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COMPUTING EQUATIONS FOR RESIDUALLY
FREE GROUPS

VINCENT GUIRARDEL AND GILBERT LEVITT

Abstract. We show that there is no algorithm deciding whether
the maximal residually free quotient of a given finitely presented
group is finitely presentable or not.

Given a finitely generated subgroup G of a finite product of
limit groups, we discuss the possibility of finding an explicit set of

defining equations (i.e., of expressing G as the maximal residually
free quotient of an explicit finitely presented group).

1. Introduction

Any countable group G has a largest residually free quotient RF(G), equal
to G/

⋂
f ∈H kerf where H is the set of all homomorphisms from G to a non-

Abelian free group F. Since any two countably generated non-Abelian free
groups can be embedded in each other, this notion does not depend on the
rank of the free group F considered.

In the language of [BMR99], if R is a finite set of group equations on a finite
set of variables S, then G = RF(〈S | R〉) is the coordinate group of the variety
defined by the system of equations R. We say that R is a set of defining
equations of G over S. Equational noetherianness of free groups implies that
any finitely generated residually free group G has a (finite) set of defining
equations [BMR99].

On the other hand, any finitely generated residually free group embeds
into a finite product of limit groups (also known as finitely generated fully
residually free groups), which correspond to the irreducible components of the
variety defined by R [BMR99, KM98, Sel01]. Conversely, any subgroup of a
finite product of limit groups is residually free.

This gives three possibilities to define a finitely generated residually free
group G in an explicit way:

Received June 12, 2009; received in final form October 23, 2009.

2000 Mathematics Subject Classification. 20F65, 20F10, 20E26, 20F67.

129

c©2011 University of Illinois

http://www.ams.org/msc/


130 V. GUIRARDEL AND G. LEVITT

(1) give a finite presentation of G (if G is finitely presented);
(2) give a set of defining equations of G: write G = RF(〈S | R〉), with S and

R finite;
(3) write G as the subgroup of L1 × · · · × Ln generated by a finite subset S,

where L1, . . . ,Ln are limit groups given by some finite presentations.
We investigate the algorithmic possibility to go back and forth between

these ways of defining G.
One can go from 2 to 3: given a set of defining equations of G, one can

find an explicit embedding into some product of limit groups [KM98, KM05,
BHMS09, GW09].

Conversely, if G is given as a subgroup of a product of limit groups, and if
one knows that G is finitely presented, one can compute a presentation of G
[BHMS09]. Obviously, a finite presentation is a set of defining equations.

Since residually free groups are not always finitely presented, we investigate
the following question:

Question. Let L = L1 × · · · × Ln be a product of limit groups. Let G be the
subgroup generated by a finite subset S ⊂ L. Can one algorithmically find a
finite set of defining equations for G, that is, find a finite presentation 〈S | R〉
such that G = RF(〈S | R〉)?

We will prove that this question has a negative answer. On the other hand,
we introduce a closely related notion which has better algorithmic properties.

Let RFna(G) be the quotient G/
⋂

f ∈Hna
kerf where Hna is the set of all

homomorphisms from G to F with non-Abelian image. Of course, RFna(G)
is a quotient of RF(G), which forgets the information about morphisms to Z.
In fact (Lemma 2.2), it is the quotient of RF(G) by its center.

We say that G is a residually non-Abelian free group if G = RFna(G), i.e.,
if every non-trivial element of G survives in a non-Abelian free quotient of
G; equivalently, G is residually non-Abelian free if and only if G is residually
free and has trivial center. Given a residually non-Abelian free group G, we
say that R is a set of na-equations of G over S if G = RFna(〈S | R〉).

We write Z(G) for the center of G, and b1(G) for the torsion-free rank of
H1(G,Z).

Theorem 1.
• There is an algorithm which takes as input presentations of limit groups

L1, . . . ,Ln, and a finite subset S ⊂ L1 × · · · × Ln, and which computes a
finite set of na-equations for G/Z(G) = RFna(G), where G = 〈S〉.

• One can compute a finite set of defining equations for G = 〈S〉 if and only
if one can compute b1(G).

Since there is no algorithm computing b1(〈S〉) from S ⊂ F2 × F2 [BM09],
we deduce the following corollary.
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Corollary 1. There is no algorithm which takes as an input a finite
subset S ⊂ F2 × F2 and computes a finite set of equations for 〈S〉.

We also investigate the possibility to decide whether a residually free quo-
tient is finitely presented. Using Theorem 1 and [Gru78], we prove the follow-
ing theorem.

Theorem 2. There is no algorithm which takes as an input a finite group
presentation 〈S | R〉, and which decides whether RF(〈S | R〉) is finitely pre-
sented.

2. The residually non-Abelian free quotient RFna

We always denote by G a finitely generated group, and by F a non-Abelian
free group.

Definition 2.1. RF(G) is the quotient of G by the intersection of the
kernels of all morphisms G → F.

RFna(G) is the quotient of G by the intersection of the kernels of all mor-
phisms G → F with non-Abelian image.

One may view RF(G) as the image of G in F
H, where H is the set of all

morphisms G → F, and RFna(G) as the image in F
Hna , where Hna is the set

of all morphisms with non-Abelian image.
Every homomorphism G → F factors through RF(G) (through RFna(G) if

its image is not Abelian). By definition, G is residually free if and only if
G = RF(G), residually non-Abelian free if and only if G = RFna(G).

Lemma 2.2. There is an exact sequence

1 → Z(RF(G)) → RF(G) → RFna(G) → 1.

In particular, G is residually non-Abelian free if and only if G is residually
free and Z(G) = 1. If G is a non-Abelian limit group, it has trivial center and
RFna(G) = RF(G) = G.

Proof of Lemma 2.2. Recall that F is commutative transitive, that is, that
centralizers of nontrivial elements are Abelian (i.e., cyclic) [LS01]. Let H =
RF(G). Consider a ∈ Z(H) and f : H → F with f(a) �= 1. The image of f
centralizes f(a), so is Abelian by commutative transitivity of F. Thus, a has
trivial image in RFna(H) = RFna(G).

Conversely, consider a ∈ H \ Z(H), and b ∈ H with [a, b] �= 1. There exists
f : H → F such that f([a, b]) �= 1. Then f(H) is non-Abelian, and f(a) �= 1.
This means that the image of a in RFna(G) is nontrivial. �

Any epimorphism f : G → H induces epimorphisms fRF : RF(G) → RF(H)
and fna : RFna(G) → RFna(H).
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Lemma 2.3. Let f : G → H be an epimorphism. Then fRF : RF(G) →
RF(H) is an isomorphism if and only if fna : RFna(G) → RFna(H) is an
isomorphism and b1(G) = b1(H).

Proof. Note that fRF (resp., fna) is an isomorphism if and only if any
morphism G → F (resp., any such morphism with non-Abelian image) fac-
tors through f . The lemma then follows from the fact that the embed-
ding Hom(H,Z) ↪→ Hom(G,Z) induced by f is onto if and only if b1(G) =
b1(H). �

Given a product L1 × · · · × Ln, we denote by pi the projection onto Li.

Lemma 2.4. Let G ⊂ L = L1 × · · · × Ln with Li a limit group. Let I ⊂
{1, . . . , n} be the set of indices such that pi(G) is Abelian. Then RFna(G) is
the image of G in L′ =

∏
i/∈I Li (viewed as a quotient of L1 × · · · × Ln).

Proof. Note that G = RF(G). An element (x1, . . . , xn) ∈ G is in Z(G) if
and only if xi is central in pi(G) for every i. Since pi(G) is Abelian or has
trivial center, Z(G) is the kernel of the natural projection L → L′. The result
follows from Lemma 2.2. �

Lemma 2.5. RF(G) is finitely presented if and only if RFna(G) is.

Proof. If H is any residually free group, the abelianization map H → Hab

is injective on Z(H) since any element of Z(H) survives in some free quotient
of H , which has to be cyclic (see [BHMS09, Lemma 6.2]). In particular, Z(H)
is finitely generated if H is. Applying this to H = R(G), the exact sequence
of Lemma 2.2 gives the required result. �

3. Proof of the theorems

Let S be a finite set of elements in a group. We define S0 = S ∪ {1}. If
R,R′ are sets of words on S ∪ S−1, then RS0 is the set of all words obtained
by conjugating elements of R by elements of S0, and [RS0 ,R′] is the set of all
words obtained as commutators of words in RS0 and words in R′.

Proposition 3.1. Let A1, . . . ,An be arbitrary groups, with n ≥ 2. Let
G ⊂ A1 × · · · × An be generated by S = {s1, . . . , sk }. Let pi : G → Ai be the
projection. Assume that pi(G) = RFna(〈S | Ri〉) for some finite set of relators
Ri.

Then the set

R̃ = [RS0
n , [RS0

n−1, . . . [R
S0
3 , [RS0

2 ,R1]] . . .]]

is a finite set of na-equations of RFna(G) over S, i.e., RFna(G) = RFna(〈S |
R̃〉).
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An equality such as pi(G) = RFna(〈S | Ri〉) means that there is an isomor-
phism commuting with the natural projections F (S) → pi(G) and F (S) →
RFna(〈S | Ri〉), where F (S) denotes the free group on S.

Proof of Proposition 3.1. Recall that a free group F is CSA: commuta-
tion is transitive on F \ {1}, and maximal Abelian subgroups are malnormal
[MR96]. In particular, if two nontrivial subgroups commute, then both are
Abelian. If A,B are nontrivial subgroups of F, and if A commutes with
B,Bx1 , . . . ,Bxp for elements x1, . . . , xp ∈ F, then 〈A,B,x1, . . . , xp〉 is Abelian.

We write

G̃ = 〈S | R̃〉 = 〈S | [RS0
n , [RS0

n−1, . . . [R
S0
2 ,R1] . . .]]〉.

We always denote by ϕ : F (S) → F a morphism with non-Abelian image. We
shall show that such a ϕ factors through G if and only if it factors through G̃.
This implies the desired result RFna(G) = RFna(G̃): both groups are equal
to the image of F (S) in F

Hna , where Hna is the set of all ϕ’s which factor
through G and G̃.

We proceed by induction on n. We first claim that ϕ is trivial on R̃ if
and only if it is trivial on some Ri. The if direction is clear. For the only if
direction, observe that the image of [RS0

n−1, . . . [R
S0
2 ,R1] . . .] commutes with all

conjugates of ϕ(Rn) by elements of ϕ(F (S)), so Rn or [RS0
n−1, . . . [R

S0
2 ,R1] . . .]

has trivial image. The claim follows by induction.
Now suppose that ϕ factors through G̃. Then ϕ kills R̃, hence some Ri. It

follows that ϕ factors through pi(G), hence through G.
Conversely, suppose that ϕ factors through f : G → F. Consider the inter-

section of G with the kernel of pn : G → An and the kernel of p1,...,n−1 : G →
A1 × · · · × An−1. These are commuting normal subgroups of G. If both have
nontrivial image in F, the CSA property implies that the image of f is Abelian,
a contradiction. We deduce that f factors through pn or through p1,...,n−1,
and by induction that it factors through some pi. Thus, ϕ kills Ri, hence R̃
as required. �

Proof of Theorem 1. Given a finite subset S ⊂ L1 × · · · × Ln, where each
Li is a limit group, we want to find a finite set of na-equations for G/Z(G) =
RFna(G), where G = 〈S〉.

Using a solution of the word problem in a limit group, one can find the
indices i for which pi(G) ⊂ Li is Abelian (this amounts to checking whether
the elements of pi(S) commute).

First, assume that no pi(G) is Abelian. As pointed out in [GW09] or
[BHMS09, Lemma 7.5], one deduces from [Wil08] an algorithm yielding a
finite presentation 〈S | Ri〉 of pi(G). Since pi(G) is not Abelian, one has
pi(G) = RFna(〈S | Ri〉), and Proposition 3.1 yields a finite set of na-equations
for RFna(G) over S (if n = 1, then RFna(G) = p1(G)). If some pi(G)’s are
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Abelian, we simply replace G by its image in L′ as in Lemma 2.4. This proves
the first assertion of the theorem.

We now prove that one can find a finite set of defining equations if and
only if one can compute b1(G). Suppose that b1(G) is known. We want a
finite set R such that RF(G) = RF(〈S | R〉). If n = 1, then G is a subgroup of
the limit group L1, and one can find a finite presentation of G as explained
above. So assume n ≥ 2. Consider the finite presentation G̃ = 〈S | R̃〉 given
by Proposition 3.1, so that RFna(G̃) = RFna(G).

We claim that G is a quotient of G̃. To see this, we consider an x ∈ F (S)
which is trivial in G̃ and we prove that it is trivial in G. If not, residual
freeness of G implies that x survives under a morphism ϕ : F (S) → F which
factors through G. If ϕ has non-Abelian image, it factors through RFna(G) =
RFna(G̃), hence through G̃, contradicting the triviality of x in G̃. If the image
is Abelian, ϕ also factors through G̃ because all relators in R̃ are commutators.

Since R̃ is finite, we can compute b1(G̃). If b1(G̃) = b1(G), we are done by
Lemma 2.3 since G is a quotient of G̃. If b1(G̃) > b1(G), we enumerate all
trivial words of G (using an enumeration of trivial words in each pi(G)), and
we add them to the presentation of G̃ one by one. We compute b1 after each
addition, and we stop when we reach the known value b1(G).

Conversely, if we have a finite set of defining equations for G, so that G =
RF(〈S | R〉), we can compute b1(〈S | R〉), which equals b1(G) by Lemma 2.3.

�

Theorem 3. There is no algorithm which takes as input a finite group pre-
sentation 〈S | R̃〉, and which decides whether RF(〈S | R̃〉) is finitely presented.

Proof. Given a finite set S ⊂ F2 × F2, Theorem 1 provides a finite set R̃
such that RFna(〈S〉) = RFna(〈S | R̃〉). Using Lemma 2.5, we see that finite
presentability of RF(〈S | R̃〉) is equivalent to that of RFna(〈S | R̃〉), hence to
that of RF(〈S〉) = 〈S〉. But it follows from [Gru78] that there is no algorithm
which decides, given a finite set S ⊂ F2 × F2, whether 〈S〉 is finitely presented.

�
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