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SLk-TILINGS OF THE PLANE

FRANÇOIS BERGERON AND CHRISTOPHE REUTENAUER

Abstract. We study properties of (bi-infinite) arrays having all
adjacent k × k adjacent minors equal to one. If we further add the

condition that all adjacent (k − 1) × (k − 1) minors be nonzero,

then these arrays are necessarily of rank k. It follows that we

can explicit construct all of them. Several nice properties are

made apparent. In particular, we revisit, with this perspective,

the notion of frieze patterns of Coxeter. This shed new light on

their properties. A connexion is also established with the notion
of T -systems of Statistical Physics.

1. Introduction

As discussed in [1], the study of cluster algebras naturally leads to the
special case k = 2 of the notion of SLk-tiling introduced in the present paper.
Our SLk-tilings are simply Z × Z arrays of numbers (or elements of a com-
mutative ring) having all adjacent k × k minors equal to one. Not only are
they a natural extension of notions already considered, but one can recast in
their guise such notions as T -systems of Theoretical Physics (see [8]), or frieze
patterns of Coxeter (see [6]). An instance of a positive integer SL2-tiling is
given in Figure 1.

Clearly, any SLk-tiling A is of rank at least k (when considered as a bi-
infinite matrix). As we will see, the SLk-tilings that are of minimal rank are
of particular interest, not only by themselves, but as well as for the cases
when they correspond to frieze patterns or T -systems. We call tame such
minimal rank SLk-tilings, and we give several general results regarding them.
Among these interesting results, we show that to any tame SLk-tiling there
corresponds another interesting tame SLk-tiling, that we call its dual. The
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Figure 1. A SL2-tiling with values in N
∗.

entries of these dual tilings are obtained by computing adjacent (k − 1) × (k −
1)-minors. It is striking that this duality is actually an involution. We also
rederive, in a new an elegant manner, the main results of Conway–Coxeter [4,
6] concerning frieze-patterns: their periodicity, their glided symmetry, and
their construction using quiddities (which are the sequence of multiplicities
at the vertices of the diagonals in a triangulation of an n-gon). Indeed, our
approach allows new tools to bear on this subject, especially because we can
now make use of linear algebra and particular presentations for SL2(Z).

Our approach also opens the door for the study of generalized frieze pat-
terns, including those that have already been considered in [5]. This corre-
sponds to the study of SLk-tilings that afford two periods (in two linearly
independent directions). We call toric such SLk-tilings, since they are evi-
dently characterized by their value on a torus. Once again the tame situation
is of particular interest. More on this will be the subject of a planed sequel
for this paper.

It was observed by the referee that several results of the present paper
may be obtained as consequences of results of the theory of T-systems. This
theory was initiated by Bazhanov and Reshetikhin [2] in the context of the
representation theory of quantum affine algebras. It was first written in pub-
lished form by Kuniba, Nakanishi and Suzuki [12]. T-systems were identified
as cluster algebras by Di Francesco and Kedem [9] and solved in [8], or more
generally by Di Francesco in [7]. In particular, after suitable translation of
results on T-systems, our equation (5) is Theorem 3.2 in [8]; the involution
deduced from our duality result (Proposition 6) may be deduced from the
symmetry of T-systems (cf., e.g., Lemma 2.2 in [9]); and the Laurent phe-
nomenon observed in Proposition 9 and Corollary 10 may be deduced from
the Laurent phenomenon of a particular cluster algebra [7].
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2. Definitions

We consider arrays A = (aij)i,j∈Z, with values aij lying in a field K. For two
equal cardinality finite subsets I and J of Z, we denote by AIJ the submatrix
of A obtained by selecting the rows indexed by the elements of I and columns
indexed by the elements of J . The corresponding minor is denoted1 by MIJ ,
that is: MIJ := det AIJ . Since we often need to write down adjacent k × k
minors, we introduce the short hand notations:

(1) A(k)
ij := A{i,...,i+k−1},{j,...,j+k−1} and M

(k)
ij := det A(k)

ij .

We say that A is a SLk-tiling of the plane if all its adjacent k × k minors
of A are equal to one. This is to say that it satisfies the SLk-property :

(2) M
(k)
ij = 1 for all i and j in Z,

We sometimes consider partial SLk-tilings, only defined on some subset S
(called shape) of Z × Z, with condition (2) applying only if all the entries
considered belong to the underlying subset. As usual, a rectangle in Z × Z

is a (possibly infinite) shape S such that (u, v + s) and (u + r, v) lie in S,
whenever (u, v) and (u + r, v + s) both lie in S. A partial SLk-tiling is said
to be a SLk-array if its shape is a rectangle. In particular, N × N and Z × Z

shaped SLk-tilings are SLk-arrays. Clearly, linear combinations of rows (or
columns) make sense for SLk-arrays, so that we may consider the notion of
rank of a such SLk-tilings. In particular, any SLk-array is at least of rank k,
since any k consecutive rows have to be linearly independent in view of the
SLk-property. We say that a (partial) SLk-tiling is tame if it has rank k.
Otherwise, we call it wild.

A word of warning is in order concerning our convention for the underlying
coordinate system. Indeed, as in the example of Figure 1, we use the usual
matrix convention for coordinates, so that the x-axis points downwards, and
the y-axis points to the right.

A family of examples. The positive integer frieze patterns of Coxeter (see
[4, 6, 14]) give rise to an interesting family of nonzero partial SL2-tilings. Up
to a 45◦ degree tilting, the original description of Coxeter may be formulated
as follows. One considers partial SL2-tilings2 such as the one illustrated in
Figure 2, assuming that all aij are positive integers. Note that the number of
“diagonals” is n.

As shown in [6], one of the striking property of frieze patterns is that they
are necessarily periodic along the direction y = x. This is to say that there
exists some p in Z such that ai+p,j+p = aij for all i and j, with p = n + 1 (n

1 Without explicit reference to the underlying bi-infinite matrix A.
2 The SL2 condition applies only when it makes sense.
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Figure 2. Conway–Coxeter frieze patterns.

being the number of diagonals as above).
We may turn frieze patterns into full SL2-tilings, by the simple device of

extending them (skew) periodically both along the x and y directions, that
is, setting:

ai+p,j = −aij and
ai,j+p = −aij .

One needs only check that this is consistent with the SL2-condition at the
“boundary.” Such a tiling is illustrated in Figure 3 in the case of a generic3

frieze pattern having 4 diagonals. In this SL2-tiling, a and b may assume any
value as long as we have

c =
1 + b

a
, d =

1 + a + b

ab
, e =

1 + a

b
.

Observe the further symmetry corresponding to a transposition followed by a
diagonal translation. The number of frieze patterns having n diagonals, and
for which all entries are positive integers, has been shown in [4] to be another

Figure 3. Skew-periodic extension of a Conway–Coxeter
frieze pattern.

3 All positive frieze patterns of width 2 may be obtained from it by specialization.
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incarnation of the ubiquitous Catalan numbers

Cn−1 =
1
n

(
2n − 2
n − 1

)
.

A nice exposition of classical results regarding frieze patterns, as well as many
new results tying their study to the type-A cluster algebras of Fomin and
Zelevinsky, is given by Propp in [14].

It may readily be checked that the example of Figure 3 is a rank 2 bi-infinite
matrix. We will show in Section 8 how we may construct all frieze patterns
using our theory of SLk-tilings (for k = 2), by extending them to complete
SLk-tilings. Moreover, using our theory, we give new proofs of all the results
obtained by Coxeter and Conway. Although our exploration of this point
of view will mainly be for the case k = 2, many of our results actually hold
(with the necessary adaptations) in the general context of a suitable notion
of SLk-frieze patterns (see Section 9).

3. Tame SLk-tilings

Not all SLk-tiling are tame, as seen in example (3) for k = 2.

(3)

. . .
...

...
...

...
...

...
...

...
...

... . . .

· · · 1 x11 −1 x12 1 x13 −1 x14 1 x15 · · ·
· · · 0 1 0 −1 0 1 0 −1 0 1 · · ·

· · · −1 x21 1 x22 −1 x23 1 x24 −1 x25 · · ·
· · · 0 −1 0 1 0 −1 0 1 0 −1 · · ·
· · · 1 x31 −1 x32 1 x33 −1 x34 1 x35 · · ·
· · · 0 1 0 −1 0 1 0 −1 0 1 · · ·

· · · −1 x41 1 x42 −1 x43 1 x44 −1 x45 · · ·
· · · 0 −1 0 1 0 −1 0 1 0 −1 · · ·
· · · 1 x51 −1 x52 1 x53 −1 x54 1 x55 · · ·
· · · 0 1 0 −1 0 1 0 −1 0 1 · · ·
. . .

...
...

...
...

...
...

...
...

...
...

. . .

Here the xij may be chosen at will (or as independent variables). In particular,
this example shows that there are SL2-tilings of any rank ≥ 2.

In part, the interest of considering tame tilings comes from the fact that
they are easily characterized by their value on relatively small subsets of Z × Z.
But we will also make evident that tame tilings have very nice properties. We
first illustrate tameness with the following special case.

0-free tilings. We say that a SLk-tiling is 0-free if all its (k − 1) × (k − 1)
adjacent subminors are nonzero. Note that in the case k = 2: a SL2-tiling is
0-free if its values are nonzero; in particular if they are positive integers, as in
Figure 1 or the SL2-tilings constructed in [1].
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The proof of the following proposition uses Dodgson4 “Condensation Law
of Determinants” [10], that can be stated in the format:

(4) M
(r+1)
ij M

(r−1)
i+1,j+1 = det

(
M

(r)
ij M

(r)
i,j+1

M
(r)
i+1,j M

(r)
i+1,j+1

)

for all r. In fact, this is a direct consequence of a result of Desnanot and
Jacobi (see [3, Theorem 3.12, page 111]). For instance, with r = 2, we get the
identity

det

⎛
⎜⎝ aij ai,j+1 ai,j+2

ai+1,j ai+1,j+1 ai+1,j+2

ai+2,j ai+2,j+1 ai+2,j+2

⎞
⎟⎠det

(
ai+1,j+1

)

= det

⎛
⎜⎜⎜⎝

∣∣∣∣ aij ai,j+1

ai+1,j ai+1,j+1

∣∣∣∣
∣∣∣∣ ai,j+1 ai,j+2

ai+1,j+1 ai+1,j+2

∣∣∣∣∣∣∣∣ai+1,j ai+1,j+1

ai+2,j ai+2,j+1

∣∣∣∣
∣∣∣∣ai+1,j+1 ai+1,j+2

ai+2,j+1 ai+2,j+2

∣∣∣∣

⎞
⎟⎟⎟⎠ .

Proposition 1. Any 0-free SLk-array is tame.

Proof. Consider any adjacent (k − 1) × (k − 1) subarray of a SLk-array,
we observe that the determinant of the corresponding submatrix does not
vanish, since this is precisely the 0-free condition. On the other hand, for
r = k, the right-hand side of (4) is zero in all instances, since the four k × k
minors considered are all equal to 1. We thus conclude that any adjacent
(k+1) × (k+1) subarray of a 0-free SLk-array must necessarily have vanishing
determinant. The proof then follows from Lemma 14 (see Section 7). �

We may construct all tame SLk-tilings as follows. Given a SLk-tiling A,
let us denote by Ri and Cj its rows and columns. Then each Cj is a linear
combination of the k preceding columns, that is, of Cj−1, . . . ,Cj−k. The linear
combination may be written as

(5) (−1)kC0 − (−1)ka1C1 + · · · − ak−1Ck−1 + Ck = 0.

Indeed this follows from the SLk-property and from the next lemma, which
is an exercise in linear algebra (expansion of the determinant with respect to
the rows), left to the reader.

Lemma 2. Let A be a rank k matrix with k + 1 columns C0, . . . ,Ck and
rows indexed by Z. Then

(−1)kM
(k)
01 C0 − (−1)k detA{0,...,k−1},{0,2,...,k−1}C1(6)

+ · · · − detA{0,...,k−1},{0,...,k−2,k}Ck−1 + M
(k)
00 Ck = 0.

4 a.k.a. Lewis Carrol.
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Hence, to each j in Z we associate a row vector λj = (a1, . . . , ak−1) of
dimension m = k − 1 over the field K, and we simply denote by λ the resulting
element of (K1×m)Z. Similarly, we associate to each i a column vector γi of
dimension m over K, which expresses the linear dependence of Ri on the m
preceding rows, and denote by γ the resulting element of (γi) ∈ (Km×1)Z.
These row and columns vectors are called the linearization coefficients of the
SLk-tiling A. We call linearization data the triple

(7)
(

A(k)
00 , λ, γ

)
in SLk(K) × (K1×m)Z × (Km×1)Z, where m = k − 1.

Proposition 3. The mapping

A �→
(

A(k)
00 , λ, γ

)
,

which associates to a tame SLk-tiling its linearization data, is a bijection
between the set of tame SLk-tilings and the set SLk(K) × (K1×m)Z × (Km×1)Z,
with m = k − 1.

Proof. The fact that this mapping is well defined and injective follows from
the remarks preceding the proof. For surjectivity, let the data in SLk(K) ×
(K1×m)Z × (Km×1)Z be given. Then clearly there exists a Z × Z array A
of rank k which maps onto this data. We have only to verify that the SLk-
property holds. This is a consequence of the following easy fact (and its dual):
let M be a k × (k + 1)-matrix with columns C0, . . . ,Ck such that (5) holds.
Then the matrix of its first k columns is of determinant 1 if and only if the
matrix of its k last columns is of determinant 1. Indeed,

det(C1, . . . ,Ck)

= det
(
C1, . . . ,Ck−1, −(−1)kC0 + (−1)ka1C1 − · · · + ak−1Ck−1

)
= det

(
C1, . . . ,Ck−1, −(−1)kC0

)
= det(C0, . . . ,Ck−1). �

Proposition 4. Let A be an SLk-tiling. Then A is tame if and only if the
infinite matrix M := (MIJ )I,J , with I and J varying in k-subsets of Z, is of
rank 1. In particular, if I0, J0 are intervals in Z and I, J are any k-subsets,
then we have

(8) MIJ = MIJ0MI0J .

Proof. If A is tame, then the fact that M has rank 1 is a consequence of
the study of N × N tilings in Section 8.2. The converse follows from Lemma 15.

Now take I , J , I0, and J0 as in the statement. Then

(9)
(

MI0J0 MI0J

MIJ0 MIJ

)
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is a submatrix of M. But MI0J0 = 1 (since A is a SLk-tiling), and the deter-
minant of (9) mush vanish, that is,

MIJ − MI0JMIJ0 = 0,

since M is of rank 1. Thus, we get the desired equality. �

The easy direct proof of the next result is left to the reader. It will be
useful in the sequel.

Lemma 5. Let C1, C2, and C3 be three consecutive columns (resp. rows),
of a tame SL2-tiling, that are such that C2 = C1 + C3. Then a new tame
SL2-tiling may be constructed by suppressing the column (resp. row) C2.

Group actions on tilings. There is a natural translation action of Z
2 on SL2-

tilings. Formally, the action of the vector (p, q) replaces the tiling A = (aij)
by

(p, q) · A = (ai+p,j+q).
We denote by Ax the translate of A by (1,0), and by Ay the translate by
(0,1). We may describe these last translates intrinsically in terms of the data
given by the bijection of Proposition 3. More specifically, let (S, λ, γ) be the
linearization data corresponding to A via this bijection. Then the linearization
data corresponding to Ax is (Sx, λ, γ′), with

Sx =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

. . . . . . . . .
...

0 · · · 0 0 1
(−1)k−1 (−1)k(γk)1 . . . (γk)k−1

⎞
⎟⎟⎟⎟⎟⎟⎠

S,

and γ′
i = γi+1. Transposition of matrices (which amounts to exchanging rows

and columns) also preserves SLk-tilings, as is easily observed. In terms of lin-
earization data, it amounts to transposing the initial matrix and exchanging λ
and γ. We can thus easily describe Ay using these remarks.

Observe that if k ≡ 0 or 1mod4, then a vertical or an horizontal symmetry
also preserves SLk-tilings, since in this case, such a symmetry preserves the
determinant of k × k matrices (for k ≡ 2 or 3mod4, the determinant is clearly
multiplied by −1).

4. Dual tilings

To any array A, we associate the m-derived array :

(10) ∂mA :=
(
M

(m)
ij

)
i,j

,

consisting of the adjacent m × m minors of A. For SLk-arrays, we are specially
interested in the case m = k − 1, in which case the resulting array is called
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the dual array of A. We also write A ∗ for ∂k−1A. Clearly, ∂1 is the identity
operator, and it is natural to set ∂0A equal to the tiling whose value is 1 in all
positions. As an illustration of the above definition, the dual of the SL3-tiling

(11)

. . .
...

...
...

...
...

...
...

... . . .

· · · 8997 1782 353 70 14 3 1 1 · · ·
· · · 1782 353 70 14 3 1 1 2 · · ·
· · · 353 70 14 3 1 1 2 5 · · ·
· · · 70 14 3 1 1 2 5 14 · · ·
· · · 14 3 1 1 2 5 14 42 · · ·
· · · 3 1 1 2 5 14 42 131 · · ·
· · · 1 1 2 5 14 42 131 417 · · ·
. . .

...
...

...
...

...
...

...
...

. . .

is the tiling

(12)

. . .
...

...
...

...
...

...
... . . .

· · · 417 131 42 14 5 2 1 · · ·
· · · 131 42 14 5 2 1 1 · · ·
· · · 42 14 5 2 1 1 3 · · ·
· · · 14 5 2 1 1 3 14 · · ·
· · · 5 2 1 1 3 14 70 · · ·
· · · 2 1 1 3 14 70 353 · · ·
. . .

...
...

...
...

...
...

...
. . .

We have the following property of derivation of arrays, that will be proved
in Section 7.

Proposition 6. The dual of a tame SLk-tiling is a tame SLk-tiling. More-
over, for any natural integers r, s such that r + s = k, we have

(13) ∂r A ∗ = (r − 1, r − 1) · (∂sA).

In particular, (A∗)∗ and A coincide up to translation.

Observe also that, with r = k − 1, identity (4) gives (A∗)∗ = a11 det(A) for
any 3 × 3 matrix

A =

⎛
⎜⎝a00 a01 a02

a10 a11 a12

a20 a21 a22

⎞
⎟⎠ .

Hence, for any SL3-tiling A, we have

(14) (A ∗)∗ =
(
ai+1,j+1M

(3)
ij

)
i,j∈Z

.



272 F. BERGERON AND C. REUTENAUER

It follows that (A∗)∗ = A (up to the necessary translation) for any SL3-tiling,
wether they be tame or wild. However, for k ≥ 4, it may be checked that the
tameness condition is necessary for (13) to hold.

5. Tilings associated to paths

We consider paths π as lists of points, that is, elements of Z × Z,

π = (i0, j0), (i1, j1), . . . , (iN , jN ),

starting at s(π) := (i0, j0) and ending at e(π) := (iN , jN ), and such that

(is+1, js+1) =

{
(is, js − (1,0) or

(is, js) + (0,1)

for points along the path. To understand why signs appear here, it may be
good to recall our convention for the orientation of the x and y axis (see
Section 2). If we fix the start and end points (i0, j0) and (iN , jN ), it is well
known that these paths number

(
m+n

m

)
(with (−m,n) = (iN , jN ) − (i0, j0)),

and that they are in bijection with words

(15) w = w1w2 · · · wn+m

on the alphabet A = {x, y}, having m occurrences of the letter x, and n
occurrences of the letter y. Recall that the corresponding classical bijection,
between paths and words, is realized by choosing (is+1, js+1) = (is, js) − (1,0)
if ws = x, and (is+1, js+1) = (is, js) + (0,1) if ws = y. We denote by πw the
resulting path.

We also consider words, and associated paths, that are infinite in both
directions,

(16) w = · · · w−3w−2w−1w0w1w2w3 · · ·
and say that they are bi-infinite words (or paths). Such a word (and the
associated path) is said to be admissible if there are infinitely many x’ s and
y’s in both directions.

Let us now associate to a given word w (finite or bi-infinite) a tiling A =
Aw;k, whose entries are obtained by the (weighted) enumeration of paths start-
ing and ending at some points of πw. We restrict these paths to stay within
some “distance” k of πw. This is made more precisely below after the introduc-
tion of more notation and terminology (some of which will only be used later).

Given a path πw as above, for each point p = (i, j) in Z × Z we denote by
γw(p) = (i, βπ(p)) (resp. χw(p) = (απ(p), j)) the leftmost (resp. topmost) point
that lies on the path πw, which has the same first (resp. second) coordinate
as p. We say that these are respectively, the horizontal projection and vertical
projection of p on πw. A point p = (i, j) is said to lie below the path π if we
have the inequalities βπ(p) ≤ j, or equivalently, απ(p) ≤ i. Otherwise, we say
that p lies above the path.
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We now consider the word w(p): associated to the portion of the path πw

going from the horizontal projection γw(p) of p on πw, to its vertical projection
χw(p). This word is used to define the notion of projection word of a point p,
denoted by wp, as follows. We simply set wp := w(p) whenever p lies below the
path. Otherwise, when p lies above the path, we set wp := w(p). Here, w is the
operation corresponding to reading the letters of a word w in reverse order,
replacing each x by x and each y by y. For example, with w = yyxyxyyyx,
we get w = xyyxyxxyy.

Let p be a point lying below the path πw, and suppose that wp factors as
xiuyj (with i and j maximal). Then we say that up := u is the short projection
word of p on w. Illustrating with the tiling of Figure 5, one may check that for
the points p corresponding to the entries with value equal to 6 (lying below the
path), one has wp = xxyyxxyy and up = yyxx (for all instances of 6); whereas
for the points p corresponding to the entries 30 (lying above the path), one
has wp = ȳȳx̄x̄ (likewise, for all instances of 30).

For a point p lying below a path π, the distance between p and π is the
unique integer k ∈ N such that (i − k + 1, j − k + 1) lies on π. Observe that
there is but one point of π lying on any given diagonal x = y+c. Our definition
makes it so that points lying on the path are considered to be at distance 1
of it (this will make our life easier later). We further consider the notion of
k-fringe, Φk(π) of a path π, that is, the points lying below the path that are
within distance k of it. Thus, we have

(17) Φk(π) := {(i + m,j + m) | (i, j) ∈ π, and 0 ≤ m < k}

Some of these notions are illustrated in Figure 4.

Figure 4. Path from γw(p) to χw(p) in the 3-fringe of πw.
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Given two points p and q on the path πw of a word w, we consider the sets
of paths

(18) Pw;k(p, q) := {θ a path | s(θ) = p, e(θ) = q, and θ ⊂ Φk(πw)},

that start at p, end at q, while staying inside the k-fringe of πw. We also
denote by Pw;k the set of all such paths, disregarding start and end points.
The tiling Aw;k = (aij)i,j is then defined, for points p = (i, j) lying below the
path πw, by setting

(19) aij := #Pw;k(χw(p), γw(p)).

For instance, for the word w = · · · yyxxyxyyyx · · · and k = 2, the resulting
(partial) tiling is as follows:

Observe that, for fixed d, any path θ in the k-fringe of π goes through at
most one of the the k points of the set Φk(π) ∩ Δd, where Δd denotes the
diagonal

(20) Δd := {(i, j) ∈ Z × Z | i − j = d}.

It is useful to have the following terminology: given a bi-infinite path and a
tiling A, let us call principal minors of order m (relative to πw), the minors
of A that are of the form M

(m)
ij , with (i, j) lying on the path πw. In other

words, a principal minor is an adjacent minor of A whose upper left corner
lies on the path (in particular, it is contained in the k − 1 fringe of the path
when m ≤ k).

For h ∈ Z, we also say that a minor M
(m)
ij is located on the h-th diagonal

if we have h = j − i. To tie all this to our study of SLk-tilings, we now give
entirely combinatorial arguments for the following statements.

Proposition 7. The partial tiling Aw;k is a 0-free SLk-tiling with principal
minors of order < k all equal to 1. Moreover, for any k-subsets I and J such
that I × J is contained in the shape of A (all the points lying below πw), we
have

(21) MIJ = MI,{j,...,j+k−1}M{i,...,i+k−1},J .

Finally, if the path πw is admissible, then Aw;k extends uniquely to a complete
tame SLk-tiling.

There is some redundance here, since the 0-free property implies that A is
tame (Proposition 1), and thus (21) holds by Proposition 4. Notwithstanding,
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we want to make evident that nice combinatorial methods may be used to
understand all this.

Proof of Proposition 7. It follows from a theorem of Gessel–Viennot
(see [13]) that we may interpret combinatorially any minor of Aw;k as fol-
lows. Recall that a family of paths is said to be noncrossing if no pair of
paths in the family has a common point. Given equal cardinality subsets I of
rows and J of columns, such that I × J lies below πw, we denote by NoXIJ the
set of all noncrossing families of paths in Pw;k linking the horizontal projection
of I on πw to the vertical projection of J on πw. More precisely, let

I = {i1 < i2 < · · · < im} and J = {j1 < j2 < · · · < jm},

and denote by p1, . . . , pm and q1, . . . , qm the respective horizontal and ver-
tical projections on πw. Then the elements of NoXIJ are “configurations”
{π1, π2, . . . , πm} of paths πs in Pw;k, with

(22) s(πs) = ps and e(πs) = qs,

no two of which cross. In our context, the aforementioned theorem of [13]
states that we have

(23) MIJ = #NoXIJ .

Recall that this is shown by constructing a sign changing involution on the
set of crossing configurations, thus showing that they can be eliminated from
a global signed counting that clearly corresponds to the evaluation of the
determinant considered.

Observe that noncrossing path configurations {π1, π2, . . . , πm} intersect any
given diagonal Δd in at most m points. In fact, this intersection number is
exactly equal to m for the diagonals that pass through points of πw lying
between p1 and q1. This forces all the sets NoXIJ to be empty whenever
#I = #J > k. Hence, the corresponding minors all vanish, so that the tiling
is of rank k.

To continue with our combinatorial argument, let us write NoX(m)
ij when

I = {i, . . . , i + m − 1} and J = {j, . . . , j + m − 1},

so that we have

(24) M
(m)
ij = #NoX(m)

ij .

In the k-fringe of πw, there is room for one and exactly one configuration of k
noncrossing paths having adjacent starting points and adjacent end points, so
that we must necessarily have M

(k)
ij = 1 for all point (i, j) in the tiling, hence

the SLk-condition is verified.
The tiling is 0-free, and in fact we have M

(m)
ij ≥ 1 for all m between 1

and k, since there exists corresponding noncrossing path configurations for all
these m. Finally, the multiplicative property (21) of k × k-minors can easily be
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explained as follows, in terms of configurations of k noncrossing paths. With I
and J satisfying the hypothesis of the proposition, the required identity follows
from a simple bijection

(25) NoXIJ → NoXI,{j,...,j+k−1} × NoX{i,...,i+k−1},J ,

obtained by breaking up the paths considered into three portions as follows.
For a path πs (starting at ps and ending at qs) in Φk(πw), denote respectively,
by p and q the points of πs that lie on the diagonals respectively containing p1

and q1. These exist since ps ≤ p1 ≤ q1 ≤ qs. We decompose πs as the concate-
nation

πs = π(1)
s π(2)

s π(3)
s ,

with
• π

(1)
s being the portion of πs going from ps to p,

• π
(2)
s being the portion of πs going from p to q, and

• π
(3)
s being the portion of πs going from q to qs.

In particular, all the paths π
(2)
s start on the same diagonal (the one that

contains p1) and end on the same diagonal (the one that contains q1). Since
these k paths are noncrossing and all lie in the k-fringe, there is but one pos-
sibility for the resulting configuration {π

(2)
1 , . . . , π

(2)
k }. We easily identify the

configurations {π
(1)
1 , . . . , π

(1)
k } with elements of NoXI,{j,...,j+k−1} (by applica-

tion of the same decomposition as above to these last elements, observing that
in this cases third components are trivial). Likewise, we identify the config-
urations {π

(3)
1 , . . . , π

(3)
k } with elements of NoX{i,...,i+k−1},J . This establishes

the bijection.
The SLk-tiling Aw;k may be uniquely completed into a tame SLk-array by

Lemma 8 below. �
For example, with k = 4 and the word w = · · · xxyyxxyyxxyy · · · , we first

get the partial array (lying below the path) of Figure 5 by path enumeration,
and then complete it to get a SL4-tiling of Z × Z.

Lemma 8. Consider a partial SLk-tiling which is defined on every point
below a given path, and such that all of its adjacent (k +1) × (k +1)-subminor
(lying entirely in its shape) vanishes. If the path is admissible, then the partial
SLk-tiling extends uniquely to a complete tame SLk-tiling.

Proof. Let i, j and k be integers such that {i, i+1, i+2, . . .} × {j − k, . . . , j −
1, j} is contained in the shape of A. denote by Cj−k, . . . ,Cj−1,Cj the columns
of the corresponding submatrix of A. Then, it follows from the vanishing
(k + 1) × (k + 1)-subminor condition, that we have a relation of the form

(−1)kCj−k − (−1)ka1Cj−k+1 + · · · − ak−1Cj−1 + Cj = 0

for some a1, . . . , ak−1 in K. Note that the coefficients ah are independent of
the i chosen.
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Figure 5. The SL4-tiling associated to · · · xxyyxxyyxxyy · · ·.

Considering the analogous argument for rows, and assuming that the origin
of the plane is in the shape of A, we obtain a linearization data (see Section 3).
Using this linearization data, we may apply Proposition 3 to get a complete
tame tiling of the plane. Call it A ′. It follows from the construction that A
and A ′ coincide on the shape of A, which proves the lemma. �

Weighted word tilings. We now extend the previous construction to the
situation where paths are given Laurent monomial weights.

At a point p = (i, j), along a path θ, we say that we have a right-turn
(resp. left-turn) if both (i + 1, j) and (i, j + 1) (resp. (i, j − 1) and (i − 1, j))
belong to the path θ. This is illustrated in Figure 6. For a given (bi-infinite)
word w, we start by giving a weight ν(p) to each point p = (i, j) in the k-fringe
of πw, setting

ν(p) :=
tj−i,r

tj−i,r−1
,

where r is the distance between p and πw, We assume here that the tm,r are
independent commuting variables, setting tm,r = 1 whenever r ≤ 0 or r ≥ k.
With all this at hand, define the weight ω(θ) (with respect to the word w) of
a nonempty path θ to be the product

(26) ω(θ) := αβ
∏

p left-turn of θ

ν(p) ·
∏

p right-turn of θ

ν(p)−1,

where we set α := ν(ps), if θ starts at ps by a vertical step. Otherwise we set
α = 1. Likewise, we set β := ν(pe), if θ ends at pe after an horizontal step.
Otherwise, we set β = 1. Finally, when θ is the empty path, both starting and
ending at p, we simply set ω(θ) := ν(p).

We then consider the partial tiling Bw;k := (bij)i,j , for point (i, j) lying
below the path, obtained by setting

(27) bij :=
∑

θ

ω(θ)
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Figure 6. Right and left turns at p, and corresponding weight.

for θ varying in the set Pw;k(χw(i, j), γw(i, j)), of paths starting at χw(i, j)
and ending at γw(i, j).

Proposition 9. There is a unique tame SLk-tiling of Z × Z extending
Bw;k, with entries Laurent polynomials in the variables thr. More precisely, the
values are in the subsemiring generated by these variables and their inverses.
Moreover, each principal minor of order r, r = 1, . . . , k − 1, located on the hth
diagonal, is equal to thr.

Proof. Again, we simply apply the Gessel–Viennot technique, verifying that
the involution (as in their original proof), required to show that crossing path
configurations may be eliminated, is weight preserving. There are several
cases, left to the reader. It follows, as in the proof of Proposition 7, that bij is
a tame SLk-tiling. It is clear that (27) is in the described semiring. Moreover,
by the noncrossing path description, each principal minor of order r < k is
equal to thr, if the minor is located on the hth diagonal. �

This proposition may be used to construct SLk-tilings having arbitrary
values (variables) as entries in the (k − 1)-fringe of the path πw. It turns
out that the entries of the resulting tiling actually lie in the polynomial ring
generated by these variables as well as the inverses of all principal minors
(relative to πw) of order at most k − 1. This is a Laurent-like phenomenon
(see [11]). Moreover, we may in fact replace “ring” by “semiring,” so that
we actually get a positivity result, just as is the case in the theory of cluster
algebras.

Corollary 10. An admissible path πw being given, associate to each point
in its (k − 1)-fringe, a distinct commutative variable. Then this assignment
extends uniquely into a complete tame SLk-tiling of the plane whose values
are in the semiring generated by the principal minors of order < k and their
inverses.

Proof. Consider the tiling of Proposition 9. Let aij denote its value at the
point (i, j). Then, by the same proposition, each aij is in the semiring gener-
ated by the variables thr and their inverses, where h ∈ Z and r = 1, . . . , k − 1.

Let shr = thr/th,r−1 for h ∈ Z and r = 1, . . . , k − 1. Recall that the thr are
distinct commuting variables, and that th,0 = 1. The field of fractions K in
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the variables thr is also generated by the shr, and the mapping thr �→ shr

is an automorphism of this field. For h ∈ Z and r going from 1 to k − 1,
denote by αhr the entry aij , if the point (i, j) lies at distance r below the
path πw, on the hth diagonal. By the path description, we see that, αhr is
the sum of shr and of a fraction in the th′r′ with (h′, r′) < (h, r) for the natural
order on Z

2. The latter fraction, when expressed in the sh′r′ , involves only
variables sh′r′ with the same condition. Hence, the function thr �→ αhr defines
an automorphism of K.

Now, let xhr be a family of distinct commuting variables, for h ∈ Z and
r = 1, . . . , k − 1. Let L be its field of fractions. The fields K and L are
isomorphic (e.g., by the mapping tij �→ xij). By what we have just seen, the
mapping αhr �→ xhr, h ∈ Z and r = 1, . . . , k − 1 defines an isomorphism from K

onto L. If we map each aij under this isomorphism, we obtain a tame SLk-
tiling X = (bij) such that bhr = xhr for h ∈ Z and r = 1, . . . , k − 1. This also
implies that we may find elements τhr in the field L such that bij is in the
semiring generated by the τhr and their inverses, h ∈ Z and r = 1, . . . , k − 1.
Furthermore, by Proposition 9, the principal r × r-minor of X (r < k), located
on the hth diagonal, is equal to τhr.

Unicity follows from the following lemma, which of independent interest.
�

Lemma 11. An admissible path πw being given, associate to each point in
its (k − 1)-fringe, an element of some field. Suppose that the (k − 1)-principal
minors relative to πw are nonzero. Then this partial tiling extends uniquely
to a tame SLk-tiling of the plane.

Proof. Indeed, under the nonzero (k − 1)-principal minor hypothesis, the
SLk property imposes that we have a unique extension of the partial tiling to
its k-fringe. This furnishes enough k × (k + 1) and (k + 1) × k submatrices
so that we may compute the linearization data for any tame SLk-tiling that
would extend the k-fringe shaped partial tiling (see the remark following the
proof of Proposition 3). This proves unicity, in view of the same proposition.
Existence, which will not be used here, is left to the reader. �

In [1], one may find many SL2-tilings associated to paths, both over the
integers, and with arbitrary variables on the path. The case SL3 has an
extra interesting feature. Indeed, a consequence of (14) is that we can very
elegantly characterize any SL3-tiling in tandem with its dual tiling. Indeed,
under the assumption that A is SL3 and writing A ∗ = (a∗

ij)i,j , the tiling
identity considered is equivalent to the family of equalities

aij =
1

ai−1,j−1
(a∗

i−1,j−1 + ai−1,jai,j−1),
(28)

a∗
ij =

1
a∗

i−1,j−1

(ai−1,j−1 + a∗
i−1,ja

∗
i,j−1).
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Figure 7. Joint calculation of a SL3-tiling and its dual.

This makes it evident (in another fashion) that the tiling constructed from
a path is positive (and nonzero) for points lying below the path, since en-
tries of A and A ∗ may be calculated recursively in parallel using the positive
expression on the right-hand side of (28). In the case of integer tilings, this
is illustrated in Figure 7. Large entries correspond to the aij ’s, and smaller
ones correspond to the a∗

ij ’s. The entry a∗
ij sits immediately to the south-east

of aij . Clearly, the recursion process may be continued where it is left off. It
corresponds to the statement that each number is obtained as the determinant
of the 4 numbers that immediately surround it.

6. Matrix description

Consider the morphism μ, from the free group Fx,y (on the letters x and y)
to the group SLk, which is obtained by setting

(29) μ(x) := Id+N and μ(y) := Id+N tr,

where we denote by N the matrix nilpotent k × k matrix

N :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 1 0

. . . . . . . . .
...

0 1 0
0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(Recall that N is nilpotent of order k, so that Nk = 0, and N i 
= 0 when
i < k.) We denote x the inverse of x in the free group Fx,y , and likewise for y.
We then define the function Tw : Z × Z → N as

(30) Tw(p) := ekμ(wp)etr
k ,
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where ek denotes the unit k-vector (0, . . . ,0,1). Recall that the projection
word wp has been defined in Section 5.

Proposition 12. For any admissible bi-infinite word w, the function Tw

is a tame SLk-tiling, whose principal minors of order < k are all equal to 1.
It coincides with the tiling of Proposition 7.

For the proof of Proposition 12, see Section 7. Observe that this result
easily implies the following.

Corollary 13. With the same hypothesis as in Proposition 12, we have

(i) If p lies below πw, then

(31) Tw(p) = ekμ(up)etr
k .

In other words, we can replace the projection word wp by the short pro-
jection word up in our calculations.

(ii) If p lies above πw,with wp = x1 · · · xn, x1, . . . , xn ∈ {x, y}, then

(32) Tw(p) = ekμ′(x1 · · · xn)etr
k ,

where μ′ is the morphism such that

μ′(x) := (Id −N)−1 and μ′(y) := μ′(x)tr.

In particular, we conclude that Tw(p) is positive for all p.

Proof. Assume that w = wp = xiuyj with u = up. To show (i), we first
observe that

μ(xi) = (Id+N)i = Id+
i∑

j=0

(
i

j

)
N i

is upper unitriangular, hence ekμ(xi) = ek. Likewise, μ(yi) is lower unitrian-
gular, so that μ(yj)etr

k = etr
k . Thus, we directly calculate that

Tw(p) = ekμ(xiuyj)etr
k = ekμ(xi)μ(u)μ(yj)etr

k = ekμ(u)etr
k

as announced.
For (ii), we make use of the matrix isomorphism

α(A) := DkAD−1
k ,

with Dk standing for the diagonal matrix with entry equal to (−1)i+1 on
the diagonal. Clearly, α(aij) = ((−1)i+jaij). Thus, α(μ′(x)) = μ(x) and
α(μ′(y)) = μ(y) as is easily verified. Hence, for any x1, . . . , xn ∈ {x, y}, we
have α(μ(x1 · · · xn)) = μ(x1 · · · xn). We conclude since α(Akk) = Akk. For the
final assertion, note that μ′ has nonnegative coefficients. �
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7. Proofs

To prove some of our previous assertions, we first need a few linear algebra
lemmas.

Lemma 14. If a matrix has all its adjacent (k + 1) × (k + 1) minors van-
ishing, whereas no adjacent k × k vanishes, then it is of rank k.

Proof. It is enough to show that for any choice of k +1 successive columns
C0, . . . ,Ck of this matrix, C0 (resp. Ck) is a linear combination of C1, . . . ,Ck

(resp. of C0, . . . ,Ck−1). By symmetry, the property with C0 will suffice. Let vi

denote the rows of the matrix (C0, . . . ,Ck). Note that vi is of length k + 1.
To show our assertion, let us construct a nonvanishing linear form ϕ that

annihilates all vi. The existence of such a linear form implies the existence of
scalars a0, . . . , ak such that

∑
j=0,...,k ajCj = 0. Moreover a0 has to be nonzero,

since otherwise it would contradict the assumption on the nonvanishing k-
minors.

Such a linear form exists for k + 1 successive rows of M , since det(M) = 0
by assumption. Consider k + 2 successive rows of M , and two nonvanishing
linear forms ϕ and ψ such that the first k + 1 rows are in Ker(ϕ) and the
k + 1 last are in Ker(ψ). Then we argue as follows to show that ϕ and ψ
must necessarily be proportional. If we restrict the two linear forms to the k
intermediate rows, v1, . . . , vk say, we see that ϕ and ψ, considered as column
vectors of length k + 1, are both annihilated by the (k × (k + 1))-matrix

(33)

⎛
⎜⎜⎜⎜⎝

v1

v2

...
vk

⎞
⎟⎟⎟⎟⎠ ,

whose rows are the vectors vi. By assumption, this matrix is of rank k,
hence it has a kernel of dimension 1. It follows that its columns vectors are
proportional, and thus so are ϕ and ψ. �

Lemma 15. Let A be a square matrix of order k + 1 such the matrix of
its k × k-minors (det(AIJ)I,J , with I and J running through all k-subsets of
{1, . . . , k + 1}, is of rank 1. Then det(A) = 0.

Proof. If the central (k − 1) × (k − 1)-minor detA{2,...,k},{2,...,k} of A is
nonzero, then (4), with r = k, implies that det(A) = 0. If some (k −1) ×(k −1)-
minor of M is nonzero, we may bring it into central position by row and
column permutations; these operations amount to row and column permuta-
tions of the matrix of k × k-minors of A; hence, by the previous argument,
det(A) = 0. Finally, if all the (k − 1) × (k − 1)-minors of A vanish, then so
does det(A). �
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Lemma 16. Let V be a vector space, and consider a finite ordered set of
indices K for which we have selected vectors vk, v′

k in V , as well as uk, u′
k in

the dual space V ∗. Assuming that for all k in K we have the relations5

v′
k = vk +

∑
�<k

�v�,

u′
k = uk +

∑
�<k

�u�.

Then we have the equality

(34) det(uk(v�))k,�∈K = det(u′
k(v′

�))k,�∈K .

Proof. We simply pass from one matrix to the other by multiplication on
the left and on the right by uni-triangular matrices. �

Consider now intervals of cardinality k − 1 of the set {2, . . . ,2k − 1}, of the
form

Iq := {q + 1, q + 2, . . . , q + k − 1}, q = 1, . . . , k.

For convenience sake, we write Kq := [k] \ {q} (with [k] standing as usual
for {1, . . . , k}). Let e1, . . . , e2k−1 be elements of some vector space V . For
J = {j1, . . . , js} such that

1 ≤ j1 ≤ · · · ≤ js ≤ 2k − 1,

we denote by eJ the wedge product

eJ := ej1 ∧ ej2 ∧ · · · ∧ ejs .

Then the following holds.

Lemma 17. For vectors e1, . . . , e2k−1 in V which are such that

ej = (−1)k−1ej−k + �ej−k+1 + · · · + �ej−1 for j = k + 1, . . . ,2k − 1,

the following identity holds for all q = 1, . . . , k:

(35) eIq = (−1)q+1eKq + �eKq−1 + · · · + �eK1 .

Proof. Writing E := eq+1 ∧ eq+2 ∧ · · · ∧ ek and ε := (−1)k−1, we calculate
that

eIq = E ∧ ek+1 ∧ · · · ∧ ek+q−1

= E ∧ ek+1 ∧ · · · ∧ ek+q−2 ∧ (εeq−1 + �eq + · · · + �ek+q−2)
= E ∧ ek+1 ∧ · · · ∧ ek+q−2 ∧ (εeq−1 + �eq)

(since eq+1, . . . , ek+q−2 appear as factors
in the product E ∧ ek+1 ∧ · · · ∧ ek+q−2.)

= E ∧ ek+1 ∧ · · · ∧ ek+q−3 ∧ (εeq−2 + �eq−1 + · · · + �ek+q−3)

5 Here, as in the sequel of this section, the stars (�) stand for some coefficients that we

do not actually need to specify.
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∧ (εeq−1 + �eq)
= E ∧ ek+1 ∧ · · · ∧ ek+q−3 ∧ (εeq−2 + �eq−1 + �eq) ∧ (εeq−1 + �eq)
= · · ·
= E ∧ (εe1 + �e2 + · · · + �eq) ∧ · · · ∧ (εeq−2 + �eq−1 + �eq)

∧ (εeq−1 + �eq)

= (−1)(q−1)(k−q)(εe1 + �e2 + · · · + �eq) ∧ · · · ∧ (εeq−2 + �eq−1 + �eq)
∧ (εeq−1 + �eq) ∧ E.

The product that precedes E is evidently in the (q − 1)th-exterior power
of the span of e1, . . . , eq . It is thus a linear combination of the e[q]\ {i}, for
i = 1, . . . , q. It follows (as we are multiplying these e[q]\ {i} by E on the right)
that we have expressed eIq as a linear combination of the EKi , for i = 1, . . . , q.
Moreover, eKq appears only once in the resulting expression. Its coefficient
is thus (−1)(q−1)(k−q)(−1)(q−1)(k−1). We conclude that (35) holds, since (q −
1)(k − q) + (q − 1)(k − 1) ≡ (q − 1)(−q − 1) ≡ (q + 1)2 ≡ (q + 1) modulo 2. �

In the next result, the first row and first column of matrices are indexed
by 1.

Proposition 18. Consider a (2k − 1) × (2k − 1) matrix A of rank k having
all of its adjacent k × k minors equal to 1, and write B = A

(k)
11 , C = ∂k−1A,

and D = C
(k)
22 . Then, for all h ≤ k, we have

detD
(h)
11 = detB

(k−h)
h+1,h+1.

Observe that the square matrices A,B,C,D are respectively of order 2k − 1,
k, k+1 and k (as illustrated in Figure 8). Recall also that ∂k−1A is the matrix
of adjacent (k − 1)-minors of A.

Proof. Let e1, . . . , e2k−1 be the column vectors of A, and consider the vector
space V that they span. Dually, let ϕ1, . . . , ϕ2k−1 be the restriction to V of
the 2k − 1 projections of column vectors on the underlying field of scalars.

Figure 8. The square matrices A, B, C, and D of Proposition 18.
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We clearly have ϕi(ej) = aij . Using the usual duality6 between (V ∗)∧k and
V ∧k, we see that dij = ci+1,j+1 = 〈ϕIi , eIj 〉, with the notations introduced be-
fore Lemma 17. Thus, the determinant of D

(h)
11 is equal to det(ϕIi(eIj ))1≤i,j≤h.

In view of the hypotheses on A, we have

ej = εej−k + �ej−k+1 + · · · + �ej−1

(
where as before ε := (−1)k−1

)
for all j = k + 1, . . . ,2k − 1 (as in the hypothesis of Lemma 17). Dually, we
have

ϕj = εϕj−k + �ϕj−k+1 + · · · + �ϕj−1

for all j = k + 1, . . . ,2k − 1. Applying Lemma 17, we get for 1 ≤ i, j ≤ h that

ϕIi = (−1)i+1ϕKi + �ϕKi−1 + · · · + �ϕK1

and
eIj = (−1)j+1eKj + �eKj−1 + · · · + �eK1 .

Using Lemma 16, we conclude that the above determinant is equal to

det((−1)i+jϕKi(eKj ))1≤i,j≤h,

which is exactly the h × h-minor of the adjoint matrix of B, corresponding to
rows and columns going from 1 to h.

To finish the argument, we apply a result Jacobi stating that (in the case
of matrices of determinant 1) a minor is equal to the complementary minor
of the adjoint matrix. �

Proof of Proposition 6. Proposition 18 implies (13). This equation, for r =
k and s = 0 implies that the dual is a SLk-tiling. For r = k − 1 and s =
1, it implies that the tiling coincides with its bidual, up to the necessary
translation.

In order to show that the dual is tame, we proceed as follows. Observe
that for any matrix (finite or infinite) (aij) of rank at most k, there exist a
vector space E of dimension at most k, vectors uj ∈ E, and linear forms ϕi

on E, all such that aij = ϕi(uj) (take the space spanned by the columns and
the linear function obtained by projections of the columns). Conversely, such
a data gives a matrix (aij) of rank at most k.

Now we form the matrix (〈ϕI , uJ 〉)IJ , over some family of (k − 1)-subsets
of the row and column indices. Then uj is in the (k − 1)th exterior power
of E, which is of dimension at most k. Hence, this new matrix is of rank at
most k. This implies that the dual is at rank at most k, since it is obtained
from the original tiling by such a construction. �

Our proof of Proposition 12 relies on the following two lemmas.

6 〈ψ1 ∧ · · · ∧ ψk, v1 ∧ · · · ∧ vk 〉 = det(ψi(vj))1≤i,j≤k .
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Figure 9. Points of the path πw that lie on the same row
and column as q.

Lemma 19. Let p and q be two points that are adjacent horizontally, i.e.:
p = (a, b) and q = (a, b + 1). Then wq = wpxyi, where i + 1 is the number of
points lying on the path πw in the same vertical as q.

Proof. Denote by q0, . . . , qi these i + 1 points (starting from the top), and
by r1, . . . , rj all the points of πw lying to the left of qi (labeled from left to
right). This corresponds to the portion of the path πw illustrated in Figure 9.
Clearly we have wqk

= yk, for k < i, and wqi = xjyi. Each of the following
cases is clear (it helps to consider Figure 9), using the definition of wp in
Section 5:

(1) If q lies strictly above q0, we have

wp = wqy
ix,

implying that wq = wpxyi as required.
(2) When q = qj , for 0 ≤ j ≤ i − 1, then

wp = yi−jx = yjyix

so that again we have wq = yj = wpxyi.
(3) Finally, when q lies below qi, we evidently have wq = wpxyi, thus the

assertion is verified for all possible cases. �

Lemma 20. For m1, . . . ,mk in N, let

ui := xmi−1y · · · xm1y,

when 0 ≤ i ≤ k. (In particular u0 = 1.) Then we have⎛
⎜⎜⎜⎜⎝

ekμ(u0)
ekμ(u1)

...
ekμ(uk−1)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0 1
0 0 . . . 1 �

...
...

. . .
...

...
1 � . . . � �

⎞
⎟⎟⎟⎟⎠ .

Proof. We recursively show that ekμ(ui) = (0, . . . ,0,1, �, . . . , �) with 1 sit-
ting in position (k − i). If i = 0, we have ekμ(u0) = ek = (0, . . . ,0,1), so that 1
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indeed sits in position k. By induction we may assume that the first nonzero
value of the vector

v := ekμ(xmi−1y · · · xm2y)
is a 1 sitting in position (k − i). Then the the first nonzero value of the vector

ekμ(xmi−1y · · · xm1) = vμ(xm1) = (0, . . . ,0,1, �, . . . , �),

also sits in position (k − i), since μ(xm1) is upper unitriangular. We can thus
easily conclude since ekμ(ui) is obtained by multiplying (on the right) this
last vector by μ(y) = Id+N tr, hence its first nonzero value lies in position
(k − i − 1). �

Proof of Proposition 12. Let us first check that Tw is indeed a SLk-tiling.
Consider any set of points pij , 0 ≤ i, j ≤ k − 1, forming an adjacent k × k sub-
array of Z × Z, and let us write wij for the projection word wpij associated to
these points pij . From Lemma 19 and its symmetric statement, there exists
integers m0, . . . ,mk−1 and n0, . . . , nk−1 such that

wij = uiw00vj ,

with
ui = xmi−1y · · · xm1y and vj = xyn1 · · · xymj−1 .

We have the matrix identity

(ekμ(uiw00vj)etr
k )0≤i,j≤k−1 = (ekμ(ui)μ(w00)μ(vj)etr

k )0≤i,j≤k−1

=

⎛
⎜⎜⎝

ekμ(u0)
...

ekμ(uk−1)

⎞
⎟⎟⎠μ(w00)(ekμ(v0), . . . ,ekμ(vk−1).

The fact that det(w00) = 1, together with Lemma 20, implies that this matrix
has determinant 1 as announced.

To show that Tw is tame, we argue as follows. First, observe that any given
row of Tw is of the form

(ekμ(m)etr
k )m∈M,

where M is the (ordered) set of projection words of the points on this row.
Choose k other rows, lying below the given row. These k rows are (succes-
sively) of the form

(ekμ(mi · · · m1m)etr
k )m∈M

for i running from 1 to k, and suitable words m1, . . . ,mk. Now, the k + 1
row vectors ekμ(mi · · · m1), i = 0, . . . , k, are perforce linearly dependent, since
they are all of length k. Multiplying, this linear combination by μ(m)etr

k on
the right, we find that the k + 1 chosen rows of Tw are linearly dependent,
and hence Tw is of rank ≤ k.

The proof that Tw is the same SLk-tiling as the one described in Proposi-
tion 7, using Lemma 8, is left to the reader. �
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8. Applications

8.1. SL2-Frieze patterns revisited. The aim of this section is to show
that the frieze patterns of Coxeter may be realized in terms of SL2-tilings.
This gives a new slant on their study, with emphasis on their link with repre-
sentations of SL2(Z).

Proposition 21. Let ai, i ∈ Z be nonzero elements in the field K. There
exists a unique tame SL2-tiling that extends the partial tiling of (36).

(36)

. . .

. . . 1
a−1 1

a0 1
a1 1

. . . . . .
ai 1

. . . . . .

To better study such tilings, let us consider the notion of signed continuant
polynomials qn(x1, . . . , xn) defined by the recurrence

(37) qn(x1, . . . , xn) := xnqn−1(x1, . . . , xn−1) − qn−2(x1, . . . , xn−2),

whenever n > 0, setting q−1 := 0 and q0 := 1. We omit indices when possi-
ble, writing simply q(x1, . . . , xn) for qn(x1, . . . , xn). Let us now consider the
particular SL2 matrices

Y (t) :=
(

0 −1
1 t

)
for which one may easily show by induction that

(38) Y (x1)Y (x2) · · · Y (xn) =
(−q(x2, . . . , xn−1), −q(x2, . . . , xn)

q(x1, . . . , xn−1), q(x1, . . . , xn)

)
.

Proof of Proposition 21. To prove unicity, we exploit the fact that the SL2-
tiling contains subarrays of the form

(39)
1 0 ∗
ai 1 0.

Indeed, this follows directly from the SL2-property. Let C1, C2, and C3 be the
three corresponding columns, from left to right. Then, since the tiling is of
rank 2, we have C1 − αC2 +C3 = 0, which forces α = ai. Thus, the coefficients
of linearization are completely determined. Moreover, we are given at least
one adjacent (2 × 2)-subarray, namely lower left (2 × 2)-submatrix of (39).
Thus, unicity of the tiling follows by Proposition 3.
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For the existence of the tiling, we check that we may define its entries as
follows:

0 −1 −ai . . . β

1 0 −1
. . .

...

ai 1 0
. . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . 0 −1 −aj

...
. . . 1 0 −1

α · · · · · · · · · aj 1 0
with β = −α, and

(40) α = q(ai, . . . , aj).

We then need only verify that the resulting tiling has the right the linearization
coefficients (as in the first part of the proof). To this aim, let us denote by α′

and α′ ′ the two entries of the tiling that sit immediately to the right of α, so
that we have

α α′ α′ ′

and therefore α′ = q(ai+1, . . . , aj), and α′ ′ = q(ai+2, . . . , aj). But the recur-
rence (37) implies that

α − aiα
′ + α′ ′ = 0.

Hence, since the proof for β is analoguous, the tiling defined above has the
desired linearization coefficients. �

Consider now any frieze pattern, as below, with the ai positive integers,
having n diagonals (see Figure 2).

(41)

. . .

. . . 1
a−2 1

. . . a−1 1
. . . . . . a0 1

1 a1 1
1 a2 1

1 . . . . . . . . .
1 . . .

1
. . .
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Observe that, since the coefficients of the frieze pattern are positive, they are
completely characterized by the ai, in view of the SL2-property. Hence, this
frieze pattern extends uniquely to the same complete SL2-tiling A as the one
given by Proposition 21. Note that this extension has a few values more,
immediately deduced from the positivity of the entries of the frieze pattern,
and the SL2-property, without resulting to tameness. These are the 0’s and

−1’s given below. We may therefore extract from the tiling A the following
subarray, where n is the number of diagonals of the frieze pattern and i ∈ Z:

ai+1

∗ ai+2

...
. . . . . .

...
. . .

1 . . . . . . ∗ ai+n−1

0 1 . . . . . . ∗ ai+n

−1 0 . . . . . . . . . ∗ ai+n+1

By formula (40) for the entries of the tiling A, we obtain

q(ai+1, . . . , ai+n+1) = −1, q(ai+1, . . . , ai+n) = 0,

q(ai+2, . . . , ai+n) = 1, q(ai+2, . . . , ai+n+1) = 0,

and, using (38), we conclude that

(42) Y (ai+1)Y (ai+2) · · · Y (ai+n+1) =
(−1 0

0 −1

)
.

Using this, we may prove the following corollary.

Corollary 22. Let A = (aij) be the unique tame SL2-tiling A = (aij)
extending a given frieze pattern F with n diagonals.
(i) A has diagonal period n + 1, that is to say ai+n+1,j+n+1 = aij .
(ii) ([4], [6]) In particular, the frieze pattern has diagonal period n + 1.
(iii) Moreover, A has horizontal and vertical skew-period n + 1, this is to say

that
ai+n+1,j = −aij = ai,j+n+1.

(iv) ([4], [6]) Finally, A and F are invariant under a glided symmetry, which
is the symmetry with respect to the middle diagonal of F followed by the
diagonal translation of length n+1

2 .

Proof. Referring to (37), let Ci denote the column containing the coeffi-
cient ai. Then we have Ci − aiCi+1 +Ci+2 = 0, as is shown at the beginning of
the proof of Proposition 21. Thus, we have the following recurrence between
the Z × 2 matrices (Ci,Ci+1):

(Ci,Ci+1) = (Ci+1,Ci+2)Y (ai).
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Thus, (42) implies that A has horizontal skew-period n + 1. Vertical period-
icity follows by symmetry, and the diagonal periodicity follows at once. In
order to prove (iv), note that (42) implies

Y (ai+2) · · · Y (ai+n+1) = −Y (a−1
i+1) =

(−ai+1 −1
1 0

)
.

Thus, ai+1 = q(ai+3, . . . , ai+n) by (38). This shows, by taking i = n,0,1, . . .
and recalling that we have the diagonal period n+1 (hence ai = ai+n+1) that:
an+1 = q(an+3, . . . , a2n) = q(a2, . . . , an−1), a1 = q(a3, . . . , an), . . . . Hence, us-
ing (40), we see that R has the following form, extending (36):

. . .

. . . 1
a1 1

a2 1
a3 1

. . . . . . . . . . . .
1 an+1 an−1 1

1 a1 an 1
1 a2 an+1 1

. . . . . . . . . . . .

We conclude by using a symmetric version of Proposition 21. �

Following Conway–Coxeter (in [4]), we call quiddity a sequence a1, . . . , an+1,
where ai gives the number of triangle incident to the vertex i in a triangulation
of a convex (n + 1)-gone, whose vertex are successively labeled 1 to n + 1
turning around the n-gone. They show [4, p. 180] that any quiddity may be
obtained from the particular quiddity 111 by successive applications of the
local rewriting rule

· · · ab · · · → · · · a + 11b + 1 · · · .

We prove below their result that quiddities and frieze patterns are in one-
to-one correpondence. For this, we make a detour through presentations of
the group SL2(Z).

Proposition 23. Consider the rewriting rule in the free monoid P
∗ gen-

erated by P

(43) (a + 1)1(b + 1) → ab,

where a, b ∈ P. Then

Y (w) := Y (n1) · · · Y (nk) = ε

(
1 0
0 1

)
(ε = ±1),
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if and only if w →∗ 1k, with k ≡ 0 (mod6) when ε = 1, and k ≡ 3 (mod6)
when ε = −1. In this case, if w is not a power of 1, then it contains a factor
(a + 1)1(b + 1).

One direction of the proposition easily follows from the identities

(44) Y (1)3 = −
(

1 0
0 1

)
and Y (a + 1)Y (1)Y (b + 1) = Y (a)Y (b),

both of which can be easily checked by direct computation.
Moreover, for further use, it is easily checked that

(45) Y (1)Y (2)Y (1)Y (2) = −1

and also, recursively, that

(46) Y (n) = (−1)n(Y (2)Y (1)2)n−2Y (2).

We now give a proof of Proposition 23 after recalling some facts regarding
presentations of SL2(Z). To simplify our discussion, let us informally7 write
“−1” for a central element of SL2 whose square is the identity (denoted by 1).

Lemma 24. Denoting Y (1) by y1, and Y (2) by y2,
(i) SL2(Z) affords the presentation

(47) 〈y1, y2 | y3
1 = −1, (y1y2)2 = −1〉.

(ii) SL2(Z) affords the confluent presentation

(48) 〈y1, y2 | y3
1 → −1, y2y1y2 → y2

1 〉.

Proof. To show (i), let

a =
(

1 1
0 1

)
, b =

(
1 0
1 1

)
.

It is well known that SL2(Z) has the presentation

(49) 〈a, b | ābā = bāb, (ābā)4 = 1〉.
Direct calculations show that

(50) a = ȳ1y2, b = y1ȳ2.

Thus, y1, y2 generate SL2(Z). The relations in (i) hold by (44) and (45).
Therefore, it is enough to show that these relations imply the relations in (49),
once a, b have been replaced using (50). By direct substitution, we get

ābā = ȳ2y1y1ȳ2ȳ2y1 and bāb = y1ȳ2ȳ2y1y1ȳ2.

7 This can easily be made formally correct by adding a generator, with straightforward

relations, to our presentations.
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Now, since y3
1 = −1, we have −ȳ1 = y2

1 , and hence y2
1 ȳ3

2(−ȳ1) = (−ȳ1)ȳ3
2y2

1 .
Thus, y2

1 ȳ2
2(−ȳ2ȳ1) = (−ȳ1ȳ2)ȳ2

2y2
1 . But, since y1y2y1y2 = −1, we also have

y2y1y2y1 = −1, and therefore −ȳ2ȳ1 = y1y2 and −ȳ1ȳ2 = y2y1. Hence,

y2
1 ȳ2

2y1y2 = y2y1ȳ
2
2y2

1 .

Multiplying this both on the left and on the right by ȳ2, we obtain

ȳ2y
2
1 ȳ2

2y1 = y1ȳ
2
2y2

1 ȳ2,

so that ābā = bāb.
On the other hand, we have āb = ȳ2y

2
1 ȳ2, and we have seen that y1y2 =

−ȳ2ȳ1. Thus,
y1 = −ȳ2ȳ1ȳ2 = −ȳ2(−y2

1)ȳ2 = ȳ2y
2
1 ȳ2,

since ȳ1 = −y2
1 . Thus, (ȳ2y

2
1 ȳ2)6 = 1. It follows, using ābā = bāb, that

(ābā)4 = ābābābābābāb = (āb)6 = (ȳ2y
2
1 ȳ2)6 = 1.

(ii) We conclude from the first part that

(51) 〈y1, y2 | y3
1 = −1, y2y1y2 = y2

1 〉
is a presentation of SL2(Z). Orienting the equalities, we obtain a rewriting
system, whose confluence we must prove. This follows since the only non-
trivial critical pair that needs to be examined is

This ends our proof. �

Proof of Proposition 23. We need only show that if w 
= 1n is such that
Y (w) = ± Id, then w must contain a factor of the form (a + 1)1(b + 1). To
see this, formally replace each letter n in P by yn in words w in P

∗. Then,
assuming that w is different from yn

1 , we may consider the canonical expansion

w = yn0
1 ym1y

n1
1 ym2 · · · ymk

ynk
1 ,

where each mi ≥ 2 and k ≥ 1. Using (46), we replace in this expansion each ym

by (−1)m(y2y
2
1)m−2y2, we obtain a word in {y1, y2} ∗ containing at least one

instance of y2. Since the system (48) is confluent, this word must contain
y2y1y2, hence one of the ni must be equal to 1, thus proving our assertion. �

Corollary 25 (Conway–Coxeter [4]). For each frieze pattern of the
form (41), the bi-infinite sequence of positive integers · · · a−2a−1a0a1a2a3 · · ·
is equal to · · · wwwwwww · · · for some quiddity w.
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Proof. Denote by F this frieze pattern, let n be the number of diagonals
of F and denote by A the SL2-tiling obtained through Proposition 21. Then,
by the discussion before Corollary 22, the coefficients ai satisfy

Y (a1)Y (a2) · · · Y (an+1) =
(−1 0

0 −1

)
.

Thus, by Corollary 22, · · · a−2a−1a0a1a2a3 · · · = · · · wwwwwww · · · , with w =
a1 · · · an+1. Moreover, by Proposition 23, we have

ai−1 > 1, ai = 1 and ai+1 > 1

for some i, 1 < i < n + 1. Thus, we find in A the subarray

ai−2 1 0
ai−1 1 0

(ai−1 − 1) 1 1 0
(ai+1 − 1) ai+1 1

ai+2

Let Cj and Rj denote the columnn and row containing aj . Then, as in the
discussion at the beginning of the proof of Proposition 23, we have Ci − Ci+1 +
Ci+2 = 0 and Ri − Ri−1 + Ri−2 = 0. Thus, by Lemma 5, we may suppress
both the column Ci+1 and the row Ri−1, to get the tame SL2-tiling

ai−2 1
(ai−1 − 1) 1

(ai+1 − 1) 1
ai+2

We may clearly do this periodically for each column Ci+1+p(n+1) and each
row Ri−1+p(n+1), for p ∈ Z. Since both A and F have the diagonal period
n+1, by Corollary 22, we obtain a tame SL2-tiling A ′ and a frieze pattern F ′

with n − 1 diagonals, such that A ′ is the unique extension of F ′ according
to Proposition 21. This proves the corollary, once it is noted that the initial
case corresponds to the frieze patterns reduced to n = 2 diagonals containing
only 1’s (here considered as having a diagonal period equal to 3). �

8.2. N × N SLk-tilings. When we restrict ourselves to N × N arrays, we may
apply tools from matrix algebra and generating series. Assume that, for an
invertible k × k matrix, we have a (k + h) × (k + h) matrix of rank k that
decomposes into blocks in the following manner

(52)
(S Λ

Γ X

)
,
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with h possibly infinite. Then we must necessarily have X = ΓS −1Λ. Indeed,
it is clear in the following simple matrix identity(S Λ

Γ X

)(
Idk −S −1Λ
0 Idh

)
=

(S 0
Γ X − ΓS −1Λ

)
that the right-hand side is also a matrix of rank k, since we are multiplying
our original rank k matrix by an invertible one. However, we already know
that S is of rank k. This forces X − ΓS −1Λ to vanish, and we have the
required identity.

Let us assume that A is a tame quarter-plane (of shape N × N) SLk-array.
Choose S := A(k)

00 , and let Γ (resp. Λ) stand for the subarray consisting of the
first k columns (resp. rows) of A. Then, we deduce from the above identity
that we have

(53) A = ΓS −1Λ,

whenever A and S are both of rank k. It follows that for any subset I (resp. J)
of rows (resp. columns, with #I = #J), we have

(54) AIJ = ΓI S −1ΛJ .

The simplest possible case of this identity allows the calculation of entries
of A in the form

(55) aij = ΓiS −1Λj .

Now, if we choose both I and J to be of cardinality k, and take the determi-
nant of both sides, we deduce from the fact that det(S) = 1, the identity

(56) MIJ = MI,{1,...,k}M{1,...,k},J .

A straightforward encoding of the N × N-array A is through its bivariate
generating function:

(57) A(x, y) :=
∑
(i,j)

aijx
iyj ,

with the sum running over all pairs (i, j) belonging to the shape of A. An
equivalent description may be given in terms of matrices, considering X =
(xi)0≤i as an infinite one-line matrix, and likewise Y = (yj)0≤j as an infinite
one-column matrix. We then have A(x, y) = XAY . Now, when A is tame, it
follows from (53) that we have

A(x, y) = XAY(58)
= XΓS −1ΛY

=
(
C1(x) · · · Ck(x)

)
S −1

⎛
⎜⎜⎝

L1(y)
...

Lk(y)

⎞
⎟⎟⎠,
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where the Ci(x) are respectively the generating functions of the first k columns
of A. Likewise the Lj(x) are the respective generating functions of the first k
rows of A. Often, as below, we have S = Id.

To illustrate the situation considered above, one may show that the SLk-
property holds for the matrix of binomial coefficients

Γ :=
((

j

i

))
0≤i,0≤j<k

.

From this, we get a SLk-array A := ΓΛ, with Λ equal to the transpose
of Γ. Observe that the generating function of the jth-column (resp. ith)
of Γ (resp. Λ) is evidently

1
(1 − x)j

=
∑
i≥0

(
i + j

i

)
xi for j = 0,1, . . . , k − 1

(resp. (1 − y)i). After calculation, using (58), we get that the generating
function of A is

(59) A(x, y) =
k∑

�=1

x�−1y�−1

(1 − x)�(1 − y)�
.

The following result follows from the constructions in Section 5.

Proposition 26. The tiling given by (59) has all minors of the from M
(m)
i0

and M
(m)
0j equal to 1, whenever m < k, and it is a SLk-tiling.

Using (55), or directly from (59), one may calculate that the individual
entries of A are given by the formula

(60) aij =
k−1∑
�=0

(
i

�

)(
j

�

)
.

It follows also from Section 5, that for (i, j) in the k-fringe, aij = ( i+j
i ) . For

example, with k = 3, we get the array of Figure 10.

Figure 10. A SL3-tiling of N × N.
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Figure 11. Zigzag path tiling.

It may readily be shown that the dual of A affords the generating function

A ∗(x, y) =
1

(1 − x)(1 − y)
(61)

+
k∑

�=2

xy

(1 − x)�(1 − y)�
.

8.3. Zigzag path. It is shown in [1] that the SL2-tiling associated to the
bi-infinite word · · · xyxyxyxyx · · · has entries equal to the Fibonacci numbers
of even rank (if we set Fn+2 = Fn+1 + Fn, F0 = F1 = 1), see the left part of
Figure 11. If we let k go to infinity, then by Section 5, the entries of the
resulting tiling are the Catalan numbers. In particular, it is noteworthy that
the value of the (k × k)-principal minors given by Proposition 7 corresponds in
this situation to the classical result stating that for any natural integer k, the
Hankel matrix (Ch+i+j)i,j=0,...,k (with either h = 0, or h = 1) has determinant
equal to 1 (here, as usual, we have Cn = 1

n+1

(
2n
n

)
), see the right part of

Figure 11.

9. Closing remarks

A converse. Experiments suggest that a “converse” of Proposition 6 holds,
namely that for any tame tiling, if (13) holds for some pair (r, s) for which
r + s = k, then the tiling is necessarily a SLk-tiling. Special cases, for small
values of k, are easy to prove using generic value tilings and Gröbner basis
computations.

Generalized frieze patterns. A notion of generalized frieze patterns, for
k > 2, has been considered in [5]. These are best understood in terms of
certain tame “toric” SLk-tilings A. More precisely, we say that a tiling has a
skew-period (p, q) in Z × Z ( 
= (0,0)), if and only if

(62) A(i + p, j + q) = (−1)k A(i, j) for all (i, j) ∈ Z × Z,
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Figure 12. Positive integer SLk-frize patterns of “width” 1.

and we then say that the tiling is skew-periodic. A toric tiling is one that
has two linearly independent skew-periods. A SLk-frieze patterns A is a tame
SLk-tiling such that

(63) A(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1, if i = j,

0, if i − j < k,

(−1)k−1, if i = j + k,

which is periodic (not skew) with a period of the form (p, −p), for p > k.
In other words, on top of being periodic, the tiling is prescribed to have a
diagonal of 1’s, another diagonal filled with (−1)k−1 below, with these two
diagonals separated by (k − 1) diagonals of 0’s.

Condition (63) and periodicity (together with tameness) ensure that the
whole tiling is determined by its values along a band {(i, j) j ≤ i < j + p, j ∈
Z}, with p as above. Moreover, one may show that any such tiling is toric,
with skew-periods (p,0) and (0, p). This implies that it exhibits a frieze-like
behaviour, since the tiling must necessarily have period (p, p). The generalized
frieze patterns of [5] appear as special cases of this notion.

It is interesting to observe (and easy to prove) that the SLk-frieze patterns,
with p = k + 2, that are of the form illustrated in Figure 12, include those for
which the sequence . . . , a−1, a0, a1, . . . , ai . . . is a quiddity. Indeed, applying
the SLk-condition to the submatrix with main diagonal corresponding to ai’s,
one easily check that we have

qk(ai, ai+1, . . . , ai+k−1) = 1,

with qk denoting the signed continuant polynomials considered in Section 8.1.
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Other interesting toric SLk-tilings seem to abound. For example, with k = 3
and p = 4, we have the following positive integer valued toric SLk-tilings:

It may be checked that this is a tame tiling, however the entries of the
corresponding dual tiling are not all positive, since:

General properties of tame toric tilings, as well as results concerning SLk-
frieze patterns similar to those of Section 8.1, will be the subject of a planed
sequel to this paper.

T-systems. On a closing note, it is interesting to observe that there is a
close tie between tame SLk-tilings and the notion of T -systems, which appear
as solutions of the discrete Hirota equation (see [8]) of mathematical physics.
Indeed, up to a simple relabelling, one can characterize the entries of T -
systems in terms of derivatives of suitably chosen tame SLk-tilings. Recall
that a T -system T : {0, . . . , r + 1} × Z × Z → N must satisfy the equation

(64) T{α,j,k+1}T{α,j,k−1} = T{α,j+1,k}T{α,j−1,k} + T{α+1,j,k}T{α−1,j,k},



300 F. BERGERON AND C. REUTENAUER

with boundary conditions

(65) T{0,j,k} = T{r+1,j,k} = 1

for all j, and k in Z. It is shown in [8] that

(66) T{α,j,k} = det
(
T{1,j−a+b,k+a+b−α−1}

)
1≤a,b≤α

.

From this, one can readily see that

Tα,j,k = (∂αA)s,t

for s, t simple linear functions of j and k, and A a SLr+1-tiling directly
obtained from (T1,j,k)j,k.
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