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THE BOUNDEDNESS OF MARCINKIEWICZ INTEGRAL
WITH VARIABLE KERNEL

CHIN-CHENG LIN, YING-CHIEH LIN, XIANGXING TAO, AND XIAO YU

ABSTRACT. In this article, we study the fractional Marcinkiewicz
integral with variable kernel defined by
2 1/2
Qz,z —y) dt
pea(f)(@ ( ‘ ———f)dy| 53— |
“ lze—y|<t |$ _y| ! t3

where 0 < a < 2. We first prove that po,. is bounded from
L/ (R™) to L2(R™) without any smoothness assumption on
the kernel 2. Then we show that, if the kernel Q satisfies a
class of Dini condition, po,q is bounded from HP(R™) (p<1) to

HI(R™), where % = % — 5=. As corollary of the above results,

we obtain the L? — L? (1 < p < 2) boundedness of this fractional
Marcinkiewicz integral.

1. Introduction

In order to give an analogue of the Littlewood—Paley g-function without
going into the interior of the unit disk, in 1938, Marcinkiewicz [M] introduced
the function

u(f)(0) = (/ PO+ 1)+ PO 1)~ 27 (0 >|2dt) ,

Coll Flr, and if 27 £(6)d6 =0, then |f]|zs < Colla(f)l|r- In 1944, using a
complex variable method, Zygmund [Z] proved Marcinkiewicz’s conjecture.

where F'(6 fo derC’ He conjectured that, for 1 <p < oo, [|u(f)||ze <
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In 1958, Stein [S] introduced the Marcinkiewicz integral of higher dimen-
sions. Suppose that S™~1 is the unit sphere in R™ (n > 2) equipped with
the normalized Lebesgue measure do. Let 5 be a homogeneous function of
degree zero on R” satisfying Qg € L1(S"~ 1) and

/ Qo(a) do(a') = 0,
S‘VL*I

where o/ = z/|z| for any x # 0. Then the Marcinkiewicz integral of higher
dimension is defined by

peo (f)(x) = </ODO |FQo,t(l')|2%)l/2

Fole) = | 0@ =Y) b)) ay.

z—y|<t |$ - y‘n—l

and

Stein proved that:

(a) if Qo is odd, then pg, is bounded on LP(R™) for 1 < p < oo;

(b) if Qo € Lip, (S 1), 0 < a <1, then pq, is bounded on LP(R") for 1 <
p <2, and is of weak type (1,1).

Stein also introduced a device to linearize uq, (f)(z) as follows. Let ¢(z,t) be

a function defined for x € R” and 0 < ¢ < oo such that

o) 2
(1.1) / ‘qﬁ(ﬁ;;t)'dtgl for all z € R".
0

Define a linear operator T by

e dt
T(f)(e)= [ Fagel@)ole. ).
0
Because of (1.1), by Schwarz’s inequality, we have |Tf(z)| < |, (f)(z)| and

o, (f)(z) = ¢s(up) |Tf(x)| for all ¢(x,t) satisfying (1.1).

We point out that the Marcinkiewicz integral is essentially a Littlewood—
Paley g-function. In fact, if let ¢(x) = Qo(x)|z| " xp(x) and ¢¢(x) =t~ x
¢(x/t), where B denotes the unit ball of R™ and x p denotes the characteristic
function of B, then

0 1/2
o (@)= ([l @) = a0

It is well known that the Littlewood—Paley operators, such as the Littlewood—
Paley g-function, the area integral S, and the Littlewood—-Paley g}-function,
play very important role in harmonic analysis. Therefore, many authors has
been interested in studying the Marcinkiewicz integral uq, since it was intro-
duced by Stein (see [BCP], [DLeL], [H], [LeL], [LL], [SY]).
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In order to consider nonsmoothness partial differential equations, mathe-
maticians pay more attention to the singular integral with variable kernels (cf.
[CZ1], [CZ2], [LLLY]). Specially, in 2004, Ding, Lin, and Shao [DLS] (also see
[DLL)) considered the boundedness of Marcinkiewicz integral with variable
kernel defined by

dt> 12
3 ’

nalf) ( ‘ lz—y|<t |x—y|” l)f( )

and they proved the L? (1 < p < 2) boundedness, H* — L! boundedness, and
H'>° — L1 boundedness of uo under certain conditions.

In this article, we consider the following fractional Marcinkiewicz integral
with variable kernel defined by

)
uQJX( < ‘ |lz—y|<t ‘x_y|n ! f(y) dy

Furthermore, we may interpret 1o o by using Hilbert-valued function. Denote
the Hilbert space H by

w={nw): o= [ |h<t>|2%)1/2 <400l

and let hy(t,x) =t*/2"1Fq 4(z), where

Fau(e) = /| Uz =9) £ gy

z—y|<t |x_y‘n !

Then we have po o(f)(x) = ||hs (-, 2)||x.

Before stating our main results, we recall the definition and results about
the variable kernel Q(z,z). A function Q(z, z) defined on R™ x R™ is said to
be in L>®(R™) x L4(S"1), ¢ > 1, if Q(z, 2) satisfies the following conditions:

(i) Oz, )\z) Q(x z) for any =,z € R” and A > 0;

(ii) fgn-s 2")do(Z') =0 for any z € R™, where 2’ = z/|z| for z € R™\ {0};
(iii) ||Q||Loe (Bn)x La(gn—1) = SUPwern (fsn—l |Q(x + 12, 2")|? da(z’))l/q < 00.
In 1955, Calderén and Zygmund [CZ1] investigated the LP boundedness of
the singular integral operator T with variable kernel defined by

Tof@)=pv. [ HEED 5 a

|l —y|"

2

dt 1/2
t?’_o‘> B O<O[S2

They proved that if  satisfies (i), (ii), and
(iii") supepn (fgn_s 1Q(z, 2')|7do(2")) < 0,
then Tq is bounded on L? provided ¢ > 2(n — 1)/n. They also found that

these operators connect closely with the problem about the second order linear
elliptic equations with variable coefficients. We note that the condition (iii)
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implies (iii’), so the L? boundedness of Ty, still holds if we take (iii) in place
of (iii") (cf. [DLL], [DLS]).

For ¢ >1 and 0 < 3 <1, a function € L>®(R") x LI(S"~1) is said to
satisfy the L%P-Dini condition if

/1 “a(0) 45 < o
0

o1+8

where

1/q

wq () == sup (/ sup |Qx+72y") — Q= —|—rz’,z’)|qd0(z’)) .
x €R™ Sn—1 y/esn—l

r20 ly/—="1<5

For the special case g =0, it reduces to the L9-Dini condition. It is clear

that, for 4 >0, LP-Dini condition is stronger than L9-Dini condition. As a

contrast, we call a function ) to satisfy the %’ -Dini condition if it satisfies

(i), (ii), (iii’), and
L wy(9)
/0 6?“3 dd < o0,

where

1/q
50(0) = sup ([ 1060 - 000 a2
x€R™ Sn—1
llpll<s
and p is a rotation in R"™ with ||p|| =sup,,cgn-1 |pz" — 2’|. It is obvious that
Wq(8) <wy(6) for all 6 >0 and ¢ > 1. Therefore, if 2 satisfies the L%8_Dini
condition, then it also satisfies the fq”g—Dini condition.

We now present our main results as follows.

THEOREM 1. Let n>2 and 0 < o< 1. If Q satisfies (i), (ii), and (iii’) for
q =2, then there exists a constant C' independent of f such that

lte.a(llzz@ny < CfIl 2o ")
L7ts (Rm)

THEOREM 2. Let n>2 and 0 < a < 1. Also let Q € L>®°(R") x L?(S"1)

and set % = % — 5. Suppose that p and Q satisfy one of the following condi-
tions:

(a) 2n+a _p <1, Q satisfies the L%% -Dini condition;

(b) max{ T 2n+ﬂ} <p< 2n+a for some (B with a < <2, Q satisfies the

L3 -Dini condition.

Then there exists a constant C independent of f such that
e, ()l La@ny < Cll ] e @ny-

We note that 0 < ¢ <2 in Theorem 2, so the L?®-Dini condition implies
the L%“-Dini condition and the L?#-Dini condition implies the the L?®-Dini
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condition for 0 < o < 8 < 1. By Theorems 1 and 2, using the interpolation
theorem of sublinear operators, we get the L? — L9 boundedness of pq q.

COROLLARY 3. Suppose n>2 and 0 <a<1. Let 1 <p< =% and

n+o¢

Lo Qe Ll>®R") x L?(S"Y) and satisfies the L>% -Dini condztzon

P 2n
then there exists a constant C' independent of f such that ||po,q(f)||lLe@n) <

Cllfll e @ny-

REMARK 1. For n =2, the range of a in Theorem 2 and Corollary 3 can
be enlarged to 0 < o < 2. We will discuss this issue in the last section.

REMARK 2. It is worthy noting that Theorem 1.1 in [DLS] can be regarded
as the limit case of the above Theorem 1 by letting o — 0. Similarly, if we
consider the limit case for o =0, Theorem 1.3 and Corollary 1.7 in [DLS]
(also cf. [DLL]) are the special cases of the above Theorem 2 and Corollary 3,
respectively.

REMARK 3. It is easy to check that, for 0 <a <1,
L*(R™) x Lip, (") € L>®(R"™) x L*(S™™1).

Moreover, if Q(x,2’) satisfies the Lip,, condition in variable 2’ € S"~!, then
Q(z,2') satisfies the L*?-Dini condition. So, the conclusion of the above
Corollary 3 can be regarded as an extension of Stein’s results about g with
convolution kernel in [S].

2. Proof of Theorem 1
We recall a classical result (see [SW], p. 158, Theorem 3.10]).

THEOREM A. Supposen >2 and f € L*(R")NL?(R™) has the form f(z) =
fo(|lz])P(x), where P(x) is a solid spherical harmonic of degree m. Then the
Fourier transform of f has the form f(z)= Fo(|z|)P(x), where

Fo(r)= i~ M (n2m=2)/2 / fo (S)J(nJrgm,g)/g(27rrs)s("+2m)/2 ds,
0

r=|z| and J,(r) is the Bessel function of order v.
The proof of Theorem 1 needs the following lemmas.

LEMMA 4. For A >0, there exists a constant C' >0 depending only on A
such that

t
Im C
‘/ ;i(p)dp‘gm/\ for0<t<oo and m=1,2,....

Proof. Let us write v =m + /\ In case 0 <t < v, since J,(p) >0 for
0 < p <, it follows from [CZl ] that

)
Cv C
1+/\ m1+,\ < mr
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In case v <t < 2v, the second mean value theorem and [CZ1, (6.2)] yield
t R’
Ju _
/ #dpzy /\/ J(p)dp (v<h <t<2v)

h
= u_)‘H/ Ju(vp)dp (1<h<2)
1
=0(™),

where the big oh is an absolute one. Thus,

t v t
Ju(p) ’ / Ju(p) / Ju(p) c
dp| < ——=dp| + ——=dp| < —.
/0 P o P v P m*
In case t > 2v, we use the following differential equation (see [CZ1, p. 221])
L) ) Jp)
P P PP —v?) (P = v?)

Since |J,(p)| < 1,|J.(p)] <1, and the fact that [p*~(p? — v?)]"! and
[p*72(p? — v?)]7! are decreasing functions for p > 2v, we apply the second
mean value theorem again and obtain

t t !/ "
J, J!( J!(
o0 P 2y P (p -v 9y P p*V)
4 t

< 3@ f()’+ww> f“)‘
—(;%;;;|J (1)~ Jo(20)] + (4)A\J'u2> 720
C

S

where 2v < t; and to <t. Thus,
t
Ju
/ (Ap) dp‘g / ‘
o P 0
LEMMA 5. Let 0 <a <2 andga(f z)=(J," |Nt () 7)) V/2. If

‘ < ¢ 0

2v m)\

- t[¢| R
N1©=7g | ﬁ%¥@@f@,xza

then there exists a constant C > 0, independent of m, such that

C
190 (F)llz2 < m”ﬂ

2n_ .
Lnta

Proof. The idea of the proof comes from [AH, Lemma 2.1(b)]. Using Fu-
bini’s theorem and Plancherel’s formula, we get

loah= [~ [ erPats = [T [ 18
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For A>0 and ¢t >0, let n(t) = 1 Ot J’";* dp. Applying Fubini’s theorem

again, we have

lga(DI2: = / | menfer

d
= [ 17 [ ek ; ’L d

= ([ et ) ([ 1ier g ):

Hardy—Littlewood—Sobolev’s theorem yields

oo < €[ OP ISR

We now estimate the integral [ = fooo In(t)]> s = m/2 —l—fm/2 =1, +1,. By

I c (> d  C
2= 2 my2 130 m2A2-a

On the other hand, Aguilera and Harboure [AH, proof of Lemma 2.1(b)]
proved the inequality

Lemma 4,

IN

() < 220,

and showed the estimate [AH, p. 565]

(t/2)"
[T (8)] < T +1)

Thus, by Striling’s formula, we have

I < / "N dt / " o dt
=, & ti=a = o (27D (m+ A +1))2

m+a/2 2
<c (m/2) < C .
9mT(m+A+1)) = m2A2a O

Proof of Theorem 1. The basic idea of the proof comes from [CZ2]. We
denote the space of surface spherical harmonics of degree m on S"~! by H,,
and its dimension by D,,. By a limit argument, we may reduce the proof of
Theorem 1 to the case that f € C§°(R™) and

D,
= > (@)Y ()

m>0j=1

is a finite sum, where {Y,,, j : m > 0,1 < j < D,,} denotes the complete system
of normalized surface spherical harmonics. Notice that Q(z,2’) satisfies (ii),
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so we have ag ; =0. Let
Do 1/2
- (Zlam,j(x)F) and by, (z) = am,j(x)
=1

D,

(2.1) szn,j (z) =
z’)zZam Zb Yo (7).

m>1
If we write

dt 1/2

"

2

tm,j f(z ( ‘ ‘(ﬁ)f(y)dy

lz—y|<t |1.7y‘n !

then, by using Holder’s inequality twice and (2.1),
(H0.0.f(2))?

[T o (|w7y|) ’ dt
L S Bt R 0] 55
Yom, i (222) ot

- (nglafn( m>1 |/1 yI<t 5= omd (I)Wf(y)dy t3-o
<(Tam) T [M(Se )

m>1 m>1

o Y (|:1: y\> 2 dt

o T O]
- (T ) (Ziumjf )

m>1 m>1j=1

By Bessel’s inequality,
S a2 (2) < / 1z, )2 do ().
m2>1 sn—t

Applying Minkowski’s inequality and condition (iii’) for ¢ =2, we get

Dn,
lng.afl7 <C Y (Z |Mm,jf||2L2>'

m>1 \j=1
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To complete the proof of Theorem 1, it suffices to show that

D C
2 2
(2.2) > Mo 1z < g I s
j=

Denote ¢} (z) = t Yo (@) 2| 7" xq|2<ey (). Plancherel’s theorem im-

plies
dt
i1 = [ / P ()P

= [ e et de

Now set P, j(z) =Y, ;(«')|z|™. Then P,, ; is a solid spherical harmonic of
degree m and we have )" () =t~ 1Py, ;(2)|2| """ x{|4|<s) (). Obviously,
Yo(|z|) := ¢t |7 ™ x(z1< () is a radial function in x for fixed ¢ > 0.
Using Theorem A, we have

—

(2:3) (2" )(€) = Fo(1€]) P, (€) = Yo 5 (€€ Fo (1€)),

where

EFo(r) = 27m‘7m7'7("+2m72)/2/ 1/10(S)J(n+2m_2)/2(27r1"5)5(”+2m)/2 ds
0

¢
:27Ti_mt_1r_(”+2m_2)/2/ S_n_m+1J(n+2m72)/2(QWTS)S(n+2m)/2 ds
0

2nrt J ( )
_;—m (n—2)/24—1,,—m—1 (n+2m—2)/2\P
- (Qﬂ—) b /0 p(n—2)/2 dp

1 2nrt J _ ( )
__;—m n/2,.—m (n4+2m—2)/2\pP
=i~ (2m)" 2y S / = dp.

From this and (2.3), we have

ﬁ oy 1 2mlelt Jint2m—2)/2(p) f
(T 1O =i Yoy [ R . fe),

Hence,

Do, oo Dm it
N2 = m,j 2
> a1 L] EENCI e

—ear [ [ DE Y€

1 278 Tnt2m—2)/2(p) dt
| Znt2m=2)/2\F) o e
27Tlflt/o pr=az P O] =a 4

2
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Since ZjD:mi [V i () =w Dy, ~m™=2 (cf. [CZ2, p. 225, (2.6)]), where w
denotes the area of S*~1, we have

D,
Z H:um,jf”%’-’

Jj=1

< 7l2
cm / / 27r|§|t

By (2.4) and Lemma 5, we obtain (2.2). Hence, the proof of Theorem 1 is
completed. O

2mfElt (p) 1% dt
“(n+2m—2)/2\P) 2)/2\pP )
| A ap )| e

3. Proof of Theorem 2

We recall that a € LY(R"™) is said to be a (p, ¢)-atom, 0 < p <1< ¢ < oo and

p#q, if a is supported in a ball B with mean value 0 and ||a|| e < |B|%7% It
is known that, in general, one cannot conclude from the uniform boundedness

(3.1) |Tallp-@ny <C  for any (1,00)-atoms a € H' (R")
that the (sub)linear operator T is bounded from H!(R") to L"(R"), i.e.,
(3.2) 1T Fllzr @y < Cllf e qany for any f € HA(R™).

A counterexample of functional for the case r =1 was given by Bownik [B1].
Fortunately, for many operators such as Calderén—Zygmund operators, the
uniform boundedness (3.1) of T implies the boundedness (3.2). See [B2, Chap-
ter 1, Section 9], [GR, Chapter III, Section 7], [G, Chapter 1, Section 6.7.a],
and [MC, Chapter 7, Section 3].

In 1993, Yabuta [Y] derived (3.2) from the uniform boundedness (3.1)
provided the linear operator T satisfies a weak (gq,s) estimate with some
1<¢<ooand 1<s <00, and the same conclusion also holds for H? spaces
for 0 < p < 1. Actually, Miyachi presented this fact in the Harmonic Analysis
Satellite Conference of ICM 1990 in Kyoto, Japan.

Recently Meda, Sjogren, and Vallarino [MSV, Theorem 3.1, Remark 3.3,
and Corollary 3.4] also gave a similar result.

THEOREM B. Let 0 <p<1<g<oo andY be a Banach space. Denote by
H?;(R") the vector space of all finite linear combinations of (p,q)-atoms. If
T: HpiZ(R") — Y is a linear operator satisfying

sup{||Tally : a is a (p,q)-atom} < oo,

then there exists a unique bounded linear operator T from HP(R™) to Y which
extends T

Having these remarks in mind, we may start proving Theorem 2. Before
proving, we need an estimate for the variable kernel Q as well.
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LEMMA C ([DLL)). Let 0<a<mn, ¢>1, and Q € L=°(R") x LI(S"~1). If
there exists a constant 0 < 3 < % such that |y| < BR, then for any xo € R™,

q 1/q
( is)
R<|z|<2R

4|y|/R
R Joyyr 9

where the constant C' > 0 is independent of R and y.

Qwo+z,2—-y) Qxo+,7)

|z =y |z

Proof of Theorem 2. By the atomic decomposition, for each f € HP, there
exist a sequence {a;} of (p,¢)-atoms (¢ = % > 1) and a sequence {\;} of
real numbers with > |X;|? < C| f|[%;» such that f =" A;ja; both in the sense
of distributions and in the H? norm.

We have written the Marcinkiewicz integral as a Hilbert-valued linear op-
erator; that is,

pe,a(F)() = [hg ()2,
where H is the Hilbert space mentioned in the first section,

hy(t,z) = . Ki(z,x —y)f(y)dy

and Oe.2)
o T,z
Ki(z,z)=t'F /2|Z|TX{|Z\§1E}-

Without loss of generality, we may assume that f is in a nice dense subset of
HP(R™), say, f € HP(R") NS(R™). Thus,

_ Qx,z —y)|" Yr
hy(t,2)] <t Fll e o </ .o~ g) dy
| f( )| H ||L (R™) oyl <t |$*y|(n71)r
< Crt(a/2)+(n/r)—nHf”LT, (") for any 1 <r < n/(n — 1),

Taking r=1 and r = 73 respectively, where 0 < e < 2 — «, we get

nf(arf%a)
7y (t2)]* < C(E X0, (1) + 17 x1,00) ().
Hence, h¢(-,x) € H uniformly. We then have

g2l < D I hay ()l
J
Note that ¢ > p. For 0 < p <1, the above inequality yields

> Nllsa.a(a)]

J

_ (/ ‘ijnm,awxxn

10,0 (f)llLe <

La

q 1/q
dx)
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(/R (Z Ajtio(a; )wp) alp dx) et
C{Z (/]Rn \\j e (ag) ()] dx> p/q}l/p

~ef ([ raaamra) L

Thus, it suffices to claim that there exists an absolute constant C' > 0 such that
lpa,a(a)||pe < C for any (p,£)-atom a. The operator uq , can be regarded
as T'f(z) = hy(t,z) which is linear from H]’Z;fl(R”) into LY(H), and we have
proved in Theorem 1 that the operator jiq o, and so T, is bounded from
L27/(n+e) to 2. Once the claim holds, Theorem 2 follows either by Yabuta’s
arguments or by Theorem B.

Let a be a (p,¢)-atom satisfying supp(a) C B = B(0,p), |lal|pe < |B|%_%,
and [a(z)dx=0. Since n>2, 0<a<1,and 0<p<1, we get 0 <¢q<2.
Write

IN

IA

0.0 (a)lze < C(/wggp“"va(“)(f”)qdwy/q

By Theorem 1, it is easy to get
11 11
My < Cllpa.ala)ll2lBl+™2 < Cllal||Bla™2 < C.

2 q/2 1/q
dt
Ba } dx)
2 q/2 1/q
dt
Y Ba } dx)

2
Qz,a —ylaly) " dt \7* N\
n—1 d 33—« dx
|lz—y|<t |(E - y| 13

For |z| > 8p and |y| < p, we get |x — y| ~ |z| ~ || + 2p, and hence

To estimate My, we write

o= o[ U U e

z—y|<t |$ - y‘nil

so(f AL e e
e (/Ir|>8p{/l:o+2p

=U+V.

2
1/ p1/2

=y

(3.3) ‘ ! L

(Ja] +2p)>= |z —yf>-e
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(3.4) o 1 < |y ’
ot et | = T
(3.5) i—x_y‘SQM.
lz| |z =y ||

For case (a), we have 1 < ¢ < 2. By Minkowski’s inequality for integrals
and inequality (3.3),

(3.6) U< c( /|x|>8 { / n |Q(T;cx—_j2—|?(y)|
() o)
<Cp\/? ( /|w>sp { / n IQ(J;;w—yygﬂit(y)I

1 q 1/q
) i)

Using Minkowski’s inequality for integrals again, we 36% 14
dy

1/2 |Q(l‘,l’7y)|q
U<Cp' /R la(y)| @nat1)qz &

le—y|>Tp |.13 - y|

1/q
T—(2n—oz+1)q/2+n—1 d?") dy

o0
SR —— |a<y>|( /

p

Since p > zfza > %, —(2n—a+1)q/2+n <0, and hence

U< [ Jaty)ldy < 0o B <c
B

Applying the cancellation property of a(x), Minkowski’s inequality for inte-
grals, and Lemma C, we get

U (5 - 1)

2 q/2 1/q
dt
a(y) dy t?’—a} dar)
q 1/q
<C Q(va — y) - Q(x,x) |x|(a72)/2|a(y)|dy dr
: AT =gt el
|z|>8p LJR Y

Qz,x—y) Qz,x)

q 1/q
dx) dy

el

<o [ lawl( [ a2
R™ |z|>8p

oo

—c [ awi(X | (o2
R™ ;::3 27 p<|w|<27F1p
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q 1/q
dx) dy
[y]

[oe] 1 f?w(é) q 1/q
< j y—ant+4+n) b 27T Wel0)
<c Rn'a@)'(i (2/p) {5+ / ! da}> y

Jj=3

. Uz, z—y) Qz,x)

o —y[*=t Tzt

ly|

e P G | 225 w,(0)
< J ntst+ed - Za\v) .
<C - Ia(y)|<§ (27p) {23 +/7~31 S d5}> dy

Jj=3

n « n
Since p > 5 +a,wehavefn+5§0and fn+§+5<1. Thus,

v < Cp—n+§+%

9] ly|
i(— an_ i(— n 27=2p 5)
2]( nt+5+7-1) 2]( n+q)/ wq(a
x/B|&(y)|<§{ + L sty | dy

27—1,

_p4agn 1 w (5
<op i [ a4 [0 ab) ay

< Cp " F i fal| | B

<C.
For case (b), we have ¢ < 1. Since p > 2n+1’ 2n+1—a— =2 >0 and hence
we may choose ¢ satisfying 0 <e <2n+1— 2q”. It follows from (3.6) that

U < Cpll2 ( / { / (2.2~ y)lla(y)| dy}qx|<a+g_1>q/2 dx)“q
|z|>8p n ‘x - y|n+§
copn([ | [ vl ,),)
N |z|>8p n |QL‘ - y|n+§
(ore=1)g (1-q)/q
|z|>8p

< cp? ( / Jay) Wd dy)

|z|>8p |m -

1) (1-a)/q
|z|>8p
+oo .
< Cp s [ |a<y>|dy( [t
R™ Tp
+o0 (1-q)/q
: (/ S 1d7">
8p
1

< Cp**a " la]| pe| B
<C.
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As to the estimate of V', we decompose V7 as follows.

o Q — Q
ViZ o {/ / < (z,z niyl) _ (?xl))
|z|>8p lz|+2p |V |z—y|<t |£E - y| |£C|

2 q/2
dt
13— } dx

<of AL
|z|>8p L/ z|+2p \V |z—y|<t

2 q/2
dt
Jaldy) s | do

e AL
|z|>8p LJz|+2p \J|z—y|<t

2 q/2
dt
Jatldr) s b da

=V +Va.

~a(y) dy

Qz,z —y) B Q(z, x)
lz =yt |z —yn!

Oz, x) Oz, x)

e e

By Minkowski’s and Holder’s inequalities, we obtain

o0

neey [ {/ 2w,z —y) = Ox.2)|
- 21 p<|a|<2i+1p LJRn |z —y|n—t

Jj=3

q
-x|<a—2>/2|a<y>dy} da

<Y () (/ {/ 0,2 —y) =~ Or,)
= 20 p<|az|<2i+1p n |z —y|

q
Jal@ /2 a(y) dy} iz
> 3 Qz,x —y) — Qz, )|
=C ijn(l Q)(/ay|{/ | ) )
;::3( ) B‘ ) 29 p<|z|<2it1p |z —y|n—t

q
| (=22 da:} dy) .

We note that 8> a. By (3.5), the inner integral above can be estimated as
follows.

/ |Q(ff7ff—y)—Q($7$)||x|(a—2)/2dm
20 p< || <29+1p |z —y["—!

!
Q rm',w —Q(ra’,2)
[ra’ —y|

9i+1

SC/ pr(afz)/z/
ij Sn—1

do(z") dr
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2j+1p
<C r(@=2/2y, (2M> d
- T

2jp
(a—2)/
|yl ly|

:C/M (5 w(6)§2d6

27 p

lv|
2 [T wi(0) ((5ays2
<Cp” /M siaz0 2 ds
27 p
(B-a)/2 ¥l

a/2 M 270 wl(é)

<Cp (ij 1 51+ﬁ/2d5
27 p
Since p > 2n+5, %f% 5, and fol 5“1’%/2 dé < oo, we get
vl q
4 n(1—q) n(l—q)— (B—a)q a)q 27=1p wl(é)
Vi <Cp? q ZQJ a)-j | Y)| m 51+ﬂ/2d5d
J=3

24 n(1—q) Pwi(0) N Sz on- 9

<Cp= B|a(y)\dy st ds) PG
j=3
< Cp%m(l—tnHa||qL£|B|(1—1/L’)q
<C.
Since p > 2n+1 > A5 implies (§ —n — 1)g < —n, inequality (3.4), the size

condition of a(z), and Holder’s inequality yield

2 q
00 » dt
v [ AT ([ @l ) gt} e
|z|>8p L/ z|+2p \V |z—y[<t
q
gch(/ |Q(x,x)|q|x|(%_”_1)qu) (/ Ia(y)ldy)
|z|>8p B
. q N 1—gq
<or([ ol mas) ([ el
|| >8p |z|>8p
q
([ lotwlay)
B

< Cp| B RN
<C.
Thus, the proof of Theorem 2 is finished. O

4. The case of R?

As mentioned in Remark 1, for the case of R?, we may enlarge the range
of a in Theorem 2 and Corollary 3 to 0 < o < 2.
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THEOREM 1'. Letn=2 and 0 < a < 2. IfQ satisfies (i), (i), (iii’) for ¢ =2,
and the T2 -Dini condition, then there exists a constant C independent of f
such that

l0.0() ey < CUSI, e

To prove Theorem 1’, we need the following lemma.

LeMMA D ([DCF]). Let 0 < 8 <1. If Q satisfies (i), (ii), and (iii’) for
q>1, then

L 0,(8) x (1)
e dd < oo if and only if Z j

j=1

< 00

REMARK 4. Using the same argument as the proof of [DCF, Lemma 3.1],
the result also holds if we restrict © to be in L>(R") x L4(S™"~1) and replace
Wy by wy.

Proof of Theorem 1'. For m € NU{0} and 2’ = (cosf,sinf) € S?, let

1 1
Yii(2') = NG cos (mf); Y o(2') = NG sin (mf).
By [SW], {Yi1,Ym2}o0_; forms a complete system of normalized surface
spherical harmonics and we may decompose Q(z, 2) into

V=0 (@)Y (),

m=0 j=1
where

am,j(®)= [ Qx,2" )Y ;(z)do(2'), j=1,2.
Sl
Note that ag ;(x) =0 since Q satisfies the condition (ii).
Choosing a 2 x 2 matrix

o ( (n/m) —sin (w/m)) |

sin(w/m)  cos(mw/m)
we have
Ym,l(RmZ/) = _Ym,l(zl)a Ym,Z(RmZI) = _Ym,Q(zl)§

and

s () = —%/S (U, Rn') — Qe 2)) Vg (D) do (), j=1,2.

Minkowski’s and Hélder’s inequalities yield

fotnm e [ 2

II/ma( 2

(L[
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dc,(zf)};;adx)%
iﬁ)(@/ L.z
(=) 55 dazfgz—/idt d”U)é
GV

Yin,j(
1 /|51? U\<tz ]

1
, 3
<V ) dy dxdogz )dt '
\x—yl lz =yl i
Let

P j(2) =Y j(@)|2|™  and @ j(2) = Paj(2)|2] 7™ X (a1 <ty
By Theorem A, it is easy to get

Bm.i (&) = Go([§]) P i () = Y5 (€€ Go (I€])-

Also, similar to the argument in the proof of Theorem 1, we have

2mrt
Go(r)=4i""r™"" 1/ Im(p) dp.
0
Applying Plancherel formula, we get
[, (f)ll L2

=L
oS [ L Lor(Ern '>>

j=1

2
Z}/m 7 QDm,j * f( )
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([ i) st
mi ( ){/R/ L(i 2PV (€ )|>dcr(z’)

27|€|t ~ 2 d 2
g e 0 1 df} .
Thus,
i)z
(V]2
—CZw2< ){// z;wm,j(@
2rlélt 2y H
g o) dé}

2

2m|€|t R
27T|£‘t/ Jm(p)dp- f(£)

S (LL oy

Since €2 satisfies the L -Dlnl condition, it follows from Lemma 5 and Lem-
ma D that

(Dl <€ 3@ ( 2 )m 51l 0, <CUT, 1,
m=1

L24a L2+a
This completes the proof of Theorem 1. O

If we apply Theorem 1’ instead of Theorem 1 in the proof of Theorem 2,
we immediately have the following result.

THEOREM 2. Letn=2 and 0 < a<2. Also let Q € L>°(R?) x L*(S") and

set l 5 — 2. Suppose that p and Q) satisfy one of the following conditions:

(a) maX{S, 4+—a} <p< 1 Q satisfies the LT3 -Dini condition;
(b) 0<a<landp= 4+a, Q satisfies the LY% -Dini condition;
(

c) max{%, ﬁ} <p< 4+a for some B with a < <2, Q satisfies the Lb5-
Dini condition.

Then there exists a constant C' independent of f such that
10,0 (F)llarz) < Cll flapre)-

Applying the interpolation to Theorems 1’ and 2’, we get the following
LP — L9 boundedness of 10, q.
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COROLLARY 3'. Supposen=2and0<a<1. Letl <p< 5= (md%:——

C.-C. LIN ET AL.

4 1

2+« P

& If Qe L>®(R?) x L*(S') and satisfies the L* % -Dini condition, then there
exists a constant C' independent of f such that ||po.o(f)||Le®2) < Ol fllLe®2)-
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