑

l

�log2 (1/�)	∑
i=1

τ2
l (�,2i�)

2iN

≤ C
1

2N

n∑
l=1

τ2
l (ζ, �) ≤ nC

τ2
2 (ζ, �)
2N

.

In the estimates, we made use of the fact that

|hk(ζ, z)|2 ≤ sup
z∈D

|∂kf(z)|2 ≤ C,

since f is holomorphic in some neighbourhood of D. Thus, we need to choose
N0 in such a way that nC2−N ≤ √

c, where c denotes the constant in (1) from
Assumption 3. With such a choice, we obtain for ζ ∈ U

h+(ζ) ≤ |Z2f(ζ)|2τ2
2 (ζ, �) ≤ |∂f |2κ(ζ).

As for the term h−, notice that

|Zζ,0
l f(z)| ≤ |Zζ,0

l f(ζ)| +
n∑

k=1

|Zζ,0
k Zζ,0

l f(ξl)|τl(ζ, ε) ≤ |Zζ,0
l f(ζ)| + Cε1/M

for z ∈ Pε(ζ) and some ξ1, . . . , ξn ∈ Pε(ζ). Choose ε > 0 here in such a way
that it satisfies the condition Cε1/m ≤ c with c as in (1). Also, there exists j
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such that 2jε ≥ t0. Consequently, for z ∈ P (ζ) with ζ ∈ U and �(ζ) < t0 we
obtain

|Zlf(z)| ≤ C|Zlf(ζ)|
for z ∈ P (ζ). We are now ready to complete the proof of (ii).

h−(ζ) =
∞∑

i=0

1
2i(n−1)

1∏
β �=l τ

2
β(ζ,2−i�)

∫
P −i

|hl(ζ, z)|2 dV (z)

�
∞∑

i=0

∑
l

τ2
l (ζ,2−i�)
2i(n−1)

|Zζ,0
l f(ζ)|2 ≤ |∂f |2κ(ζ).

Now, we intend to prove (i). Actually, the situation under Assumption 2 is
easier. We will show that hdVA satisfies condition (7). For future reference,
we single out the method as a lemma.

Lemma 4. Assume that D is a smoothly bounded convex domain of finite
type and A satisfies Assumptions 1 and 2. Then for any ζ ∈ A ∩ D and ε > 0,
it holds

n∑
l=1

VA(A ∩ P ∩ D)τ2
l (ζ, ε) ≤ CV (P ),

where P = Pε(ζ).

Proof. We can assume that ε here is small enough to guarantee that Pε(ζ) ⊂
U , where U is the neighbourhood from Assumption 2. Indeed, the statement
is trivial for ε bounded from below. Also, for each l, it holds τl(ζ, ε) � τ2(ζ, ε)
and

VA(A ∩ P ∩ D)

�
∫

|v∗
j (z)| ≤τj(ζ,ε)

j �=2

dx1 dy1 d̂x2 dy2 · · · dxn dy2

|
∧

j �=2(dxj ∧ dyj) ∧ d�(f ◦ Φ∗) ∧ d�(f ◦ Φ∗)|

�
∏
j �=2

τ2
j (ζ, ε).

This proves the lemma, since
∏n

j=1 τ2
j (ζ, ε) ∼ V (P ). �

Notice that

h(ζ) ≤ C

C�log2 (1/�)	∑
i=1

1
2iN

∑
l

τ2
l (ζ,2i�) + C

∞∑
i=0

1
2i(n−1)

∑
l

τl(ζ,2−i�)

and, as a result, for P = Pε(z) with ε ≤ c�(z)∫
A∩P

h(ζ)dVA ≤ C

∫
A∩P

∑
l

τ2
l (ζ, ε)dVA ≤ C

∑
l

τ2
l (z, ε)VA(A ∩ P )

and application of Lemma 4 completes the proof of (i) and the proof of the
whole Theorem 5. �
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Proof of Theorem 6. Fix P = Pε(ξ) and notice that we have

1
V (P )

∫
P

|ENg(z) − (ENg)P | dV (z)

≤ 1
V (P )2

∫
P ×P

|ENg(z) − ENg(ζ)| dV (z)dV (ζ)

≤ 2‖g‖L∞

V (P )2

×
C�log2 (1/ε)	∑

i=0

∫
P ×P

∫
D∩A∩P i

|EN (η, ζ) − EN (η, z)| dVA(η)dV (z)dV (ζ),

where P i := CP2i+1ε(ξ) \ cP2iε(ξ), i = 1, . . . and P 0 = P ∗. Naturally, for any
η, ζ, z ∈ D

|EN (η, ζ) − EN (η, z)| ≤ |EN (η, ζ) − EN (η, ξ)| + |EN (η, ξ) − EN (η, z)|.

Hence, ∫
P ×P

∫
D∩A∩P i

|EN (η, ζ) − EN (η, z)| dVA(η)dV (z)dV (ζ)

≤ 2V (P )
∫

P

∫
D∩A∩P i

|EN (η, ζ) − EN (η, ξ)| dVA(η)dV (ζ).

As a result, for any sequence ξi ∈ D with i ∈ N0, it holds

1
V (P )

∫
P

|ENg(z) − (ENg)P | dV(34)

≤ 4‖g‖L∞

V (P )

×
C�log2 (1/ε)	∑

i=0

∫
D∩A∩P i

∫
P

|EN (η, ζ) − EN (η, ξi)| dVA(η)dV (ζ).

Now we need to choose points ξi. As for the case of integral over P ∗ ∩ A, we
proceed as follows: if P ∗ ∩ A = ∅, then there is nothing to prove, otherwise
let ξ0 ∈ P ∗ ∩ A. Recall that the engulfing property (10) ensures that in this
case there is a uniform C such that P ∗ ⊂ CPε(ξ0) and V (P ) ∼ V (CPε(ξ0))
by (20). Therefore,

I :=
1

V (P )

∫
P

∫
D∩A∩P ∗

|EN (ζ, z) − EN (ζ, ξ0)| dV (ζ)dV (z)

≤ 1
V (P )

∫
A∩D∩CP ∗(ξ0)

∫
CP (ξ0)

|EN (ζ, z) − EN (ζ, ξ0)| dV (z)dVA(ζ)
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≤ 1
V (P )

∫
A∩D∩CP ∗(ξ0)

∫
CP (ξ0)

|EN (ζ, z)| dV (z)dVA(ζ)

+
1

V (P )

∫
A∩D∩CP ∗(ξ0)

∫
CP (ξ0)

|EN (ζ, ξ0)| dV (z)dVA(ζ).

It follows from Lemma 2 and Lemma 1 that we have the following estimate
for the kernel in CPε(ξ0)

EN (ζ, z) �
∑

l

1
�n−1(ζ)

εn−1∏
α �=l τ

2
α(ξ0, ε)

(
|∂lf(ζ)|2 + |hl(ζ, z)|

)

≤
∑

l

1
�n−1(ζ)

εn−1∏
α �=l τ

2
α(ξ0, ε)

(
|∂lf(ζ)|2 + sup

CPε(ξ0)

|∂lf |2
)
.

There are two cases, which should be taken into account. Namely,

1
V (P )

∫
A∩D∩CP ∗(ξ0)

∫
CP (ξ0)

∑
l

|∂lf(ζ)|2
�n−1(ζ)

εn−1∏
α �=l τ

2
α(ξ0, ε)

dVA(ζ)dV (z)

≤ 1
V (P )

∫
A∩D∩CP ∗(ξ0)

∑
l

|∂lf(ζ)|2τ2
l (ξ0, ε)dVA

� 1
V (P )

∫
A∩D∩CP ∗(ξ0)

|∂f(ζ)|2κ dVA,

since τ(ξ0, ε) ∼ τ(ζ, ε) in CP ∗(ξ0). Recall that according to Lemma 3 the
measure |∂f |2κ dVA satisfies condition (7). This completes the argument in
this case, since∫

A∩D∩CP ∗(ξ0)

|∂f(ζ)|2κ dVA � V (CP ∗(ξ0)) ∼ V (P ).

The estimate of terms involving the functions hl follows from Lemma 4.
Hence, under Assumption 3, we obtain

1
V (P )

∫
D∩A∩CP ∗(ξ0)

∫
CP (ξ0)

|EN (ζ, z) − EN (ζ, ξ0)| dV � 1.

We have not used any cancellation property so far. This plays a role in
P i = CP2i+1ε(ξ) \ cP2iε(ξ), where in (34) we simply take ξi = ξ. Again, if
there exists ζi belonging to A ∩ D ∩ P i, then there is C > 0 such that P i ⊂
CP2i+1ε(ζi) and we estimate the kernel in CP2i+1ε(ζi). The latter statement
means that we choose (2i+1ε)-basis at ζi, find the unitary transformation Φ∗

and refer to Lemma 2 as far as estimates of (∂Q1)n−1 are concerned. However,
the terms S(z, ζ) and S(ξ, ζ) in the denominator will be estimated under the
assumption that ζ ∈ P i(ξ).
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One easily observes that one of the terms, which appear in |EN (ζ, z) −
EN (ζ, ξ)|—and we will restrict our attention to a typical term—can be esti-
mated by the following expression

J =
∑

j+l=N+n−2

�N+n−1(ζ)|S(z, ζ) − S(ξ, ζ)|
(r(ζ) + S(z, ζ))N+n−1−l(r(ζ) + S(ξ, ζ))N+n−1−j

(35)

×
∣∣∣∣∣(∂Q1(ζ, z))n−1 ∧ ∂f(ζ) ∧

n∑
k=1

hk(ζ, z)dζk

∣∣∣∣∣.
Observe that

|S(z, ζ) − S(ξ, ζ)| =
∣∣∣∣∑

α

∂αS(z′, ζ)(zα − ξα)
∣∣∣∣

with z′ ∈ Pε(ξ)

=
∣∣∣∣∑

α

∂α

[∑
β

Qβ(z′, ζ)(z′
β − ζβ)

]
(zα − ξα)

∣∣∣∣ ≤ 2i+1ε
∑
α

τα(ξ, ε)
τα(ξ,2i+1ε)

� 2i+12−i/Mε

since z ∈ Pε(ξ) and ζ ∈ P2i+1ε(ξ). The corresponding decomposition of S is
with respect to the (2i+1ε)-basis at ξ and the estimate follows from Lemma 2.

Thus, for the term (35), we have the following estimate in CP2iε(ζi)

J ≤ C2−i/M
∑

l

�N

�N

1
(2iε)n

(2iε)n∏
β �=l τβ(ζi,2iε)

(
|∂lf(ζ)|2 + |hl(ζ, z)|2

)
.

This follows again from Lemma 1 and Lemma 2. Therefore,

1
V (P )

C�log2 (1/ε)	∑
i=1

∫
A∩P i

∫
P

J (z, ζ, ξ)dVA(ζ)dV (z)

≤
C�log2 (1/ε)	∑

i=1

2−i/M

∫
A∩CP2i+1 (ζi)

∑
l

|∂lf(ζ)|2 + supCP2i+1ε(ζi) |∂lf |2∏
β �=l τβ(ζi,2iε)

dVA(ζ)

�
C�log2

1
ε 	∑

i=1

2−i/M

(
1 +

∑
l

1∏
β �=l τβ(ζi,2iε)

∫
A∩CP2i+1 (ζi)

dVA

)
,

by (27) and the method of Lemma 3.
Now it is a consequence of Assumption 2 and estimate (27) that

∑
l

1∏
β �=l τβ(ζi,2iε)

∫
A∩CP2i+1ε(ζi)

dVA ≤ C
∑

l

∏
β �=2 τβ(ζi,2iε)∏
β �=l τβ(ζi,2iε)

� 1,

by the method of Lemma 4. This completes the proof for (35) and the whole
proof, since similar estimates hold for other terms, as well. �
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As was stated in the Introduction the proof of Theorem 1 is based on
interpolation. We formulate the result, which we need below

Theorem 9. Assume that D is a smoothly bounded convex domain of finite
type in Cn and let ν be a positive measure on D ∩ A, where A is a complex
submanifold satisfying Assumption 1. Assume that T is a bounded operator
on the following pairs of spaces

T : L1(D ∩ A,ν) → L1(D),
T : L∞(D) → BMO(D).

Then, T maps boundedly Lp(ν) into Lp(D) for 1 < p < ∞.

From the Riesz–Thorin theorem it follows that the interpolation spaces
between L1 and L∞ constructed by means of the real method are isomorphic
to Lp spaces. Thus, in order to prove the theorem is suffices to prove that
[L1(D),BMO(D)]θ ∼= Lp with 1

p = 1 − θ. Since the proof follows a well-known
pattern, instead of writing down details we refer the reader to [16] and [20] for
proofs in a standard situation (one may also want to consult [15] for a different
approach). The first method boils down to computing the K functional, while
the second reduces the problem to constructing a Whitney type cover in the
spirit of Proposition 1 and the Marcinkiewicz interpolation theorem.

Proof of Theorem 1. We proved that under Assumption 2 for sufficiently
large N , the operator EN is a continuous operator between the following pairs
of spaces

EN : L1(D ∩ A,νN ) → L1(D),

EN : L∞(D) → BMO(D).

Theorem 9 implies that EN maps Lp(D ∩ A,νN ) into Lp(D) for 1 < p < ∞.
Consequently, for each 1 ≤ p < ∞

RA[Hp(D)] = Hp(D ∩ A,ν),

which shows that the sequence (3) is exact. Indeed, for any f ∈ Hp(D ∩ A,ν),
it holds ENf ∈ Hp(D). This implies that f = RAENf ∈ RA(Hp(D)). In
other words, we have RA[Hp(D)] = Hp(D ∩ A,ν). Obviously, the rest follows
from this easily. �

Proof of Theorem 2. Following immediately from Theorem 3 and Theo-
rem 5 by arguments similar to those which prove Theorem 1. �
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[1] W. Alexandre, Problémes d’extension dans les domains convexes de type fini, Math.

Z. 253 (2006), 263–280. MR 2218700

[2] B. Berndtsson and M. Andersson, Henkin–Ramirez formulas with weight factors, Ann.

Inst. Fourier (Grenoble) 32 (1982), 91–110. MR 0688022

http://www.ams.org/mathscinet-getitem?mr=2218700
http://www.ams.org/mathscinet-getitem?mr=0688022


EXTENSION AND RESTRICTION 541

[3] B. Berndtsson, A formula for interpolation and division in Cn, Math. Ann. 263 (1983),
399–418. MR 0707239

[4] J. Bruna, P. Charpentier and Y. Dupain, Zero varieties for the Nevanlinna class in
convex domains of finite type, Annals of Math. 147 (1998), 391–415. MR 1626753

[5] J. Bruna, A. Nagel and S. Waigner, Convex hypersurfaces and Fourier transforms,
Annals of Math. 127 (1988), 333–365. MR 0932301

[6] C. Bennett and R. Sharpley, Weak type inequalities for Hp and BMO, Harmonic anal-
ysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown,

Mass., 1978), Part 1, Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc.,
Providence, RI, 1979, pp. 201–229. MR 0545259

[7] D. Catlin, Boundary invariants of pseudoconvex domains, Annals of Math. 120 (1984),
529–586. MR 0769163

[8] K. Diederich and J. E. Fornaess, Support functions for convex domains of finite type,
Math. Z. 230 (1999), 145–164. MR 1671870

[9] K. Diederich, B. Fischer and J. E. Fornass, Hölder estimates on convex domains of
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[18] T. Hefer, Extremal bases and Hölder estimates for ∂ on convex domains of finite type,

Michigan Math. J. 52 (2004), 573–602. MR 2097399

[19] M. Jasiczak, Extension of holomorphic functions with applications, submitted.

[20] G. Li and W. Li, Interpolation spaces between L1 and BMO on spaces of homogeneous
type, J. Math. Res. Exposition 27 (2007), 525–532. MR 2349498

[21] J. D. McNeal, Convex domains of finite type, J. Funct. Anal. 108 (1992), 361–373.
MR 1176680

[22] J. D. McNeal, Estimates on the Bergman kernels of convex domains, Adv. Math. 109
(1994), 108–139. MR 1302759

[23] T. Ohsawa and K. Takegoshi, On the extension of L2 holomorphic functions, Math.
Z. 195 (1987), 197–204. MR 0892051

[24] T. Ohsawa, L2 extension theorems—backgrounds and a new result, Finite or infinite
dimensional complex analysis and applications, Kyushu University Press, Fukuoka,

2005, pp. 261–274. MR 2359704

http://www.ams.org/mathscinet-getitem?mr=0707239
http://www.ams.org/mathscinet-getitem?mr=1626753
http://www.ams.org/mathscinet-getitem?mr=0932301
http://www.ams.org/mathscinet-getitem?mr=0545259
http://www.ams.org/mathscinet-getitem?mr=0769163
http://www.ams.org/mathscinet-getitem?mr=1671870
http://www.ams.org/mathscinet-getitem?mr=1714279
http://www.ams.org/mathscinet-getitem?mr=1704201
http://www.ams.org/mathscinet-getitem?mr=1885811
http://www.ams.org/mathscinet-getitem?mr=1488245
http://www.ams.org/mathscinet-getitem?mr=1815835
http://www.ams.org/mathscinet-getitem?mr=2043407
http://www.ams.org/mathscinet-getitem?mr=2192611
http://www.ams.org/mathscinet-getitem?mr=0448052
http://www.ams.org/mathscinet-getitem?mr=1980628
http://www.ams.org/mathscinet-getitem?mr=2097399
http://www.ams.org/mathscinet-getitem?mr=2349498
http://www.ams.org/mathscinet-getitem?mr=1176680
http://www.ams.org/mathscinet-getitem?mr=1302759
http://www.ams.org/mathscinet-getitem?mr=0892051
http://www.ams.org/mathscinet-getitem?mr=2359704


542 M. JASICZAK

Faculty of Mathematics and Computer Science, ul. Umultowska 87, 61-614

Poznan, Poland and Institute of Mathematics, Polish Academy of Sciences, ul.

Sniadeckich 8, 00-956 Warszawa, Poland

E-mail address: mjk@amu.edu.pl

mailto:mjk@amu.edu.pl

	Introduction
	Preliminaries
	Proofs and auxiliary results
	References
	Author's Addresses

