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CLOSED-RANGE COMPOSITION OPERATORS ON A
2

JOHN R. AKEROYD AND PRATIBHA G. GHATAGE

Dedicated to Alec Matheson

Abstract. For analytic self-maps ϕ of the unit disk, we develop
a necessary and sufficient condition for the composition operator

Cϕ to be closed-range on the classical Bergman space A
2. This

condition is relatively easy to apply. Particular attention is given

to the case that ϕ is an inner function. Included are observations

concerning angular derivatives of Blaschke products. In the case

that ϕ is univalent, it is shown that Cϕ is closed-range on A
2

only if ϕ is an automorphism of the disk.

1. Introduction and preliminaries

Let D denote the unit disk {z : |z| < 1} and let T denote the unit circle
{z : |z| = 1}. Let A denote area measure on D and let m denote normalized
Lebesgue measure on T. The classical Bergman space A

2 is the set of functions
f that are analytic in D, such that ‖f ‖2

A2 :=
∫

D
|f |2 dA < ∞. It is easily

seen to be a closed subspace of L2(A), and as such, forms a Hilbert space
with respect to the inner product 〈f, g〉 :=

∫
D

fg dA. The Bergman space is
much less tractable (indeed, much larger) than is the Hardy space H2(D) and
has received considerable attention in recent years, primarily because of its
connection to the invariant subspace problem (cf. [3]). If ϕ is analytic in D and
ϕ(D) ⊆ D, then we say that ϕ is an analytic self-map of the disk. In this article,
we consider the composition operator Cϕ on A

2 given by Cϕ(f) = f ◦ ϕ, where
ϕ is an analytic self-map of D. This operator is certainly bounded; cf. [8],
Section 1.4, problem 5. We investigate when it is closed-range; that is Cϕ(A2)
is a closed subspace of A

2. By the Open Mapping Theorem, this occurs
precisely when there is a positive constant c such that ‖f ◦ ϕ‖A2 ≥ c‖f ‖A2

for all f in A
2. Zorboska has given a necessary and sufficient condition for
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Cϕ to be closed-range on H2(D); and she has done likewise in the context
of a variety of weighted Bergman spaces (cf. [9]). In the latter setting, her
condition is quite difficult to apply. In this paper, we develop an alternative,
necessary, and sufficient condition in the context of the Bergman space A

2.
We then apply this condition, paying particular attention to the case that ϕ
is an inner function. Zorboska’s work (in [9]) shows that every inner function
ϕ induces a closed-range composition operator on the Hardy space H2(D);
also cf. [7]. The situation turns out to be quite different in the context of
A

2. First of all, Cϕ is a compact operator on A
2 if and only if ϕ fails to

have a so-called angular derivative (to be defined shortly) at each point of T;
cf. [8], pages 52 and 195, problems 10 and 15, (respectively), and for related
material one may consult [6]. In this case, Cϕ cannot be closed-range since it
is certainly not finite rank. And, if ϕ has bounded angular derivative on T,
then ϕ is necessarily a finite Blaschke product, and hence one easily finds that
Cϕ is closed-range on A

2. The role of the angular derivative is more subtle
than these extreme cases indicate (cf. Theorem 2.4). Before we move into the
statements and proofs of our results, we first lay some groundwork.

A measure μ called to a singular measure on T if μ is a finite, positive
Borel measure on T and μ ⊥ m. Define τ : [0,2π) −→ T in the standard way
by letting τ(t) = eit. If μ is a singular measure on T, then of course, μ ◦ τ
defines a measure on [0,2π) that is singular with respect to Lebesgue measure
on R. We consistently refer to the measure μ ◦ τ as simply μ, only making
reference to [0,2π) to distinguish it from μ on T. The Poisson kernel on T for
evaluation at a point z in D is given by:

ζ �→ Pz(ζ) :=
1 − |z|2

|ζ − z|2 .

If u is continuous and real-valued on T, then

û(z) :=
∫

T

u(ζ)Pz(ζ)dm(ζ)

defines a harmonic function on D that extends continuously to D with bound-
ary values u. The conjugate Poisson kernel on T for evaluation at a point z
in D is given by:

ζ �→ Qz(ζ) :=
2�(ζz)

|ζ − z|2
(

= �
{

z + ζ

z − ζ

})
.

As the name indicates, this kernel provides a harmonic conjugate for û. Com-
posing with τ , each of these have representations on [0,2π):

t �→ Pr(t − θ) :=
1 − r2

1 − 2r cos(t − θ) + r2
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and

t �→ Qr(t − θ) :=
2r sin(t − θ)

1 − 2r cos(t − θ) + r2
,

respectively for evaluation at z = reiθ.
Let H∞(D) denote the set of bounded analytic functions on D. Any func-

tion f in H∞(D) has nontangential boundary values f ∗ a.e. (m) on T, and
has a unique factorization (unique up to unimodular constants):

f = FBSμ,

where F is a bounded outer function, B is a Blaschke product, and Sμ is a
singular inner function, built around a singular measure μ on T. For specifics
regarding these factors, the reader may consult [1] or [2]. If F is trivial, that
is a unimodular constant, then f is called an inner function. In this case,
|f ∗ | = 1 a.e. on T. If f is an inner function, then a theorem of Frostman
(cf. [2], page 79) tells us that

z �→ f(z) − a

1 − af(z)
defines a Blaschke product on D for all a in D except for a set of logarithmic
capacity zero. Any such Blaschke product is called a Frostman shift of f .

For ξ in T and 0 < a < 1, let Sa(ξ) denote the interior of the closed convex
hull of {z : |z| ≤ a} ∪ {ξ}. We call Sa(ξ) a Stolz region based at ξ. Notice
that Sa(ξ) forms an angle of 2arcsin(a) at ξ. An analytic self-map ϕ of D is
said to have an angular derivative at some point ξ in T if there exists α in T

and a complex number β such that

lim
z→ξ

z∈Sa(ξ)

ϕ(z) − α

z − ξ
= β

for any Stolz region Sa(ξ) based at ξ. In this case, β is called the angular
derivative of ϕ at ξ. Two well-known results concerning angular derivatives of
analytic self-maps of D play a central role in our work here, namely, the Julia–
Carathéodory theorem and Julia’s theorem. Careful statements and proofs of
each can be found in [8]. Another important tool in our work is the so called
Nevanlinna Counting Function, defined for any analytic function ϕ on D by:

Nϕ(w) =

{∑
z∈ϕ−1{w} log 1

|z| if w ∈ ϕ(D),

0 if w /∈ ϕ(D).

Our work in this paper is organized as follows. In Section 2, we develop a
practicable necessary and sufficient condition for Cϕ to be closed-range on A

2

(cf. Theorem 2.4). We then use this result to show that in the case that ϕ
is univalent, Cϕ is closed-range on A2 if and only if ϕ is a conformal auto-
morphism of D (cf. Theorem 2.5). In Section 3, we examine the case that
ϕ is an inner function. Most of our analysis occurs in the setting that ϕ
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has analytic continuation across some arc of T. For such ϕ, we give an ana-
lytic condition, which, if satisfied, guarantees that Cϕ is closed-range on A

2

(cf. Theorem 3.4). A consequence of this result is that if B is an infinite
Blaschke product such that the set of accumulation points (in T) of the zeros
of B has an isolated point, then CB is closed-range on A2 (cf. Corollary 3.6).
We then construct a Blaschke product B∗ whose zeros do not accumulate
everywhere on T (and so CB∗ is not compact on A

2), such that CB∗ fails
to be closed-range on A

2 and yet CzB∗ is closed-range on A
2 (cf. Exam-

ple 3.8). After this, we look at the case when ϕ is a singular inner functions
and find that if μ is a singular measure on T whose support in some arc
of T is nontrivial and is contained in a Cantor set, then CSμ is closed-range
on A

2 (cf. Corollary 3.11). We include in an appendix a result that makes
a strong connection between the a.e. existence of the angular derivative of
a given Blaschke product and the rate at which its zeros tend to T. This
result is relevant since, in light of the Julia–Carathéodory theorem, the a.e.
existence of the angular derivative has close ties to the condition provided by
Theorem 2.4.

2. A necessary and sufficient condition

Let ϕ be an analytic self-map of D. In this section, we develop a relatively
tractable condition that is necessary and sufficient for the composition oper-
ator Cϕ on A

2 to be closed-range. We begin with three lemmas whose proofs
are very straightforward, and thus are omitted. Recall that any conformal
mapping from D onto D has the form

ψa(z) := c · z − a

1 − az
,

where c is a unimodular constant (whose role is suppressed in our notation)
and a ∈ D. We call such mappings conformal automorphisms of the disk.
Notice that A

2
0 := {f ∈ A

2 : f(0) = 0} is a closed subspace of A
2 and dim(A2 �

A
2
0) = 1.

Lemma 2.1. Let ϕ be an analytic self-map of the disk. Then Cϕ is closed-
range on A

2 if and only if Cϕ is closed-range on A
2
0.

Lemma 2.2. Let ϕ be an analytic self-map of the disk and let ψa be a
conformal automorphism of the disk. If one of Cϕ, Cϕ◦ψa , Cψa ◦ϕ is closed-
range on A

2, then so are the other two.

For z and w in D, let ρ(z,w) = | z−w
1−wz |; which defines the so called pseudo-

hyperbolic metric on D. For z in D and 0 < r < 1, let Dr(z) = {w ∈ D :
ρ(z,w) < r}. Let ϕ be a nontrivial analytic self-map of the disk. For ε > 0,
let Ωε(ϕ) = {z ∈ D : 1− |z|2

1− |ϕ(z)|2 ≥ ε} and let Gε(ϕ) = ϕ(Ωε). We often abbrevi-
ate our notation of these sets to Ωε and Gε, (respectively), except when there
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could be confusion as to the associated ϕ. We say that Gε satisfies the reverse
Carleson condition if there is a positive constant η, such that∫

Gε

|f |2(1 − |z|2)2 dA ≥ η

∫
D

|f |2(1 − |z|2)2 dA

whenever f is analytic in D and
∫

D
|f |2(1 − |z|2)2 dA < ∞. In [5], Luecking

shows that this is equivalent to:

(∗) there are constants c and s, 0 < c, s < 1, such that A(Gε ∩ Ds(z)) ≥ c ·
A(Ds(z)) for all z in D.

Lemma 2.3. Let ϕ be an analytic self-map of the disk and let ψa be a
conformal automorphism of the disk. If there exists ε > 0 such that one of
Gε(ϕ), Gε(ϕ ◦ ψa), Gε(ψa ◦ ϕ) satisfies condition (∗), then there exists ε > 0
such that the other two also satisfy condition (∗).

Theorem 2.4. Let ϕ be a nontrivial analytic self-map of the disk. Then
Cϕ is closed-range on A

2 if and only if there exists ε > 0, such that Gε satisfies
condition (∗).

Proof. By Lemmas 2.2 and 2.3, we may assume that ϕ(0) = 0. And, by
Lemma 2.1, we may restrict our attention to Cϕ on A

2
0. Moreover, by Lueck-

ing’s work in [5], we need only establish the equivalence between Cϕ be-
ing closed-range on A

2
0 and the existence of ε > 0 for which Gε satisfies

the reverse Carleson condition. We make use of the fact that ‖f ‖2
A2 and∫

D
|f ′(z)|2(1 − |z|2)2 dA are boundedly equivalent, independent of f in A

2
0.

Let Z = {z ∈ D : ϕ′(z) = 0}, which is a countable subset of D. First, as-
sume that there exists ε > 0 such that Gε satisfies the reverse Carleson
condition. So, we can find a positive constant η such that

∫
Gε

|f ′(z)|2(1 −
|z|2)2 dA ≥ η

∫
D

|f ′(z)|2(1 − |z|2)2 dA for f in A2
0. In what follows, we use the

symbol ≈ between two quantities involving f to indicate that these quan-
tities are boundedly equivalent, independent of f in A

2
0. Now, if f ∈ A

2
0,

then

‖f ◦ ϕ‖2
A2 ≈

∫
D

|(f ◦ ϕ)′(z)|2(1 − |z|2)2 dA(z)

=
∫

D

|f ′(ϕ(z))|2|ϕ′(z)|2(1 − |z|2)2 dA(z)

≥
∫

Ωε

|f ′(ϕ(z))|2|ϕ′(z)|2(1 − |z|2)2 dA(z)

≥ ε2

∫
Ωε

|f ′(ϕ(z))|2|ϕ′(z)|2
(
1 − |ϕ(z)|2

)2
dA(z)

= ε2 ·
∑

n

∫
Rn ∩Ωε

|f ′(ϕ(z))|2|ϕ′(z)|2
(
1 − |ϕ(z)|2

)2
dA(z),
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where {Rn}n is a partition of D \ Z into at most countably many semi-closed
polar rectangles such that ϕ is univalent on each Rn; cf. [8], Section 10.3,
page 186. Let Sn = ϕ(Rn ∩ Ωε) and let ψn denote the inverse of ϕ|Rn .
Then by a standard change of variables involving ψn, the last line above
becomes

ε2 ·
∑

n

∫
Gε

|f ′(w)|2(1 − |w|2)2χSn(w)dA(w)

= ε2

∫
Gε

|f ′(w)|2(1 − |w|2)2
(∑

n

χSn(w)
)

dA(w)

≥ ε2

∫
Gε

|f ′(w)|2(1 − |w|2)2 dA(w)

≥ ηε2

∫
D

|f ′(w)|2(1 − |w|2)2 dA(w)

≈ ηε2

∫
D

|f(w)|2 dA(w).

And, so we find that Cϕ is closed-range on A2
0.

Conversely, suppose that there does not exist ε > 0, such that Gε satisfies
the reverse Carleson condition. Then we can find a sequence {fk } ∞

k=1 in A
2
0

such that

1 =
∫

D

|f ′
k(w)|2(1 − |w|2)2 dA(w) (≈ ‖fk ‖2

A2)

for all k, and yet ∫
Gk

|f ′
k(w)|2(1 − |w|2)2 dA(w) −→ 0,

as k → ∞, where Gk = ϕ(Ωk) and Ωk := {z ∈ D : (1 − |ϕ(z)|2) ≤ k(1 − |z|2)}.
Now,

‖fk ◦ ϕ‖2
A2 ≈

∫
D

|f ′
k(ϕ(z))|2|ϕ′(z)|2(1 − |z|2)2 dA(z)

=
∫

Ωk

|f ′
k(ϕ(z))|2|ϕ′(z)|2(1 − |z|2)2 dA(z)

+
∫

D\Ωk

|f ′
k(ϕ(z))|2|ϕ′(z)|2(1 − |z|2)2 dA(z).

And, since ϕ is an analytic self-map of D, the Nevanlinna counting function
Nϕ satisfies:

Nϕ(w) = O
(

log
(

1
|w|

))
as |w| → 1−; cf. [8], page 180. Using this and another decomposition of the
disk into polar rectangles (cf. [8], Section 10.3), one can find positive constants
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c1, c2, and c3 (independent of k) such that∫
Ωk

|f ′
k(ϕ(z))|2|ϕ′(z)|2(1 − |z|2)2 dA(z)

≤ c1

∫
Ωk

|f ′
k(ϕ(z))|2|ϕ′(z)|2

(
1 − |ϕ(z)|2

)
log

(
1

|z|

)
dA(z)

≤ c2

∫
Gk

|f ′
k(w)|2(1 − |w|2)Nϕ(w)dA(w)

≤ c3

∫
Gk

|f ′
k(w)|2(1 − |w|2)2 dA(w) −→ 0,

as k → ∞. And, there are positive constants c4 and c5 (independent of k)
such that∫

D\Ωk

|f ′
k(ϕ(z))|2|ϕ′(z)|2(1 − |z|2)2 dA(z)

≤ c4

k

∫
D\Ωk

|f ′
k(ϕ(z))|2|ϕ′(z)|2

(
1 − |ϕ(z)|2

)
log

(
1

|z|

)
dA(z)

≤ c4

k

∫
D

|f ′
k(ϕ(z))|2|ϕ′(z)|2

(
1 − |ϕ(z)|2

)
log

(
1

|z|

)
dA(z)

=
c4

k

∫
D

|f ′
k(w)|2(1 − |w|2)Nϕ(w)dA(w) (cf., [8], Section 10.3)

≤ c5

k

∫
D

|f ′
k(w)|2(1 − |w|2)2 dA(w) =

c5

k
−→ 0,

as k → ∞. Evidently, ‖fk ◦ ϕ‖A2 −→ 0, as k → ∞, though ‖fk ‖A2 = 1 for all k.
It follows that Cϕ is not closed-range on A

2
0, and so via the contrapositive,

our proof is now complete. �

We conclude this section with an application of Theorem 2.4 in the case that
ϕ is a univalent, analytic self-map of the disk. We show that the only such
maps that give rise to closed-range composition operators on the Bergman
space A

2 are conformal automorphisms of the disk (cf. Theorem 2.5 below).
Coupling Theorem 2.5 with [9], Corollary 4.3, we find that this result carries
over to the setting of the classical Hardy space H2(D) as well as the weighted
Bergman spaces

A
2
α :=

{
f : f is analytic in D and

∫
D

|f |2(1 − |z|2)α dA < ∞
}

;

α > −1.

Theorem 2.5. Let ϕ be a univalent, analytic self-map of the disk. Then
Cϕ is closed-range on A

2 if and only if ϕ is a conformal automorphism of the
disk.
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Proof. If ϕ is a conformal automorphism of the disk, then Cϕ(A2) = A
2,

and hence, Cϕ is certainly closed-range on A
2. Conversely, suppose that Cϕ

is closed-range on A
2. Then by Theorem 2.4, there exists ε > 0, such that

Gε satisfies condition (∗). Let K = T ∩ Ωε. By the Julia–Carathéodory the-
orem ϕ has well-defined nontangential boundary values ϕ∗ everywhere on K,
and these boundary values are taken in T.

Claim. ϕ∗ is continuous on K.

To establish this claim, we proceed via an indirect argument, and suppose
to the contrary, that ϕ∗ is not continuous on K. Then we can find ζ0 in K
and a sequence {ζn} ∞

n=1 in K such that ζn −→ ζ0, as n → ∞, yet {ϕ∗(ζn)}∞
n=1

converges to some ξ0 in T, where ξ0 �= ϕ∗(ζ0). Choose δ, where 0 < δ < ε. By
the full statement of the Julia–Carathéodory theorem (cf. [8], page 57), we
can find a sequence {zn} ∞

n=1 in Ωδ , such that |ζn − zn| −→ 0 and |ϕ∗(ζn) −
ϕ(zn)| −→ 0, as n → ∞. Indeed, we may choose zn to be of the form rnζn,
where 0 < rn < 1 and rn −→ 1 (as n → ∞). Applying Julia’s theorem, we find
that

ϕ∗(ζ0) = lim
n→∞

ϕ(zn) = lim
n→∞

ϕ∗(ζn) = ξ0

is a contradiction. Therefore, our claim holds. Now, define ϕ̃ on Ωε by
ϕ̃(z) = ϕ(z) if z ∈ D ∩ Ωε and ϕ̃(ζ) = ϕ∗(ζ) if ζ ∈ K. By our claim and
Julia’s Theorem, ϕ̃ is a continuous extension of ϕ to all of Ωε. And, since
we are assuming here that ϕ is univalent, we may apply [4], Lemma 3.3,
to get that ϕ∗ is univalent on K. Therefore, ϕ̃ is a homeomorphism of Ωε

onto ϕ̃(Ωε). Consequently, ϕ∗ is a homeomorphism of K onto ϕ∗(K). Yet,
since Gε satisfies condition (∗), each point in T is an accumulation point of
ϕ(D ∩ Ωε). It follows that T ∩ ϕ̃(Ωε) = T. In other words, ϕ∗(K) must be
all of T. Therefore, ϕ∗ is a homeomorphism of K onto T, which forces us
to conclude that K = T. Hence, ϕ has a finite angular derivative at each
point of T. In particular, the boundary values of ϕ are contained in T. It
follows that ϕ maps D onto D, and thus ϕ is a conformal automorphism of
the disk. �

Remark 2.6. In the proof of Theorem 2.5, we showed that ϕ̃ (as defined
there) is continuous on Ωε whether or not ϕ is univalent. Since Ωε is compact,
this extension is uniformly continuous on Ωε. This, of course, implies that ϕ
is uniformly continuous on Ωε (in general).

3. Regarding inner functions

Now any inner function is an analytic self-map of D. If ϕ is an inner
function with factorization BSμ, we define σϕ to be the compact subset of T

consisting of the support of μ along with the set of accumulation points in T

of the zeros of B. If ϕ is just a singular inner function Sμ, then we often write
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σμ instead of σϕ. Notice that T \ σϕ is the largest open subset of T across
which ϕ has analytic continuation. If σϕ �= T and I is a connected subset of
T \ σϕ, then ϕ(I) is a connected subset of T. In fact, the proofs of Lemmas 3.1
and 3.2 (below) show that the argument of ϕ(eiθ) increases as θ increases, for
eiθ in I . Let arg(ϕ(ζ)) be a continuous representation of the argument of
ϕ(ζ), as ζ ranges in I ; and so the values of arg(·) might range throughout R.
Let ω = sup{| arg(ϕ(ζ)) − arg(ϕ(ζ ′))| : ζ, ζ ′ ∈ I}. We then say that ϕ wraps I
through ω radians. Our analysis is based on separate observations concerning
the individual factors B and Sμ. Let B be a Blaschke product with zeros
{an}n, listed according to multiplicity. Let bn be the factor of B that is built
around the zero an. So, bn(z) = z if an = 0 and bn(z) = |an |

an
· an −z

1−anz otherwise.
Define hB on T by:

hB(ζ) =
∑

n

Pan(ζ),

where ζ �→ Pan(ζ) is the Poisson kernel on T for evaluation at an. A theorem
of Frostman (cf. [8], page 183) tells us that B has an angular derivative at
some point ξ in T if and only if hB(ξ) < ∞.

Lemma 3.1. Let B be a Blaschke product. If σB �= T and I is a connected
subset of T \ σB, then B wraps I through

∫
I
hB(ζ)|dζ| radians; which could be

infinite.

Proof. Let J be a closed subarc of I . By a rotation of T, if necessary,
we may assume that 1 /∈ J . Our result follows from the Monotone Conver-
gence theorem if we establish that B wraps J through

∫
J

hB(ζ)|dζ| radians.
And, since B converges uniformly on J , this reduces to showing that BN

wraps J through
∫

J
hBN

(ζ)|dζ| radians, where BN :=
∏N

n=1 bn and bn is the
Blaschke factor of B built around the zero an. Notice that the derivative of
the argument of bn(eiθ) with respect to θ is:

−i · d(log(bn(eiθ)))
dθ

= Pan(eiθ).

Therefore, the argument of bn(eiθ) increases as θ increases, for eiθ in J ,
and

∫
J

Pan(ζ)|dζ| = length(bn(J)) (which is the radian measure of the an-
gle through which bn wraps J). Since the radians through which BN wraps
J is the sum of the radians through which bn wraps J , for 1 ≤ n ≤ N , we find
that BN wraps J through

∑N
n=1

∫
J

Pan(ζ)|dζ| (=
∫

J
hBN

(ζ)|dζ|) radians. �

Let μ be a singular measure on T. Via τ(θ) := eiθ, μ gives rise to a singular
measure on [0,2π), which we also call μ. Define gμ on [0,2π) by

gμ(t) =
∫ 2π

0

1
1 − cos(θ − t)

dμ(θ).
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Lemma 3.2. Let μ be a singular measure on T. If σμ �= T and I is a
connected subset of T \ σμ, then Sμ wraps I through

∫
τ −1(I)

gμ(t)dt radians;
which could be infinite.

Proof. By the Monotone Convergence theorem, it is sufficient to establish
the statement for an arbitrary closed subarc J of I , in place of I . And, under a
rotation of T if necessary (which leaves the value of

∫
τ −1(I)

gμ(t)dt unchanged),
we may assume that 1 /∈ J . Hence, τ −1(J) = [t1, t2], where 0 < t1 < t2 < 2π.
Now choose any points a and b such that t1 ≤ a < b ≤ t2. Notice that∫ b

a

gμ(t)dt =
∫ 2π

0

(∫ b

a

1
1 − cos(θ − t)

dt

)
dμ(θ)

=
∫ 2π

0

(
sin(θ − b)

1 − cos(θ − b)
− sin(θ − a)

1 − cos(θ − a)

)
dμ(θ)

=
∫ 2π

0

(
Q1(θ − b) − Q1(θ − a)

)
dμ(θ),

where Qr(θ) := 2r sin θ
1−2r cosθ+r2 is the conjugate Poisson kernel. So, the last in-

tegral gives the change in the argument from Sμ(τ(a)) to Sμ(τ(b)), and this
change is positive since gμ ≥ 0. Since this holds for any such a and b, we
conclude that the argument of Sμ(eiθ) increases as θ increases, for eiθ in J .
Letting a = t1 and b = t2 we find that∫

τ −1(J)

gμ(t)dt =
∫ t2

t1

gμ(t)dt

gives the full measure in radians through which Sμ wraps J . �

Our next result follows immediately from Lemmas 3.1 and 3.2, and their
proofs.

Theorem 3.3. Let ϕ be an inner function with canonical factorization
BSμ. Suppose that σϕ �= T and let I be a connected subset of T \ σϕ. Then ϕ
wraps I through

∫
I
hB(ζ)|dζ| +

∫
τ −1(I)

gμ(t)dt radians; which could be infinite.

If B is a finite Blaschke product, then for sufficiently small ε > 0, Ωε(B)
contains an annulus of the form {z : s < |z| < 1}, where 0 < s < 1. And hence,
Gε contains such an annulus (if ε > 0 is small enough); which is sufficient for
condition (∗) to hold. So, by Theorem 2.4, finite Blaschke products give rise
to closed-range composition operators on A

2. Our next result goes further
than this.

Theorem 3.4. Let ϕ be an inner function with canonical factorization
BSμ. If there is a component I of T \ σϕ, such that

∫
I
hB(ζ)|dζ| +∫

τ −1(I)
gμ(t)dt > 2π, then Cϕ is closed-range on A

2.
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Proof. Since
∫

I
hB(ζ)|dζ| +

∫
τ −1(I)

gμ(t)dt > 2π, there is a closed subarc J

of I , such that
∫

J
hB(ζ)|dζ| +

∫
τ −1(J)

gμ(t)dt > 2π. So, by Theorem 3.3,
ϕ wraps J through more than 2π radians. Now J is a compact subset of
I and ϕ has analytic continuation across I . Hence, ϕ is uniformly continuous
on {z : 1

2 ≤ |z| < 1 and z
|z| ∈ J } and, in fact, {z : 1

2 ≤ |z| < 1 and z
|z| ∈ J } is

contained in Ωε, provided ε > 0 is sufficiently small. From these observations
it follows that Gε contains an annulus of the form {z : s < |z| < 1}, where
0 < s < 1, provided ε is sufficiently small. By Theorem 2.4, this is enough to
ensure that Cϕ is closed-range on A

2. �

We now spend some time examining the cases: ϕ is a Blaschke product, and
ϕ is a singular inner function. By a Theorem of Frostman (cf. [2], page 79)
and Lemmas 2.2, and 2.3, a study of Blaschke products has much to tell us
here about inner functions in general, and so we tackle this case first.

Proposition 3.5. Let B be an infinite Blaschke product and let {an} ∞
n=1

be the zeros of B, listed according to multiplicity. If there is a component I
of T \ σB and a subsequence {ank

} ∞
k=1 of {an} ∞

n=1 such that

inf
k

1 − |ank
|

dist(ank
, I)

> 0,

then CB is closed-range on A
2.

Proof. By elementary methods, there is a positive constant c that depends
only on the length of I such that

∫
I
Pank

(ζ)|dζ| ≥ c · 1− |ank
|

dist(ank
,I) . Therefore, by

our hypothesis,
∫

I
hB(ζ)|dζ| = ∞. So, the result follows from Theorem 3.4.

�

The next result is an immediate consequence of Proposition 3.5.

Corollary 3.6. Let B be an infinite Blaschke product. If σB has an
isolated point, then CB is closed-range on A

2.

Example 3.7. We now construct an example of a Blaschke product B
such that σB omits an arc of T, yet CB is not closed-range on A

2. One
can accomplish this as a Frostman shift of an appropriately chosen singular
inner function. We instead take a more direct approach making use of an
example found in [8], page 185. In this reference, the author describes a
Blaschke product, call it B0, whose zeros {an} ∞

n=1 are of multiplicity one
and that fails to have an angular derivative at any point in T. Let Γ = {ζ ∈
T : �(ζ) ≤ 0}. Now, choose θ0, 0 < θ0 < π

2 , and let β be the Blaschke product
that is a factor of B, and whose (simple) zeros are precisely those of B0 in
{reiθ : 0 ≤ r < 1and − θ0 ≤ θ ≤ θ0}. Then β converges uniformly on Γ and so∫
Γ

hβ(ζ)|dζ| < ∞. Thus, by the definition of hβ , for any δ > 0, we can find r0,
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0 < r0 < 1, such that ∑
an ∈W

∫
Γ

Pan(ζ)|dζ| < δ,

where W := {reiθ : r0 ≤ r < 1 and −θ0 ≤ θ ≤ θ0}. Armed with this, we can
find r1, 0 < r1 < 1, such that∑

an ∈W1

∫
Γ

Pan(ζ)|dζ| <
π

4
,

where W1 := {reiθ : r1 ≤ r < 1 and − π
4 ≤ θ ≤ π

4 }. And, we proceed for k =
2,3,4, . . . to find rk, rk−1 < rk < 1, such that∑

an ∈Wk \Wk−1

∫
Γ

Pan(ζ)|dζ| <
π

2k+1
,

where Wk := {reiθ : rk ≤ r < 1 and − (2k −1)π
2k+1 ≤ θ ≤ (2k −1)π

2k+1 }. Letting V =⋃∞
k=1 Wk, we find that ∑

an ∈V

∫
Γ

Pan(ζ)|dζ| <
π

2
.

We let B1 be the Blaschke product that is a factor of B0 such that the zeros of
B1 are precisely those of B0 in V . By the argument supporting the example
in [8], page 185, B1 fails to have an angular derivative at every point in T \ Γ.
Moreover, ∫

Γ

hB1(ζ)|dζ| <
π

2
and so B1 wraps Γ through an angle of less than π

2 radians. The Blaschke
product B1 might itself suffice as an example of what we are looking for,
but if hB1 is bounded on Γ, then our job in showing this turns out to be
unnecessarily complicated. We therefore construct an additional factor B2

that will add very little to the wrapping of Γ but will give us a product
B := B1B2 with the property that hB is not bounded on Γ near either i
or −i. This is accomplished using the following elementary fact concerning
Poisson Kernels. Let γ = {w ∈ D : �(w) ≤ 0 and Pw(1) = 1}. Then γ is a
Jordan arc that approaches T tangentially at 1 and∫

T+
Pw(ζ)|dζ| −→ 0

as w converges to 1 in γ, where T+ := {ζ ∈ T : �(ζ) ≥ 0}. So, under a rotation
by i, we can find a Blaschke sequence {cn} ∞

n=1 in {z ∈ D : �(z) > 0} that
converges tangentially to i such that (for all n) Pcn(i) = 1 and∫

Γ

Pcn(ζ)|dζ| <
π

2n+2
.
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Let dn = cn (for n = 1,2,3, . . .) and let B2 be the Blaschke product whose
(simple) zeros are the points {cn} ∞

n=1 and {dn} ∞
n=1. Then hB2 is unbounded

on Γ near i and −i, yet ∫
Γ

hB2(ζ)|dζ| <
π

2
.

Now, let B = B1B2. Then ∫
Γ

hB(ζ)|dζ| < π

and so B wraps Γ through less than π radians. Now, since B1 is a factor of
B, B itself has no angular derivative at any point in {ζ ∈ T : �(ζ) ≥ 0}. And,
though the angular derivative of B exists and is bounded on any compact
subset of {ζ ∈ T : �(ζ) < 0} (= Γ \ {i, −i}), in modulus it tends to infinity
as ζ in Γ \ {i, −i} tends to i or −i; cf. [8], Frostman’s theorem, page 183.
So, by the Julia–Carathéodory theorem (cf. [8], page 57), for any ε > 0 there
exists δ > 0 such that Ωε(B) ∩ {reiθ : 0 ≤ r < 1 and − π

2 − δ ≤ θ ≤ π
2 + δ}

is a compact subset of D. Yet B converges uniformly on D \ {reiθ : 0 ≤ r <
1 and − π

2 − δ ≤ θ ≤ π
2 + δ} and its boundary values there wrap through

less than π radians. We can therefore find ζ0 in T and η > 0, such that
Gε(B) ∩ {z ∈ D : |z − ζ0| < η} = ∅. It now follows from Theorem 2.4 that CB

is not closed-range on A
2.

Example 3.8. We now use Example 3.7 to find a Blaschke product B∗ such
that CB∗ is not closed-range on A

2 and yet CzB∗ is. Let B be the Blaschke
product constructed in Example 3.7. Then CB is not closed-range on A

2 and
yet, by Theorem 3.4, CznB is closed-range on A

2 provided n is sufficiently
large. So, there is a nonnegative integer k such that CzkB is not closed-range
on A

2 and yet Czk+1B is closed-range on A
2. We let B∗ = zkB.

Let us now turn to the case that ϕ is a singular inner function.

Discussion 3.9. Let μ be a singular measure on T and assume that there
is a nontrivial arc I contained in T such that μ(I) > 0 and m(I ∩ σμ) = 0.
Let {In}n be the components of I \ σμ. If there are only finitely many In′s,
then μ|I is a finite sum of point masses and thus we can find an N so that∫

τ −1(IN )
gμ(t)dt = ∞. And so, by Theorem 3.4, CSμ is closed-range on A

2.
Therefore, the interesting case is that there are infinitely many In′s. Under a
rotation of T (if necessary), we may assume that 1 ∈ σμ, and hence τ −1(In) =
(an, bn), where 0 < an < bn < 2π, for all values of n. Now, suppose that
there exists M > 0, such that

∫ bn

an
gμ(t)dt ≤ M for all n. Let {cn} ∞

n=1 be an

l1-sequence of positive real numbers and define ν on [0,2π) by

ν =
∞∑

n=1

cnλ|(an,bn),
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where λ denotes Lebesgue measure on R. Then we can find a positive con-
stant c, such that∫ 2π

0

(∫
1

(θ − t)2
dν(t)

)
dμ(θ) ≤ c

∫ 2π

0

(∫
1

1 − cos(θ − t)
dν(t)

)
dμ(θ)

= c

∫ 2π

0

gμ(t)dν(t) < ∞.

Theorem 3.10. Assuming the context and terminology in Discussion 3.9,
if there exists ν as described there such that

∫
1

(θ−t)2 dν(t) diverges for each θ

in τ −1(I ∩ σμ), then CSμ is closed-range on A2.

Proof. Since μ(I) > 0 and
∫

1
(θ−t)2 dν(t) diverges for each θ in τ −1(I ∩ σμ),

we conclude that
∫ 2π

0
(
∫

1
(θ−t)2 dν(t))dμ(θ) diverges. So, by Discussion 3.9,

there cannot be a bound on
∫ bn

an
gμ(t)dt independent of n. So, there exists N

such that
∫ bN

aN
gμ(t)d(t) > 2π. The result now follows from Theorem 3.4. �

Let C be the Cantor set in [0,1]. We say that a compact subset F of T

is a Cantor set in T if it is of the form ψa(τ(C)), where ψa is a conformal
automorphism of the disk.

Corollary 3.11. Let μ be a singular measure on T. If there is a nontrivial
arc I in T such that μ(I) > 0 and I ∩ σμ is contained in a Cantor set F in T,
then CSμ is closed-range on A

2.

Proof. Since composition with a conformal automorphism of the disk does
not change the status of CSμ on A

2 with regard to being closed-range, we
may assume that F = τ(C). Let {In} ∞

n=1 be the components of I \ F , let
cn = length(τ −1(In)) and define ν on [0,2π) by ν =

∑∞
n=1 cnλ|τ −1(In). Now,

the Cantor set has the property that every point θ in it is within a distance of
1
3n from a component of [0,1] \ C of length at least 1

3n (for n = 1,2,3, . . .). From
this, it follows that

∫
1

(θ−t)2 dν(t) diverges for each θ in C. The conclusion now
follows from Theorem 3.10. �

The proof of Corollary 3.11 cannot be extended much beyond sets of the
Cantor type. For example, let E = {1} ∪ { 2kπi+1

2kπi−1 : k ∈ Z} and let μ = δ{1}—
the point mass at 1. Then support(μ) ⊆ E and

∫
τ −1(I)

gμ(t)dt = 2π for any
component I of T \ E, and so the proof of Corollary 3.11 does not carry over
with E in place of F . Yet we know (by Corollary 3.11) that in this example,
CSμ is closed-range on A

2, since the support of μ is a single point. Now, by
Corollary 3.11, if B is a Frostman shift of a singular inner function whose
singular measure has support in a Cantor set of the unit circle, then CB is
closed-range on A

2. Yet, we still do not know if this carries over for any
Blaschke product B such that σB is contained in a Cantor set of the unit
circle.
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Question 3.12. Let F be a Cantor set contained in T. Does there exist a
Blaschke product B with σB ⊆ F such that CB is not closed-range on A

2?

The case that ϕ is an outer function can be handled in much the same way
as the singular inner case, though outer functions are less likely to give rise
to closed-range composition operators since, if nontrivial, they do not have
unimodular boundary values a.e. on T.

We close this paper with a result (cf. the Appendix) that exposes a link
between the a.e. existence of the angular derivative of a given Blaschke prod-
uct B and the rate at which its zeros tend to T. We see this as fitting into
the theme of this paper since the Julia–Carathéodory theorem provides strong
connection between the notion of angular derivative and the sets Ωε and Gε

of Theorem 2.4.

Appendix

Let B be a Blaschke product with zeros {an}n, listed according to mul-
tiplicity. By a theorem of Frostman (cf. [8], page 183), B has an angular
derivative at some ξ in T if and only if

hB(ξ) :=
∑

n

Pan(ξ) < ∞.

In this section, we make use of this theorem of Frostman to link the conver-
gence of

∑∞
n=1

√
1 − |an|2 with B having an angular derivative a.e. on T,

which, by Theorem 2.4 and the Julia–Carathéodory theorem, increases the
likelihood that CB is closed-range on A

2. We first need a lemma.

Lemma 3.13. Suppose 0 < a < 1 and 0 < θ < π
2 . Then

1
2π

∫ π

θ

Pa(t)dt ≤ 1
π

(
1 − a

1 + a

)
· 1 + cosθ

sin θ
.

In particular,
1
2π

∫ π

√
1−a

Pa(t)dt = O(
√

1 − a),

as a → 1−.

Proof. Let ψ be the Möbius transformation from D onto C
+ := {z :

�(z) > 0} given by

ψ(z) = i

(
1 + a

1 − a

)
· 1 − z

1 + z
.

Notice that ψ maps a to i, −1 to ∞ and 1 to 0. And, for 0 < θ < π,

ψ(eiθ) = �(ψ(eiθ)) =
(

1 + a

1 − a

)
· sin θ

1 + cosθ
=: xa,θ.
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By conformal invariance of harmonic measure,

1
2π

∫ π

θ

Pa(t)dt =
1
π

∫ ∞

xa,θ

1
1 + x2

dx =
1
π

(
π

2
− arctan(xa,θ)

)
.

And, by elementary methods we find that π
2 − arctan(x) ≤ 1

x , whenever 0 <
x < ∞ (and this inequality is only meaningful for large x). Hence,

1
2π

∫ π

θ

Pa(t)dt ≤ 1
πxa,θ

. �

Theorem 3.14. Let {rn} ∞
n=1 be a sequence in R such that 0 < rn ≤ 1 for

all n and
∑∞

n=1 rn < ∞.
(i) If

∑∞
n=1

√
rn diverges, then there is a Blaschke sequence {an} ∞

n=1 in D

such that (1 − |an|2) = rn for all n and Pan(ζ) does not converge to 0 for
any ζ in T. And therefore, the Blaschke product B with zeros {an} ∞

n=1

fails to have an angular derivative at any point in T.
(ii) If

∑∞
n=1

√
rn converges and {an} ∞

n=1 is any sequence in D such that (1 −
|an|2) = rn for all n, then the Blaschke product B with zeros {an} ∞

n=1 has
an angular derivative a.e. on T.

Proof. We first establish (i), following closely the proof of the example in
[8], on page 185. Construct a sequence {In} ∞

n=1 of contiguous arcs in T such
that length(In) =

√
rn, for n = 1,2,3, . . . . Let ζn be the midpoint of In and

let an = (1 − rn)ζn. If ζ ∈ In, which, for any ζ in T, occurs for infinitely many
values of n, then

|ζ − an|2 <

( √
rn

2
+ rn

)2

≤ rn,

if n is sufficiently large. And, so for infinitely many values of n,

Pan(ζ) :=
1 − |an|2

|ζ − an|2 >
1 − |an|2

rn
= 1.

Evidently, Pan(ζ) does not converge to zero (as n → ∞) for any ζ in T.
And, now we address (ii). If n is sufficiently large, then an �= 0. For

such n, let αn = an

|an | and let En = {ζ ∈ T : | arg(ζ − αn)| <
√

1 − |an|2}.
Since (by our hypothesis)

∑
n m(En) < ∞, for any ε > 0 there exists N such

that
∑

n≥N m(En) < ε. Let FN =
⋃

n≥N En; and so m(FN ) < ε. Now, by
Lemma 3.13, there is a positive constant c such that∑
n≥N

∫
T\FN

Pan(ζ)dm(ζ) ≤
∑
n≥N

∫
T\En

Pan(ζ)dm(ζ) ≤
∑
n≥N

c
√

1 − |an|2 < ∞.

Hence, hB(ζ) :=
∑

n Pan(ζ) converges a.e. on T \ FN . And, since m(FN ) < ε
and ε > 0 is arbitrary, we conclude that hB(ζ) converges a.e. on T. Therefore,
by a theorem of Frostman (cf. [8], page 183), the angular derivative of B exists
a.e. on T. �
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