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ORBITS OF AUTOMORPHISMS OF INTEGRAL DOMAINS

PRAMOD K. SHARMA

Abstract. Let R be an integral domain. We study the struc-
ture of R under the condition that the orbit space R/Aut(R) is

finite. It is proved that if R is Noetherian, then |R/Aut(R)| = ∞
unless R is a finite field (Theorem 15 and Corollary 16). Fur-
thermore, we give an example of an infinite integral domain with
|R/Aut(R)| < ∞.

1. Introduction

All rings are commutative with identity �= 0. Kiran Kedlaya and Bjorn
Poonen [3, Theorem 1.1] have proved if K is a field on which the number of
orbits of Aut(K) is finite, then K is finite. Furthermore, in [3, Remark 1.11],
it is stated that “we do not know whether there exists an infinite integral
domain R such that Aut(R) has finitely many orbits on R”. In this note,
we prove the existence of such an integral domain. In Section 2, we collect
some facts, essentially from [3], to be used freely in sequel. If R is an integral
domain, then orbit of any λ ∈ R is denoted by o(λ).

In Section 3, we study orbit space of integral domains. Apart from other
results, we prove that if A is an integral domain such that |A/Aut(A)| < ∞,
then elements of A with finite orbits form a subfield which is integrally closed
in A (Lemma 11). Moreover, if Aut(A) is torsion, then it is finite and A is a
finite field (Theorem 12).

In Section 4, we prove that for any Noetherian integral domain R if |R/
Aut(R)| < ∞, R is a finite field (Corollary 16). We also give a characteriza-
tion of the structure of integral domains R having characteristic p > 2 and
|R/Aut(R)| < ∞ (Theorem 17). Finally, we give an example of an infinite
integral domain with finitely many orbits.
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2. Some basic facts

We shall collect here some basic facts, which either appear in [3] or are
immediate from results therein to be used freely in sequel. Throughout this
section, R is an integral domain, such that |R/Aut(R)| < ∞. Thus, char-
acteristic of R is p > 0. Let Fp be the prime subfield of R. Then E, the
integral closure of Fp in R, is a finite field. Thus, R contains finitely many
roots of unity. For any subset S, of a ring R and n ≥ 1, we shall write
Sn = {an : a ∈ S}. We now note the following:

(i) Let S be a subset of R invariant under the action of Aut(R). Then
S = Sp. In particular R = Rp.

As S is invariant under the action of Aut(R),

S ⊃ Sp ⊃ Sp2 ⊃ · · · ⊃ Spn ⊃ · · ·

is a chain of Aut(R) invariant subsets of R. As |R/Aut(R)| < ∞, there exists
n ≥ 1, such that Spn

= Spn+1
. Therefore, for any λ ∈ S, there exists μ ∈ S

such that

λpn

= μpn+1

=⇒ (λ − μp)pn

= 0
=⇒ λ = μp.

Hence, S = Sp, and the result follows.
(ii) If R is integrally closed and contains no primitive qth root of unity for

a prime q, then for any Aut(R) invariant subset S of R, S = Sq . Thus, in
particular, R = Rq .

Proceeding as in (i), there exists n ≥ 1, such that Sqn

= Sqn+1
. Therefore,

for any λ ∈ S, there exists μ ∈ S such that

λqn

= μqn+1

=⇒ (λμ−q)qn

= 1
=⇒ λ = μq.

Therefore S = Sq , and hence, R = Rq .
Following almost verbatim the proof of [3, Theorem 1.1], we get that

R = E ⊕ I where I is the divisible submodule of the Fp[X]-module R where
X : R −→ R is the Frobenius automorphism of R. Lemmas 1.7 and 1.8 in
[3] also hold for any integral domain R such that |R/Aut(R)| < ∞. Unfortu-
nately, [3, Theorem 1.1] fails to hold for integral domains in general since the
last part of the proof needs x ∈ R∗, such that Tr(x) = 0 and x−1 ∈ R∗.

If we assume Char .R = p > 2, then by [3, Remark 1.9], I is an ideal. Hence,
we have the following.
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Let R be an integral domain of characteristic p > 2. If |R/Aut(R)| < ∞,
then R = E ⊕ I , where E is the integral closure of Fp in R and I is a maximal
ideal of R.

The ideal I is invariant under the action of Aut(R). Hence, Ip = I . This
implies that the ideal I is equal to its pth power. Hence, I is an idempotent
ideal. Therefore, if R contains no idempotent ideal, then R is a field. This,
in particular, implies that if R is a Noetherian domain of characteristic p > 2
with |R/Aut(R)| < ∞, then R is a field.

3. Overture

In this section, unless otherwise specified, (R,m) is a quasi-local domain
�=(field), i.e., an integral domain with exactly one maximal ideal which is not
a field.

Lemma 1. If each orbit of m under the action of Aut(R) is finite, then
each orbit of R under the action of Aut(R) is finite.

Proof. Let λ ∈ R. Choose a nonzero element x ∈ m. Then for any σ ∈
Aut(R),

σ(λx) = σ(λ)σ(x)
=⇒ σ(λ) = σ(λx)/σ(x).

Hence, as x,λx ∈ m, and each orbit of m under the action of Aut(R) is finite,
|o(λ)| is finite. �

Lemma 2. (i) If |R/Aut(R)| < ∞, then |m/Aut(R)| < ∞ and also

|(R/m)/Aut(R/m)| < ∞.

(ii) Assume |m/Aut(R)| < ∞ and |(R/m)/Aut(R/m)| < ∞.We have
(a) If characteristic of R is 0, then

|R/Aut(R)| < ∞.

(b) If |R/m| = t + 1, and R has no nontrivial tth root of unity, then

|R/Aut(R)| < ∞.

Proof. (i) As m is invariant under the action of Aut(R), the inclusion map
from m to R induces an injection

m/Aut(R) → R/Aut(R).

Furthermore, the natural map from R to R/m induces a surjection

R/Aut(R) →
(
(R/m)/Aut(R/m)

)
.

Hence, as |R/Aut(R)| < ∞, the result follows.
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(ii) By assumption, |(R/m)/Aut(R/m)| < ∞. Hence, by [3, Theorem 1.1],
R/m is finite. Let the characteristic of R/m be p > 0. We now prove the
following.

(a) Multiplication by p induces the bijection

R/Aut(R) � pR/Aut(R).

Hence, as pR/Aut(R) ⊂ m/Aut(R) and |m/Aut(R)| < ∞, the result follows.
(b) Since |m/Aut(R)| < ∞, it suffices to prove the assertion that |(R −

m)/Aut(R)| < ∞|. As |R/m| = t + 1, for any λ ∈ R − m, λt − 1 ∈ m. Fur-
thermore, as R is an integral domain with no nontrivial tth root of unity, the
map

R − m −→ m,

λ �→ λt − 1
is injective. This induces the injection

(R − m)/Aut(R) −→ m/Aut(R).

Therefore, |(R − m)/Aut(R)| < ∞. �
Lemma 3. If (R,m) is Noetherian domain such that |m/Aut(R)| < ∞,

then R is a field.

Proof. Clearly, mi is closed under the action of Aut(R) for all i ≥ 1. As
|m/Aut(R)| < ∞, and

m ⊃ m2 ⊃ · · · ⊃ mi ⊃ mi+1 ⊃ · · · ,

there exists n ≥ 1, such that mn = mn+1. Hence, m = 0. Therefore, R is a
field. �

Remark 4. (i) If (R,m) is Noetherian which is not a field, then |R/
Aut(R)| = ∞.

(ii) Lemma is true even if R is not an integral domain, but m �= Nil(R).

Lemma 5. Let A be a ring such that |A/Aut(A)| < ∞. If λ is a nonzero
divisor in A such that |o(λ)| = 1, then λ is a unit.

Proof. Note that

A ⊃ λA ⊃ λ2A ⊃ · · · ⊃ λmA ⊃ · · · ,

is a descending chain of orbit closed subsets of A. As |A/Aut(A)| < ∞, there
exists m ≥ 1, such that λmA = λm+1A. Therefore, 1 = λa for some a ∈ A.
Hence, λ is a unit. �

Remarks 6. (i) If A is an integral domain, then

L = AAut(A) = {λ ∈ A|σ(λ) = λ for all σ ∈ Aut(A)}
is a finite subfield of A. Furthermore, the integral closure of L in A is a finite
field.
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(ii) Let A be an integral domain. If λ ∈ A and o(λ) < ∞, then λ is in-
tegral over AAut(A) = L, since if o(λ) = {λ = λ1, λ2, . . . , λt}, then λ is root
of the polynomial p(X) = (X − λ1)(X − λ2) · · · (X − λt) ∈ L[X]. Therefore,
{λ ∈ A : |o(λ)| < ∞} is the integral closure of L in A.

Corollary 7. Let λ be a nonzero divisor in a ring A such that |A/
Aut(A)| < ∞. If |o(λ)| < ∞, then λ is a unit.

Proof. Let o(λ) = {λ = λ1, λ2, . . . , λt}. Then μ = λ1 · λ2 · · · λt ∈ AAut(A).
Hence μ is unit. Therefore, λ is a unit. �

Corollary 8. Let for a quasi-local domain (R,m), |R/Aut(R)| < ∞.
Then for any x ( �= 0) ∈ m, |o(x)| = ∞.

Theorem 9. Let A be a Noetherian integral domain such that |A/
Aut(A)| < ∞. Let J = J(A) be the Jacobson radical of A. Then J = (0).

Proof. Clearly, for any σ ∈ Aut(A), σ(J) ⊂ J . Therefore, σ(Jm) ⊂ Jm for
all m ≥ 1. As |A/Aut(A)| < ∞, and

J ⊃ J2 ⊃ · · · ⊃ J i ⊃ · · · ,

there exists m ≥ 1, such that Jm = Jm+1. Hence, J = (0). �

Corollary 10. If R is a Noetherian semi-local integral domain and |R/
Aut(R)| < ∞, then R is a field.

Lemma 11. Let A be an integral domain such that |A/Aut(A)| < ∞. Then
E = {λ ∈ A : |o(λ)| < ∞} is a finite subfield of A and is integrally closed in A.

Proof. By Corollary 7, nonzero elements in E are units in A. It is clear that
for any λ,μ ∈ E,λ + μ ∈ E,λμ ∈ E and if λ �= 0, then λ−1 ∈ E. Therefore, E
is a finite subfield of A. Furthermore, let a ∈ A be integral over E. Then since
for any σ ∈ Aut(A), σ(E) ⊂ E,σ(a) is integral over E. Thus, as |o(λ)| < ∞
for all λ ∈ E, |o(a)| < ∞, and hence, a ∈ E. Therefore, E is integrally closed
in A. �

Theorem 12. Let A be an integral domain and |A/Aut(A)| < ∞. Then
Aut(A) is a torsion group if and only if the Frobenius automorphism of A is
of finite order. Moreover, in this case Aut(A) is finite and A is a finite field.

Proof. As |A/Aut(A)| < ∞, from Section 2, A has characteristic p > 0 and
the Frobenius endomorphism τ of A is an automorphism. Thus, if Aut(A) is
torsion τ is of finite order. Conversely, if τ has finite order, say n. Then every
element of A is root of the polynomial Xpn − X. Hence, |A| ≤ pn. Thus, A
being finite integral domain is a field, and Aut(A) is finite. �
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4. Main results

In this section, we shall prove that for any integral domain R which contains
a prime element, |R/Aut(R)| = ∞. We also show that if R is a Noetherian
integral domain, which is not a field, |R/Aut(R)| = ∞ (Theorem 15). Finally,
we give an example of an infinite integral domain which has finite number of
orbits under the action of its automorphism group.

Theorem 13. Let R be an integral domain which contains a prime ele-
ment π. Then |R/Aut(R)| = ∞.

Proof. Assume |R/Aut(R)| < ∞. Note that the set {πn : n ≥ 1} is infinite.
Thus, there exist m > n and σ ∈ Aut(R) such that σ(πn) = πm. Then σ
induces the ring isomorphism:

R/(πn) σ−→ R/(πm),

λ = λ + (πn) �−→ σ(λ) + (πm) = σ(λ).

The element π in R/(πm) is nilpotent of degree m. Further, R/(πn) has no
nilpotent element of degree m. Hence, the ring R/(πn) is not isomorphic to
the ring R/(πm) for m > n. Therefore, πm cannot be in o(πn) for m > n.
This implies |R/Aut(R)| = ∞. �

Remark 14. Theorem is true for any ring R having a prime element which
is not a zero divisor. Hence, if R is a ring which is not necessarily an integral
domain, then for the polynomial ring R[X] = A, |A/Aut(A)| = ∞.

Theorem 15. Let R be a Noetherian integral domain which is not a field.
Then |R/Aut(R)| = ∞.

Proof. Let c be a nonzero, nonunit element of R. Then for any m,n ∈
N,m �= n, cm �= cn. Assume |R/Aut(R)| < ∞. Then there exists m < n and
σ ∈ Aut(R), such that σ(cn) = cm. Let I = Rcn. Then I � σ(I), and hence

I � σ(I) � · · · � σn(I) � · · ·
is an infinite ascending chain of ideals in R. As R is Noetherian, this is not
possible. Thus, the result follows. �

Corollary 16. Let R be a Noetherian integral domain. If |R/
Aut(R)| < ∞, then R is a finite field.

Proof. By Theorem 15, R is a field. Hence, by [3, Theorem 1.11], R is a
finite. �

Theorem 17. Let R be an integral domain of characteristic p > 2. Let E be
the integral closure in R of the prime subfield Fp of R. Then |R/Aut(R)| < ∞
if and only if E is a finite field and R = E ⊕ m where m is a maximal ideal
of R such that σ(m) = m for every σ ∈ Aut(R) and |m/Aut(R)| < ∞.
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Proof. If |R/Aut(R)| < ∞, then the result is noted in Section 2. Conversely,
let m = o(x1) ∪ · · · ∪ o(xk). For any λ ∈ R, λ = b + y where b ∈ E and y ∈
m. Assume y ∈ o(x1). Then there exists σ ∈ Aut(R) such that σ(x1) = y.
Hence, as σ(E) = E, we have a ∈ E such that λ = σ(a + x1). Therefore, |R/
Aut(R)| = ∞.

We shall now give an infinite integral domain with finite number of orbits
under the action of its automorphism group.

We follow the following strategy.
Let (R,m) be a quasi-local integral domain of characteristic p > 0, which

is not a field and |m/Aut(R)| < ∞. Then A = Fp + m is a local domain with
maximal ideal m. For any σ ∈ Aut(R), σ(A) = A. Hence, |m/Aut(A)| < ∞.
This implies |A/Aut(A)| < ∞. As m is infinite, A is the required example.
Thus, to complete the proof, it is sufficient to give a quasi-local integral do-
main (R,m) with the required properties. We shall do this below. �

Examples 18. Let (S,n) be a Noetherian, complete local integral domain
which is not a field. Assume S contains a field of characteristic p > 0. Let
K be the field of fractions of S and let R be the integral closure of S in the
algebraic closure K of K. As (S,n) is Henselian, R is quasi-local [5, (30.5)].
Let m be the maximal ideal of R. Then (R,m) is quasi-local integral domain
with field of fractions K. We claim the following below.

For any two nonzero elements x, y ∈ m, there exists σ ∈ Aut(R), such that
σ(x) = y. Thus, |m/Aut(R)| = 2. We shall prove the claim in steps.

Step 1. S[x] is complete local integral domain.
We have S ⊂ S[x] ⊂ R, where each step is an integral ring extension. As

R is quasi-local, m ∩ S[x] is the unique maximal ideal of S[x]. Thus, S[x] is
local. As x is integral over S, S[x] is a finitely generated S-module. Hence,
as (S,n) is complete local ring, the ring S[x] is complete with respect to the
ideal nS[x] [1, Proposition 10.13]. Now, as the radical of nS[x] is the unique
maximal ideal of S[x], S[x] is a complete local integral domain.

Step 2. The element x is part of a system of parameters of S[x]. Note
that x ∈ m ∩ S[x]. Therefore, x is in the maximal ideal of S[x]. Since x �= 0,
using [4, Chapter V, Proposition 4.11], we get that x is a part of a system of
parameters of the complete local ring S[x].

Step 3. |m/Aut(R)| = 2.
Let dim.S = dim.S[x] = d. Then by Step 2, S[x] has a system of parame-

ters {x = x1, . . . , xd}. If L is a coefficient field of S, then it is also coefficient
field of S[x] and S[x] is finite module over L[[x1, . . . , xd]] in a natural way
[5, Corollary 31.6]. Therefore, S[x] is integral over L[[x1, . . . , xd]] and so is R.
Consequently, K is algebraic closure of the field of fractions of L[[x1, . . . , xd]]
and R is the integral closure of L[[x1, . . . , xd]] in K. Similarly, S[y] is a com-
plete local integral domain with a system of parameters {y = y1, . . . , yd} with
coefficient field L. Moreover, L[[y1, . . . , yd]] ⊂ S[y] ⊂ R is a chain of integral
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extensions. Using [4, Chapter V, Corollary 4.19], we note that the map

L[[x1, . . . , xd]]
σ−→ L[[y1, . . . , yd]],

p((x1, . . . , xd)) �−→ p((y1, . . . , yd))

is an isomorphism such that σ|L = id, and σ(xi) = yi for all i ≥ 1. As K is
algebraic closure of the field of fractions of L[[x1, . . . , xd]] (L[[y1, . . . , yd]]), σ
extends to an automorphism of K (not necessarily unique). Restriction of
this automorphism to R gives an automorphism of R which maps x to y since
R is the integral closure of L[[x1, . . . , xd]] (L[[y1, . . . , yd]]) in K. Therefore,
|m/Aut(R)| = 2. In view of above, the quasi-local ring (R.m) is the required
quasi-local domain. Hence, the assertion follows.
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