LIPSCHITZ CELL DECOMPOSITION IN O-MINIMAL STRUCTURES I

WIESLAW PAWŁUCKI

Abstract

A main tool in studying topological properties of sets definable in o-minimal structures is the Cell Decomposition Theorem. The present paper proposes its metric counterpart based on the idea of a Lipschitz cell. In contrast to earlier results, we give an algorithm of a Lipschitz cell decomposition involving only permutations of variables as changes of coordinates.

1. Introduction

A main tool in studying topological properties of sets definable in o-minimal structures is the Cell Decomposition Theorem (cf. [vdD]). The present paper proposes its metric counterpart based on the idea of a Lipschitz cell, called here an M-cell. Of course, in general, a decomposition into such cells requires linear changes of coordinate systems (cf. [K], [P]). We will give an algorithm showing that in fact permutations of coordinates suffice as changes of coordinate systems.

The present article deals only with Lipschitz cell decomposition of open sets. The case of general o-minimal sets, easily reducible to the previous one, with some additional properties and applications will be treated in a separate paper.

Fix any o-minimal structure on a real closed field R (for the definition and fundamental properties of o-minimal structures the reader is referred to $[\mathrm{vdD}])$. Let n be a positive integer.

[^0]Definition 1. A subset S of R^{n} will be called an (open) cell in R^{n} if

$$
\begin{equation*}
S=\left\{\left(x^{\prime}, x_{n}\right) \in R^{n}: x^{\prime} \in \Delta, \varphi_{1}\left(x^{\prime}\right)<x_{n}<\varphi_{2}\left(x^{\prime}\right)\right\}, \tag{1.1}
\end{equation*}
$$

where $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$, the set Δ is an open definable subset of R^{n-1}, every $\varphi_{i}(i \in\{1,2\})$ is either a definable continuous function $\varphi_{i}: \Delta \longrightarrow R$ or $\varphi_{i} \equiv-\infty$ or $\varphi_{i} \equiv+\infty$ and, for each $x^{\prime} \in \Delta, \varphi_{1}\left(x^{\prime}\right)<\varphi_{2}\left(x^{\prime}\right)$.

Definition 2. For any positive constant $M \in R$, a definable continuous function $\varphi: \Delta \longrightarrow R$ defined on an open subset Δ of R^{n-1} will be called an M-function if

$$
\begin{equation*}
\left|\frac{\partial \varphi}{\partial x_{j}}(a)\right| \leq M \quad(j \in\{1, \ldots, n-1\}) \tag{1.2}
\end{equation*}
$$

at each point $a \in \Delta$ in a neighborhood of which φ is of class \mathcal{C}^{1}.
Definition 3. A cell S in R^{n} will be called an M-cell (a semi-M-cell) if, for each $i \in\{1,2\}$ (for at least one $i \in\{1,2\}$), if φ_{i} is finite, it is an M-function.

Definition 4. A cell S in R^{n} will be called a regular M-cell if it is any open interval in the case $n=1$ and, in the case $n>1$, for each $i \in\{1,2\}$, if φ_{i} is finite it is an M-function of class \mathcal{C}^{1} on Δ and the projection Δ of S into R^{n-1} is a regular M-cell in R^{n-1}.

Definition 5. An M-cell will be called an M-disc if it is any open interval in the case $n=1$ and, in the case $n>1$, both $\varphi_{i}(i \in\{1,2\})$ are finite and admit continuous extensions

$$
\begin{equation*}
\varphi_{i}: \bar{\Delta} \longrightarrow R \tag{1.3}
\end{equation*}
$$

onto the closure of Δ in R^{n-1}, and

$$
\begin{equation*}
\varphi_{1}=\varphi_{2} \quad \text { on } \partial \Delta . \tag{1.4}
\end{equation*}
$$

For $a, b \in R^{n}$, let $|a-b|=\sqrt{\sum_{j=1}^{n}\left(a_{j}-b_{j}\right)^{2}}$.
Proposition 1. Let S be a regular M-cell in R^{n} and let $\varphi: S \longrightarrow R$ be an L-function $(L>0)$ of class \mathcal{C}^{1}.

Then:
(1) for any two different points $a, b \in S$, there is a definable continuous mapping

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right):[0,|a-b|] \longrightarrow S
$$

such that $\lambda(0)=a, \lambda(|a-b|)=b$ and $\left|\lambda_{j}^{\prime}(t)\right| \leq(j-1)!M^{j-1}$, for any $j \in\{1, \ldots, n\}$ and any t such that $\lambda_{j}^{\prime}(t)$ exists;
(2) for any two points $a, b \in S$,

$$
|\varphi(a)-\varphi(b)| \leq n!M^{n-1} L|a-b| .
$$

Proof. (1) Let S be as in (1.1). Arguing by induction and assuming that $a^{\prime} \neq b^{\prime}$, one can find a mapping

$$
\omega=\left(\omega_{1}, \ldots, \omega_{n-1}\right):\left[0,\left|a^{\prime}-b^{\prime}\right|\right] \longrightarrow \Delta
$$

such that $\omega(0)=a^{\prime}, \omega\left(\left|a^{\prime}-b^{\prime}\right|\right)=b^{\prime}$ and $\left|\omega_{j}^{\prime}(\tau)\right| \leq(j-1)!M^{j-1}$, for any $j \in$ $\{1, \ldots, n-1\}$ and any τ such that $\omega_{j}^{\prime}(\tau)$ exists. Let $\varepsilon>0$ be such that

$$
\varphi_{1}(\omega(\tau))+\varepsilon<\varphi_{2}(\omega(\tau))-\varepsilon \quad \text { for any } \tau \in\left[0,\left|a^{\prime}-b^{\prime}\right|\right]
$$

and

$$
\varphi_{1}\left(a^{\prime}\right)+\varepsilon<a_{n}<\varphi_{2}\left(a^{\prime}\right)-\varepsilon \quad \text { and } \quad \varphi_{1}\left(b^{\prime}\right)+\varepsilon<b_{n}<\varphi_{2}\left(b^{\prime}\right)-\varepsilon .
$$

Now, it suffices to put

$$
\lambda_{j}(t)=\omega_{j}\left(t \frac{\left|a^{\prime}-b^{\prime}\right|}{|a-b|}\right) \quad \text { for } j \in\{1, \ldots, n-1\}
$$

and

$$
\begin{aligned}
\lambda_{n}(t)= & \max \left\{\varphi_{1}\left(\omega\left(t \frac{\left|a^{\prime}-b^{\prime}\right|}{|a-b|}\right)\right)+\varepsilon,\right. \\
& \left.\min \left\{\varphi_{2}\left(\omega\left(t \frac{\left|a^{\prime}-b^{\prime}\right|}{|a-b|}\right)\right)-\varepsilon, a_{n}+t \frac{b_{n}-a_{n}}{|a-b|}\right\}\right\} .
\end{aligned}
$$

(2) follows from (1), by the Mean Value Theorem (see [vdD; Chapter 7, (2.3)]).

Kurdyka-Parusiński theorem ([K], [P]). Any open definable subset G of \mathbb{R}^{n} has a finite decomposition

$$
G=S_{1} \cup \cdots \cup S_{k} \cup \Sigma
$$

where every S_{ν} is a regular M_{n}-cell in some linear coordinate system in \mathbb{R}^{n}, the subset Σ is nowhere dense and M_{n} is a constant depending only on n.

The aim of the present article is to give an algorithm showing that in fact permutations of coordinates are sufficient in the above theorem. We will prove simultaneously, by induction on n, the following three theorems.

Theorem $1_{n}\left(2_{n}, 3_{n}\right)$. Any open definable subset G of R^{n} has a finite decomposition

$$
\begin{equation*}
G=S_{1} \cup \cdots \cup S_{k} \cup \Sigma, \tag{1.5}
\end{equation*}
$$

where every S_{ν} is an $M_{1 n}$-cell ($M_{2 n}$-disc, a regular $M_{3 n}$-cell) in R^{n} after a permutation of coordinates, Σ is nowhere dense and $M_{1 n}\left(M_{2 n}, M_{3 n}\right)$ is a constant ≥ 1 depending only on n.

For simplicity, we will often skip the adjective definable, when considering subsets of spaces R^{n} and mappings between such subsets. Also, we adopt the following conventions. A local property (w) of a mapping $f: A \longrightarrow R^{m}$, where $A \subset R^{n}$, is said to be satisfied almost everywhere if there is a closed subset E of A such that $\operatorname{dim} E<\operatorname{dim} A$ and (w) is satisfied at each point of $A \backslash E$. A finite sequence B_{1}, \ldots, B_{k} of subsets of a set $A \subset R^{n}$ is said to be an almost decomposition of A if $B_{\nu}(\nu=1, \ldots, k)$ are pairwise disjoint and $\operatorname{dim}\left(A \backslash\left(B_{1} \cup \cdots \cup B_{k}\right)\right)<\operatorname{dim} A$. This will be denoted by writing

$$
A \simeq B_{1} \cup \cdots \cup B_{k}
$$

Since Theorem 2_{n} together with 3_{n-1} easily imply both Theorems 1_{n} and 3_{n}, it suffices to derive first Theorem 1_{n} from Theorem 2_{n-1}, and then Theorem 2_{n} from Theorems $1_{n}, 2_{n-1}$ and 3_{n-1}. From now on, we will assume that $n \geq 2$ is fixed.

2. A preparation

Lemma 1. If $G \subset R^{n-1}$ is open and $E \subset \partial G$ is closed of dimension $<n-2$ and Theorem 2_{n-1} is true, then G has an almost decomposition

$$
G \simeq \Delta_{1} \cup \cdots \cup \Delta_{p}
$$

where every Δ_{ν}, after a permutation of coordinates in R^{n-1}, is an $M_{2 n-1}$ disc:

$$
\Delta_{\nu}=\left\{\left(x^{\prime \prime}, x_{n-1}\right): x^{\prime \prime} \in \Omega_{\nu}, \sigma_{\nu}\left(x^{\prime \prime}\right)<x_{n-1}<\rho_{\nu}\left(x^{\prime \prime}\right)\right\}
$$

where $x^{\prime \prime}=\left(x_{1}, \ldots, x_{n-2}\right)$, such that both (graphs of) σ_{ν} and ρ_{ν} are disjoint from E.

Proof. Take the projections

$$
\pi_{j}: R^{n-1} \ni\left(x_{1}, \ldots, x_{n-1}\right) \mapsto\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n-1}\right) \in R^{n-2}
$$

for $j \in\{1, \ldots, n-1\}$, and set

$$
Z=\text { the closure of } \bigcup_{j} \pi_{j}^{-1}\left(\pi_{j}(E)\right)
$$

Then $\operatorname{dim} Z \leq n-2$, and it suffices to use Theorem 2_{n-1} to $G \backslash Z$.
As a corollary, one easily gets (see [vdD; Chapter 4, (1.8) and (1.5)]) the following lemma.

LEMMA 2. If $G \subset R^{n-1}$ is open and $\varphi: G \longrightarrow R$ is continuous, then G has an almost decomposition

$$
G \simeq \Delta_{1} \cup \cdots \cup \Delta_{p}
$$

where every Δ_{ν}, after a permutation of coordinates in R^{n-1}, is an $M_{2 n-1}$-disc

$$
\Delta_{\nu}=\left\{\left(x^{\prime \prime}, x_{n-1}\right): x^{\prime \prime} \in \Omega_{\nu}, \sigma_{\nu}\left(x^{\prime \prime}\right)<x_{n-1}<\rho_{\nu}\left(x^{\prime \prime}\right)\right\}
$$

[^1]such that $\varphi \mid \Delta_{\nu}$ has a continuous extension
$$
\varphi_{\nu}: \Delta_{\nu} \cup \sigma_{\nu} \cup \rho_{\nu} \longrightarrow \bar{R}=R \cup\{-\infty,+\infty\}
$$
such that $\varphi_{\nu}\left(\sigma_{\nu}\right) \subset R$ or $\varphi_{\nu}\left(\sigma_{\nu}\right)=\{-\infty\}$, or $\varphi_{\nu}\left(\sigma_{\nu}\right)=\{+\infty\}$ and the same for ρ_{ν}.

Proposition 2. Let $f: S \longrightarrow R$ be a definable \mathcal{C}^{1}-function defined on a cell

$$
S=\left\{\left(x^{\prime}, x_{n}\right) \in R^{n}: x^{\prime} \in \Delta, \varphi\left(x^{\prime}\right)<x_{n}<\psi\left(x^{\prime}\right)\right\}
$$

in R^{n} such that $\varphi: \Delta \longrightarrow R$ is of class \mathcal{C}^{1}.
Assume that $\frac{\partial f}{\partial x_{n}}$ has a finite limit value ${ }^{2}$ at (almost) each point of φ (for example, when $\frac{\partial f}{\partial x_{n}}$ is bounded).

Then there is a closed nowhere dense subset Z of φ such that f extends to a \mathcal{C}^{1}-function

$$
f: S \cup(\varphi \backslash Z) \longrightarrow R
$$

to $S \cup(\varphi \backslash Z)$ as a \mathcal{C}^{1}-submanifold of R^{n} with boundary $\varphi \backslash Z$.
Proof. It is left to the reader as an exercise (cf. [vdD; Chapter 4, (1.8) and (1.5)]).

Lemma 3. Let $L, M, N, P \in R$ be positive and let

$$
G=\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in \Delta, \varphi_{1}\left(x^{\prime}\right)<x_{n}<\varphi_{2}\left(x^{\prime}\right)\right\}
$$

be a semi-M-cell in R^{n} such that Δ is an N-cell in $R^{n-1}, \varphi_{i}: \Delta \longrightarrow R$, for each $i \in\{1,2\}$, and the following conditions are satisfied almost everywhere in Δ :

$$
\begin{align*}
\left|\frac{\partial \varphi_{1}}{\partial x_{j}}\right| & \leq M \quad \text { for each } j \in\{1, \ldots, n-1\} \tag{2.1}\\
\left|\frac{\partial \varphi_{1}}{\partial x_{n-1}}\right| & <L<\left|\frac{\partial \varphi_{2}}{\partial x_{n-1}}\right| \tag{2.2}\\
\frac{\left|\frac{\partial \varphi_{2}}{\partial x_{j}}\right|}{\left|\frac{\partial \varphi_{2}}{\partial x_{n-1}}\right|} & \leq P \quad \text { for each } j \in\{1, \ldots, n-1\} \tag{2.3}\\
\operatorname{sgn} \frac{\partial \varphi_{2}}{\partial x_{n-1}} & =\text { const. } \tag{2.4}
\end{align*}
$$

Then G admits an almost decomposition

$$
G \simeq S_{1} \cup \cdots \cup S_{k}
$$

where every S_{ν} is an \tilde{M}-cell, possibly after transposition $\left(x_{n-1}, x_{n}\right)$, where \tilde{M} is a positive constant depending only on L, M, N and P.

[^2]Proof. Put

$$
\Delta=\left\{\left(x^{\prime \prime}, x_{n-1}\right): x^{\prime \prime} \in \Omega, \sigma\left(x^{\prime \prime}\right)<x_{n-1}<\rho\left(x^{\prime \prime}\right)\right\} .
$$

One can assume that

$$
\begin{equation*}
\frac{\partial \varphi_{2}}{\partial x_{n-1}}>0 \tag{2.5}
\end{equation*}
$$

the other case will follow by a modification. Because of (2.2) and (2.5), it is clear that $\sigma: \Omega \longrightarrow R$. By a subdivision of Ω, one can assume that σ is of class \mathcal{C}^{1} and that (2.2) is satisfied almost everywhere on every segment $\left\{\left(x^{\prime \prime}, x_{n-1}\right): \sigma\left(x^{\prime \prime}\right)<x_{n-1}<\rho\left(x^{\prime \prime}\right)\right\}$, where $x^{\prime \prime} \in \Omega$ and that φ_{i} admit continuous extensions

$$
\varphi_{i}: \Delta \cup \sigma \longrightarrow R \quad(i=1,2)
$$

and

$$
\varphi_{2}: \Delta \cup \rho \longrightarrow R \cup\{+\infty\}
$$

such that $\varphi_{2}(\rho) \subset R$ or $\varphi_{2}(\rho)=\{+\infty\}$.
By Proposition 2, φ_{1} is of class \mathcal{C}^{1} almost everywhere on σ. Put

$$
\psi\left(x^{\prime \prime}, x_{n-1}\right)=\varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)+L\left(x_{n-1}-\sigma\left(x^{\prime \prime}\right)\right) \quad \text { for }\left(x^{\prime \prime}, x_{n-1}\right) \in \Delta
$$

Then ψ is an $\max (M+M N+L N, L)$-function and $\varphi_{1}<\psi<\varphi_{2}$.
Now $G \simeq S_{1} \cup S_{2}$, where $S_{1}=\left\{\left(x^{\prime}, x_{n}\right): \varphi_{1}\left(x^{\prime}\right)<x_{n}<\psi\left(x^{\prime}\right)\right\}$ and $S_{2}=$ $\left\{\left(x^{\prime \prime}, x_{n-1}, x_{n}\right): x^{\prime \prime} \in \Omega, \Phi_{1}\left(x^{\prime \prime}, x_{n}\right)<x_{n-1}<\Phi_{2}\left(x^{\prime \prime}, x_{n}\right)\right\}$, where

$$
\Phi_{2}\left(x^{\prime \prime}, x_{n}\right)=\left\{\begin{aligned}
\psi^{-1}\left(x^{\prime \prime},\right. & \left.x_{n}\right)=L^{-1}\left(x_{n}-\varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\right)+\sigma\left(x^{\prime \prime}\right) \\
& \text { if } \varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<x_{n}<\psi\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right) \\
\rho\left(x^{\prime \prime}\right), & \text { if } \psi\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right) \leq x_{n}<\varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)
\end{aligned}\right.
$$

and

$$
\Phi_{1}\left(x^{\prime \prime}, x_{n}\right)= \begin{cases}\sigma\left(x^{\prime \prime}\right), & \text { if } \varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<x_{n} \leq \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right) \\ \varphi_{2}^{-1}\left(x^{\prime \prime}, x_{n}\right), & \text { if } \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<x_{n}<\varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\end{cases}
$$

where ψ^{-1} and φ_{2}^{-1} stand for inversions with respect to x_{n-1}.
Lemma 4. Let a subset $A \subset R^{n-1}$ be open and let M be a positive constant. Let $f_{\alpha}: A \longrightarrow R(\alpha \in\{1, \ldots, k+l\})$ be M-functions on A each of which has a continuous extension to \bar{A} :

$$
f_{\alpha}: \bar{A} \longrightarrow R
$$

Assume that for each $a \in \partial A$ there are $\alpha \leq k$ and $\beta>k$ such that $f_{\beta}(a) \leq$ $f_{\alpha}(a)$.

Then the set

$$
S=\left\{\left(x^{\prime}, x_{n}\right) \in A \times R: \max _{1 \leq \alpha \leq k} f_{\alpha}\left(x^{\prime}\right)<x_{n}<\min _{k<\beta \leq k+l} f_{\beta}\left(x^{\prime}\right)\right\}
$$

is an M-disc in R^{n}.

Proof. Indeed,

$$
S=\left\{\left(x^{\prime}, x_{n}\right) \in B \times R: \max _{1 \leq \alpha \leq k} f_{\alpha}\left(x^{\prime}\right)<x_{n}<\min _{k<\beta \leq k+l} f_{\beta}\left(x^{\prime}\right)\right\}
$$

where B is the natural projection of S to A. It is clear that $\max _{1 \leq \alpha \leq k} f_{\alpha}=$ $\min _{k<\beta \leq k+l} f_{\beta}$ on ∂B and the lemma follows.

Lemma 5. Let $\alpha_{1}, \alpha_{2} \in \bar{R}, \alpha_{1}<\alpha_{2}$ and let $f, g, h:\left(\alpha_{1}, \alpha_{2}\right) \longrightarrow R$ be three continuous definable functions such that

$$
\begin{equation*}
g \leq f \quad \text { on }\left(\alpha_{1}, \alpha_{2}\right) \tag{2.6}
\end{equation*}
$$

for each $i \in\{1,2\}$, if $\alpha_{i} \in R$, then $\lim _{t \rightarrow \alpha_{i}} g(t)=\lim _{t \rightarrow \alpha_{i}} h(t) \in R$;
and there is $\varepsilon>0$ such that

$$
\begin{align*}
& \left|f^{\prime}(t)\right| \geq\left|g^{\prime}(t)\right|+\varepsilon \quad \text { and } \quad\left|f^{\prime}(t)\right|>\left|h^{\prime}(t)\right| \tag{2.9}\\
& \quad \text { almost everywhere in }\left(\alpha_{1}, \alpha_{2}\right) .
\end{align*}
$$

Then $h<f$ on $\left(\alpha_{1}, \alpha_{2}\right)$.
Proof. One can assume that $f^{\prime}(t)>0$. Then $\alpha_{1} \in R$, since otherwise by (2.9), $\lim _{t \rightarrow-\infty}(f(t)-g(t))=-\infty$, a contradiction with (2.6). By (2.9), $f-h$ is strictly increasing and, by (2.6) and (2.7),

$$
\lim _{t \rightarrow \alpha_{1}}(f(t)-h(t)) \geq \lim _{t \rightarrow \alpha_{1}}(g(t)-h(t))=0
$$

Hence, $f-h>0$ on $\left(\alpha_{1}, \alpha_{2}\right)$.

3. Reduction of Theorem 1_{n} to a special case of semi- M-cells

By the standard cell decomposition theorem (see [vdD; Chapter 3, (2.11)]) and since

$$
R^{n}=\bigcup_{j=1}^{n}\left\{\left(x_{1}, \ldots, x_{n}\right) \in R^{n}:\left|x_{k}\right| \leq\left|x_{j}\right|, \text { for any } k \neq j\right\}
$$

it suffices to derive Theorem 1_{n} for any cell G in R^{n} such that

$$
\begin{equation*}
G=\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in \Delta, \varphi_{1}\left(x^{\prime}\right)<x_{n}<\varphi_{2}\left(x^{\prime}\right)\right\} \tag{3.1}
\end{equation*}
$$

where $\varphi_{i}: \Delta \longrightarrow R(i=1,2)$ are continuous.
Definition 6. For given positive $L, P \in R$, a cell G of the form (3.1) will be called an (L, P)-cell (with respect to the variable x_{r}), where $r \in\{1, \ldots, n-1\}$, if

$$
\begin{equation*}
\left|\frac{\partial \varphi_{i}}{\partial x_{r}}\right| \geq L \quad \text { and } \quad \frac{\left|\frac{\partial \varphi_{i}}{\partial x_{j}}\right|}{\left|\frac{\partial \varphi_{i}}{\partial x_{r}}\right|} \leq P \tag{3.2}
\end{equation*}
$$

almost everywhere on Δ, for $i \in\{1,2\}, j \in\{1, \ldots, n-1\}$.

Proposition 3.

(1) Any open cell $G \subset R^{n}$ has an almost decomposition

$$
\begin{equation*}
G \simeq S_{1} \cup \cdots \cup S_{k}, \tag{3.3}
\end{equation*}
$$

where every S_{ν} is either a semi- M_{n}-cell or an $\left(L_{n}, P_{n}\right)$-cell after a permutation of coordinates, where the positive constants M_{n}, L_{n} and P_{n} depend only on n.
(2) If a cell G is an (L, P)-cell, then G has an almost decomposition (3.3) with only semi-M-cells, where the constant M depends only on n, L and P.

To prove Proposition 3, we first have the following lemma.
Lemma 6. Let H be an open subset of R^{n} and let E be a closed subset of ∂H such that $\operatorname{dim} E<n-1$. Let $r_{i} \in\{1, \ldots, n-1\}(i \in\{1,2\})$. Assume that $L, P \in R$ are positive, and such that for each $a \in \partial H \backslash E$:
(3.4-i) there exists a neighborhood U of a in R^{n} such that $\partial H \cap$ U is (the graph of) a \mathcal{C}^{1}-function $\psi: V \longrightarrow R$ defined on an open $V \subset R^{n-1}$ and such that

$$
\left|\frac{\partial \psi}{\partial x_{r_{i}}}\right| \geq L \quad \text { and } \quad \frac{\left|\frac{\partial \psi}{\partial x_{j}}\right|}{\left|\frac{\partial \psi}{\partial x_{r_{i}}}\right|} \leq P \quad \text { on } V \text { for } j \in\{1, \ldots, n-1\}
$$

for $i=1$ or $i=2$.
Then:
(1) H admits an almost decomposition

$$
\begin{equation*}
H \simeq S_{1} \cup \cdots \cup S_{k} \tag{3.5}
\end{equation*}
$$

where every S_{ν} after transposition $\left(x_{r_{1}}, x_{n}\right)$ is either a semi-max $\left(L^{-1}, P\right)$ cell or a $\left(P^{-1}, \max \left(L^{-1}, P\right)\right)$-cell in R^{n} with respect to $x_{r_{2}}$.
(2) If $r_{1}=r_{2}=r, H$ has such an almost decomposition of the form (3.5), where every S_{ν} is a $\max \left(L^{-1}, P\right)$-cell after transposition $\left(x_{r}, x_{n}\right)$.

Proof. After transposition $\left(x_{r_{1}}, x_{n}\right)$, take a \mathcal{C}^{1}-cell decomposition compatible with each of the sets

$$
\Lambda_{i}=\{a \in \partial H \backslash E: a \text { satisfies }(3.4-i)\}
$$

$(i=1,2)$ and with E. This gives an almost decomposition

$$
H \simeq S_{1} \cup \cdots \cup S_{k}
$$

where every cell S_{ν} is of the following form

$$
S_{\nu}=\left\{\varphi_{1 \nu}\left(x_{1}, \ldots, \hat{x}_{r_{1}}, \ldots, x_{n}\right)<x_{r_{1}}<\varphi_{2 \nu}\left(x_{1}, \ldots, \hat{x}_{r_{1}}, \ldots, x_{n}\right)\right\}
$$

such that, for $i \in\{1,2\}$, either $\varphi_{i \nu} \subset \Lambda_{1}$ or $\varphi_{i \nu} \subset \Lambda_{2}$, or $\varphi_{i \nu} \equiv-\infty$, or $\varphi_{i \nu} \equiv$ $+\infty$.

One can assume that for each i either $\varphi_{i \nu} \subset \Lambda_{1}$ or $\varphi_{i \nu} \subset \Lambda_{2}$, since otherwise S_{ν} is trivially a semi-max $\left(L^{-1}, P\right)$-cell.

If $\varphi_{i \nu} \subset \Lambda_{1}$, for at least one i, then S_{ν} is a $\operatorname{semi}-\max \left(L^{-1}, P\right)$-cell.
If $\varphi_{i \nu} \subset \Lambda_{2}$, for each $i \in\{1,2\}$, and $r_{1} \neq r_{2}$, then it is easy to check that S_{ν} is an $\left(P, \max \left(L^{-1}, P\right)\right)$-cell with respect to $x_{r_{2}}$.

Proof of Proposition 3. One can assume that G is as in (3.1). The proof will be by descending induction on the number

$$
\langle G\rangle=\sum_{i=1}^{2} \sharp\left\{j:\left|\frac{\partial \varphi_{i}}{\partial x_{j}}\right|<1+2 M_{2 n-1} \text { almost everywhere on } \Delta\right\} .
$$

If $\langle G\rangle=2(n-1)$, then G is a $\left(1+2 M_{2 n-1}\right)$-cell, so assume that $\langle G\rangle<2(n-1)$. Observe that if $\tilde{\Delta} \subset \Delta$ is open, then for $\tilde{G}=G \cap(\tilde{\Delta} \times R),\langle\tilde{G}\rangle \geq\langle G\rangle$. Hence, one can assume that every φ_{i} is \mathcal{C}^{1} and
(3.6) for each $j \in\{1, \ldots, n-1\}, \quad \operatorname{sgn} \frac{\partial \varphi_{i}}{\partial x_{j}}=$ const on Δ;

$$
\begin{align*}
& \text { for each } j \in\{1, \ldots, n-1\}, \quad \text { either }\left|\frac{\partial \varphi_{i}}{\partial x_{j}}\right|<1+2 M_{2 n-1} \quad \text { or } \tag{3.7}\\
& \left|\frac{\partial \varphi_{i}}{\partial x_{j}}\right|>1+2 M_{2 n-1}, \quad \text { or } \quad\left|\frac{\partial \varphi_{i}}{\partial x_{j}}\right|=1+2 M_{2 n-1} \quad \text { on } \Delta
\end{align*}
$$

and there is an $r_{i} \in\{1, \ldots, n-1\}$ such that

$$
\begin{equation*}
\text { for each } j \in\{1, \ldots, n-1\}, \quad\left|\frac{\partial \varphi_{i}}{\partial x_{j}}\right| \leq\left|\frac{\partial \varphi_{i}}{\partial x_{r_{i}}}\right| \quad \text { on } \Delta \text {. } \tag{3.8}
\end{equation*}
$$

Moreover, one can assume that for $i \in\{1,2\}$

$$
\begin{equation*}
\left|\frac{\partial \varphi_{i}}{\partial x_{r_{i}}}\right| \geq 4 M_{2 n-1}\left(1+2 M_{2 n-1}\right) \quad \text { on } \Delta \tag{3.9}
\end{equation*}
$$

since otherwise G is a semi- $4 M_{2 n-1}\left(1+2 M_{2 n-1}\right)$-cell. Besides, by Lemma 2, one can assume that

$$
\Delta=\left\{\left(x^{\prime \prime}, x_{n-1}\right): x^{\prime \prime} \in \Omega, \sigma\left(x^{\prime \prime}\right)<x_{n-1}<\rho\left(x^{\prime \prime}\right)\right\}
$$

is an $M_{2 n-1}$-disc and every φ_{i} has a continuous extension

$$
\varphi_{i}: \Delta \cup \sigma \cup \rho \longrightarrow \bar{R}
$$

such that

$$
\varphi_{i}(\sigma) \subset R \text { or } \varphi_{i}(\sigma)=\{-\infty\} \text { or } \varphi_{i}(\sigma)=\{+\infty\}, \text { and the same for } \rho
$$

Observe that if

$$
\frac{\partial \varphi_{1}}{\partial x_{n-1}} \cdot \frac{\partial \varphi_{2}}{\partial x_{n-1}} \leq 0
$$

then clearly G is a semi- $M_{2 n-1}$-cell after transposition $\left(x_{n-1}, x_{n}\right)$, so without any loss of generality, one can assume that

$$
\frac{\partial \varphi_{i}}{\partial x_{n-1}}>0 \quad \text { on } \Delta, \text { for } i \in\{1,2\}
$$

We will first show how to reduce our proposition to the case of any (L, P) cell with respect to any variable x_{r}, so assume that Proposition 3 is true for any (L, P)-cell.

By (3.7), one can distinguish the following three cases:

$$
\begin{align*}
& \left|\frac{\partial \varphi_{i}}{\partial x_{n-1}}\right| \leq 1+2 M_{2 n-1}, \quad \text { for } i \in\{1,2\} \tag{3.10}\\
& \left|\frac{\partial \varphi_{i}}{\partial x_{n-1}}\right| \geq 1+2 M_{2 n-1}, \quad \text { for } i \in\{1,2\} \tag{3.11}\\
& \left|\frac{\partial \varphi_{1}}{\partial x_{n-1}}\right|<1+2 M_{2 n-1} \quad \text { and } \tag{3.12}\\
& \left|\frac{\partial \varphi_{2}}{\partial x_{n-1}}\right|>1+2 M_{2 n-1} \quad \text { (or vice-versa). }
\end{align*}
$$

Case (3.10). In fact, we will be using only that every $\varphi_{i}: \Delta \cup \sigma \cup \rho \longrightarrow R$ is continuous and there is a closed nowhere dense $Z \subset \Delta$ such that φ_{i} is \mathcal{C}^{1} on $\Delta \backslash Z$ and

$$
\begin{align*}
\left|\frac{\partial \varphi_{i}}{\partial x_{n-1}}\right| & \leq 1+2 M_{2 n-1}, \quad \text { on } \Delta \backslash Z \tag{3.13}\\
\left|\frac{\partial \varphi_{i}}{\partial x_{j}}\right| & \leq 3\left|\frac{\partial \varphi_{i}}{\partial x_{r_{i}}}\right| \quad \text { on } \Delta \backslash Z(j=1, \ldots, n-1) \tag{3.14}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\frac{\partial \varphi_{i}}{\partial x_{r_{i}}}\right| \geq 2 M_{2 n-1}\left(1+2 M_{2 n-1}\right) \quad \text { on } \Delta \backslash Z . \tag{3.15}
\end{equation*}
$$

Put

$$
\begin{aligned}
H & =\left\{\left(x^{\prime \prime}, x_{n-1}, x_{n}\right) \in G: \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<x_{n}<\varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right\} \\
& =\left\{\left(x^{\prime}, x_{n}\right) \in R^{n}: x^{\prime} \in D, \Phi_{1}\left(x^{\prime}\right)<x_{n}<\Phi_{2}\left(x^{\prime}\right)\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
D & =\left\{\left(x^{\prime \prime}, x_{n-1}\right) \in \Delta: \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<\varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right\} \\
\Phi_{1}\left(x^{\prime \prime}, x_{n-1}\right) & =\max \left(\varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right), \varphi_{1}\left(x^{\prime \prime}, x_{n-1}\right)\right)
\end{aligned}
$$

and

$$
\Phi_{2}\left(x^{\prime \prime}, x_{n-1}\right)=\min \left(\varphi_{2}\left(x^{\prime \prime}, x_{n-1}\right), \varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right)
$$

Observe that $\Phi_{1}=\Phi_{2}$ on $(\partial D) \cap(\Delta \cup \sigma \cup \rho)$, so $\Phi_{1}=\Phi_{2}$ almost everywhere on ∂D. Besides, by Proposition $2, \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right) \not \equiv-\infty$ and

$$
\frac{\partial}{\partial x_{j}} \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)=\frac{\partial \varphi_{2}}{\partial x_{j}}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)+\frac{\partial \varphi_{2}}{\partial x_{n-1}}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right) \frac{\partial \sigma}{\partial x_{j}}\left(x^{\prime \prime}\right)
$$

almost everywhere on Ω, for $j \in\{1, \ldots, n-2\}$. Hence, by (3.13) and (3.15)

$$
\left|\frac{\partial}{\partial x_{j}} \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\right| \leq \frac{7}{2}\left|\frac{\partial \varphi_{2}}{\partial x_{r_{2}}}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\right|
$$

and

$$
\left|\frac{\partial}{\partial x_{r_{2}}} \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\right| \geq \frac{1}{2}\left|\frac{\partial \varphi_{2}}{\partial x_{r_{2}}}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\right| \geq M_{2 n-1}\left(1+2 M_{2 n-1}\right)
$$

Consequently,

$$
\frac{\left|\frac{\partial}{\partial x_{j}} \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\right|}{\left|\frac{\partial}{\partial x_{r_{2}}} \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\right|} \leq 7, \quad \text { for any } j \in\{1, \ldots, n-1\}
$$

In the same way, $\varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right) \not \equiv+\infty$ and almost everywhere on D

$$
\left|\frac{\partial}{\partial x_{r_{1}}} \varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right| \geq M_{2 n-1}\left(1+2 M_{2 n-1}\right)
$$

and

$$
\frac{\left|\frac{\partial}{\partial x_{j}} \varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right|}{\left|\frac{\partial}{\partial x_{r_{1}}} \varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right|} \leq 7, \quad \text { for any } j \in\{1, \ldots, n-1\}
$$

By Lemma 6(1), H admits an almost decomposition

$$
\begin{equation*}
H \simeq S_{1} \cup \cdots \cup S_{k} \tag{3.16}
\end{equation*}
$$

where every S_{ν} is either a semi-7-cell or a $\left(\frac{1}{7}, 7\right)$-cell in R^{n} after transposition $\left(x_{r_{1}}, x_{n}\right)$.

Since $G \backslash \bar{H}$ easily almost decomposes into a finite union of semi- $M_{2 n-1-}$ cells after transposition $\left(x_{n-1}, x_{n}\right),(3.16)$ extends to a similar decomposition of G.

Case (3.11). Let φ_{i}^{-1} denote the inversion of φ_{i} with respect to x_{n-1} $(i \in\{1,2\})$.

Observe that if $\left|\frac{\partial \varphi_{i}}{\partial x_{j}}\right|<1+2 M_{2 n-1}$, then

$$
\left|\frac{\partial \varphi_{i}^{-1}}{\partial x_{j}}\right|=\frac{\left|\frac{\partial \varphi_{i}}{\partial x_{j}}\right|}{\left|\frac{\partial \varphi_{i}}{\partial x_{n-1}}\right|}<1<1+2 M_{2 n-1}
$$

and, moreover,

$$
\left|\frac{\partial \varphi_{i}^{-1}}{\partial x_{n}}\right|=\frac{1}{\left|\frac{\partial \varphi_{i}}{\partial x_{n-1}}\right|}<1<1+2 M_{2 n-1}
$$

Hence,

$$
\sharp\left\{j:\left|\frac{\partial \varphi_{i}}{\partial x_{j}}\right|<1+2 M_{2 n-1}\right\}<\sharp\left\{\nu:\left|\frac{\partial \varphi_{i}^{-1}}{\partial x_{\nu}}\right|<1+2 M_{2 n-1}\right\} \quad \text { for } i \in\{1,2\} \text {. }
$$

Again it suffices to decompose the cell H defined as in case (3.10). Observe that after transposition $\left(x_{n-1}, x_{n}\right)$, the set H is the following cell

$$
\begin{aligned}
H= & \left\{\left(x^{\prime \prime}, x_{n}, x_{n-1}\right): x^{\prime \prime} \in \Omega, \varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<x_{n}<\varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right. \\
& \left.\varphi_{2}^{-1}\left(x^{\prime \prime}, x_{n}\right)<x_{n-1}<\varphi_{1}^{-1}\left(x^{\prime \prime}, x_{n}\right)\right\} .
\end{aligned}
$$

Since $\langle H\rangle>\langle G\rangle$, the induction hypothesis implies the desired decomposition.
Case (3.12). Then $\varphi_{1}(\sigma) \subset R$ and define

$$
\psi\left(x^{\prime \prime}, x_{n-1}\right)=\varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)+\left(1+2 M_{2 n-1}\right)\left(x_{n-1}-\sigma\left(x^{\prime \prime}\right)\right)
$$

for $\left(x^{\prime \prime}, x_{n-1}\right) \in \Delta$. Now G splits into two cells:

$$
S_{1}=\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in \Delta, \varphi_{1}\left(x^{\prime}\right)<x_{n}<\psi\left(x^{\prime}\right)\right\}
$$

and

$$
S_{2}=\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in \Delta, \psi\left(x^{\prime}\right)<x_{n}<\varphi_{2}\left(x^{\prime}\right)\right\} .
$$

Observe that

$$
\frac{\partial \psi}{\partial x_{j}}=\frac{\partial \varphi_{1}}{\partial x_{j}}+\left[\frac{\partial \varphi_{1}}{\partial x_{n-1}}-\left(1+2 M_{2 n-1}\right)\right] \frac{\partial \sigma}{\partial x_{j}}
$$

for $j \in\{1, \ldots, n-2\}$, almost everywhere on Δ.
Hence, by (3.8), (3.12), and (3.9),

$$
\left|\frac{\partial \psi}{\partial x_{j}}\right| \leq\left|\frac{\partial \varphi_{1}}{\partial x_{r_{1}}}\right|+2 M_{2 n-1}\left(1+2 M_{2 n-1}\right) \leq \frac{3}{2}\left|\frac{\partial \varphi_{1}}{\partial x_{r_{1}}}\right|
$$

and

$$
\left|\frac{\partial \psi}{\partial x_{r_{1}}}\right| \geq\left|\frac{\partial \varphi_{1}}{\partial x_{r_{1}}}\right|-2 M_{2 n-1}\left(1+2 M_{2 n-1}\right) \geq \frac{1}{2}\left|\frac{\partial \varphi_{1}}{\partial x_{r_{1}}}\right| \geq 2 M_{2 n-1}\left(1+2 M_{2 n-1}\right) .
$$

Therefore,

$$
\frac{\left|\frac{\partial \psi}{\partial x_{j}}\right|}{\left|\frac{\partial \psi}{\partial x_{r_{1}}}\right|} \leq 3
$$

for any $j \in\{1, \ldots, n-2\}$. Thus, S_{1} satisfies the conditions (3.13)-(3.15) and the case (3.10) applies.

On the other hand, if $j \in\{1, \ldots, n-2\}$ and

$$
\left|\frac{\partial \varphi_{1}}{\partial x_{j}}\right|<1+2 M_{2 n-1}
$$

then

$$
\left|\frac{\partial \psi^{-1}}{\partial x_{j}}\right|=\frac{\left|\frac{\partial \psi}{\partial x_{j}}\right|}{\left|\frac{\partial \psi}{\partial x_{n-1}}\right|} \leq \frac{\left|\frac{\partial \varphi_{1}}{\partial x_{j}}\right|+2 M_{2 n-1}\left(1+2 M_{2 n-1}\right)}{1+2 M_{2 n-1}}<1+2 M_{2 n-1}
$$

hence,

$$
\sharp\left\{j:\left|\frac{\partial \varphi_{1}}{\partial x_{j}}\right|<1+2 M_{2 n-1}\right\} \leq \sharp\left\{\nu:\left|\frac{\partial \psi^{-1}}{\partial x_{\nu}}\right|<1+2 M_{2 n-1}\right\},
$$

while

$$
\sharp\left\{j:\left|\frac{\partial \varphi_{2}}{\partial x_{j}}\right|<1+2 M_{2 n-1}\right\}<\sharp\left\{\nu:\left|\frac{\partial \varphi_{2}^{-1}}{\partial x_{\nu}}\right|<1+2 M_{2 n-1}\right\}
$$

and we finish by the induction hypothesis as in case (3.11).
In the case of any (L, P)-cell with respect to x_{r}, it is enough to repeat all the argument with suitable changes; in particular, one should put $r_{1}=r_{2}=r$ and a coefficient P instead of 3 in (3.15). Moreover, one can assume that

$$
\left|\frac{\partial \varphi_{i}}{\partial x_{r}}\right| \geq 2 M_{2 n-1}\left|\frac{\partial \varphi_{i}}{\partial x_{n-1}}\right|
$$

for each $i \in\{1,2\}$, since otherwise we could assume the opposite inequality, which easily gives a representation of G as a semi- $2 M_{2 n-1} \max \left(L^{-1}, P\right)$-cell.

4. Theorem 1_{n} for a semi- M-cell

Proposition 4. Any semi-M-cell G in R^{n} (where $M>0$) admits an almost decomposition

$$
\begin{equation*}
G \simeq S_{1} \cup \cdots \cup S_{k} \tag{4.1}
\end{equation*}
$$

where every S_{ν} is an M^{\prime}-cell after a permutation of coordinates and $M^{\prime} \geq 1$ is a constant depending only on M and n.

Proof. One can assume that G is in the form (3.1), where $\varphi_{i}: \Delta \longrightarrow R$ $(i=1,2)$ are continuous and

$$
\begin{equation*}
\left|\frac{\partial \varphi_{1}}{\partial x_{j}}\right|<M \quad \text { almost everywhere on } \Delta, \text { for } j \in\{1, \ldots, n-1\} \tag{4.2}
\end{equation*}
$$

Indeed, the cases $\varphi_{1} \equiv-\infty$ or $\varphi_{1} \equiv+\infty$ reduce to the above by assuming first that Δ is an $M_{2 n-1}$-disc and applying next transposition $\left(x_{n-1}, x_{n}\right)$.

The proof will be by descending induction on the number

$$
[G]=\sharp\left\{j:\left|\frac{\partial \varphi_{2}}{\partial x_{j}}\right| \leq M_{2 n-1} \text { almost everywhere on } \Delta\right\} .
$$

If $[G]=n-1$, then G is a $\max \left(M, M_{2 n-1}\right)$-cell, so assume that $[G]<n-1$. Notice that if $\tilde{\Delta} \subset \Delta$, then for $\tilde{G}=G \cap(\tilde{\Delta} \times R)$, we have $[\tilde{G}] \geq[G]$.

Fix any $L>\max \left(M, M_{2 n-1}\right)$ and any $M^{*}>M+(L+M) M_{2 n-1}$. Dividing Δ, one can assume that every φ_{i} is \mathcal{C}^{1} on Δ and

$$
\begin{array}{ll}
\text { for each } j \in\{1, \ldots, n-1\}, & \operatorname{sgn} \frac{\partial \varphi_{i}}{\partial x_{j}}=\text { const; } \\
\text { for each } j \in\{1, \ldots, n-1\}, & \left|\frac{\partial \varphi_{2}}{\partial x_{j}}\right|>L \quad \text { on } \Delta \text { or } \tag{4.4}\\
& \left|\frac{\partial \varphi_{2}}{\partial x_{j}}\right| \leq L \text { on } \Delta
\end{array}
$$

and
(4.5) there exists $r \in\{1, \ldots, n-1\}$ such that $\left|\frac{\partial \varphi_{2}}{\partial x_{r}}\right| \geq\left|\frac{\partial \varphi_{2}}{\partial x_{j}}\right|$ for each $j \in\{1, \ldots, n-1\}$, and either $\left|\frac{\partial \varphi_{2}}{\partial x_{r}}\right| \geq M^{*}$ or $\left|\frac{\partial \varphi_{2}}{\partial x_{r}}\right| \leq M^{*}$ on Δ.
Clearly, one can assume that

$$
\begin{equation*}
\left|\frac{\partial \varphi_{2}}{\partial x_{r}}\right| \geq M^{*} \quad \text { on } \Delta \tag{4.6}
\end{equation*}
$$

Finally, by Theorem 2_{n-1} and Lemma 2, one can assume that

$$
\Delta=\left\{\left(x^{\prime \prime}, x_{n-1}\right): x^{\prime \prime} \in \Omega, \sigma\left(x^{\prime \prime}\right)<x_{n-1}<\rho\left(x^{\prime \prime}\right)\right\}
$$

is an $M_{2 n-1}$-disc in R^{n-1} and every φ_{i} admits a continuous extension

$$
\varphi_{i}: \Delta \cup \sigma \cup \rho \longrightarrow \bar{R}
$$

such that $\varphi_{i}(\sigma) \subset R$ or $\varphi_{i}(\sigma)=\{-\infty\}$, or $\varphi_{i}(\sigma)=\{+\infty\}$, and the same for ρ. Because of (4.2), $\varphi_{1}: \Delta \cup \sigma \cup \rho \longrightarrow R$.

Case I:

$$
\left|\frac{\partial \varphi_{2}}{\partial x_{n-1}}\right|>L \quad \text { on } \Delta
$$

Assume that $\frac{\partial \varphi_{2}}{\partial x_{n-1}}>L$; the case $\frac{\partial \varphi_{2}}{\partial x_{n-1}}<-L$ will follow by a modification. Consider the following function

$$
\begin{equation*}
\psi\left(x^{\prime \prime}, x_{n-1}\right)=\varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)+L\left(x_{n-1}-\sigma\left(x^{\prime \prime}\right)\right) \tag{4.7}
\end{equation*}
$$

for $\left(x^{\prime \prime}, x_{n-1}\right) \in \Delta$.
Then $\varphi_{1}<\psi<\varphi_{2}$ and $G \simeq S_{1} \cup S_{2}$, where

$$
S_{1}=\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in \Delta, \varphi_{1}\left(x^{\prime}\right)<x_{n}<\psi\left(x^{\prime}\right)\right\}
$$

is an M^{*}-cell and

$$
S_{2}=\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in \Delta, \psi\left(x^{\prime}\right)<x_{n}<\varphi_{2}\left(x^{\prime}\right)\right\}
$$

can be interpreted after transposition $\left(x_{n-1}, x_{n}\right)$ as

$$
\begin{aligned}
S_{2}= & \left\{\left(x^{\prime \prime}, x_{n-1}, x_{n}\right): x^{\prime \prime} \in \Omega, \varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<x_{n}<\varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right. \\
& \left.\theta_{2}\left(x^{\prime \prime}, x_{n}\right)<x_{n-1}<\theta_{1}\left(x^{\prime \prime}, x_{n}\right)\right\}
\end{aligned}
$$

where

$$
\theta_{2}\left(x^{\prime \prime}, x_{n}\right)= \begin{cases}\sigma\left(x^{\prime \prime}\right), & \text { if } \varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<x_{n} \leq \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right) \\ \varphi_{2}^{-1}\left(x^{\prime \prime}, x_{n}\right), & \text { if } \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<x_{n}<\varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\end{cases}
$$

and

$$
\theta_{1}\left(x^{\prime \prime}, x_{n}\right)= \begin{cases}\psi^{-1}\left(x^{\prime \prime}, x_{n}\right), & \text { if } \varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<x_{n} \leq \psi\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right) \\ \rho\left(x^{\prime \prime}\right), & \text { if } \psi\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)<x_{n}<\varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\end{cases}
$$

and where $\varphi_{2}^{-1}\left(\right.$ and $\left.\psi^{-1}\right)$ denotes the inversion of φ_{2} (and ψ) with respect to x_{n-1}. Now, if $j \in\{1, \ldots, n-2\}$ and

$$
\left|\frac{\partial \varphi_{2}}{\partial x_{j}}\right| \leq M_{2 n-1}
$$

then

$$
\left|\frac{\partial \varphi_{2}^{-1}}{\partial x_{j}}\right|=\frac{\left|\frac{\partial \varphi_{2}}{\partial x_{j}}\right|}{\left|\frac{\partial \varphi_{2}}{\partial x_{n-1}}\right|}<\left|\frac{\partial \varphi_{2}}{\partial x_{j}}\right| \leq M_{2 n-1}
$$

and, moreover,

$$
\left|\frac{\partial \varphi_{2}^{-1}}{\partial x_{n}}\right|=\frac{1}{\left|\frac{\partial_{2}}{\partial x_{n-1}}\right|}<\frac{1}{L}<M_{2 n-1}
$$

Hence, $\left[S_{2}\right]>[G]$ and the induction hypothesis ends the proof in this case. Case II:

$$
\left|\frac{\partial \varphi_{2}}{\partial x_{n-1}}\right| \leq L \quad \text { on } \Delta
$$

By (4.6) and (4.3), one can assume without any loss of generality that

$$
\frac{\partial \varphi_{2}}{\partial x_{r}} \geq M^{*}, \quad \frac{\partial \varphi_{2}}{\partial x_{n-1}}>0 \quad \text { and } \quad \frac{\partial \varphi_{1}}{\partial x_{n-1}}>0
$$

other possibilities will follow by simple modifications.
Since $M^{*}>L, r \in\{1, \ldots, n-2\}$. By Proposition 2, we have almost everywhere on Δ :

$$
\begin{aligned}
\frac{\partial}{\partial x_{r}} \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right) & =\left|\frac{\partial \varphi_{2}}{\partial x_{r}}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)+\frac{\partial \varphi_{2}}{\partial x_{n-1}}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right) \frac{\partial \sigma}{\partial x_{r}}\left(x^{\prime \prime}\right)\right| \\
& \geq M^{*}-L M_{2 n-1}
\end{aligned}
$$

while

$$
\begin{aligned}
\left|\frac{\partial}{\partial x_{r}} \varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\right| & \leq M+M M_{2 n-1} \quad \text { and } \\
\left|\frac{\partial}{\partial x_{r}} \varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right| & \leq M+M M_{2 n-1}
\end{aligned}
$$

Thus, by Lemma 5,

$$
\varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)>\varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right) \quad \text { on } \Omega .
$$

Hence,

$$
G \simeq S_{1} \cup S_{2} \cup S_{3},
$$

where

$$
\begin{aligned}
S_{1}= & \left\{\left(x^{\prime \prime}, x_{n-1}, x_{n}\right):\left(x^{\prime \prime}, x_{n-1}\right) \in \Delta, \varphi_{1}\left(x^{\prime \prime}, x_{n-1}\right)<x_{n}<\varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right\}, \\
S_{2}= & \left\{\left(x^{\prime \prime}, x_{n-1}, x_{n}\right): x^{\prime \prime} \in \Omega, \varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)<x_{n}<\varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right),\right. \\
& \left.\sigma\left(x^{\prime \prime}\right)<x_{n-1}<\rho\left(x^{\prime \prime}\right)\right\}
\end{aligned}
$$

and

$$
S_{3}=\left\{\left(x^{\prime \prime}, x_{n-1}, x_{n}\right):\left(x^{\prime \prime}, x_{n-1}\right) \in \Delta, \varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)<x_{n}<\varphi_{2}\left(x^{\prime \prime}, x_{n-1}\right)\right\} .
$$

The set S_{1} is an M^{*}-cell, while S_{2} is an $M_{2 n-1}$-cell after transposition $\left(x_{n-1}\right.$, x_{n}). We will investigate S_{3}. Put

$$
\tilde{\Delta}=\left\{\left(x^{\prime \prime}, x_{n}\right): x^{\prime \prime} \in \Omega, \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<x_{n}<\varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right\} .
$$

Now,

$$
S_{3}=\left\{\left(x^{\prime \prime}, x_{n-1}, x_{n}\right):\left(x^{\prime \prime}, x_{n}\right) \in \tilde{\Delta}, \varphi_{2}^{-1}\left(x^{\prime \prime}, x_{n}\right)<x_{n-1}<\rho\left(x^{\prime \prime}\right)\right\}
$$

where φ_{2}^{-1} denotes the inversion of φ_{2} with respect to x_{n-1}.
We will use Lemma 3 to get a desired decomposition of S_{3}. Observe first that

$$
\frac{\partial \varphi_{2}^{-1}}{\partial x_{r}}=\frac{\frac{\partial \varphi_{2}}{\partial x_{r}}}{\frac{\partial \varphi_{2}}{\partial x_{n-1}}} \geq \frac{\frac{\partial \varphi_{2}}{\partial x_{r}}}{L} \geq \frac{M^{*}}{L}>\frac{M+(L+M) M_{2 n-1}}{L}>M_{2 n-1} \geq\left|\frac{\partial \rho}{\partial x_{r}}\right|
$$

and

$$
\frac{\left|\frac{\partial \varphi_{2}^{-1}}{\partial x_{j}}\right|}{\left|\frac{\partial \varphi_{2}^{-1}}{\partial x_{r}}\right|}=\frac{\left|\frac{\partial \varphi_{2}}{\partial x_{j}}\right|}{\left|\frac{\partial \varphi_{2}}{\partial x_{r}}\right|} \leq 1, \quad \text { for } j \in\{1, \ldots, n-2\},
$$

and

$$
\frac{\left|\frac{\partial \varphi_{2}^{-1}}{\partial x_{n}}\right|}{\left|\frac{\partial \varphi_{2}^{-1}}{\partial x_{r}}\right|}=\frac{1}{\left|\frac{\partial \varphi_{2}^{-1}}{\partial x_{r}}\right|} \leq \frac{1}{M^{*}}<1
$$

Now, it suffices to check that Δ has an almost decomposition into N-cells with respect to the variable x_{r}, where the constant N depends only on M, L, M^{*} and $M_{2 n-1}$. We will check this using Lemma 6(2).

We have almost everywhere on Ω :

$$
\frac{\partial}{\partial x_{r}} \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right) \geq \frac{\partial \varphi_{2}}{\partial x_{r}}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\left(1-\frac{L M_{2 n-1}}{M^{*}}\right) \geq M^{*}-L M_{2 n-1}
$$

and

$$
\frac{\left|\frac{\partial}{\partial x_{j}} \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\right|}{\left|\frac{\partial}{\partial x_{r}} \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\right|} \leq \frac{\left|\frac{\partial \varphi_{2}}{\partial x_{j}}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)+\frac{\partial \varphi_{2}}{\partial x_{n-1}}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right) \frac{\partial \sigma}{\partial x_{j}}\left(x^{\prime \prime}\right)\right|}{\left|\frac{\partial \varphi_{2}}{\partial x_{r}}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)\right| \frac{M\left(1+M_{2 n-1}\right)}{M^{*}}} \leq \frac{M^{*}}{M} .
$$

The same is true for ρ in place of σ. Moreover, by the assumption of case II,

$$
\left|\varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)-\varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right| \leq\left|\sigma\left(x^{\prime \prime}\right)-\rho\left(x^{\prime \prime}\right)\right| \quad \text { on } \Omega .
$$

Hence,

$$
\lim _{x^{\prime \prime} \rightarrow a^{\prime \prime}}\left[\varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)-\varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right]=0
$$

for any $a^{\prime \prime} \in \partial \Omega$, so the assumptions of Lemma 6(2) are satisfied.

5. Proof of Theorem 2_{n} for any M-cell

Let

$$
G=\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in \Delta, \varphi_{1}\left(x^{\prime}\right)<x_{n}<\varphi_{2}\left(x^{\prime}\right)\right\}
$$

be any M-cell, where $M \in R, M \geq 1$. Observe that all possible cases reduce to the case $\varphi_{i}: \Delta \longrightarrow R \quad(i \in\{1,2\})$. Indeed, suppose for example that $\varphi_{1}: \Delta \longrightarrow R$ and $\varphi_{2} \equiv+\infty$. Then one can assume first that φ_{1} is \mathcal{C}^{1} on Δ and, for each $j \in\{1, \ldots, n-1\}$,

$$
\operatorname{sgn} \frac{\partial \varphi_{1}}{\partial x_{j}}=\text { const } \quad \text { on } \Delta
$$

and next that

$$
\Delta=\left\{\left(x^{\prime \prime}, x_{n-1}\right): x^{\prime \prime} \in \Omega, \sigma\left(x^{\prime \prime}\right)<x_{n-1}<\rho\left(x^{\prime \prime}\right)\right\}
$$

is an $M_{2 n-1}$-disc in R^{n-1} such that φ_{1} has a continuous extension

$$
\varphi_{1}: \Delta \cup \sigma \cup \rho \longrightarrow R .
$$

Then, assuming that $\frac{\partial \varphi_{1}}{\partial x_{n-1}}>0$,

$$
G \simeq S_{1} \cup S_{2}
$$

where

$$
S_{1}=\left\{\left(x^{\prime \prime}, x_{n-1}, x_{n}\right):\left(x^{\prime \prime}, x_{n-1}\right) \in \Delta, \varphi_{1}\left(x^{\prime}, x_{n-1}\right)<x_{n}<\varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)\right\}
$$

is an $M\left(1+M_{2 n-1}\right)$-cell, while

$$
S_{2}=\left\{\left(x^{\prime \prime}, x_{n-1}, x_{n}\right): x^{\prime \prime} \in \Omega, \varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)<x_{n}, \sigma\left(x^{\prime \prime}\right)<x_{n-1}<\rho\left(x^{\prime \prime}\right)\right\}
$$

is an $M_{2 n-1}$-cell after transposition $\left(x_{n-1}, x_{n}\right)$.
Consequently, assume that $\varphi_{i}: \Delta \longrightarrow R(i \in\{1,2\})$ and that they are \mathcal{C}^{1}. By Theorem 3_{n-1}, one can assume that Δ is a regular $M_{3 n-1}$-cell and then, by Proposition 1, that every φ_{i} has a continuous extension

$$
\varphi_{i}: \bar{\Delta} \longrightarrow R \quad(i \in\{1,2\}) .
$$

Now, still keeping the last property, one can assume that

$$
\Delta=\left\{\left(x^{\prime \prime}, x_{n-1}\right): x^{\prime \prime} \in \Omega, \sigma\left(x^{\prime \prime}\right)<x_{n-1}<\rho\left(x^{\prime \prime}\right)\right\}
$$

is an $M_{2 n-1}$-disc. Put

$$
\begin{aligned}
& \lambda_{1}\left(x^{\prime \prime}, x_{n-1}\right)=\varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)+2 M\left(x_{n-1}-\sigma\left(x^{\prime \prime}\right)\right) \\
& \lambda_{2}\left(x^{\prime \prime}, x_{n-1}\right)=\varphi_{1}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)-2 M\left(x_{n-1}-\rho\left(x^{\prime \prime}\right)\right) \\
& \lambda_{3}\left(x^{\prime \prime}, x_{n-1}\right)=\varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)+2 M\left(x_{n-1}-\rho\left(x^{\prime \prime}\right)\right)
\end{aligned}
$$

and

$$
\lambda_{4}\left(x^{\prime \prime}, x_{n-1}\right)=\varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)-2 M\left(x_{n-1}-\sigma\left(x^{\prime \prime}\right)\right)
$$

for any $\left(x^{\prime \prime}, x_{n-1}\right) \in \Omega \times R$. Every λ_{i} has a continuous extension to $\bar{\Omega} \times R$ and is an $M\left(1+3 M_{2 n-1}\right)$-function. Its inversion λ_{i}^{-1} with respect to x_{n-1} has a continuous extension to $\bar{\Omega} \times R$ as well and is a $\frac{1}{2}\left(1+3 M_{2 n-1}\right)$-function.

For any subset $I \subset\{1,2,3,4\}$, set

$$
S_{I}=\left\{\left(x^{\prime}, x_{n}\right) \in G: x_{n}<\lambda_{i}\left(x^{\prime}\right), \text { if } i \in I \text { and } \lambda_{i}\left(x^{\prime}\right)<x_{n}, \text { if } i \notin I\right\} .
$$

Then

$$
G \simeq \bigcup_{I} S_{I}
$$

It suffices to show that every S_{I} is an $M\left(1+3 M_{2 n-1}\right)$-disc after perhaps transposition $\left(x_{n-1}, x_{n}\right)$.

Fix any $I \subset\{1,2,3,4\}$.
If $\{1,2\} \subset I$, then

$$
\begin{aligned}
S_{I}= & \left\{\left(x^{\prime}, x_{n}\right) \in \Delta \times R: \varphi_{1}\left(x^{\prime}\right)<x_{n}<\varphi_{2}\left(x^{\prime}\right), x_{n}<\lambda_{i}\left(x^{\prime}\right), \text { if } i \in I,\right. \\
& \left.\lambda_{i}\left(x^{\prime}\right)<x_{n}, \text { if } i \notin I\right\},
\end{aligned}
$$

and $\lambda_{1}=\varphi_{1}$ on σ, while $\lambda_{2}=\varphi_{1}$ on ρ and Lemma 4 applies.
Similarly, when $\{3,4\} \cap I=\emptyset$.
If $\{1,2\} \not \subset I$ and $\{3,4\} \cap I \neq \emptyset$, we have $1 \notin I$ and $3 \in I$ or $1 \notin I$ and $4 \in I$ (or, similarly, $2 \notin I$ and $3 \in I$ or $2 \notin I$ and $4 \in I$).

Suppose first that $1 \notin I$ and $3 \in I$. Then

$$
\begin{align*}
S_{I}= & \left\{\left(x^{\prime \prime}, x_{n-1}, x_{n}\right): x^{\prime \prime} \in \Omega, \varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)<x_{n}<\varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right),\right. \tag{5.1}\\
& \sigma\left(x^{\prime \prime}\right)<x_{n-1}<\rho\left(x^{\prime \prime}\right), x_{n-1}<\lambda_{i}^{-1}\left(x^{\prime \prime}, x_{n}\right) \text { if } i \in \tilde{I}, \\
& \left.\lambda_{i}^{-1}\left(x^{\prime \prime}, x_{n}\right)<x_{n-1} \text { if } i \notin \tilde{I}\right\},
\end{align*}
$$

where $\tilde{I} \subset\{1,2,3,4\}$ is defined by the formula: $i \in \tilde{I}$ if and only if $i \in I$ and i is even or $i \notin I$ and i is odd. Since

$$
\lambda_{1}^{-1}\left(x^{\prime \prime}, \varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)=\sigma\left(x^{\prime \prime}\right)\right.
$$

and

$$
\lambda_{3}^{-1}\left(x^{\prime \prime}, \varphi_{2}\left(x^{\prime \prime}, \rho\left(x^{\prime \prime}\right)\right)=\rho\left(x^{\prime \prime}\right)\right.
$$

for each $x^{\prime \prime} \in \Omega$ and

$$
\sigma\left(x^{\prime \prime}\right)=\rho\left(x^{\prime \prime}\right)
$$

for each $x^{\prime \prime} \in \partial \Omega$, we are done by Lemma 4 .
Let now $1 \notin I$ and $4 \in I$. Then (5.1) holds, and since

$$
\lambda_{1}^{-1}\left(x^{\prime \prime}, \varphi_{1}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)=\sigma\left(x^{\prime \prime}\right), \quad \lambda_{4}^{-1}\left(x^{\prime \prime}, \varphi_{2}\left(x^{\prime \prime}, \sigma\left(x^{\prime \prime}\right)\right)=\sigma\left(x^{\prime \prime}\right)\right.\right.
$$

for each $x^{\prime \prime} \in \Omega$ and $\sigma\left(x^{\prime \prime}\right)=\rho\left(x^{\prime \prime}\right)$, for each $x^{\prime \prime} \in \partial \Omega$, we are again done due to Lemma 4.

Acknowledgment. The author thanks the anonymous referee whose comments improved the initial text.

References

[vdD] L. van den Dries, Tame topology and o-minimal structures, Cambridge Univ. Press, 1998. MR 1633348
[K] K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, Proc. Conference Real Algebraic Geometry-Rennes 1991, Lecture Notes in Math., vol. 1524, Springer, Berlin, 1992, pp. 316-322. MR 1226263
[P] A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Sci. École Norm. Sup. 27 (1994), 661-696. MR 1307677

WiesŁaw PawŁucki, Instytut Matematyki, Uniwersytet Jagielloński, ul. Łojasiewicza
6, 30-348 Kraków, Poland
E-mail address: Wieslaw.Pawlucki@im.uj.edu.pl

[^0]: Received September 5, 2007; received in final form February 14, 2008.
 Research partially supported by the grant of the Polish Ministry of Research and Education 1 P03A 00527 and the European Community IHP-Network RAAG (HPNR-CT-2001-00271)

 2000 Mathematics Subject Classification. Primary 32B20, 14P10. Secondary 32S60, 51N20, 51F99.

[^1]: 1 We will identify functions with their graphs.

[^2]: 2 An element $\alpha \in \bar{R}$ is a limit value of a function $g: S \longrightarrow R$ at $a \in \bar{S}$ if and only if there is an arc $\gamma:(0,1) \longrightarrow S$ such that $\lim _{t \rightarrow 0} \gamma(t)=a$ and $\lim _{t \rightarrow 0} g(\gamma(t))=\alpha$.

