ORBITS OF AUTOMORPHISMS OF INTEGRAL DOMAINS

PRAMOD K. SHARMA

ABSTRACT. Let R be an integral domain. We study the structure of R under the condition that the orbit space R/Aut(R) is finite. It is proved that if R is Noetherian, then $|R/Aut(R)| = \infty$ unless R is a finite field (Theorem 15 and Corollary 16). Furthermore, we give an example of an infinite integral domain with $|R/Aut(R)| < \infty$.

1. Introduction

All rings are commutative with identity $\neq 0$. Kiran Kedlaya and Bjorn Poonen [3, Theorem 1.1] have proved if K is a field on which the number of orbits of Aut(K) is finite, then K is finite. Furthermore, in [3, Remark 1.11], it is stated that "we do not know whether there exists an infinite integral domain R such that Aut(R) has finitely many orbits on R". In this note, we prove the existence of such an integral domain. In Section 2, we collect some facts, essentially from [3], to be used freely in sequel. If R is an integral domain, then orbit of any $\lambda \in R$ is denoted by $o(\lambda)$.

In Section 3, we study orbit space of integral domains. Apart from other results, we prove that if A is an integral domain such that $|A/Aut(A)| < \infty$, then elements of A with finite orbits form a subfield which is integrally closed in A (Lemma 11). Moreover, if Aut(A) is torsion, then it is finite and A is a finite field (Theorem 12).

In Section 4, we prove that for any Noetherian integral domain R if |R| $Aut(R)| < \infty$, R is a finite field (Corollary 16). We also give a characterization of the structure of integral domains R having characteristic p > 2 and $|R/Aut(R)| < \infty$ (Theorem 17). Finally, we give an example of an infinite integral domain with finitely many orbits.

©2009 University of Illinois

Received March 9, 2007; received in final form March 29, 2007. 2000 Mathematics Subject Classification. 13G05, 13A99.

2. Some basic facts

We shall collect here some basic facts, which either appear in [3] or are immediate from results therein to be used freely in sequel. Throughout this section, R is an integral domain, such that $|R/Aut(R)| < \infty$. Thus, characteristic of R is p > 0. Let \mathbb{F}_p be the prime subfield of R. Then E, the integral closure of \mathbb{F}_p in R, is a finite field. Thus, R contains finitely many roots of unity. For any subset S, of a ring R and $n \ge 1$, we shall write $S^n = \{a^n : a \in S\}$. We now note the following:

(i) Let S be a subset of R invariant under the action of Aut(R). Then $S = S^p$. In particular $R = R^p$.

As S is invariant under the action of Aut(R),

$$S \supset S^p \supset S^{p^2} \supset \dots \supset S^{p^n} \supset \dots$$

is a chain of Aut(R) invariant subsets of R. As $|R/Aut(R)| < \infty$, there exists $n \ge 1$, such that $S^{p^n} = S^{p^{n+1}}$. Therefore, for any $\lambda \in S$, there exists $\mu \in S$ such that

$$\lambda^{p^n} = \mu^{p^{n+1}}$$
$$\implies (\lambda - \mu^p)^{p^n} = 0$$
$$\implies \lambda = \mu^p.$$

Hence, $S = S^p$, and the result follows.

(ii) If R is integrally closed and contains no primitive qth root of unity for a prime q, then for any Aut(R) invariant subset S of R, $S = S^q$. Thus, in particular, $R = R^q$.

Proceeding as in (i), there exists $n \ge 1$, such that $S^{q^n} = S^{q^{n+1}}$. Therefore, for any $\lambda \in S$, there exists $\mu \in S$ such that

$$\lambda^{q^n} = \mu^{q^{n+1}}$$
$$\implies (\lambda \mu^{-q})^{q^n} = 1$$
$$\implies \lambda = \mu^q.$$

Therefore $S = S^q$, and hence, $R = R^q$.

Following almost verbatim the proof of [3, Theorem 1.1], we get that $R = E \oplus I$ where I is the divisible submodule of the $\mathbb{F}_p[X]$ -module R where $X: R \longrightarrow R$ is the Frobenius automorphism of R. Lemmas 1.7 and 1.8 in [3] also hold for any integral domain R such that $|R/Aut(R)| < \infty$. Unfortunately, [3, Theorem 1.1] fails to hold for integral domains in general since the last part of the proof needs $x \in R^*$, such that Tr(x) = 0 and $x^{-1} \in R^*$.

If we assume Char.R = p > 2, then by [3, Remark 1.9], I is an ideal. Hence, we have the following.

Let R be an integral domain of characteristic p > 2. If $|R/Aut(R)| < \infty$, then $R = E \oplus I$, where E is the integral closure of \mathbb{F}_p in R and I is a maximal ideal of R.

The ideal I is invariant under the action of Aut(R). Hence, $I^p = I$. This implies that the ideal I is equal to its pth power. Hence, I is an idempotent ideal. Therefore, if R contains no idempotent ideal, then R is a field. This, in particular, implies that if R is a Noetherian domain of characteristic p > 2 with $|R/Aut(R)| < \infty$, then R is a field.

3. Overture

In this section, unless otherwise specified, (R, m) is a quasi-local domain \neq (field), i.e., an integral domain with exactly one maximal ideal which is not a field.

LEMMA 1. If each orbit of m under the action of Aut(R) is finite, then each orbit of R under the action of Aut(R) is finite.

Proof. Let $\lambda \in R$. Choose a nonzero element $x \in m$. Then for any $\sigma \in Aut(R)$,

$$\sigma(\lambda x) = \sigma(\lambda)\sigma(x)$$

$$\implies \sigma(\lambda) = \sigma(\lambda x)/\sigma(x).$$

Hence, as $x, \lambda x \in m$, and each orbit of m under the action of Aut(R) is finite, $|o(\lambda)|$ is finite.

LEMMA 2. (i) If $|R/Aut(R)| < \infty$, then $|m/Aut(R)| < \infty$ and also $|(R/m)/Aut(R/m)| < \infty$.

- (ii) Assume $|m/Aut(R)| < \infty$ and $|(R/m)/Aut(R/m)| < \infty$. We have
- (a) If characteristic of R is 0, then

$$|R/Aut(R)| < \infty.$$

(b) If |R/m| = t + 1, and R has no nontrivial tth root of unity, then

$$|R/Aut(R)| < \infty.$$

Proof. (i) As m is invariant under the action of Aut(R), the inclusion map from m to R induces an injection

$$m/Aut(R) \rightarrow R/Aut(R)$$

Furthermore, the natural map from R to R/m induces a surjection

$$R/Aut(R) \rightarrow ((R/m)/Aut(R/m)).$$

Hence, as $|R/Aut(R)| < \infty$, the result follows.

(ii) By assumption, $|(R/m)/Aut(R/m)| < \infty$. Hence, by [3, Theorem 1.1], R/m is finite. Let the characteristic of R/m be p > 0. We now prove the following.

(a) Multiplication by p induces the bijection

 $R/Aut(R) \simeq pR/Aut(R).$

Hence, as $pR/Aut(R) \subset m/Aut(R)$ and $|m/Aut(R)| < \infty$, the result follows.

(b) Since $|m/Aut(R)| < \infty$, it suffices to prove the assertion that $|(R - m)/Aut(R)| < \infty|$. As |R/m| = t + 1, for any $\lambda \in R - m$, $\lambda^t - 1 \in m$. Furthermore, as R is an integral domain with no nontrivial tth root of unity, the map

$$\begin{array}{c} R - m \longrightarrow m, \\ \lambda \mapsto \lambda^t - 1 \end{array}$$

is injective. This induces the injection

 $(R-m)/Aut(R) \longrightarrow m/Aut(R).$

Therefore, $|(R-m)/Aut(R)| < \infty$.

LEMMA 3. If (R,m) is Noetherian domain such that $|m/Aut(R)| < \infty$, then R is a field.

Proof. Clearly, m^i is closed under the action of Aut(R) for all $i \ge 1$. As $|m/Aut(R)| < \infty$, and

$$m \supset m^2 \supset \cdots \supset m^i \supset m^{i+1} \supset \cdots$$

there exists $n \ge 1$, such that $m^n = m^{n+1}$. Hence, m = 0. Therefore, R is a field.

REMARK 4. (i) If (R,m) is Noetherian which is not a field, then $|R/Aut(R)| = \infty$.

(ii) Lemma is true even if R is not an integral domain, but $m \neq Nil(R)$.

LEMMA 5. Let A be a ring such that $|A/Aut(A)| < \infty$. If λ is a nonzero divisor in A such that $|o(\lambda)| = 1$, then λ is a unit.

Proof. Note that

$$A \supset \lambda A \supset \lambda^2 A \supset \cdots \supset \lambda^m A \supset \cdots,$$

is a descending chain of orbit closed subsets of A. As $|A/Aut(A)| < \infty$, there exists $m \ge 1$, such that $\lambda^m A = \lambda^{m+1} A$. Therefore, $1 = \lambda a$ for some $a \in A$. Hence, λ is a unit.

REMARKS 6. (i) If A is an integral domain, then

$$L = A^{Aut(A)} = \{\lambda \in A | \sigma(\lambda) = \lambda \text{ for all } \sigma \in Aut(A)\}$$

is a finite subfield of A. Furthermore, the integral closure of L in A is a finite field.

(ii) Let A be an integral domain. If $\lambda \in A$ and $o(\lambda) < \infty$, then λ is integral over $A^{Aut(A)} = L$, since if $o(\lambda) = \{\lambda = \lambda_1, \lambda_2, \dots, \lambda_t\}$, then λ is root of the polynomial $p(X) = (X - \lambda_1)(X - \lambda_2) \cdots (X - \lambda_t) \in L[X]$. Therefore, $\{\lambda \in A : |o(\lambda)| < \infty\}$ is the integral closure of L in A.

COROLLARY 7. Let λ be a nonzero divisor in a ring A such that |A| $Aut(A)| < \infty$. If $|o(\lambda)| < \infty$, then λ is a unit.

Proof. Let $o(\lambda) = \{\lambda = \lambda_1, \lambda_2, \dots, \lambda_t\}$. Then $\mu = \lambda_1 \cdot \lambda_2 \cdots \lambda_t \in A^{Aut(A)}$. Hence μ is unit. Therefore, λ is a unit.

COROLLARY 8. Let for a quasi-local domain (R,m), $|R/Aut(R)| < \infty$. Then for any $x (\neq 0) \in m, |o(x)| = \infty$.

THEOREM 9. Let A be a Noetherian integral domain such that $|A/Aut(A)| < \infty$. Let J = J(A) be the Jacobson radical of A. Then J = (0).

Proof. Clearly, for any $\sigma \in Aut(A), \sigma(J) \subset J$. Therefore, $\sigma(J^m) \subset J^m$ for all $m \geq 1$. As $|A/Aut(A)| < \infty$, and

$$J \supset J^2 \supset \cdots \supset J^i \supset \cdots,$$

there exists $m \ge 1$, such that $J^m = J^{m+1}$. Hence, J = (0).

COROLLARY 10. If R is a Noetherian semi-local integral domain and $|R/Aut(R)| < \infty$, then R is a field.

LEMMA 11. Let A be an integral domain such that $|A/Aut(A)| < \infty$. Then $E = \{\lambda \in A : |o(\lambda)| < \infty\}$ is a finite subfield of A and is integrally closed in A.

Proof. By Corollary 7, nonzero elements in E are units in A. It is clear that for any $\lambda, \mu \in E, \lambda + \mu \in E, \lambda \mu \in E$ and if $\lambda \neq 0$, then $\lambda^{-1} \in E$. Therefore, Eis a finite subfield of A. Furthermore, let $a \in A$ be integral over E. Then since for any $\sigma \in Aut(A), \ \sigma(E) \subset E, \sigma(a)$ is integral over E. Thus, as $|o(\lambda)| < \infty$ for all $\lambda \in E$, $|o(a)| < \infty$, and hence, $a \in E$. Therefore, E is integrally closed in A.

THEOREM 12. Let A be an integral domain and $|A/Aut(A)| < \infty$. Then Aut(A) is a torsion group if and only if the Frobenius automorphism of A is of finite order. Moreover, in this case Aut(A) is finite and A is a finite field.

Proof. As $|A/Aut(A)| < \infty$, from Section 2, A has characteristic p > 0 and the Frobenius endomorphism τ of A is an automorphism. Thus, if Aut(A) is torsion τ is of finite order. Conversely, if τ has finite order, say n. Then every element of A is root of the polynomial $X^{p^n} - X$. Hence, $|A| \le p^n$. Thus, A being finite integral domain is a field, and Aut(A) is finite.

4. Main results

In this section, we shall prove that for any integral domain R which contains a prime element, $|R/Aut(R)| = \infty$. We also show that if R is a Noetherian integral domain, which is not a field, $|R/Aut(R)| = \infty$ (Theorem 15). Finally, we give an example of an infinite integral domain which has finite number of orbits under the action of its automorphism group.

THEOREM 13. Let R be an integral domain which contains a prime element π . Then $|R/Aut(R)| = \infty$.

Proof. Assume $|R/Aut(R)| < \infty$. Note that the set $\{\pi^n : n \ge 1\}$ is infinite. Thus, there exist m > n and $\sigma \in Aut(R)$ such that $\sigma(\pi^n) = \pi^m$. Then σ induces the ring isomorphism:

$$\frac{R/(\pi^n) \xrightarrow{\sigma} R/(\pi^m)}{\overline{\lambda} = \lambda + (\pi^n) \longmapsto \sigma(\lambda) + (\pi^m) = \overline{\sigma(\lambda)}}$$

The element $\overline{\pi}$ in $R/(\pi^m)$ is nilpotent of degree m. Further, $R/(\pi^n)$ has no nilpotent element of degree m. Hence, the ring $R/(\pi^n)$ is not isomorphic to the ring $R/(\pi^m)$ for m > n. Therefore, π^m cannot be in $o(\pi^n)$ for m > n. This implies $|R/Aut(R)| = \infty$.

REMARK 14. Theorem is true for any ring R having a prime element which is not a zero divisor. Hence, if R is a ring which is not necessarily an integral domain, then for the polynomial ring R[X] = A, $|A/Aut(A)| = \infty$.

THEOREM 15. Let R be a Noetherian integral domain which is not a field. Then $|R/Aut(R)| = \infty$.

Proof. Let c be a nonzero, nonunit element of R. Then for any $m, n \in \mathbb{N}, m \neq n, c^m \neq c^n$. Assume $|R/Aut(R)| < \infty$. Then there exists m < n and $\sigma \in Aut(R)$, such that $\sigma(c^n) = c^m$. Let $I = Rc^n$. Then $I \subsetneqq \sigma(I)$, and hence

$$I \subsetneqq \sigma(I) \subsetneqq \cdots \subsetneqq \sigma^n(I) \subsetneqq \cdots$$

is an infinite ascending chain of ideals in R. As R is Noetherian, this is not possible. Thus, the result follows.

COROLLARY 16. Let R be a Noetherian integral domain. If |R|Aut $(R)| < \infty$, then R is a finite field.

Proof. By Theorem 15, R is a field. Hence, by [3, Theorem 1.11], R is a finite.

THEOREM 17. Let R be an integral domain of characteristic p > 2. Let E be the integral closure in R of the prime subfield \mathbb{F}_p of R. Then $|R/Aut(R)| < \infty$ if and only if E is a finite field and $R = E \oplus m$ where m is a maximal ideal of R such that $\sigma(m) = m$ for every $\sigma \in Aut(R)$ and $|m/Aut(R)| < \infty$. *Proof.* If $|R/Aut(R)| < \infty$, then the result is noted in Section 2. Conversely, let $m = o(x_1) \cup \cdots \cup o(x_k)$. For any $\lambda \in R$, $\lambda = b + y$ where $b \in E$ and $y \in m$. Assume $y \in o(x_1)$. Then there exists $\sigma \in Aut(R)$ such that $\sigma(x_1) = y$. Hence, as $\sigma(E) = E$, we have $a \in E$ such that $\lambda = \sigma(a + x_1)$. Therefore, $|R/Aut(R)| = \infty$.

We shall now give an infinite integral domain with finite number of orbits under the action of its automorphism group.

We follow the following strategy.

Let (R, m) be a quasi-local integral domain of characteristic p > 0, which is not a field and $|m/Aut(R)| < \infty$. Then $A = \mathbb{F}_p + m$ is a local domain with maximal ideal m. For any $\sigma \in Aut(R), \sigma(A) = A$. Hence, $|m/Aut(A)| < \infty$. This implies $|A/Aut(A)| < \infty$. As m is infinite, A is the required example. Thus, to complete the proof, it is sufficient to give a quasi-local integral domain (R, m) with the required properties. We shall do this below. \Box

EXAMPLES 18. Let (S, n) be a Noetherian, complete local integral domain which is not a field. Assume S contains a field of characteristic p > 0. Let K be the field of fractions of S and let R be the integral closure of S in the algebraic closure \overline{K} of K. As (S, n) is Henselian, R is quasi-local [5, (30.5)]. Let m be the maximal ideal of R. Then (R, m) is quasi-local integral domain with field of fractions \overline{K} . We claim the following below.

For any two nonzero elements $x, y \in m$, there exists $\sigma \in Aut(R)$, such that $\sigma(x) = y$. Thus, |m/Aut(R)| = 2. We shall prove the claim in steps.

Step 1. S[x] is complete local integral domain.

We have $S \subset S[x] \subset R$, where each step is an integral ring extension. As R is quasi-local, $m \cap S[x]$ is the unique maximal ideal of S[x]. Thus, S[x] is local. As x is integral over S, S[x] is a finitely generated S-module. Hence, as (S, n) is complete local ring, the ring S[x] is complete with respect to the ideal nS[x] [1, Proposition 10.13]. Now, as the radical of nS[x] is the unique maximal ideal of S[x], S[x] is a complete local integral domain.

Step 2. The element x is part of a system of parameters of S[x]. Note that $x \in m \cap S[x]$. Therefore, x is in the maximal ideal of S[x]. Since $x \neq 0$, using [4, Chapter V, Proposition 4.11], we get that x is a part of a system of parameters of the complete local ring S[x].

Step 3. |m/Aut(R)| = 2.

Let dim.S = dim.S[x] = d. Then by Step 2, S[x] has a system of parameters $\{x = x_1, \ldots, x_d\}$. If L is a coefficient field of S, then it is also coefficient field of S[x] and S[x] is finite module over $L[[x_1, \ldots, x_d]]$ in a natural way [5, Corollary 31.6]. Therefore, S[x] is integral over $L[[x_1, \ldots, x_d]]$ and so is R. Consequently, \overline{K} is algebraic closure of the field of fractions of $L[[x_1, \ldots, x_d]]$ and R is the integral closure of $L[[x_1, \ldots, x_d]]$ in \overline{K} . Similarly, S[y] is a complete local integral domain with a system of parameters $\{y = y_1, \ldots, y_d\}$ with coefficient field L. Moreover, $L[[y_1, \ldots, y_d]] \subset S[y] \subset R$ is a chain of integral

extensions. Using [4, Chapter V, Corollary 4.19], we note that the map

$$L[[x_1, \dots, x_d]] \xrightarrow{\sigma} L[[y_1, \dots, y_d]],$$

$$p((x_1, \dots, x_d)) \longmapsto p((y_1, \dots, y_d))$$

is an isomorphism such that $\sigma|L = id$, and $\sigma(x_i) = y_i$ for all $i \ge 1$. As \overline{K} is algebraic closure of the field of fractions of $L[[x_1, \ldots, x_d]](L[[y_1, \ldots, y_d]])$, σ extends to an automorphism of \overline{K} (not necessarily unique). Restriction of this automorphism to R gives an automorphism of R which maps x to y since R is the integral closure of $L[[x_1, \ldots, x_d]](L[[y_1, \ldots, y_d]])$ in \overline{K} . Therefore, |m/Aut(R)| = 2. In view of above, the quasi-local ring (R.m) is the required quasi-local domain. Hence, the assertion follows.

Acknowledgments. I am thankful to Melvin Hochster for some very useful e-mail exchanges which helped in the construction of the example. I am also thankful to Moshe Roitman and George Bergman for some valuable discussions. Finally, thanks are due to the referee who has suggested several improvements in presentation of the article.

References

- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, 1969. MR 0242802
- [2] D. Eisenbud, Commutative algebra with a view towards algebraic geometry, Graduate Texts in Mathematics, Springer, 1994. MR 1322960
- [3] K. S. Kedlaya and B. Poonen, Orbits of automorphisms of groups of fields, J. Algebra 293 (2005), 167–184. MR 2173971
- [4] E. Kunz, Introduction to commutative algebra and algebraic geometry, Birkhäuser, 1985. MR 0789602
- [5] M. Nagata, Local rings, Robert E. Krieger Publishing Company, 1975. MR 0460307

PRAMOD K. SHARMA, SCHOOL OF MATHEMATICS, VIGYAN BHAWAN, KHANDWA ROAD, INDORE-452 017, INDIA

E-mail address: pksharma1944@yahoo.com