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INSTABILITY OF STANDING WAVES TO THE
INHOMOGENEOUS NONLINEAR SCHRÖDINGER

EQUATION WITH HARMONIC POTENTIAL

JIANQING CHEN AND YUE LIU

Abstract. We study the instability of standing-wave solutions
eiωtφω(x) to the inhomogeneous nonlinear Schrödinger equation

iϕt = −�ϕ + |x|2ϕ − |x|b |ϕ|p−1ϕ, x ∈ R
N ,

where b > 0 and φω is a ground-state solution. The results of the
instability of standing-wave solutions reveal a balance between

the frequency ω of wave and the power of nonlinearity p for any
fixed b > 0.

1. Introduction

Considered here is the nonlinear Schrödinger equation with harmonic po-
tential and inhomogeneous nonlinearity (INLS-equation henceforth)

(1.1) iϕt = −�ϕ + |x|2ϕ − |x|b|ϕ|p−1ϕ, x ∈ R
N , t > 0,

with the initial profile

(1.2) ϕ(x,0) = ϕ0(x),

where ϕ = ϕ(x, t) : R
N × R+ → C is a complex-valued function, N ≥ 2, � =∑N

j=1
∂2

∂x2
j
, p > 1 and b ≥ 0.

Equation (1.1) is a model from various physical contexts in the description
of nonlinear waves such as propagation of a laser beam and plasma waves.
For example, when b = 0, it models the magnetic confining trap in the study
of the Bose–Einstein condensates (BEC). With b > 0 on the inhomogeneous
nonlinearity, it can be thought of as modeling inhomogeneities in the medium.
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The nonlinearity enters due to the effect of changes in the field intensity
on the wave propagation characteristics of the medium and the nonlinear
weight can be looked as the proportional to the electron density (see [1], [16],
[19], [26], [27]). The nonlinearity in the inhomogeneous medium usually can
be considered in the form of f(x, |ϕ|2)ϕ in general, where f(x, |ϕ|2) is the
nonlinear index of refraction which depends on the medium. Berge [4] also
studied formally the stability condition for soliton solutions depending on
the shape of f(x, |ϕ|2). In our case, we assume that the preliminary laser
beam creates a situation that the nonlinear index of refraction has the form
V (|x|)|ϕ|p−1 with V (|x|) could be unbounded. In particular, V (|x|) = |x|b
with b > 0.

The goal of this paper is to derive conditions on ω,p, and b for orbital insta-
bility of standing-wave solutions eiωtφω(x). This type of problem goes back to
the works [3], [7], [28] which were concerned only with autonomous versions of
Equation (1.1). The autonomous cases are simpler because of the possibility
to use dilation invariances. Subsequently, there had been several works for
the NLS-equation with harmonic potential (for example, see [13], [24]) with
the autonomous nonlinearity and also constant potential but nonautonomous
(inhomogeneous in this paper) nonlinearities (see [10], [12], [14], [15], [18],
[20]). The present paper is the first one to combine these two cases.

A crucial ingredient to obtain the instability result is the use of a new
Gagliardo–Nirenberg type inequality in Lemma 1.1, and it is possible to have
more applications to other more general nonlinearities.

To study the INLS-equation, an important issue that is often related to
whether or not global existence obtains for arbitrary classes of initial data is
the stability of the standing-wave solutions eiωtφ(x) of Equation (1.1), where
the localized functions φ are called ground-state solutions of Equation (1.6).
The orbital and asymptotic stability of these special solutions have been a
central theme of development for more than three decades (cf. [2], [5], [7],
[17], [25], [28], etc.). For example, when b = 0, the Cauchy problem (1.1)–
(1.2) and the issue of stability of standing waves of the INLS-equation have
been studied extensively (cf. [6], [13], [22], [24]). For inhomogeneous nonlinear
Schrödinger equation without potential, i.e.,

(1.3) iϕt + �ϕ + K(x)|ϕ|p−1ϕ = 0, x ∈ R
N ,

Fibich, Liu, and Wang ([12], [20]) have proved the stability and instabil-
ity of standing waves of Equation (1.3) for p ≥ 1 + 4/N and K(ε|x|) with ε
small and K ∈ C4(RN ) ∩ L∞(RN ). Merle [21] also showed the existence and
nonexistence of blow-up solutions of (1.3) for the critical power p = 1 + 4

N .
On the other hand, based on Hardy inequality, Fukuizumi and Ohta [14] ob-
tained the result of the instability of standing-wave solutions eiωtφω(x) of
Equation (1.3) for a small ω > 0 when the inhomogeneity K of nonlinear-
ity behaves like |x| −b at infinity with 0 < b < 2. It was shown in [14] that if
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1 + (4 − 2b)/N < p < 1 + (4 − 2b)/(N − 2),N ≥ 3, then the standing-wave so-
lutions eiωtφω(x) of Equation (1.3) are orbital unstable for a sufficiently small
ω > 0.

More recently, for K that decays at infinity like |x| −b for some b ∈ (0,2),
de Bouard and Fukuizumi [10] use minimization on the Nehari manifold and
Jeanjean and Le Coz [18] use a version of the mountain pass theorem to estab-
lished the stability of the standing-wave solutions eiωtφω(x) of Equation (1.3)
for a small ω > 0 when 1 < p < 1 + (4 − 2b)/N. These stability and instabil-
ity results ([10], [14], [18]) are also obtained and improved by Genoud and
Stuart [15] through an implicit function theorem to obtain the continuous de-
pendence of the solution φω on the small ω > 0. However, little is known for
the inhomogeneous nonlinear Schrödinger equation (1.1) mainly due to the
unbounded coefficient |x|b, b > 0 in the nonlinearity.

Recently, we established an improved inequality of Gagliardo–Nirenberg
type interpolation (see [9, Theorem 2.3]) to study the Cauchy problem and
the existence of standing-wave solutions of the INLS-equation in the case of
b > 0. More precisely, let N ≥ 2 and H1

r (RN ) = {u ∈ H1(RN ); u(x) = u(|x|)}.
Define

Σ =
{

u ∈ H1(RN );u(x) = u(|x|),
∫

|x|2|u(x)|2 < +∞
}

.

Then Σ endowed with the inner product

〈u, v〉Σ = R
∫

(∇u∇v̄ + |x|2uv̄ + uv̄)

is a Hilbert space whose norm is denoted by

‖u‖2
Σ =

∫
(| ∇u|2 + |x|2|u|2 + |u|2).

Define

p̃ =

{
N+2
N −2 + 2b

N −1 , if N ≥ 3,

+∞, if N = 2.

The following improved inequality of Gagliardo–Nirenberg type interpolation
is crucial to establish the existence of the standing-wave solutions for Equa-
tion (1.1). We leave the proof of this inequality in the Appendix.

Lemma 1.1. Assume that N ≥ 2, b ≥ 0 and 1+ 2b
N −1 < p < p̃. Then there is

a constant C > 0 depending only on N,p, and b such that for any u ∈ H1
r (RN ),

∫
|x|b|u|p+1 ≤ C

(∫
| ∇u|2

)N(p−1)−2b
4

(∫
|u|2

) 2(p+1)−(N(p−1)−2b)
4

.

Using this inequality, one can also obtain [9, Proposition 3.1] the local
existence of the Cauchy problem (1.1) and (1.2) in Σ.
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Proposition 1.2. Let N ≥ 2, b ≥ 0 and 1 + 2b/(N − 1) < p < p̃. For
any ϕ0 ∈ Σ, there is a T = T (‖ϕ0‖Σ) > 0 and a unique solution ϕ of (1.1)
with ϕ ∈ C([0, T ),Σ) and ϕ(0) = ϕ0. Moreover, we have the conserved particle
number

(1.4)
∫

|ϕ|2 ≡
∫

|ϕ0|2

and the conserved energy

(1.5) E(ϕ) =
1
2

∫
(| ∇ϕ|2 + |x|2|ϕ|2) − 1

p + 1

∫
|x|b|ϕ|p+1 ≡ E(ϕ0)

for all t ∈ [0, T ), where either T = +∞ or T < +∞ and limt→T − ‖ϕ‖Σ = +∞.

The main purpose of the present paper is to determine ω, b, and p such
that the standing-wave solutions eiωtφ(x) of INLS-equation are unstable in Σ.
Our results reveal that there is a balance among the frequency ω, parame-
ter b related to the unbounded inhomogeneity and the power of nonlinearity
p when the instability of standing waves is concerned. We emphasize that
the arguments used in [13], [14] cannot be used here due to the unbounded
coefficient |x|b in the nonlinearity.

By a standing wave, we mean a solution of (1.1) with the form

ϕ(x, t) = eiωtφω(x),

where ω ∈ R is a given parameter and φω is a ground-state solution of the
following stationary problem

(1.6)

{
−�φ + ωφ + |x|2φ = |x|b|φ|p−1φ,

x ∈ R
N , φ ∈ Σ, φ �≡ 0.

Before stating the main results, we introduce several notations:

Lω(u) =
1
2

∫
(| ∇u|2 + |x|2|u|2 + |u|2) − 1

p + 1

∫
|x|b|u|p+1,(1.7)

Iω(u) =
∫

(| ∇u|2 + |x|2|u|2 + ω|u|2 − |x|b|u|p+1),(1.8)

Sω = {u ∈ Σ;u �= 0, −�u + ωu + |x|2u = |x|b|u|p−1u}(1.9)

and

(1.10) Gω = {u ∈ Sω;Lω(u) ≤ Lω(v) for all v ∈ Sω }.

An element in Gω is often referred to as a ground state of (1.6), since
it minimizes the action Lω(u) on Sω . Please note that with the help of
Lemma 1.1, the functional Lω and Iω are well defined on Σ. It is shown
[9, Theorem 4.2] by Lemma 1.1 that Gω is not empty for any ω > 0. More
precisely, defining the following minimization problem

d(ω) = inf{Lω(u);u �= 0, u ∈ Σ, Iω(u) = 0},
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then we have the following lemma.

Lemma 1.3 ([9, Theorem 4.2]). Assume ω > 0, N ≥ 2 and b ≥ 0. If 1 +
2b/(N − 1) < p < p̃, then d(ω) > 0 and d(ω) is achieved by a ground-state
solution φ of Equation (1.6).

Remark. Note that the issue of uniqueness of a ground state is open for
this equation in the case of b > 0. The frequencies ω could be negative due to
the harmonic potential [13] as far as the existence of ground state is concerned,
see also [11] for related result.

Definition 1.4. We say that the standing wave eiωtφω is stable if for any
ε > 0 there exists δ > 0 with the following property: if ϕ0 ∈ Σ and ‖ϕ0 −
φω ‖Σ < δ, then

sup
0≤t<∞

inf
θ∈R

‖ϕ(t) − eiθφω ‖Σ < ε,

where ϕ(t) is a solution of (1.1) with ϕ(0) = ϕ0. Otherwise, eiωtφω is said to
be unstable.

The main results of the present paper may now be enunciated.

Theorem 1.5. Let N ≥ 2, b > 0 and p0(N) = (N2 + 2Nb + 4 +
4

√
N2 + Nb + 1)/N2. If 1 + 2b/(N − 1) < p < p̃ and p0(N) ≤ p < p̃, then the

standing wave eiωtφω is unstable for all ω ∈ (0,+∞), where φω is the ground
state solution of Equation (1.6).

Note that p0(N) does not seem optimal, since p0(N) > 1 + (4 + 2b)/N . In
fact, without harmonic potential, the exponent 1 + (4 + 2b)/N is optimal [8].
We next have the following theorem.

Theorem 1.6. Let N ≥ 2, b > 0 and max{1+2b/(N − 1),1+(4+2b)/N } <
p < p̃. There is ω∗ > 0 such that for any ω ∈ (ω∗,+∞), the standing wave
eiωtφω is unstable for all ω ∈ (ω∗,+∞), where φω is the ground state solution
of Equation (1.6).

The plan of this paper is as follows. In Section 2, the properties of the
ground-state solutions φω are described. The main results of the paper are
also stated to give focus to the technical developments which follow the general
idea of [23] in Section 3 and Section 4, where instabilities are established.

Notation. As above and henceforth, we denote the norm of the space
Lq(Rn) by | · |q,1 ≤ q ≤ ∞ and denote the integral

∫
RN dx simply by

∫
unless

stated otherwise. We also denote various positive constants by C.

2. Ground-state solutions

In this section, we will give some properties of the ground-state solutions
φω of Equation (1.6).
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Lemma 2.1. Let φω ∈ Gω , N ≥ 2, b > 0 and max{1 + 2b/(N − 1),1 + (4 +
2b)/N } < p < p̃. Then we have that∫

|x|b|φω |p+1 = inf
{∫

|x|b|v|p+1;v �= 0, v ∈ Σ, Iω(v) = 0
}

(1)

= inf
{∫

|x|b|v|p+1;v �= 0, v ∈ Σ, Iω(v) ≤ 0
}

;

Lω(φω) = inf
{

Lω(v); v ∈ Σ,

∫
|x|b|v|p+1 =

∫
|x|b|φω |p+1

}
.(2)

Remark. When b = 0, similar results have been proved in [13]. But when
b > 0, the use of Lemma 1.1 (the improved inequality of Gagliardo–Nirenberg
interpolation) is essential. Without Lemma 1.1, the functionals in Lemma 2.1
may not be well defined.

Proof of Lemma 2.1. (1) Since Lω(v) = 1
2Iω(v)+ p−1

2(p+1)

∫
|x|b|v|p+1, we see

that

d(ω) = inf{Lω(v);v �= 0, v ∈ Σ, Iω(v) = 0}

= inf
{

p − 1
2(p + 1)

∫
|x|b|v|p+1;v �= 0, v ∈ Σ, Iω(v) = 0

}
.

Since φω ∈ Sω , we know from Equation (1.6) that Iω(φω) = 0. That is∫
(| ∇φω |2 + |x|2|φω |2 + ω|φω |2) =

∫
|x|b|φω |p+1.

Lemma 1.3 implies that d(ω) = Lω(φω). Therefore,

d(ω) = Lω(φω) =
p − 1

2(p + 1)

∫
|x|b|φω |p+1.

Define

d1(ω) = inf
{

p − 1
2(p + 1)

∫
|x|b|v|p+1; v �= 0, v ∈ Σ, Iω(v) ≤ 0

}
.

Clearly, d1(ω) ≤ d(ω). It remains to prove that d(ω) ≤ d1(ω). Indeed, for any
v �= 0 and Iω(v) < 0, λ > 0, we have that

I(λv) = λ2

(∫
(| ∇v|2 + |x|2|v|2 + ω|v|2) − λp−1

∫
|x|b|v|p+1

)
.

Since p > 1, we have that I(λv) → I(v) < 0 as λ → 1 and I(λv) > 0 for λ > 0
and λ sufficiently small. Therefore, there is λ0 ∈ (0,1) such that Iω(λ0v) = 0.
Hence,

d(ω) ≤ Lω(λ0v) =
p − 1

2(p + 1)
λp+1

0

∫
|x|b|v|p+1 <

p − 1
2(p + 1)

∫
|x|b|v|p+1.

It then follows that d(ω) ≤ d1(ω). This completes the proof of (1).
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(2) We also define

d2(ω) = inf
{

Lω(v); v ∈ Σ,

∫
|x|b|v|p+1 =

∫
|x|b|φω |p+1

}
.

Since d2(ω) ≤ Lω(φω), it suffices to prove that Lω(φω) ≤ d2(ω). For any v
satisfying

∫
|x|b|v|p+1 =

∫
|x|b|φω |p+1, we claim that Iω(v) ≥ 0. Indeed, since∫

|x|b|v|p+1 =
∫

|x|b|φω |p+1, v �= 0. If Iω(v) < 0, then similar to those in the
proof of (1), we obtain a λ1 ∈ (0,1) such that Iω(λ1v) = 0. Using the first
equality of (1), we have that∫

|x|b|φω |p+1 ≤
∫

|x|b|λ1v|p+1 = λp+1
1

∫
|x|b|v|p+1 = λp+1

1

∫
|x|b|φω |p+1.

This is impossible because of λ1 ∈ (0,1) and p > 1. The claim is proved.
Therefore,

Lω(v) =
1
2
Iω(v) +

p − 1
2(p + 1)

∫
|x|b|v|p+1

≥ p − 1
2(p + 1)

∫
|x|b|v|p+1

=
p − 1

2(p + 1)

∫
|x|b|φω |p+1 = Lω(φω),

which implies that
d2(ω) ≥ Lω(φω).

This completes the proof of (2). �

As in [13], [14], [23], we introduce the following notations.

vλ(x) = λ
N
2 v(λx), λ > 0, v ∈ Σ,

Nδ(φω) =
{
v; inf{ ‖v − eiθφω ‖Σ; θ ∈ R} < δ

}
, δ > 0,

and

Q(v) =
∫ (

| ∇v|2 − |x|2|v|2 − N(p − 1) − 2b

2(p + 1)
|x|b|v|p+1

)
, v ∈ Σ.

In dealing with the instability issues just raised, the following two lemmas
will be useful.

Lemma 2.2. If ∂2
λE(φλ

ω)|λ=1 < 0, then there is positive constants ε1 and
δ1 with the following property: for any v ∈ Nδ1(φω) satisfying ‖v‖2

2 = ‖φω ‖2
2,

there exists λ(v) ∈ (1 − ε1,1 + ε1) such that

E(φω) ≤ E(v) +
(
λ(v) − 1

)
Q(v).

Proof. From the assumption ∂2
λE(φλ

ω)|λ=1 < 0 and the continuity of
∂2

λE(vλ) in λ and v, there exist ε1 > 0 and δ1 > 0 such that ∂2
λE(vλ) < 0
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for any λ ∈ (1 − ε1,1 + ε1) and v ∈ Nδ1(φω). Since ∂λE(vλ)|λ=1 = Q(v), the
Taylor expansion at λ = 1 gives

E(vλ) ≤ E(v) + (λ − 1)Q(v), λ ∈ (1 − ε1,1 + ε1), v ∈ Nδ1(φω).

For any v ∈ Nδ1(φω) = {v; inf{ ‖v − eiθφω ‖Σ;θ ∈ R} < δ1}, we put

λ(v) =
(∫

|x|b|φω |p+1∫
|x|b|v|p+1

) 2
N(p−1)−2b

.

Then we have
∫

|x|b|vλ(v)|p+1 =
∫

|x|b|φω |p+1, and we can take δ1 small enough
such that λ(v) ∈ (1 − ε1,1 + ε1). Furthermore, in view of (2) of Lemma 2.1, if
‖v‖2

2 = ‖φω ‖2
2, we have

E
(
vλ(v)

)
= Lω

(
vλ(v)

)
− ω

2

∥∥vλ(v)
∥∥2

2

≥ Lω(φω) − ω

2
‖φω ‖2

2 = E(φω).

Consequently, we have

E(φω) ≤ E(v) +
(
λ(v) − 1

)
Q(v)

for any v ∈ Nδ1(φω) satisfying ‖v‖2
2 = ‖φω ‖2

2. �

Definition. Let δ1 be the positive constant in Lemma 2.2 and let

A = {v ∈ Nδ1(φω);E(v) < E(φω), ‖v‖2
2 = ‖φω ‖2

2,Q(v) < 0}.

For any ϕ0 ∈ Nδ1(φω), we define the exist time from Nδ1(φω) by

T (ϕ0) = sup{T > 0;ϕ(t) ∈ Nδ1(φω),0 ≤ t ≤ T },

where ϕ(t) is a solution of (1.1) with ϕ(0) = ϕ0.

Lemma 2.3. If ∂2
λE(φλ

ω)|λ=1 < 0, then for any ϕ0 ∈ A, there exists ε0 =
ε0(ϕ0) > 0 such that Q(ϕ(t)) ≤ −ε0 for 0 ≤ t < T (ϕ0).

Proof. Take ϕ0 ∈ A and put ε2 = E(φω) − E(ϕ0) > 0. In view of Lemma 2.2
and the conserved identities, we have

(2.1) ε2 ≤
(
λ(ϕ(t)) − 1

)
Q(ϕ(t)), 0 ≤ t < T (ϕ0).

Therefore, we see that Q(ϕ(t)) �= 0 for 0 ≤ t < T (ϕ0). Since the function t �→
Q(ϕ(t)) is continuous and Q(ϕ0) < 0, we have Q(ϕ(t)) < 0 for 0 ≤ t < T (ϕ0).
Now using Lemmas 2.2 and (2.1), we obtain that

−Q(ϕ(t)) ≥ ε2

1 − λ(ϕ(t))
≥ ε2

ε1
, 0 ≤ t < T (ϕ0).

So putting ε0 = ε2/ε1, we have Q(ϕ(t)) < −ε0 for 0 ≤ t < T (ϕ0). The proof of
Lemma 2.3 is complete. �
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3. Proof of Theorem 1.5

In this section, we will prove Theorem 1.5. The idea is originated from Ohta
[23]. More precisely, we will determine ω and p such that ∂2

λE(φλ
ω)|λ=1 < 0,

where φω is the ground state solution of (1.6). The proof of Theorem 1.5 is
approached via the following two lemmas.

Lemma 3.1. Let φω be the ground-state solution of (1.6). If N ≥ 2, b > 0
and max{1 + 2b/(N − 1),1 + (4 + 2b)/N } < p < p̃, then

(3.1)
∫

| ∇φω |2 − 2(p + 1) + (N(p − 1) − 2b)
2(p + 1) − (N(p − 1) − 2b)

∫
|x|2|φω |2 > 0.

Proof. Since φω is the ground-state solution of (1.6), Iω(φω) = 0 and
Q(φω) = 0. From Q(φω) = 0, we get that

(3.2)
∫

|x|b|φω |p+1 =
2(p + 1)

N(p − 1) − 2b

∫
(| ∇φω |2 − |x|2|φω |2).

It is deduced from (3.2) and Iω(φω) = 0 that(
1 − 2(p + 1)

N(p − 1) − 2b

)∫
| ∇φω |2 +

(
1 +

2(p + 1)
N(p − 1) − 2b

)∫
|x|2|φω |2(3.3)

+ ω

∫
|φω |2 = 0.

As ω > 0, the assumption on p implies that∫
| ∇φω |2 − 2(p + 1) + (N(p − 1) − 2b)

2(p + 1) − (N(p − 1) − 2b)

∫
|x|2|φω |2 > 0.

This completes the proof of Lemma 3.1. �

Lemma 3.2. Let N ≥ 2 and b > 0. If p0(N) ≤ p < p̃ and 1 + 2b/(N − 1) <
p < p̃, then for any ω > 0,

∂2
λE(φλ

ω)|λ=1 < 0.

Proof. Denote R(φω) = ∂2
λE(φλ

ω)|λ=1. Then

R(φω) =
∫ (

| ∇φω |2 + 3|x|2|φω |2(3.4)

− (N(p − 1) − 2b)(N(p − 1) − 2b − 2)
4(p + 1)

|x|b|φω |p+1

)
.

Since Q(φλ
ω) = 0, (3.2) and (3.4) yield that

R(φω) =
(

1 − N(p − 1) − 2b − 2
2

)∫
| ∇φω |2(3.5)

+
(

3 +
N(p − 1) − 2b − 2

2

)∫
|x|2|φω |2.
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Or, what is the same,

R(φω) =
4 − (N(p − 1) − 2b)

2
(3.6)

×
∫ (

| ∇φω |2 − N(p − 1) − 2b + 4
N(p − 1) − 2b − 4

|x|2|φω |2
)

.

As p ≥ p0(N) > 1 + (4 + 2b)/N , an elementary computation yields

(3.7)
N(p − 1) − 2b + 4
N(p − 1) − 2b − 4

≤ 2(p + 1) + (N(p − 1) − 2b)
2(p + 1) − (N(p − 1) − 2b)

.

It now follows from (3.1) and the inequality 4 − (N(p − 1) − 2b) < 0 that

R(φω) = ∂2
λE(φλ

ω)|λ=1 < 0

as claimed. �

Proof of Theorem 1.5. Since φω is the ground state solution of (1.6), it
is found from Lemma 3.2 that Q(φω) = ∂λE(φλ

ω)|λ=1 = 0, ∂2
λE(φλ

ω)|λ=1 < 0.
Since Q(φω) = λ∂λE(φλ

ω), we have E(φλ
ω) < E(φω) and Q(φλ

ω) < 0 for λ > 1
sufficiently close to 1. Furthermore, since ‖φλ

ω ‖2
2 = ‖φω ‖2

2 and limλ→1 ‖φλ
ω −

φω ‖Σ = 0, we have φλ
ω ∈ A for λ > 1 sufficiently close to 1. Let ϕλ(t) be the

solution of Equation (1.1) with ϕλ(0) = φλ
ω . Note that |x|φλ

ω(x) ∈ L2(RN ), we
obtain from Proposition A.3 (see the Appendix) that

(3.8)
d2

dt2
‖xϕλ(t)‖2

2 = 8Q(ϕλ(t)), 0 ≤ t < T (φλ
ω),

It then follows from Lemma 2.3 that there is ελ > 0 such that

(3.9) Q(ϕλ(t)) ≤ −ελ, 0 ≤ t < T (φλ
ω).

It is now concluded from (3.8) and (3.9) that T (φλ
ω) < +∞. The proof of

Theorem 1.5 is complete. �

4. Proof of Theorem 1.6

Theorem 1.5 seems satisfactory since we got the instability of standing-
wave solutions for any ω > 0. However, we need the nonlinear growth slightly
large, i.e., p0(N) ≤ p < p̃. As we have pointed out in the introduction, p0(N) >
1 + (4 + 2b)/N and p0(N) does not seem optimal. On the other hand, for the
inhomogeneous nonlinear Schrödinger equation without potential

(4.1) iϕt = −�ϕ − |x|b|ϕ|p−1ϕ, x ∈ R
N ,

it is known that 1 + (4 + 2b)/N is optimal. Namely, for all ω > 0, if 1 < p <
1+(4+2b)/N , then all the standing waves are stable; and if p ≥ 1+(4+2b)/N ,
then all the standing waves are unstable, see [8]. To obtain the optimal result
of the instability of standing waves eiωtφω(x) of Equation (1.1), we need to
find a balance between the frequency ω and the nonlinear growth p for any
fixed b > 0. Our next purpose is to prove that if 1+(4+2b)/N < p < p̃, then a
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sufficient large ω > 0, the standing waves eiωtφω(x) are unstable, where φω(x)
are the ground-state solutions of (1.6). Define the rescaled function φ̃ω(x) as
follows:

(4.2) φω(x) = ω
2+b

2(p−1) φ̃ω

(√
ωx

)
, ω > 0.

Then φ̃ω(x) satisfies

(4.3) −�φ + φ + ω−2|x|2φ = |x|b|φ|p−1φ, φ ∈ H1
r (RN ).

Moreover, φ̃ω(x) are the ground-state solutions of Equation (4.3).
Let ψ1(x) be the ground-state solution of

(4.4) −�φ + φ = |x|b|φ|p−1φ, φ ∈ H1
r (RN ).

Define

Ĩω(v) =
∫

(| ∇v|2 + ω−2|x|2|v|2 + |v|2 − |x|b|v|p+1)

and

I0
1 (v) =

∫
(| ∇v|2 + |v|2 − |x|b|v|p+1).

It is observed from Lemma 1.1 that Ĩω is well defined on Σ and I0
1 is well

defined on H1
r (RN ). Moreover, we have the following lemma.

Lemma 4.1. Let N ≥ 2, b > 0 and 1+2b/(N − 1) < p < p̃. Assume φω ∈ Gω ,
φ̃ω(x) is the rescaled function defined by (4.2) and ψ1(x) is the ground-state
solution of Equation (4.4). Then we have

(i) lim
ω→∞

∫
|x|b|φ̃ω |p+1 =

∫
|x|b|ψ1|p+1,

(ii) lim
ω→∞

I0
1 (φ̃ω) = 0,

(iii) lim
ω→∞

‖φ̃ω ‖2
H1

r
= ‖ψ1‖2

H1
r
, and

(iv) lim
ω→∞

ω−2

∫
|x|2|φ̃ω |2 = 0.

Proof. (i) First, we claim that for any μ > 1 there exists ω(μ) > 0 such
that Ĩω(μψ1) < 0 and I0

1 (μφ̃ω) < 0 hold for any ω ∈ (ω(μ),+∞). Indeed, from
Ĩω(φ̃ω) = 0, that is∫

(| ∇φ̃ω |2 + ω−2|x|2|φ̃ω |2 + |φ̃ω |2 − |x|b|φ̃ω |p+1) = 0,

we have that

μ−2I0
1 (μφ̃ω) =

∫
(| ∇φ̃ω |2 + |φ̃ω |2) − μp−1

∫
|x|b|φ̃ω |p+1(4.5)

= −ω−2

∫
|x|2|φ̃ω |2 − (μp−1 − 1)

∫
|x|b|φ̃ω |p+1 < 0
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for any μ > 1 and ω > 0. Next, from I0
1 (ψ1) = 0, i.e.,∫

(| ∇ψ1|2 + |ψ1|2) =
∫

|x|b|ψ1|p+1,

we know that for any μ > 1,

μ−2Ĩω(μψ1)(4.6)

=
∫

(| ∇ψ1|2 + ω−2|x|2|ψ1|2 + |ψ1|2 − μp−1|x|b|ψ1|p+1)

= ω−2

∫
|x|2|ψ1|2 − (μp−1 − 1)

∫
|x|b|ψ1|p+1.

Since ψ1 is exponentially decay at infinity, we have that

ω−2

∫
|x|2|ψ1|2 → 0 as ω → +∞.

Thus for any μ > 1, there is ω(μ) > 0 such that for any ω ∈ (ω(μ),+∞)

Ĩω(μψ1) < 0.

This completes the proof of the claim.
Secondly, from the proof of Lemma 2.1, we know that φ̃ω(x) is a minimizer

of

(4.7) inf
{∫

|x|b|v|p+1;v �= 0, v ∈ Σ, Ĩω(v) ≤ 0
}

and ψ1(x) is a minimizer of

(4.8) inf
{∫

|x|b|v|p+1;v �= 0, v ∈ H1
r (RN ), I0

1 (v) ≤ 0
}

.

It then follows from (4.7) and (4.8) that∫
|x|b|φ̃ω |p+1 ≤

∫
|x|b|μψ1|p+1 = μp+1

∫
|x|b|ψ1|p+1

and ∫
|x|b|ψ1|p+1 ≤

∫
|x|b|μφ̃ω |p+1 = μp+1

∫
|x|b|φ̃ω |p+1,

which imply that
1

μp+1

∫
|x|b|ψ1|p+1 ≤

∫
|x|b|φ̃ω |p+1 ≤ μp+1

∫
|x|b|ψ1|p+1, ω ∈ (ω(μ),+∞).

Since μ > 1 is arbitrary, we conclude (i).
For (ii), by (4.5) with μ = 1 and (i), we have that

I0
1 (φ̃ω) = −ω−2

∫
|x|2|φ̃ω |2 < 0 for any ω > 0.

Since
I0
1 (λφ̃ω) = λ2

∫
(| ∇φ̃ω |2 + |φ̃ω |2) − λp+1

∫
|x|b|φ̃ω |p+1 > 0
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for λ > 0, sufficiently small, it follows that for any ω > 0 there is μ(ω) ∈ (0,1)
such that

I0
1 (μ(ω)φ̃ω) = 0.

In particular,
limsup
ω→+∞

μ(ω) ≤ 1.

On the other hand, it is found from the proof of Lemma 2.1 that∫
|x|b|ψ1|p+1 ≤

∫
|x|b|μ(ω)φ̃ω |p+1 = μ(ω)p+1

∫
|x|b|φ̃ω |p+1,

which together with (i) implies that

lim inf
ω→∞

μ(ω) ≥ lim inf
ω→∞

∫
|x|b|ψ1|p+1∫

|x|b|φ̃ω |p+1
= 1.

This in turn transpires that limω→+∞ μ(ω) = 1. It is now deduced from
I0
1 (μ(ω)φ̃ω) = 0 that

lim
ω→∞

I0
1 (φ̃ω) = 0.

Thus, we conclude (ii).
Next, from (i), (ii), and I0

1 (ψ1) = 0, we have that

lim
ω→∞

‖φ̃ω ‖2
H1

r
= lim

ω→∞

∫
|x|b|φ̃ω |p+1 =

∫
|x|b|ψ1|p+1 = ‖ψ1‖2

H1
r
,

which yields (iii).
Finally, it follows from (ii) and Ĩω(φ̃ω) = 0 that

lim
ω→∞

ω−2

∫
|x|2|φ̃ω |2 = 0,

which proves (iv). The proof of the lemma is complete. �

Proof of Theorem 1.6. In view of the proof of Theorem 1.5, it suffices to
prove that there exists ω∗ > 0, such that for any ω ∈ (ω∗,+∞),
∂2

λE(φλ
ω)|λ=1 < 0. To this end, we firstly apply (3.4) and Q(φω) = 0 to obtain

that

R(φω) = 4
∫

|x|2|φω |2 +
(N(p − 1) − 2b)

2(p + 1)
(4.9)

×
(

1 − (N(p − 1) − 2b − 2)
2

)∫
|x|b|φω |p+1.

Since ∫
|x|2|φω |2 = ω

2+b
p−1 − N

2 −1

∫
|x|2|φ̃ω |2

and ∫
|x|b|φω |p+1 = ω

(2+b)(p+1)
2(p−1) − N

2 − b
2

∫
|x|b|φ̃ω |p+1,
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it follows that ∫
|x|2|φω |2∫

|x|b|φω |p+1
=

ω−2
∫

|x|2|φ̃ω |2∫
|x|b|φ̃ω |p+1

.

In view of (i) and (iv) of Lemma 4.1, we deduce that

lim
ω→+∞

∫
|x|2|φω |2∫

|x|b|φω |p+1
= 0.

In consequence, there is ω∗ > 0 such that for all ω ∈ (ω∗,+∞),

R(φω) < 0

because of 1 − (N(p − 1) − 2b − 2)/2 < 0. That is for all ω ∈ (ω∗,+∞),

∂2
λE(φλ

ω)|λ=1 < 0.

This completes the proof of Theorem 1.6. �

Appendix

In this section, we first give a detailed proof of Lemma 1.1. The following
two lemmas are useful.

Lemma A.1 (Strauss’ inequality). Let N ≥ 2. For any u ∈ H1
r , there is a

constant CN > 0 such that

(A.1) |x| N −1
2 |u(x)| ≤ CN

(∫
|u|2

) 1
4
(∫

| ∇u|2
) 1

4

for a.e. x ∈ R
N .

Lemma A.2 (Gagliardo–Nirenberg inequality). Let 1 < q < q∗, where q∗ =
N+2
N −2 when N ≥ 3 and q∗ = +∞ when N = 2. Then there is a positive constant
C such that for any u ∈ H1(RN ),

(A.2)
∫

|u|q+1 ≤ C

(∫
| ∇u|2

)N(q−1)
4

(∫
|u|2

) 2(q+1)−N(q−1)
4

.

Proof of Lemma 1.1. By Lemma A.1, we have∫
|x|b|u|p+1 =

∫
(|x| N −1

2 |u(x)|) 2b
N −1 |u|(p+1)− 2b

N −1(A.3)

≤ CN

(∫
|u|2

) b
2(N −1)

(∫
| ∇u|2

) b
2(N −1)

×
∫

|u|(p+1)− 2b
N −1 .
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On the other hand, since 1 + 2b
N −1 < p < p̃, we have that 1 < p − 2b

N −1 < q∗.
It is deduced from Lemma A.2 that∫

|u|(p+1)− 2b
N −1(A.4)

≤ C

(∫
| ∇u|2

)N(p− 2b
N −1 −1)

4
(∫

|u|2
) 2(p− 2b

N −1 +1)−N(p− 2b
N −1 −1)

4

.

Since
b

2(N − 1)
+

N(p − 2b
N −1 − 1)
4

=
N(p − 1) − 2b

4
and

b

2(N − 1)
+

2(p − 2b
N −1 + 1) − N(p − 2b

N −1 − 1)
4

=
2(p + 1) − (N(p − 1) − 2b)

4
,

we obtain from (A.3) and (A.4) that

∫
|x|b|u|p+1 ≤ C

(∫
| ∇u|2

)N(p−1)−2b
4

(∫
|u|2

) 2(p+1)−(N(p−1)−2b)
4

. �

Now, we are going to prove the following virial identity.

Proposition A.3. Let ϕ(t) ∈ C1([0, T (ϕ0)),Σ) be a solution of Equa-
tion (1.1) with initial value ϕ(0) = ϕ0(x) ∈ Σ. Then one has

(A.5)
d2

dt2
‖xϕ(t)‖2

2 = 8Q(ϕ(t)), 0 ≤ t < T (ϕ0).

Proof. We only prove Equation (A.5) formally. Since ϕ satisfies Equa-
tion (1.1), we have that

ϕt = i(�ϕ − |x|2ϕ + |x|b|ϕ|p−1ϕ).

Therefore,
d

dt
‖xϕ(t)‖2

2 = 2Re
∫

|x|2ϕ̄ϕt = 4Im
∫

ϕ̄x∇ϕ

and

d2

dt2
‖xϕ(t)‖2

2 = 4Im
∫

(ϕ̄tx∇ϕ + ϕ̄x∇ϕt)

= 4 Im
∫

ϕ̄tx∇ϕ − 4 Im
∫

ϕt(Nϕ̄ + x∇ϕ̄)
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= −4 Im
∫

ϕt(Nϕ̄ + 2x∇ϕ̄)

= −4Re
∫

(Nϕ̄ + 2x∇ϕ̄)(�ϕ − |x|2ϕ + |x|b|ϕ|p−1ϕ).

Direct computations show that

Re
∫

(Nϕ̄ + 2x∇ϕ̄)�ϕ = −2
∫

| ∇ϕ|2;

Re
∫

(Nϕ̄ + 2x∇ϕ̄)|x|2ϕ = −2
∫

|x|2|ϕ|2;

Re
∫

(Nϕ̄ + 2x∇ϕ̄)|x|b|ϕ|p−1ϕ

= N

∫
RN

∫
|x|b|ϕ|p+1 + Re

∫
2x|x|b|ϕ|p−1ϕ∇ϕ̄

= N

∫
RN

∫
|x|b|ϕ|p+1 +

2
p + 1

∫
x|x|b∇(|ϕ|p+1)

= N

∫
RN

∫
|x|b|ϕ|p+1 − 2

p + 1

∫
|ϕ|p+1(N |x|b + b|x|b)

=
N(p − 1) − 2b

p + 1

∫
|x|b|ϕ|p+1.

Therefore,

d2

dt2
‖xϕ(t)‖2

2 = 8
(∫

(| ∇ϕ|2 − |x|2|ϕ|2) − N(p − 1) − 2b

2(p + 1)

∫
|x|b|ϕ|p+1

)
= 8Q(ϕ(t)). �
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