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CONVERGENCE OF POLYNOMIAL ERGODIC AVERAGES
OF SEVERAL VARIABLES FOR SOME COMMUTING

TRANSFORMATIONS

MICHAEL C. R. JOHNSON

Abstract. Let (X, B, μ) be a probability space and let T1, . . . , Tl

be l commuting invertible measure preserving transformations

of X. We show that if T c1
1 . . . T cl

l is ergodic for each (c1, . . . , cl) �=
(0, . . . ,0), then the averages 1

|ΦN |
∑

u∈ΦN

∏r
i=1 T

pi1(u)
1 . . . T

pil(u)
l fi

converge in L2(μ) for all polynomials pij : Z
d → Z, all fi ∈ L∞(μ),

and all Følner sequences {ΦN } ∞
N=1 in Z

d.

1. Introduction

In 1996, Bergelson and Leibman proved the following generalization of
Furstenberg’s Multiple Recurrence theorem [Fu], corresponding to the multi-
dimensional polynomial version of Szemerédi’s theorem.

Theorem 1.1 ([BL]). Let (X, B, μ) be a probability space, let T1, . . . , Tl be
commuting invertible measure preserving transformations of X , let pij : Z → Z

be polynomials satisfying pij(0) = 0 for all 1 ≤ i ≤ r, 1 ≤ j ≤ l, and let A ∈ B
with μ(A) > 0. Then

lim inf
N →∞

1
N

N −1∑
n=0

μ

(
r⋂

i=1

T
−pi1(n)
1 . . . T

−pil(n)
l A

)
> 0.

Furstenberg’s theorem corresponds to the case that pij(n) = n for i = j,
pij(n) = 0 for i �= j, and each Ti = T i

1 . In this linear case, Host and Kra [HK1]
showed that the lim inf is in fact a limit. Host and Kra [HK2] and Leibman
[Le2] proved convergence in the polynomial case assuming all Ti = T1. It is
natural to ask whether the general commuting averages for polynomials in
Theorem 1.1 converge.
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Definition 1.2. We say (T1, . . . , Tl) is a totally ergodic generating set of
invertible measure preserving transformations of X if T c1

1 T c2
2 . . . T cl

l is ergodic
for any choice of (c1, . . . , cl) �= (0, . . . ,0).

We note that if (T1, . . . , Tl) is a totally ergodic generating set of invertible
measure preserving transformations of a nontrivial probability space (X, B, μ),
then the associated group of transformations generated by T1, . . . , Tl is a free
abelian group with l generators. We show that given a totally ergodic gener-
ating set of transformations, we obtain convergence in L2(μ) for the averages
in Theorem 1.1. We prove a statement replacing indicator functions with
arbitrary functions in L∞(μ).

Theorem 1.3. Let (X, B, μ) be a probability space, let (T1, . . . , Tl) be a to-
tally ergodic generating set of commuting invertible measure preserving trans-
formations of X , and let pij : Z

d → Z for 1 ≤ i ≤ r, 1 ≤ j ≤ l be polynomials.
For any f1, . . . , fr ∈ L∞(μ) and any Følner sequence {ΦN } ∞

N=1 in Z
d, the

averages

(1)
1

|ΦN |
∑

u∈ΦN

r∏
i=1

fi

(
T

pi1(u)
1 . . . T

pil(u)
l x

)

converge in L2(μ) as N → ∞.

Without the assumption that (T1, . . . , Tl) form a totally ergodic generat-
ing set, convergence for the above averages in (1) remains open and is only
known in the linear case. Frantzikinakis and Kra [FrK] showed that given
pij(n) = n for i = j and pij(n) = 0 for i �= j, if we assume that Ti is ergodic for
each i ∈ {1, . . . , l} and TiT

−1
j is ergodic for all i �= j, we obtain convergence

in L2(μ). Tao [T] recently proved convergence in L2(μ) for the general linear
case without the ergodicity assumptions needed in [FrK].

In previous results, convergence was often shown by proving that the av-
erages in (1) do not change by replacing each function with its conditional
expectation on a certain characteristic factor, namely an inverse limit of nil-
systems. This characteristic factor, is then shown to have algebraic structures
for which convergence is known. We define these terms precisely in the sec-
tion below. To prove our theorem, we combine this technique with a modified
version of PET-induction as introduced by Bergelson [Be].

2. Preliminaries

For simplicity, we assume all functions are real valued. All theorems and
definitions hold for complex valued functions with obvious minor modifica-
tions. Throughout, we use the notation Tf = f(T ).
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2.1. Nilsystems.

Definition 2.1. Let G be a k-step nilpotent Lie group, let Γ be a discrete
cocompact subgroup of G, let X = G/Γ, and let B be the Borel σ-algebra asso-
ciated to X . For each g ∈ G, let Tg : G/Γ → G/Γ be defined by Tg(xΓ) = gxΓ,
and let μ be Haar measure, the unique normalized measure on (X, B) invari-
ant under left translations by elements in G. We call (X, B, μ, (Tg, g ∈ G)) a
nilsystem.

Definition 2.2. A sequence of finite subsets {ΦN } ∞
N=1 of a countable,

discrete group G is a Følner sequence if for all g ∈ G,

lim
n→∞

|gΦnΔΦn|
|Φn| = 0,

where Δ is the symmetric difference operation.

Ergodic averages in nilsystems have been well studied. We make use of the
following theorem of Leibman.

Theorem 2.3 ([Le1]). Let (X, B, μ, (Tg, g ∈ G)) be a nilsystem with X =
G/Γ, g1 , . . . , gl

∈ G, and p1, . . . , pl : Z
d → Z be polynomials. Then for any

f ∈ C(X) and any Følner sequence {ΦN } ∞
N=1 in Z

d, the averages

1
|ΦN |

∑
u∈ΦN

T p1(u)
g1

. . . T pl(u)
g

l
f

converge pointwise as N → ∞.

Corollary 2.4. Let (X, B, μ, (Tg, g ∈ G)) be a nilsystem with X = G/Γ,
g1 , . . . , gl

∈ G, and pij : Z
d → Z for 1 ≤ i ≤ r,1 ≤ j ≤ l be polynomials. Then

for any f1, . . . , fr ∈ L∞(μ) and any Følner sequence {ΦN } ∞
N=1 in Z

d, the
averages

1
|ΦN |

∑
u∈ΦN

r∏
i=1

T pi1(u)
g1

. . . T pil(u)
g

l
fi

converge in L2(μ) as N → ∞.

Proof. We apply Theorem 2.3 to Xr, with transformations T̂ij : Xr → Xr

for 1 ≤ i ≤ r,1 ≤ j ≤ l defined by

T̂ij(x1, x2, . . . , xr) = (x1, . . . , xi−1, Tg
j
(xi), xi+1, . . . , xr).

Using polynomials pij : Z
d → Z for 1 ≤ i ≤ r,1 ≤ j ≤ l, f = f1 ⊗ . . . ⊗ fr, and

x = (x, . . . , x) in Xr, we get

f
(
T̂

p11(u)
11 . . . T̂

p1l(u)
1l . . . T̂

pr1(u)
r1 . . . T̂

prl(u)
rl x

)
=

r∏
i=1

fi

(
T pi1(u)

g1
. . . T pil(u)

g
l

x
)
.
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Theorem 2.3 guarantees the required averages converge pointwise for each
f1, . . . , fr ∈ C(X). Using the density of C(X) in L2(μ), L2(μ) convergence
follows for arbitrary f1, . . . , fr ∈ L∞(μ). �
2.2. The Host–Kra seminorms ||| · |||k. We briefly review the construction
of the Host–Kra seminorms on L∞(μ) from [HK1]. As our setting deals with
multiple commuting transformations, we must specify which transformation
is used. In this section, T is an ergodic measure preserving transformation of
(X, B, μ).

For each k ≥ 0, we define a probability measure μ
[k]
T on X [k] = X2k

, invari-
ant under T [k] = T × · · · × T (2k times).

Set μ
[0]
T = μ. For k ≥ 0, let I [k]

T be the σ-algebra of T [k]-invariant subsets

of X [k]. Then define μ
[k+1]
T = μ

[k]
T ×I[k]

T
μ

[k]
T to be the relatively independent

square of μ
[k]
T over I [k]

T . This means for F,G ∈ L∞(μ[k])∫
X[k+1]

F (x′)G(x′ ′)dμ
[k+1]
T (x′,x′ ′) =

∫
X[k]

E
(
F | I [k]

T

)
E

(
G| I [k]

T

)
dμ

[k]
T ,

where E(· | ·) is the conditional expectation operation.
Using these measures, define

|||f |||2k

k,T =
∫

X[k]

2k −1∏
j=0

f(xj)dμ
[k]
T (x)

for a bounded function f ∈ L∞(μ) and k ≥ 1. It is shown in [HK1] that for
every k ≥ 1 and every ergodic T , ||| · |||k,T is a seminorm on L∞(μ). Also, for f ∈
L∞(μ), we have |||f |||1,T = |

∫
f dμ| and for every k ≥ 1, |||f |||k,T ≤ |||f |||k+1,T ≤

‖f ‖L∞(μ).

2.3. The Host–Kra factors Zk(X). We now define an increasing sequ-
ence of factors {Zk(X,T ) : k ≥ 0} as constructed in [HK1]. Let Zk(X,T ) be
the T -invariant sub-σ-algebra characterized by the following property: for
every f ∈ L∞(μ), E(f | Zk(X,T )) = 0 if and only if |||f |||k+1,T = 0. We define
Zk(X,T ) to be the factor of X associated to the sub-σ-algebra Zk. Thus,
Z0(X,T ) is the trivial factor and Z1(X,T ) is the Kronecker factor. A priori,
these constructions depend on the transformation T .

Indeed, the following observation of Frantzikinakis and Kra shows that
given basic assumptions, none of the previous constructions depend on the
transformation T . This result was also proved independently by Assani (per-
sonal communication).

Proposition 2.5 ([FrK]). Assume that T and S are ergodic commuting
invertible measure preserving transformations of a space (X, B, μ). Then for
all k ≥ 1 and all f ∈ L∞(μ), |||f |||k,T = |||f |||k,S and Zk(X,T ) = Zk(X,S).

Thus, we discard T from our notation.
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Definition 2.6. We call a probability space (X, B, μ) with l invertible
commuting measure preserving transformations T1, . . . , Tl, an (invertible com-
muting measure preserving) system. If (T1, . . . , Tl) is also a totally ergodic
generating set, then we call it a freely generated totally ergodic system [with
generators (T1, . . . , Tl)]. We denote it as (X, B, μ, (T1, . . . , Tl)). A system
(X, B, μ, (T1, . . . , Tl)) is an inverse limit of systems (X, Bi, μi, (T1, . . . , Tl)) if
each Bi ⊂ Bi+1 and B =

∨∞
i=1 Bi up to sets of measure zero.

The main result of the Host–Kra theory is that each of the factors (Zk, Ti)
is isomorphic to an inverse limit of k-step nilsystems. However, such iso-
morphism a priori depends on the transformation Ti. [Note that by Propo-
sition 2.5, Zk(X,Ti), does not depend on i.] In [FrK], they deal specifically
with this technicality. We say that a system (X, B, μ, (T1, . . . , Tl)) has order
k if X = Zk(X).

Theorem 2.7 ([FrK]). Any system (X, B, μ, (T1, . . . , Tl)) of order k is an
inverse limit of a sequence of systems (X, Bi, μi, (T1, . . . , Tl)), each arising
from k-step nilsystems, where X = Gi/Γi and each transformation T1, . . . , Tl

is a left translation of Gi/Γi by an element in Gi.

By combining Theorem 2.7 and Corollary 2.4, Theorem 1.3 is proved in
the case that X = Zk(X) for some k.

2.4. Characteristic factors and ED-sets.

Definition 2.8. We say a sub-σ-algebra X ⊆ B is a characteristic factor
for L2(μ)-convergence of the averages

1
|ΦN |

∑
u∈ΦN

r∏
i=1

T
pi1(u)
1 . . . T

pil(u)
l fi (see (1))

if X is Tj invariant for all 1 ≤ j ≤ l and the averages in (1) converge to 0
in L2(μ) for any Følner sequence {ΦN } ∞

N=1 in Z
d whenever E(fi| X ) = 0 for

some 1 ≤ i ≤ r.

Using the multilinearity of our averages in (1), it only remains to show that
for some k ∈ N, Zk(X) is a characteristic factor.

To simplify future arguments, we require that our set of polynomials have
a property related to being essentially distinct, as defined in [Le2].

Definition 2.9. We say the set of polynomials P = {pij : Z
d → Z for 1 ≤

i ≤ r,1 ≤ j ≤ l} is an ED-set if all of the following hold:
(1) Each pij in P is not equal to a nonzero constant.
(2) No two polynomials pi1j , pi2j in P differ by a nonzero constant for any

j = 1, . . . , l.
(3) For each i = 1, . . . , r, there is some j ∈ {1, . . . , l} where pij is nonzero.
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(4) For each distinct pair i1, i2 ∈ {1, . . . , r}, there is some j ∈ {1, . . . , l} where
pi1j �= pi2j .

When P is viewed as an r × l matrix whose entries are polynomials, condi-
tions (1) and (2) are related to the polynomials being essentially distinct in
each column. Condition (3) requires that P contains no rows of all zeros, and
condition (4) requires that P does not have identical rows.

We note that Theorem 1.3 is trivially true if all the polynomials are iden-
tically zero. By replacing each fi with T c1

1 . . . T cl

l fi for some c1, . . . , cl ∈ Z,
we may assume that our set of polynomials satisfies conditions (1) and (2).
In the case that there is some i ∈ {1, . . . , r} for which pij = 0 for each j =
1, . . . , l, we have T pi1

1 . . . T pil

l fi = fi, and we then factor fi out of our average.
Thus, we further assume our polynomials satisfy condition (3). By writing
T1 . . . TlfT1 . . . Tlg as T1 . . . Tl(fg), we may assume that our set of polynomials
also satisfies condition (4), and hence is an ED-set. Thus, the main theorem
is a consequence of the following proposition.

Proposition 2.10. Let (X, B, μ, (T1, . . . , Tl)) be a freely generated totally
ergodic system and P = {pij : Z

d → Z for 1 ≤ i ≤ r, 1 ≤ j ≤ l} be an ED-set
of polynomials. Then there exists k ∈ N such that for any f1, . . . , fr ∈ L∞(μ)
with |||fm|||k = 0 for some 1 ≤ m ≤ r, we have

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

(
r∏

i=1

T
pi1(u)
1 T

pi2(u)
2 . . . T

pil(u)
l fi

)∥∥∥∥∥
L2(μ)

= 0

for any Følner sequence {ΦN } ∞
N=1 in Z

d.

We note that the above integer k is only dependent on the set of polyno-
mials P and not on the system (X, B, μ, (T1, . . . , Tl)) or the dimension d. By
relabeling our polynomials and functions, we need only prove Proposition 2.10
in the case that |||f1|||k = 0 for some k ∈ N.

3. Linear case

To prove Proposition 2.10, we use PET-induction as introduced by Bergel-
son in [Be]. In this section, we prove the base case of the induction.

Proposition 3.1. Let (X, B, μ, (T1, . . . , Tl)) be a freely generated totally
ergodic system and P = {pij : Z

d → Z for 1 ≤ i ≤ r, 1 ≤ j ≤ l} be an ED-set
of linear functions. Then there exists a constant C > 0 dependent only on the
set of polynomials, such that

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

(
r∏

i=1

T
pi1(u)
1 T

pi2(u)
2 . . . T

pil(u)
l fi

)∥∥∥∥∥
L2(μ)

≤ C min
1≤i≤r

|||fi|||r+1
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for any f1, . . . , fr ∈ L∞(μ) with ‖fi‖L∞(μ) ≤ 1 and any Følner sequence
{ΦN } ∞

N=1 in Z
d.

As a corollary, we get that Zr(X) is characteristic for the averages in (1)
when each of the polynomials in P is linear. We use the following version of
the van der Corput lemma in the inductive process to reduce each average to
a previous step.

Lemma 3.2 ([BMZ]). Let {gu}u∈G be a bounded family of elements of a
Hilbert space H indexed by elements of a finitely generated abelian group G
and let {ΦN } ∞

N=1 be a Følner sequence in G.

(1) For any finite set F ⊆ G,

limsup
N →∞

∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

gu

∥∥∥∥
2

≤ limsup
N →∞

1
|F |2

∑
v,w∈F

1
|ΦN |

∑
u∈ΦN

〈gu+v, gu+w 〉.

(2) There exists a Følner sequence {ΘM } ∞
M=1 in G3 such that

limsup
N →∞

∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

gu

∥∥∥∥
2

≤ limsup
M →∞

1
ΘM

∑
(u,v,w)∈ΘM

〈gu+v, gu+w 〉.

Leibman proved the following lemma in his proof of convergence for a single
transformation [Le2]. We likewise use his lemma to prove the linear case for
multiple commuting transformations.

Lemma 3.3 ([Le2]).

(1) Let pi : Z
d → Z be nonconstant linear functions for each i = 1, . . . , l. There

exists a constant C, such that for any f ∈ L∞(μ) and any Følner sequence
{ΦN } ∞

N=1 in Z
d,

lim
N →∞

∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

T
p1(u)
1 . . . T

pl(u)
l f

∥∥∥∥
L2(μ)

≤ C|||f |||2.

(2) Let pi : Z
d → Z be nonconstant linear functions for each i = 1, . . . , l. There

exists a constant C, such that for any f ∈ L∞(μ) and any Følner sequence
{ΦN } ∞

N=1 in Z
d,

lim
N →∞

1
|ΦN |

∑
u∈ΦN

∣∣∣∣∣∣f · T
p1(u)
1 . . . T

pl(u)
l f

∣∣∣∣∣∣2k

k
≤ C|||f |||2k+1

k+1 .

We note here that Lemma 3.3 is similar to Lemmas 7 and 8 in [Le2], but
with multiple commuting transformations. The only step needed to alter his
proof is to show our average also converges to the conditional expectation of f
onto the appropriate sub-σ-algebra. But this follows from well-known results
by [W] for convergence for Z

d-actions.
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Proof of Proposition 3.1. To simplify notation, we write T
pi1(u)
1 . . . T

pil(u)
l

as Spi(u). Since each pij is a linear polynomial, we have Spi(u)Spi(v) =
Spi(u+v).

We proceed by induction on r. For r = 1, we are done by Lemma 3.3.
Assume the proposition holds for r − 1 functions. Let f1, . . . , fr be essen-
tially bounded functions on X with ‖fi‖L∞(μ) ≤ 1 for all 1 ≤ i ≤ r, and let

{ΦN } ∞
N=1 be a Følner sequence in Z

d. By applying Lemma 3.2 to gu =
Spi(u)f1 . . . Spr(u)fr, for any finite F ⊆ Z

d, we get

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

r∏
i=1

Spi(u)fi

∥∥∥∥∥
2

L2(μ)

≤ limsup
N →∞

1
|F |2

∑
v,w∈F

1
|ΦN |

∑
u∈ΦN

∫
X

r∏
i=1

Spi(u+v)fi ·
r∏

i=1

Spi(u+w)fi dμ

= limsup
N →∞

1
|F |2

∑
v,w∈F

1
|ΦN |

∑
u∈ΦN

∫
X

r−1∏
i=1

Spi(u)S−pr(u)

(
Spi(v)fi · Spi(w)fi

)
·
(
Spr(v)fr · Spr(w)fr

)
dμ

≤ 1
|F |2

∑
v,w∈F

limsup
N →∞

∥∥∥∥∥ 1
ΦN

∑
u∈ΦN

r−1∏
i=1

S(pi −pr)(u)
(
Spi(v)fi · Spi(w)fi

)∥∥∥∥∥
L2(μ)

.

Since P is an ED-set, so is the family {(pij − prj) : Z
d → Z for 1 ≤ i ≤ r − 1,

1 ≤ j ≤ l}. By the induction process, there exists a constant C, independent
of f1, . . . , fr and {ΦN } ∞

N=1, such that

limsup
N →∞

∥∥∥∥∥ 1
ΦN

∑
u∈ΦN

r−1∏
i=1

S(pi −pr)(u)
(
Spi(v)fi · Spi(w)fi

)∥∥∥∥∥
L2(μ)

≤ C
∣∣∣∣∣∣(Spi(v)fi · Spi(w)fi

)∣∣∣∣∣∣
r

for all (v,w) ∈ Z
2d and i ∈ {1, . . . , r}. Thus, for any finite set F ⊂ Z

d and
i ∈ {1, . . . , r},

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

r∏
i=1

Spi(u)fi

∥∥∥∥∥
L2(μ)

≤
(

C

|F |2
∑

v,w∈F

∣∣∣∣∣∣(Spi(v)fi · Spi(w)fi

)∣∣∣∣∣∣
r

)1/2

≤ C1/2

(
1

|F |2
∑

v,w∈F

∣∣∣∣∣∣(fi · Spi(w−v)fi

)∣∣∣∣∣∣2r

r

)(1/2)r+1

.
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Let {ΨN } ∞
N=1 be any Følner sequence in Z

d. Thus, {ΨN × ΨN } ∞
N=1 is a

Følner sequence in Z
2d. By Lemma 3.3, we have for each i ∈ {1, . . . , r}

limsup
M →∞

1
|ΨM |2

∑
v,w∈ΨM

∣∣∣∣∣∣fi · Spi(w−v)fi

∣∣∣∣∣∣2r

r
≤ c|||fi|||2r+1

r+1

with c independent of fi. By replacing F with ΨN for each N ∈ N, we get

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

r∏
i=1

Spi(u)fi

∥∥∥∥∥
L2(μ)

≤ C1/2c(1/2)r+1
min
i≤r

|||fi|||r+1.
�

4. Nonlinear case

We now deal with the inductive step. A set of polynomials P = {pij : 1 ≤
i ≤ r,1 ≤ j ≤ l} where each pij : Z

d → Z is called a (integer) polynomial family.
We view P as an r × l matrix whose entries are the polynomials pij . We define
the degree of a family P ,

deg(P ) = max{deg(pij) : pij ∈ P }.

Let D ∈ N. We define the column degree of a polynomial family P with
deg(P ) ≤ D to be the vector C(P ) = (c1, . . . , cD) where ci is the number of
columns whose maximal degree is i.

We say that two polynomials p, q are equivalent if deg(p) = deg(q) and
deg(p − q) < deg(p). Thus, any collection of polynomials can be partitioned
into equivalence classes. We define the degree of an equivalence class of poly-
nomials to be equal to the degree of any of its representatives.

For a family P with deg(P ) ≤ D, we define the column weight of a col-
umn j, to be the vector wj(P ) = (w1j , . . . ,wDj) with each wij equal to the
number of equivalence classes in P of degree i in column j. Given two vectors
v = (v1, . . . , vD), v′ = (v′

1, . . . , v
′
D), we say v < v′ there exists n0 such that

vn0 < v′
n0

and for each n > n0, vn = v′
n. Thus, the set of weights and the set

of column degrees become well ordered sets.
For each polynomial family P with deg(P ) ≤ D, we define the subweight

of P to be the matrix w(P ) = [w1(P ) . . . wD(P )] whose columns are the
corresponding column weights of P . Due the fact that our polynomial family
may have many polynomial entries that are zero, we must modify the PET-
induction scheme from that of [Le2]. We introduce the following notation to
record the position of such zeros in P . Let I0 = {i ∈ {1, . . . , r} : pij = 0 for
all j = 1, . . . , l}, I1 = {i ∈ {1, . . . , r} : deg(pij) ≤ 1 for all j = 1, . . . , l} \ I0, and
I2 = {1, . . . , r} \ (I0 ∪ I1).

When P is an ED-set, I0 is empty, I1 records which nonzero rows contain
only polynomials with degree at most 1, while I2 records which rows contain
a polynomial of degree greater than 2. Define H0(P ) = I1 ∪ I2 and inductively
define

Hj(P ) =
{
i ∈ {1, . . . , r} : pij = 0

}
∩ Hj−1(P )
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for 1 ≤ j ≤ l − 1 (we omit the polynomial family P when there is no confusion
which family we are dealing with). Thus, Hj records which nonidentically
zero rows have zeros in columns 1, . . . , j. Pick j0 to be the smallest j ≥ 1
such that Hj = ∅. In the case that column 1 has no zero entries, we note that
j0 = 1.

For each polynomial family P and integer a = 1, . . . , l, we define the sub-
polynomial family

P a = {pij : i ∈ Ha−1(P ), a ≤ j ≤ l}.

We note that the entries in the first column in P a are precisely the entries of
column a of P from nonzero rows whose polynomials are all identically zero
in columns 1, . . . , a − 1. We note that when P is an ED-set, P 1 = P .

For each polynomial family P with deg(P ) ≤ D, we define the weight of
P to be the ordered set of matrices W (P ) = {w(P 1), . . . ,w(P l)}. Given
two polynomial families P and Q where deg(P ), deg(Q) ≤ D, we say that
W (Q) < W (P ) if there exists J,A ∈ {1, . . . , l} such that wJ(QA) < wJ(PA),
but wJ(Qa) = wJ (P a) for all 1 ≤ a < A and wj(Qa) = wj(P a) for all 1 ≤ j < J
and a = 1, . . . , l.

Example. Let P =
(

n2
0
0

2n
n2
2n2

n
0
3n

)
. We see that P is an ED-set, and

H1(P ) = {2,3}. Thus, P 2 =
(

n2

2n2
0
3n

)
. Since H2(P ) = ∅, P 3 is the empty

family. Therefore, w(P 1) =
[

0
1

1
2

2
0

]
, w(P 2) =

[
0
2

1
0

]
, and w(P 3) =

[
0
0

]
. Let

Q =

⎛
⎜⎜⎜⎜⎝

n2 − 2n + 1 −n2 + 1 n + 1
n2 + 2n + 1 −n2 + 1 n + 1

0 −4n 0
0 n2 − 6n + 1 3n + 3
0 n2 + 2n + 1 3n + 3

⎞
⎟⎟⎟⎟⎠ .

Q is also an ED-set, and we have H1(Q) = {3,4,5}. So,

Q2 =

⎛
⎝ −4n 0

n2 − 6n + 1 3n + 3
n2 + 2n + 1 3n + 3

⎞
⎠ .

Since H2(Q) = ∅, Q3 is the empty family. Therefore, w(Q1) =
[
0
1

1
2

2
0

]
,

w(Q2) =
[
1
1

1
0

]
, and w(Q3) =

[
0
0

]
.

We note that w(P ) = w(Q). However, since w1(Q) = w1(P ) but w1(Q2) <
w1(P 2), we have W (Q) < W (P ). We have implicitly chosen D = 2 in this
example. As long as D is at least as large as the degree of all polynomial
families under consideration, it will not affect whether W (Q) < W (P ).

A polynomial family P = {pij } is said to be standard if it is an ED-set and
deg(p1j) = deg(P ) for some 1 ≤ j ≤ l. We now state Proposition 2.10 in the
case that P is standard.
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Proposition 4.1. Let (X, B, μ, (T1, . . . , Tl)) be a freely generated totally
ergodic system and P = {pij : 1 ≤ i ≤ r,1 ≤ j ≤ l} be a standard polynomial
family. Then there exists k ∈ N such that for any f1, . . . , fr ∈ L∞(μ) with

|||f1|||k = 0, we have

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

(
r∏

i=1

T
pi1(u)
1 T

pi2(u)
2 . . . T

pil(u)
l fi

)∥∥∥∥∥
L2(μ)

= 0

for any Følner sequence {ΦN } ∞
N=1 in Z

d.

To prove Proposition 4.1, we construct a new polynomial family Q that
controls the above averages, where W (Q) < W (P ). This process is a modified
version of the PET-induction process used in [Le2] for a single transforma-
tion.

4.1. Inductive polynomial families. We begin by defining that a certain
property holds for almost all v ∈ Z

d if the set of elements for which the prop-
erty does not hold is contained in a set of zero density with respect to any
Følner sequence in Z

d. To show a property holds for almost all v ∈ Z
d, we use

the fact that a set of zeros of a nontrivial polynomial has zero density with
respect to any Følner sequence in Z

d.
Given any standard polynomial family P with deg(P ) ≥ 2 where deg(p11) =

deg(P ), for each (v,w) ∈ Z
2d we construct a new family Pv,w, as follows. We

first select an appropriate row i0 in P , so that Pv,w is standard for almost all
(v,w) ∈ Z

2d and W (Pv,w) < W (P ).
We split into the following five cases.

• Case 1 : H1 = ∅ and some pi1 is not equivalent to p11.
Choose the smallest i0 so that pi01 has minimal degree over all pi1 that

are not equivalent to p11.
• Case 2 : H1 = ∅, all pi1 are equivalent to p11, and there is some i, j where

pij is not equivalent to p1j and the degree of either pij or p1j equals deg(P ).
Choose i0 to be the smallest such i where pij is not equivalent to p1j

and the degree of either pij or p1j equals deg(P ).
• Case 3 : H1 = ∅, all pi1 are equivalent to p11 and for all j either pij is

equivalent to p1j for all i = 1, . . . , r or deg(pij) < deg(P ) for all i = 1, . . . , r.
Choose i0 = 1.

• Case 4 : H1 �= ∅, and some pij0 is not equivalent to pi′j0 for i, i′ ∈ Hj0−1.
Choose i0 to be the smallest i ∈ Hj0−1 where pi0j0 has minimal degree

over all pij0 that are not equivalent to p11.
• Case 5 : H1 �= ∅ and all pij0 are equivalent to pi′j0 for i, i′ ∈ Hj0−1.

Choose i0 = minHj0−1.
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In our construction, we must treat polynomials in P with degree 1 differ-
ently than those of greater degree. For all (v,w) ∈ Z

2d, set

zij =

{
w, if deg(pij) = 1,

v, otherwise.

For a fixed (v,w) ∈ Z
2d, pij(u+zij) equals pij(u+v) or pij(u+w), depending

only on the degree on pij . Thus, we view pij(u + zij) and pij(u + w) as
polynomials in u. Given (v,w) ∈ Z

2d, we define the new polynomial family

P̄v,w = {pij(u + zij), pij(u + w) : i ∈ I2, j = 1, . . . , l}
∪ {pij(u + w) : i ∈ I1, j = 1, . . . , l}.

We relabel the family

P̄v,w = {qv,w,h,j : 1 ≤ h ≤ s,1 ≤ j ≤ l}
in the following manner. We label each row

pi1(u + zi1), . . . , pil(u + zil)

and
pi1(u + w), . . . , pil(u + w)

as
qv,w,h,1(u), . . . , qv,w,h,l(u)

for some unique 1 ≤ h ≤ s where p1j(u + z1j) = qv,w,1,j and pi0j(u + w) =
qv,w,s,j(u).

Since for each vector (v,w) in Z
2d, pij(u+ v), pij(u+w), and pij(u) are all

equivalent, P̄v,w and P have identical column degrees, and wj(P ) = wj(Pv,w)
for all 1 ≤ j ≤ l and (v,w) ∈ Z

2d. By construction, the first row of P̄v,w also
contains a polynomial of maximal degree and it is easy to check that P̄v,w is
an ED-set for each (v,w) outside a set of zeros of finitely many polynomials.
Hence, P̄v,w is a standard polynomial family for almost all (v,w) ∈ Z

2d.
Next, for each (v,w) ∈ Z

2d we define the new family

Pv,w = {qv,w,h,j − qv,w,s,j : 1 ≤ h ≤ s − 1,1 ≤ j ≤ l}.

Example. For P in our previous example on page 874, case 4 applies and
i0 = 2. It is easy to check that Q = Pv,w with (v,w) = (−1,1).

Lemma 4.2. For each standard polynomial family P where deg(P ) ≥ 2 and
deg(p11) = deg(P ), Pv,w is standard for almost all choices of (v,w) ∈ Z

2d.
Moreover, C(Pv,w) ≤ C(P ), and deg(Pv,w) equals deg(P ) or deg(P ) − 1.

Proof. Since each entry in Pv,w is constructed by subtracting 2 polynomials
from the same column of P̄v,w, the maximum degree in each column of Pv,w

cannot increase. Therefore, C(Pv,w) ≤ C(P ) and deg(Pv,w) ≤ deg(P ). It is
easy to check that Pv,w is an ED-set whenever P̄v,w is. We now show that
the first row in Pv,w contains a polynomial of maximal degree.
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We split into the five cases used to define i0 on page 875. In Cases 1, 4,
and 5, pi01 is not equivalent to p11. When pi01 is not equivalent to p11,

deg(Pv,w) ≥ deg(qv,w,1,1 − qv,w,s,1) = deg(p11) ≥ deg(Pv,w).

Thus, deg(qv,w,1,1 − qv,w,s,1) = deg(Pv,w) and the first row in Pv,w contains a
polynomial of maximal degree.

In Case 2, pi0j is not equivalent to p1j for some 1 ≤ j ≤ l and the degree of
either pij or p1j equals deg(P ). So,

deg(Pv,w) ≥ deg(qv,w,1,j − qv,w,s,j) = deg(P ) ≥ deg(Pv,w).

Thus, deg(qv,w,1,j − qv,w,s,j) = deg(Pv,w) and the first row in Pv,w contains a
polynomial of maximal degree.

In Case 3, all pi1 are equivalent to p11, and i0 = 1. Thus,

deg(qv,w,1,1 − qv,w,s,1) = p11(u + v) − p11(u + w) = deg(P ) − 1

for almost all (v,w) ∈ Z
2d, since deg(p11) ≥ 2. Let j ∈ {1, . . . , l}. Then ei-

ther pij is equivalent to p1j for all i = 1, . . . , r or deg(pij) < deg(P ) for all
i = 1, . . . , r. When pij is equivalent to p1j , then

deg(qv,w,h,j − qv,w,s,j) < deg(p1j) ≤ deg(P ).

When deg(pij) < deg(P ), deg(qv,w,h,j − qv,w,s,j) < deg(P ). Thus, all polyno-
mials in Pv,w have degree less than or equal to deg(P ) − 1, and for almost all
(v,w) ∈ Z

2d, deg(qv,w,1,1 − qv,w,s,1) = deg(P ) − 1. Therefore, the first row in
Pv,w contains a polynomial of maximal degree.

In each case, the first row in Pv,w contains a polynomial of maximal degree,
and deg(Pv,w) equals deg(P ) in Cases 1, 2, 4, 5 and equals deg(P ) − 1 in
Case 3. �

4.2. Reduction of weight. We now show that the above construction leads
to a reduction in the weights of our polynomial families.

Proposition 4.3. For each (v,w) ∈ Z
2d and each standard polynomial

family P where deg(p11) = deg(P ) ≥ 2, we have W (Pv,w) < W (P ).

Proof. We show that W (Pv,w) < W (P ) for each of our five cases used to
define i0 on page 875. In Cases 1, 2, and 3, pi01 has minimal degree over all pi1.
For all (v,w), the equivalence classes and their degrees in each column remain
the same in P̄v,w as in P . Thus, w1(P ) = w1(P̄v,w). Column 1 of Pv,w is
comprised of polynomials qv,w,h,1 − qv,w,s,1, where qv,w,s,1 has minimal degree
over all qv,w,h,1. We now consider each equivalence class in column 1 of P̄v,w

as we pass from P̄v,w to Pv,w. Each distinct equivalence class in column 1 of
P̄v,w not containing qv,w,s,1, remains a distinct equivalence class of the same
degree in column 1 of Pv,w. The equivalence class in column one containing
qv,w,s,1 splits into possibly several equivalence classes of lower degree. Thus,
w1(Pv,w) < w1(P ), and hence W (Pv,w) < W (P ).
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For Cases 4 and 5, we show that w1((Pv,w)j0) < w1(P j0), and w1((Pv,w)a) <
w1(P a) for all a < j0. The polynomials in the first column of P a are precisely
those entries in the ath column of P only from those rows whose entries are
zero in columns 1, . . . , a − 1. Thus, w1(P a) counts the equivalence classes of
polynomials from only those rows of column a in P whose entries are zero in
columns 1, . . . , a − 1.

Suppose 1 ≤ a ≤ j0. If the hth row of P̄v,w has zeros in columns 1, . . . , a − 1,
then qv,w,h,a = pia(u+v) or pia(u+w) where pia(u) is a polynomial in P with
i ∈ Ha−1. Moreover, for each i ∈ Ha−1, there is some row h of P̄v,w with
zeros in columns 1, . . . , a − 1 and qv,w,h,a = pia(u + w). Thus, the equivalence
classes in P̄v,w from only those rows of column a whose entries are zero in
columns 1, . . . , a − 1 are the same as the equivalence classes in P from only
those rows of column a whose entries are zero in columns 1, . . . , a − 1. Thus,
w1(P̄ a

v,w) = w1(P a).
Since i0 ∈ Hj0−1, qv,w,s,j = 0 for all j = 1, . . . , j0 − 1. So, for all j = 1, . . . ,

j0 − 1, qv,w,h,j − qv,w,s,j = qv,w,h,j . Thus the rows in P̄v,w (except the last)
with zeros in columns 1, . . . , a − 1, are the same as the rows in Pv,w with zeros
in columns 1, . . . , a − 1.

When a < j0, we have qv,w,s,j = 0, for all j = 1, . . . , a. So the equivalence
classes and their degrees in only those rows of column a whose entries are
zero in columns 1, . . . , a − 1 are the same for both P̄v,w and Pv,w. Therefore,
w1(P a

v,w) = w1(P̄ a
v,w) = w1(P a).

When a = j0, we have qv,w,s,a �= 0. However, qv,w,s,a has minimal degree
over all qv,w,h,a where qv,w,h,a = 0 for all j = 1, . . . , a − 1. As before, each dis-
tinct equivalence class of such polynomials in column a of P̄v,w not containing
qv,w,s,a, remains a distinct equivalence class of the same degree in column a
of Pv,w. The equivalence class in column a containing qv,w,s,a splits into possi-
bly several equivalence classes of lower degree. Therefore, w1(P a

v,w) < w1(P a).
Since, w1(P a

v,w) = w1(P a) for a = 1, . . . , j0 − 1 and w1(P j0
v,w) = w1(P j0),

W (Pv,w) < W (P ). �

4.3. PET-induction.

Proof of Proposition 4.1. Let P = {pij : 1 ≤ i ≤ r,1 ≤ j ≤ l} be a standard
polynomial family. For polynomial families of degree 1, the result is given
by Proposition 3.1. Suppose deg(P ) ≥ 2. Since P is standard, by relabeling
the transformations, we may assume that deg(p11) = deg(P ). There are only
finitely many column degrees C(Q) < C(P ) and weights W (Q) < Q(P ) that
correspond to families Q = {qij : 1 ≤ i ≤ s,1 ≤ j ≤ l} where 1 ≤ s ≤ 2r and
C(Q) ≤ C(P ). Thus, we state our PET-induction hypothesis as follows. We
assume that for all 1 ≤ s ≤ 2r there exists k ∈ N such that for all standard
polynomial families Q = {qij : 1 ≤ i ≤ s,1 ≤ j ≤ l} where C(Q) < C(P ), or
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where C(Q) ≤ C(P ), deg(q11) = deg(Q), and W (Q) < W (P ), we have

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

(
s∏

i=1

T
qi1(u)
1 . . . T

qil(u)
l bi

)∥∥∥∥∥
L2(μ)

= 0

for any b1, . . . , br ∈ L∞(μ) with |||b1|||k = 0, and for each Følner sequence
{ΦN } ∞

N=1 in Z
d.

Now let f1, . . . , fr ∈ L∞(μ) where |||f1|||k = 0, and let {ΦN } ∞
N=1 be a Følner

sequence in Z
d. Without loss of generality, we may assume that ‖fi‖L∞(μ) ≤ 1

for all 1 ≤ i ≤ r. By replacing each fi with T c1
1 . . . T cl

l fi for some c1, . . . , cl ∈ Z,
we may assume that each pij has zero constant term. In particular, each
polynomial in P whose degree is 1 is linear.

By Lemma 3.2 and the Cauchy–Schwarz inequality we have for any finite
set F ⊂ Z

d,

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

(
r∏

i=1

T
pi1(u)
1 . . . T

pil(u)
l fi

)∥∥∥∥∥
2

L2(μ)

≤ limsup
N →∞

1
|F |2

∑
v,w∈F

1
|ΦN |

∑
u∈ΦN

∫
X

r∏
i=1

T
pi1(u+v)
1 . . .

T
pil(u+v)
l fi ·

r∏
i=1

T
pi1(u+w)
1 . . . T

pil(u+w)
l fi dμ

≤ limsup
N →∞

1
|F |2

∑
v,w∈F

1
|ΦN |

∑
u∈ΦN

∫
X

s∏
h=1

T
qv,w,h,1(u)
1 . . .

T
qv,w,h,l(u)
l bv,w,h dμ

≤ 1
|F |2

∑
v,w∈F

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

s−1∏
h=1

T
(qv,w,h,1−qv,w,s,1)(u)
1 . . .

T
(qv,w,h,l −qv,w,s,l)(u)
l bv,w,h

∥∥∥∥∥
L2(μ)

for (v,w) ∈ Z
2d, where the bv,w,h represent any of the following bounded func-

tions:

• T
pi1(v−zi1)
1 . . . T

pil(v−zil)
l fi for i ∈ I2,

• fi · T
pi1(v)−pi1(w)
1 . . . T

pil(v)−pil(w)
l fi for i ∈ I1.

Since P has degree of at least 2, 1 ∈ I2 and bv,w,1 = T t1
1 . . . T tl

l f1 for some
t1, . . . , tl ∈ Z. Thus, for all k ∈ N and all (v,w) ∈ Z

2d,

|||bv,w,1|||k = |||f1|||k.
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However, Pv,w = {qv,w,h,j − qv,w,s,j : 1 ≤ h ≤ s − 1,1 ≤ j ≤ l}, is a standard
polynomial family where 1 ≤ s − 1 ≤ 2r and W (Pv,w) < W (P ) for almost
all (v,w) ∈ Z

2d. We note that whenever deg(qv,w,1,1 − qv,w,s,1) < deg(Pv,w),
C(Pv,w) < C(P ). By the PET-induction hypothesis, for almost all choices of
(v,w) ∈ Z

2d, we have

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

s−1∏
h=1

T
(qv,w,h,1−qv,w,s,1)(u)
1 . . .

T
(qv,w,h,l −qv,w,s,l)(u)
l bv,w,h

∥∥∥∥∥
L2(μ)

= 0.

For all other choices of (v,w) ∈ Z
2d, the above average is bounded above by 1.

Therefore,

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

(
r∏

i=1

T
pi1(u)
1 . . . T

pil(u)
l fi

)∥∥∥∥∥
2

L2(μ)

≤ inf
F

1
|F |2

∑
v,w∈F

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

s−1∏
h=1

T
(qv,w,h,1−qv,w,s,1)(u)
1 . . .

T
(qv,w,h,l −qv,w,s,l)(u)
l bv,w,h

∥∥∥∥∥
L2(μ)

= 0,

where the infimum is taken over all finite subsets of Z
d. �

4.4. Reduction to the standard case.

Proof of Proposition 2.10. We now reduce the general case to one involv-
ing standard systems. Let P = {pij : 1 ≤ i ≤ r,1 ≤ j ≤ l} be a (nonstan-
dard) ED-set of polynomials of degree less than b, let f1, . . . , fr ∈ L∞(μ),
and let {ΦN } ∞

N=1 be a Følner sequence in Z
d. Once again, we assume that

each polynomial in P has zero constant term. In other words, pij(0) = 0 for
each polynomial pij in P , where 0 is the zero vector in Z

d. Thus, we have
pij(u + v) = pij(u + zij) + pij(v − zij) for each polynomial in P , where zij

is defined as on page 876. By Lemma 3.2, there exists a Følner sequence
{ΘN } ∞

N=1 in Z
3d such that

limsup
N →∞

∥∥∥∥∥ 1
|ΦN |

∑
u∈ΦN

(
r∏

i=1

T
pi1(u)
1 . . . T

pil(u)
l fi

)∥∥∥∥∥
2

L2(μ)

≤ limsup
M →∞

1
ΘM

∑
(u,v,w)∈ΘM

∫
X

r∏
i=1

T
pi1(u+v)+q(u)
1 . . .
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T
pil(u+v)
l fi

r∏
i=1

T
pi1(u+w)+q(u)
1 . . . T

pil(u+w)
l fi dμ

≤ limsup
M →∞

∥∥∥∥∥ 1
ΘM

∑
(u,v,w)∈ΘM

r∏
i=1

T
pi1(u+zi1)+q(u)
1 . . . T

pil(u+zil)
l

(
T

pi1(v−zi1)
1 . . . T

pil(v−zil)
l fi

) r∏
i=1

T
pi1(u+w)+q(u)
1 . . . T

pil(u+w)
l fi

∥∥∥∥∥
L2(μ)

,

where q : Z
3d → Z is any polynomial of degree b. Whether zij equals v or w is

determined only by the degree of pij , so each polynomial below is really only
a polynomial in u, v,w. Thus, the set

{pi1(u + zi1) + q(u), pi1(u + w) + q(u),
pij(u + zij), pij(u + w) : 1 ≤ i ≤ r,2 ≤ j ≤ l}

of polynomials from Z
3d → Z is a standard family of degree b. Thus, there

exists k ∈ N (that depends only on the original polynomial family P ) such
that

limsup
M →∞

∥∥∥∥∥ 1
ΘM

∑
(u,v,w)∈ΘM

r∏
i=1

T
pi1(u+zi1)+q(u)
1 . . . T

pil(u+zil)
l

(
T

pi1(v−zi1)
1 . . . T

pil(v−zil)
l fi

) r∏
i=1

T
pi1(u+w)+q(u)
1 . . . T

pil(u+w)
l fi

∥∥∥∥∥
L2(μ)

= 0. �
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