COMPUTING EQUATIONS FOR RESIDUALLY FREE GROUPS

VINCENT GUIRARDEL AND GILBERT LEVITT

ABSTRACT. We show that there is no algorithm deciding whether the maximal residually free quotient of a given finitely presented group is finitely presentable or not.

Given a finitely generated subgroup G of a finite product of limit groups, we discuss the possibility of finding an explicit set of defining equations (i.e., of expressing G as the maximal residually free quotient of an explicit finitely presented group).

1. Introduction

Any countable group G has a largest residually free quotient $\operatorname{RF}(G)$, equal to $G/\bigcap_{f\in\mathcal{H}} \ker f$ where \mathcal{H} is the set of all homomorphisms from G to a non-Abelian free group \mathbb{F} . Since any two countably generated non-Abelian free groups can be embedded in each other, this notion does not depend on the rank of the free group \mathbb{F} considered.

In the language of [BMR99], if R is a finite set of group equations on a finite set of variables S, then $G = \operatorname{RF}(\langle S | R \rangle)$ is the *coordinate group* of the variety defined by the system of equations R. We say that R is a *set of defining equations* of G over S. Equational noetherianness of free groups implies that any finitely generated residually free group G has a (finite) set of defining equations [BMR99].

On the other hand, any finitely generated residually free group embeds into a finite product of limit groups (also known as finitely generated fully residually free groups), which correspond to the *irreducible components* of the variety defined by R [BMR99, KM98, Sel01]. Conversely, any subgroup of a finite product of limit groups is residually free.

This gives three possibilities to define a finitely generated residually free group G in an explicit way:

Received June 12, 2009; received in final form October 23, 2009. 2000 Mathematics Subject Classification. 20F65, 20F10, 20E26, 20F67.

- (1) give a finite presentation of G (if G is finitely presented);
- (2) give a set of defining equations of G: write $G = \operatorname{RF}(\langle S | R \rangle)$, with S and R finite;
- (3) write G as the subgroup of $L_1 \times \cdots \times L_n$ generated by a finite subset S, where L_1, \ldots, L_n are limit groups given by some finite presentations.

We investigate the algorithmic possibility to go back and forth between these ways of defining G.

One can go from 2 to 3: given a set of defining equations of G, one can find an explicit embedding into some product of limit groups [KM98, KM05, BHMS09, GW09].

Conversely, if G is given as a subgroup of a product of limit groups, and if one knows that G is finitely presented, one can compute a presentation of G[BHMS09]. Obviously, a finite presentation is a set of defining equations.

Since residually free groups are not always finitely presented, we investigate the following question:

QUESTION. Let $L = L_1 \times \cdots \times L_n$ be a product of limit groups. Let G be the subgroup generated by a finite subset $S \subset L$. Can one algorithmically find a finite set of defining equations for G, that is, find a finite presentation $\langle S | R \rangle$ such that $G = \operatorname{RF}(\langle S | R \rangle)$?

We will prove that this question has a negative answer. On the other hand, we introduce a closely related notion which has better algorithmic properties.

Let $\operatorname{RF}_{na}(G)$ be the quotient $G/\bigcap_{f\in\mathcal{H}_{na}} \ker f$ where \mathcal{H}_{na} is the set of all homomorphisms from G to \mathbb{F} with *non-Abelian image*. Of course, $\operatorname{RF}_{na}(G)$ is a quotient of $\operatorname{RF}(G)$, which forgets the information about morphisms to \mathbb{Z} . In fact (Lemma 2.2), it is the quotient of $\operatorname{RF}(G)$ by its center.

We say that G is a residually non-Abelian free group if $G = \operatorname{RF}_{na}(G)$, i.e., if every non-trivial element of G survives in a non-Abelian free quotient of G; equivalently, G is residually non-Abelian free if and only if G is residually free and has trivial center. Given a residually non-Abelian free group G, we say that R is a set of na-equations of G over S if $G = \operatorname{RF}_{na}(\langle S | R \rangle)$.

We write Z(G) for the center of G, and $b_1(G)$ for the torsion-free rank of $H_1(G,\mathbb{Z})$.

Theorem 1.

- There is an algorithm which takes as input presentations of limit groups L_1, \ldots, L_n , and a finite subset $S \subset L_1 \times \cdots \times L_n$, and which computes a finite set of na-equations for $G/Z(G) = \operatorname{RF}_{na}(G)$, where $G = \langle S \rangle$.
- One can compute a finite set of defining equations for G = ⟨S⟩ if and only if one can compute b₁(G).

Since there is no algorithm computing $b_1(\langle S \rangle)$ from $S \subset \mathbb{F}_2 \times \mathbb{F}_2$ [BM09], we deduce the following corollary.

COROLLARY 1. There is no algorithm which takes as an input a finite subset $S \subset \mathbb{F}_2 \times \mathbb{F}_2$ and computes a finite set of equations for $\langle S \rangle$.

We also investigate the possibility to decide whether a residually free quotient is finitely presented. Using Theorem 1 and [Gru78], we prove the following theorem.

THEOREM 2. There is no algorithm which takes as an input a finite group presentation $\langle S | R \rangle$, and which decides whether $RF(\langle S | R \rangle)$ is finitely presented.

2. The residually non-Abelian free quotient RF_{na}

We always denote by G a finitely generated group, and by \mathbb{F} a non-Abelian free group.

DEFINITION 2.1. $\operatorname{RF}(G)$ is the quotient of G by the intersection of the kernels of all morphisms $G \to \mathbb{F}$.

 $\operatorname{RF}_{na}(G)$ is the quotient of G by the intersection of the kernels of all morphisms $G \to \mathbb{F}$ with non-Abelian image.

One may view $\operatorname{RF}(G)$ as the image of G in $\mathbb{F}^{\mathcal{H}}$, where \mathcal{H} is the set of all morphisms $G \to \mathbb{F}$, and $\operatorname{RF}_{na}(G)$ as the image in $\mathbb{F}^{\mathcal{H}_{na}}$, where \mathcal{H}_{na} is the set of all morphisms with non-Abelian image.

Every homomorphism $G \to \mathbb{F}$ factors through $\operatorname{RF}(G)$ (through $\operatorname{RF}_{na}(G)$ if its image is not Abelian). By definition, G is residually free if and only if $G = \operatorname{RF}(G)$, residually non-Abelian free if and only if $G = \operatorname{RF}_{na}(G)$.

LEMMA 2.2. There is an exact sequence

 $1 \to Z(\mathrm{RF}(G)) \to \mathrm{RF}(G) \to \mathrm{RF}_{na}(G) \to 1.$

In particular, G is residually non-Abelian free if and only if G is residually free and Z(G) = 1. If G is a non-Abelian limit group, it has trivial center and $\operatorname{RF}_{na}(G) = \operatorname{RF}(G) = G$.

Proof of Lemma 2.2. Recall that \mathbb{F} is commutative transitive, that is, that centralizers of nontrivial elements are Abelian (i.e., cyclic) [LS01]. Let $H = \operatorname{RF}(G)$. Consider $a \in Z(H)$ and $f: H \to \mathbb{F}$ with $f(a) \neq 1$. The image of fcentralizes f(a), so is Abelian by commutative transitivity of \mathbb{F} . Thus, a has trivial image in $\operatorname{RF}_{na}(H) = \operatorname{RF}_{na}(G)$.

Conversely, consider $a \in H \setminus Z(H)$, and $b \in H$ with $[a, b] \neq 1$. There exists $f: H \to \mathbb{F}$ such that $f([a, b]) \neq 1$. Then f(H) is non-Abelian, and $f(a) \neq 1$. This means that the image of a in $\operatorname{RF}_{na}(G)$ is nontrivial.

Any epimorphism $f : G \to H$ induces epimorphisms $f_{RF} : RF(G) \to RF(H)$ and $f_{na} : RF_{na}(G) \to RF_{na}(H)$. LEMMA 2.3. Let $f: G \to H$ be an epimorphism. Then $f_{RF}: RF(G) \to RF(H)$ is an isomorphism if and only if $f_{na}: RF_{na}(G) \to RF_{na}(H)$ is an isomorphism and $b_1(G) = b_1(H)$.

Proof. Note that f_{RF} (resp., f_{na}) is an isomorphism if and only if any morphism $G \to \mathbb{F}$ (resp., any such morphism with non-Abelian image) factors through f. The lemma then follows from the fact that the embedding $\operatorname{Hom}(H,\mathbb{Z}) \hookrightarrow \operatorname{Hom}(G,\mathbb{Z})$ induced by f is onto if and only if $b_1(G) = b_1(H)$.

Given a product $L_1 \times \cdots \times L_n$, we denote by p_i the projection onto L_i .

LEMMA 2.4. Let $G \subset L = L_1 \times \cdots \times L_n$ with L_i a limit group. Let $I \subset \{1, \ldots, n\}$ be the set of indices such that $p_i(G)$ is Abelian. Then $\operatorname{RF}_{na}(G)$ is the image of G in $L' = \prod_{i \notin I} L_i$ (viewed as a quotient of $L_1 \times \cdots \times L_n$).

Proof. Note that $G = \operatorname{RF}(G)$. An element $(x_1, \ldots, x_n) \in G$ is in Z(G) if and only if x_i is central in $p_i(G)$ for every *i*. Since $p_i(G)$ is Abelian or has trivial center, Z(G) is the kernel of the natural projection $L \to L'$. The result follows from Lemma 2.2.

LEMMA 2.5. RF(G) is finitely presented if and only if $RF_{na}(G)$ is.

Proof. If H is any residually free group, the abelianization map $H \to H_{ab}$ is injective on Z(H) since any element of Z(H) survives in some free quotient of H, which has to be cyclic (see [BHMS09, Lemma 6.2]). In particular, Z(H) is finitely generated if H is. Applying this to H = R(G), the exact sequence of Lemma 2.2 gives the required result.

3. Proof of the theorems

Let S be a finite set of elements in a group. We define $S_0 = S \cup \{1\}$. If R, R' are sets of words on $S \cup S^{-1}$, then R^{S_0} is the set of all words obtained by conjugating elements of R by elements of S_0 , and $[R^{S_0}, R']$ is the set of all words obtained as commutators of words in R^{S_0} and words in R'.

PROPOSITION 3.1. Let A_1, \ldots, A_n be arbitrary groups, with $n \ge 2$. Let $G \subset A_1 \times \cdots \times A_n$ be generated by $S = \{s_1, \ldots, s_k\}$. Let $p_i : G \to A_i$ be the projection. Assume that $p_i(G) = \operatorname{RF}_{na}(\langle S | R_i \rangle)$ for some finite set of relators R_i .

Then the set

$$\tilde{R} = [R_n^{S_0}, [R_{n-1}^{S_0}, \dots [R_3^{S_0}, [R_2^{S_0}, R_1]] \dots]]$$

is a finite set of na-equations of $\operatorname{RF}_{na}(G)$ over S, i.e., $\operatorname{RF}_{na}(G) = \operatorname{RF}_{na}(\langle S | \tilde{R} \rangle)$.

An equality such as $p_i(G) = \operatorname{RF}_{na}(\langle S | R_i \rangle)$ means that there is an isomorphism commuting with the natural projections $F(S) \to p_i(G)$ and $F(S) \to \operatorname{RF}_{na}(\langle S | R_i \rangle)$, where F(S) denotes the free group on S.

Proof of Proposition 3.1. Recall that a free group \mathbb{F} is CSA: commutation is transitive on $\mathbb{F} \setminus \{1\}$, and maximal Abelian subgroups are malnormal [MR96]. In particular, if two nontrivial subgroups commute, then both are Abelian. If A, B are nontrivial subgroups of \mathbb{F} , and if A commutes with $B, B^{x_1}, \ldots, B^{x_p}$ for elements $x_1, \ldots, x_p \in \mathbb{F}$, then $\langle A, B, x_1, \ldots, x_p \rangle$ is Abelian.

We write

$$\tilde{G} = \langle S \mid \tilde{R} \rangle = \langle S \mid [R_n^{S_0}, [R_{n-1}^{S_0}, \dots [R_2^{S_0}, R_1] \dots]] \rangle.$$

We always denote by $\varphi : F(S) \to \mathbb{F}$ a morphism with non-Abelian image. We shall show that such a φ factors through G if and only if it factors through \tilde{G} . This implies the desired result $\operatorname{RF}_{na}(G) = \operatorname{RF}_{na}(\tilde{G})$: both groups are equal to the image of F(S) in $\mathbb{F}^{\mathcal{H}_{na}}$, where \mathcal{H}_{na} is the set of all φ 's which factor through G and \tilde{G} .

We proceed by induction on n. We first claim that φ is trivial on R if and only if it is trivial on some R_i . The if direction is clear. For the only if direction, observe that the image of $[R_{n-1}^{S_0}, \dots, [R_2^{S_0}, R_1] \dots]$ commutes with all conjugates of $\varphi(R_n)$ by elements of $\varphi(F(S))$, so R_n or $[R_{n-1}^{S_0}, \dots, [R_2^{S_0}, R_1] \dots]$ has trivial image. The claim follows by induction.

Now suppose that φ factors through G. Then φ kills R, hence some R_i . It follows that φ factors through $p_i(G)$, hence through G.

Conversely, suppose that φ factors through $f: G \to \mathbb{F}$. Consider the intersection of G with the kernel of $p_n: G \to A_n$ and the kernel of $p_{1,\dots,n-1}: G \to A_1 \times \cdots \times A_{n-1}$. These are commuting normal subgroups of G. If both have nontrivial image in \mathbb{F} , the CSA property implies that the image of f is Abelian, a contradiction. We deduce that f factors through p_n or through $p_{1,\dots,n-1}$, and by induction that it factors through some p_i . Thus, φ kills R_i , hence \tilde{R} as required.

Proof of Theorem 1. Given a finite subset $S \subset L_1 \times \cdots \times L_n$, where each L_i is a limit group, we want to find a finite set of na-equations for $G/Z(G) = \operatorname{RF}_{na}(G)$, where $G = \langle S \rangle$.

Using a solution of the word problem in a limit group, one can find the indices *i* for which $p_i(G) \subset L_i$ is Abelian (this amounts to checking whether the elements of $p_i(S)$ commute).

First, assume that no $p_i(G)$ is Abelian. As pointed out in [GW09] or [BHMS09, Lemma 7.5], one deduces from [Wil08] an algorithm yielding a finite presentation $\langle S | R_i \rangle$ of $p_i(G)$. Since $p_i(G)$ is not Abelian, one has $p_i(G) = \operatorname{RF}_{na}(\langle S | R_i \rangle)$, and Proposition 3.1 yields a finite set of na-equations for $\operatorname{RF}_{na}(G)$ over S (if n = 1, then $\operatorname{RF}_{na}(G) = p_1(G)$). If some $p_i(G)$'s are Abelian, we simply replace G by its image in L' as in Lemma 2.4. This proves the first assertion of the theorem.

We now prove that one can find a finite set of defining equations if and only if one can compute $b_1(G)$. Suppose that $b_1(G)$ is known. We want a finite set R such that $\operatorname{RF}(G) = \operatorname{RF}(\langle S | R \rangle)$. If n = 1, then G is a subgroup of the limit group L_1 , and one can find a finite presentation of G as explained above. So assume $n \geq 2$. Consider the finite presentation $\tilde{G} = \langle S | \tilde{R} \rangle$ given by Proposition 3.1, so that $\operatorname{RF}_{na}(\tilde{G}) = \operatorname{RF}_{na}(G)$.

We claim that G is a quotient of \tilde{G} . To see this, we consider an $x \in F(S)$ which is trivial in \tilde{G} and we prove that it is trivial in G. If not, residual freeness of G implies that x survives under a morphism $\varphi : F(S) \to \mathbb{F}$ which factors through G. If φ has non-Abelian image, it factors through $\operatorname{RF}_{na}(G) =$ $\operatorname{RF}_{na}(\tilde{G})$, hence through \tilde{G} , contradicting the triviality of x in \tilde{G} . If the image is Abelian, φ also factors through \tilde{G} because all relators in \tilde{R} are commutators.

Since \hat{R} is finite, we can compute $b_1(\hat{G})$. If $b_1(\hat{G}) = b_1(G)$, we are done by Lemma 2.3 since G is a quotient of \tilde{G} . If $b_1(\tilde{G}) > b_1(G)$, we enumerate all trivial words of G (using an enumeration of trivial words in each $p_i(G)$), and we add them to the presentation of \tilde{G} one by one. We compute b_1 after each addition, and we stop when we reach the known value $b_1(G)$.

Conversely, if we have a finite set of defining equations for G, so that $G = \operatorname{RF}(\langle S \mid R \rangle)$, we can compute $b_1(\langle S \mid R \rangle)$, which equals $b_1(G)$ by Lemma 2.3.

THEOREM 3. There is no algorithm which takes as input a finite group presentation $\langle S | \tilde{R} \rangle$, and which decides whether $\operatorname{RF}(\langle S | \tilde{R} \rangle)$ is finitely presented.

Proof. Given a finite set $S \subset \mathbb{F}_2 \times \mathbb{F}_2$, Theorem 1 provides a finite set \hat{R} such that $\operatorname{RF}_{na}(\langle S \rangle) = \operatorname{RF}_{na}(\langle S \mid \tilde{R} \rangle)$. Using Lemma 2.5, we see that finite presentability of $\operatorname{RF}(\langle S \mid \tilde{R} \rangle)$ is equivalent to that of $\operatorname{RF}_{na}(\langle S \mid \tilde{R} \rangle)$, hence to that of $\operatorname{RF}(\langle S \rangle) = \langle S \rangle$. But it follows from [Gru78] that there is no algorithm which decides, given a finite set $S \subset \mathbb{F}_2 \times \mathbb{F}_2$, whether $\langle S \rangle$ is finitely presented.

References

- [BMR99] G. Baumslag, A. Myasnikov and V. Remeslennikov, Algebraic geometry over groups. I. Algebraic sets and ideal theory, J. Algebra 219 (1999), 16–79. MR 1707663
- [BHMS09] M. R. Bridson, J. Howie, C. F. Miller III and H. Short, Subgroups of direct products of limit groups, Ann. of Math. (2) 170 (2009), 1447–1467.
- [BM09] M. R. Bridson and C. F. Miller III, Structure and finiteness properties of subdirect products of groups, Proc. Lond. Math. Soc. (3) 98 (2009), 631–651.
- [GW09] D. Groves and H. Wilton, Enumerating limit groups, Groups Geom. Dyn. 3 (2009), 389–399. MR 2516172
- [Gru78] F. J. Grunewald, On some groups which cannot be finitely presented, J. London Math. Soc. (2) 17 (1978), 427–436. MR 0500627

- [KM98] O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998), 517–570. MR 1610664
- [KM05] O. Kharlampovich and A. G. Myasnikov, *Effective JSJ decompositions*, Groups, languages, algorithms, Contemp. Math., vol. 378, Amer. Math. Soc., Providence, RI, 2005, pp. 87–212. MR 2159316
- [LS01] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. MR 1812024
- [MR96] A. G. Myasnikov and V. N. Remeslennikov, Exponential groups. II. Extensions of centralizers and tensor completion of CSA-groups, Internat. J. Algebra Comput. 6 (1996), 687–711. MR 1421886
- [Sel01] Z. Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 31–105. MR 1863735
- [Wil08] H. Wilton, *Hall's theorem for limit groups*, Geom. Funct. Anal. 18 (2008), 271– 303. MR 2399104

VINCENT GUIRARDEL, INSTITUT DE MATHÉMATIQUES DE TOULOUSE, UNIVERSITÉ DE TOULOUSE ET CNRS (UMR 5219), 118 ROUTE DE NARBONNE, F-31062 TOULOUSE CEDEX 9, FRANCE

E-mail address: guirardel@math.ups-tlse.fr

GILBERT LEVITT, LABORATOIRE DE MATHÉMATIQUES NICOLAS ORESME, UNIVERSITÉ DE CAEN ET CNRS (UMR 6139), BP 5186, F-14032 CAEN CEDEX, FRANCE

E-mail address: levitt@math.unicaen.fr