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DEFINABLE SMOOTHING OF LIPSCHITZ CONTINUOUS
FUNCTIONS

ANDREAS FISCHER

Abstract. Let M be an o-minimal expansion of a real closed
field. We prove the definable smoothing of definable Lipschitz

continuous functions. In the case of Lipschitz functions of one
variable, we are even able to preserve the Lipschitz constant.

1. Introduction

The present paper is motivated by the recently studied smoothing of Lip-
schitz continuous functions defined on separable Riemannian manifolds, cf. [1],
of which we prove an o-minimal version.

Let R denote a real closed field and M an o-minimal expansion of R. In
the sequel, “definable” means “definable with parameters in M.” We assume
the reader to be familiar with basic properties of o-minimal structures, cf. [9]
or [3]. For examples of o-minimal structures, we refer to [2], Chapter 2, [10],
[4], [5], and [12].

We endow Rn with the Euclidean R-norm ‖ · ‖ (note that an R-norm has the
same definition as norm just taking its values in R) and the corresponding
topology. Moreover, Cm is short for “m times continuously differentiable”
where m ∈ N.

The aim of this paper is to prove the following theorem.

Theorem 1. Let U ⊂ Rn be open, let f : U → R be a definable Lipschitz
continuous function, and let ε : U → (0, ∞) be a definable continuous function.
Then there is a definable Lipschitz continuous C m function g : U → R such
that

|g(u) − f(u)| < ε(u), u ∈ U.
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Related approximation theorems for definable differentiable functions can
be found in [6] and [11].

The classical methods for smoothing functions use integration which is not
applicable to o-minimal structures. We bypass integration by using a con-
sequence of the concept of Λm-regular stratification of definable sets which
was developed in [7]. Our method does not allow us to control the Lipschitz
constant while smoothing the function. To be more precise, if the definable
function depends on at least two variables, the Lipschitz constant of the ap-
proximating function may be much bigger than that of the original function.

As indicated above, we obtain a stronger result for definable functions of
one variable, cf. Proposition 2.

Remark 1. The method of definable smoothing has some further property
which may be of interest for some applications. As a definable function, f is
continuously differentiable outside a definable set A ⊂ U of lower dimension.
If V is an open definable neighborhood of cl(A) ∩ U , where cl(A) denotes the
topological closure of A, we may assume that g coincides with f outside V .

2. One-dimensional functions

If we consider functions of one variable, we can preserve the Lipschitz
constant during the smoothing process.

Proposition 2. Let f : I → R be a definable Lipschitz continuous function
with constant L defined on an open interval I, and let ε : I → (0, ∞) be a de-
finable continuous function. Then there is a definable Lipschitz continuous C1

function g : I → R, such that |g(t) − f(t)| < ε(t) and |g′(t)| ≤ L, t ∈ I.

Proof. As a definable function of one variable, f is continuously differen-
tiable outside of a finite set {a1, . . . , ak }, cf. [3], Chapter 7, Theorem 3.2. The
Lipschitz continuity implies the existence of

lim
t↗0

f(ai + t)/t = c and lim
t↘0

f(ai + t)/t = d

in R, cf. [3], Chapter 3, Corollary 1.6. By definability of f , there is a pointed
definable neighborhood Ui of ai, such that f is continuously differentiable
in Ui. Without loss of generality, we may assume that ai = 0 and c < d. For
0 < σ < 1, let hσ : (−1,1) → R be defined by

hσ(t) =

⎧⎪⎨
⎪⎩

− c−d
4σ (σ + t)2, −σ < t ≤ 0,

− c−d
4σ (σ − t)2, 0 < t < σ,

0, otherwise.

Note that hσ is C1 outside 0 and that

lim
t↗0

h′
σ(t) = −(c − d)/2 and lim

t↘0
h′

σ(t) = (c − d)/2.
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Let gσ := f + hσ . Then gσ is C1 at 0 and gσ(t) = f(t), |t| > σ. Since hσ

is bounded by |c − d|σ, we may also assume that |gσ(t) − f(t)| ≤ ε(t) for
σ being sufficiently small. The derivative of hσ (outside 0) is bounded by
|c − d|/2, nonpositive for t < 0, and nonnegative for t > 0. So, if we choose σ
sufficiently small we obtain the estimates |f ′(t) − c| < |c − d|/4 for −σ < t < 0
and |f ′(t) − d| < |c − d|/4 for 0 < t < σ. Hence, gσ has the same Lipschitz
constant as f . Applying this method to all ai, we obtain a g with the desired
properties. �

3. Preliminaries

The proof of Theorem 1 is prepared by several lemmas. We recall the
well-known fact that a definable Lipschitz continuous function f : U → R can
always be extended to a definable Lipschitz continuous function f defined
on cl(U). This extended function is unique.

The next lemma names conditions to assume Lipschitz continuity for de-
finable differentiable functions with bounded derivative. Note that in general
a continuously differentiable function of several variables with bounded de-
rivative is not Lipschitz continuous. In the sequel, the symbol ∇ is used to
denote the gradient operator.

Lemma 3. Let U ⊂ Rn be open and f : U → R be definable and Lipschitz
continuous. Let V ⊂ U be open and g : V → R be definable and continuously
differentiable with bounded gradient, such that

F (ξ) :=

{
g(ξ), ξ ∈ V,

f(ξ), ξ ∈ cl(U) \ V,

is continuous. Then F is Lipschitz continuous.

Proof. We select L > 0 large enough such that f is Lipschitz continuous
with constant L and ‖ ∇g‖ is bounded by L. For x, y ∈ cl(U), we set

[x, y] := {x + t(y − x) : 0 ≤ t ≤ 1}.

The set [x, y] is not necessarily contained in cl(U). But according to o-
minimality, there exist 0 = t1 ≤ · · · ≤ t2N = 1 such that

[x, y] ∩ cl(U) =
N⋃

i=1

[ξ2i−1, ξ2i],

where ξi := x + ti(y − x), i = 1, . . . ,2N . We may further assume that for
1 ≤ i ≤ N either [ξ2i−1, ξ2i] ⊂ cl(U) \ V or [ξ2i−1, ξ2i] \ {ξ2i−1, ξ2i} ⊂ V applies.

The function F restricted to [ξ2i−1, ξ2i] is Lipschitz continuous with con-
stant L. By the properties of g and f , we conclude that

|F (ξj) − F (ξj+1)| ≤ L‖ξj+1 − ξj ‖ = L‖y − x‖(tj+1 − tj),
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for j = 1, . . . ,2N − 1. So,

|F (y) − F (x)| =

∣∣∣∣∣
2N −1∑
j=1

F (ξj+1) − F (ξj)

∣∣∣∣∣ ≤
2N −1∑
j=1

L(tj+1 − tj)‖y − x‖

= L‖y − x‖. �

For a definable open set U ⊂ Rn, we denote by Cm
b (U,Rk) the definable Cm

functions from U to Rk with bounded (first) derivative. ±∞ are regarded as
constant functions.

Definition 1. A Cm
b cell of R is either an open interval or a singleton.

Suppose that we know all Cm
b cells of R�, 1 ≤ � ≤ n. Then a Cm

b cell M of
Rn+1 is either a set of the form {(x, y) : x ∈ X,y = h(x)} where X ⊂ Rd is
an open Cm

b cell in Rd and h : X → Rn+1−d is a definable Cm
b function; or M

is of the form {(x, y) : x ∈ X,f(x) < y < g(x)} where X ⊂ Rn is an open Cm
b

cell and f, g ∈ Cm
b (X,R) ∪ {±∞} such that for all x ∈ X , f(x) < g(x); or M

is a singleton.

By construction, all Cm
b cells are definable. Moreover, C1

b functions defined
on a C1

b cell are Lipschitz continuous, cf. [7], Corollary 9.9.
A definable function f : A → Rd, where A is not necessarily open, is

called Cm if there exists an open definable set B containing A and a de-
finable Cm function g : B → Rd which coincides with f on A.

The dimension of a definable set is the maximal integer d, such that A con-
tains a definable set which is definably homeomorphic to Rd. This definition
is well defined, cf. [3], and we refer the reader to [3], Chapter 4, for a detailed
description of dimension. Moreover, it is straight forward to verify that a Cm

b

cell is definably homeomorphic to some Rd.
For a differentiable function f , the symbol ∇xf is used to denote its gra-

dient with respect to the variables x.

Lemma 4. Let M ⊂ Rn be a Cm
b cell of dimension d < n and M ⊂ V ⊂ U

definable open neighborhoods of M . Let f : U → R be definable and Lipschitz
continuous, such that both f |U \M and f |M are Cm. Then for every defin-
able continuous ε : U → (0, ∞) there is a definable Lipschitz continuous Cm

function g : U → R such that f = g outside V and

|g(u) − f(u)| < ε(u), u ∈ U.

Proof. The dimension of M is less than n. So, M is the graph of a de-
finable Cm

b function h : X → Rn−d where X ⊂ Rd is an open Cm
b cell. Let

U ′ := U ∩ X × Rn−d. For each ξ ∈ M , ε(ξ) > 0. So, the continuity of f
implies that there is an open definable neighborhood V ′ of M such that

|f(ξ) − f(ξ+η)| < ε(ξ+η) whenever ξ ∈ M and η ∈ {0} × Rn−d with ξ+η ∈ V ′.
We may further choose V ′ in such a way that M ⊂ V ′ ⊂ (V ∩ (X × Rn−d)).
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We define ψ : X × Rn−d → X × Rn−d by ψ(x, y) = (x, y − h(x)). The func-
tion ψ is Cm

b , and so since M × Rn−d is a C1
b cell, ψ is Lipschitz continuous.

Hence, we can extend ψ to a Lipschitz continuous function ψ defined on cl(U ′).
In addition, ψ is bijective with Lipschitz continuous inverse.

The function F := f ◦ ψ−1 is, as composition of Lipschitz continuous func-
tions, also Lipschitz continuous. In addition, F is Cm in ψ(U ′) \ (X × {0})
and X × {0}.

Step 1: We construct a C m
b function σ : X → R which tends to 0 as x

tends to the boundary of X or infinity, such that ψ(V ′) contains the set
W := {(x, y) ∈ X × Rn−d : ‖y‖ < σ(x)}.

Let the semi-algebraic function φ : Rd → (−1,1)d be given by φ(x1, . . . ,

xd) = (x1/
√

1 + x2
1, . . . , xd/

√
1 + x2

d). This map is obviously Cm
b , and the set

φ(X) is bounded and open. We select a definable Cm function θ : Rd → R
which vanishes outside φ(X) and is positive on φ(X). The support of θ is
bounded, so θ is Cm

b . Note that the zero-set of D : Rd → R, x �→ dist((x,0),
Rd \ ψ(V ′)), is contained in the zero-set of θ. This allows us to apply the
generalized �Lojasiewicz inequality, cf. [9], Theorem C14, to θ and D. So,
we obtain a bijective definable continuous map ρ : R → R with ρ(0) = 0 such
that ρ ◦ θ(x) ≤ D(x) for x ∈ Rd. By definability, ρ is Cm in (0, δ) for some
0 < δ < 1. We define ρ̃ : R → R by

t �→ t2m

1 + t2m
ρ

(
δt2m

1 + t2m

)
.

Hence, ρ̃ is m times Peano differentiable at 0 and by [7], Proposition 7.2, the
function ρ̃ is even C m at 0. So, σ = ρ̃ ◦ θ ◦ φ is the desired function. We may
further assume that ‖ ∇σ‖ ≤ 1.

Step 2: Let ϕ : [0, ∞) → [0,1] be a definable Cm function with ϕ|[0,1/2] = 1
and ϕ|[1,∞) = 0. Then the derivative ϕ′ is bounded by some constant K > 0.
Note that x �→ F (x,0) is a definable Lipschitz continuous Cm function on X .
We define G : ψ(U ′) → R by

G(x, y) := F (x,0)ϕ
(

‖y‖
σ(x)

)
+ F (x, y)

(
1 − ϕ

(
‖y‖
σ(x)

))
.

The function G is definable and Cm in ψ(U ′). Since, for (x, y) ∈ W the value
G(x, y) lies between F (x,0) and F (x, y), we obtain the inequality |G(x, y) −
F (x, y)| < ε(ψ−1(x, y)). We now prove the Lipschitz continuity of G.

By the assumption, |F (ξ) − F (η)| ≤ L‖ξ − η‖, and ‖∇F (x, y)‖ is bounded
by L outside X × {0} as well as ‖ ∇(F (x,0))‖ on X × Rn−d.
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We first show that ‖ ∇ϕ(‖y‖/σ(x))‖ is bounded by 2K/σ(x).∥∥∥∥∇ϕ

(
‖y‖
σ(x)

)∥∥∥∥ ≤
∣∣∣∣ϕ′

(
‖y‖
σ(x)

)∣∣∣∣ ·
∥∥∥∥∇

(
‖y‖
σ(x)

)∥∥∥∥
≤ K

∥∥∥∥
(

‖y‖
σ2(x)

∇xσ(x),
y

‖y‖σ(x)

)∥∥∥∥
=

K

σ(x)

∥∥∥∥
(

∇xσ(x)‖y‖
σ(x)

,
y

‖y‖

)∥∥∥∥
≤ 2K

σ(x)
.

So, for 0 < ‖y‖ ≤ σ(x)

‖∇G(x, y)‖ =
∥∥∥∥(

∇
(
F (x,0) − F (x, y)

))
ϕ

(
‖y‖
σ(x)

)

+
(
F (x,0) − F (x, y)

)
∇ϕ

(
‖y‖
σ(x)

)
+ ∇F (x, y)

∥∥∥∥
≤ L + L‖y‖ 2K

σ(x)
+ L ≤ 2L(1 + K).

As a consequence, we see that G is Cm
b in W , and that G = F outside W . For

the Lipschitz continuity of G, we use Lemma 3; i.e., we have to show that G
extends continuously to cl(ψ(U ′)), and that G = F on the boundary ∂ψ(U ′)
of ψ(U ′). This is evident for the points outside ∂X × {0} since there G = F ,
and F is Lipschitz continuous by construction. We further note that

|G(x, y) − F (x, y)| ≤
∣∣(F (x,0) − F (x, y)

)∣∣ ≤ Lσ(x).

So, for ξ ∈ ∂X and (x, y) ∈ ψ(U ′)

|G(x, y) − F (ξ,0)| ≤ |G(x, y) − G(x,0)| + |G(x,0) − F (ξ,0)|
≤ Lσ(x) + L‖x − ξ‖.

Therefore, the difference G(u) − F (u) tends to 0 as u ∈ ψ(U ′) tends to ∂ψ(U ′).
Step 3: Now, we define g : U → R by

g(ξ) :=

{
G(ψ(ξ)), if ξ ∈ V ′,

f(ξ), otherwise.

By using Lemma 3, we obtain the desired properties for g. �

4. Proof of Theorem 1

For the proof of Theorem 1, we use a consequence of Λm-regular stratifi-
cation.

A Cm
b (resp. Λm-regular) stratification is a finite partition of Rn into dis-

joint definable sets X1, . . . ,Xr; for i = 1, . . . , r there is a linear orthogonal
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isomorphism φi : Rn → Rn such that φi(Xi) is a Cm
b (resp. standard Λm-

regular) cell; in addition, the frontier ∂Xi is the union of some of the Xj .
We call a stratification compatible with the definable sets A1, . . . ,As ⊂ Rn if
each Aj is the union of some Xi. Both [7], Theorem 4.5 and [8], Theorem 1.4,
imply that for any definable sets A1, . . . ,Ak ⊂ Rn there is Cm

b stratification
of Rn compatible with the Ai, i = 1, . . . , k.

Proof of Theorem 1. By [3], Chapter 7, Section 3, we can partition U into
finitely many definable sets X1, . . . ,Xr such that the restrictions of f to Xi

are Cm. We select a Cm
b stratification of cl(U) compatible with the X1, . . . ,Xr.

We use N to denote the number of Cm
b cells Zi of dimension less than n which

are contained in U . Moreover, we may assume that dim(Zi) ≥ dim(Zi+1) for
i = 1, . . . ,N − 1. We choose for each Zi a definable open neighborhood Ui.
Since, we deal with a stratification, we may assume that Ui ∩ Uj = ∅ if j > i.
For each i = 1, . . . ,N , we choose a further definable open neighborhood Vi

of Zi by

(1) Zi ⊂ Vi ⊂
{

x : dist(x,Zi) <
1
2
dist(x,Rn \ Ui)

}
.

Obviously, Zj ⊂ Vj ⊂ Uj .
We define a sequence of functions f0, . . . , fN in the following way. Set

f0 = f . Let fj−1 be given such that fj−1 is Lipschitz continuous,

|f(u) − fj−1(u)| < (j − 1)ε(u)/N, u ∈ U,

and fj−1 is Cm outside of
⋃

i≥j Zi. By Lemma 4, there is a definable Lipschitz
continuous Cm function Fj : Uj → R with

|fj−1(u) − Fj(u)| < ε(u)/N, u ∈ Uj ,

such that Fj = fj−1 outside Vj . This implies also that F j(u) = f j−1(u) for
u ∈ ∂Uj . We define

fj(u) :=

{
fj−1(u), u ∈ U \ Uj ,

Fj(u), u ∈ Uj .

By construction, fj is Cm outside
⋃

i>j Zi, fj is Lipschitz in U by Lemma 3,
and

|fj(u) − fj−1(u)| < ε(u)/N, u ∈ U.

So, fN is a definable Lipschitz continuous Cm function, and

|fN (u) − f(u)| < Nε(u)/N = ε(u), u ∈ U. �

In the proof of Theorem 1, we modified the values of the function f : U → R
only in a special open neighborhood of cl(D) ∩ U where D is the set of points
at which f is not continuously differentiable. We can choose the Vi arbitrarily
small as long as they satisfy (1). Lemma 3 requires no special neighborhoods
as long as they are definable and open. So, we may assume that there is an
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approximating g : U → R which coincides with f outside an arbitrarily small
definable open neighborhood of cl(D) ∩ U .
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