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SPECTRAL PROPERTIES OF THE LAYER POTENTIALS ON
LIPSCHITZ DOMAINS

TONGKEUN CHANG AND KIJUNG LEE

Abstract. We study the invertibility of the operator βI − K∗

in H−α(∂Ω), 0 ≤ α ≤ 1 for β ∈ C \ (− 1
2
, 1

2
] where K∗ is a adjoint

operator of the double layer potential K related to the Laplace

equation and Ω is a bounded Lipschitz domain in Rn. Conse-
quently, the spectrum on the real line lies in (− 1

2
, 1

2
].

1. Introduction

In this paper, we study the resolvent sets of K∗, the adjoint operator of
the double layer potential K related to the Laplace equation on a bounded
Lipschitz domain Ω ⊂ Rn, n ≥ 2.

If the boundary of Ω is smooth, then K∗ is a compact operator and βI − K∗

is one-to-one in L2(∂Ω) for all β ∈ C \ (− 1
2 , 1

2 ] (see [4], [5]). Hence, by Fred-
holm Alternative, βI − K∗ is invertible for all β ∈ C\ (− 1

2 , 1
2 ]. On the contrary,

if the boundary of Ω is not smooth, the operator K∗ may not be compact,
and hence we can not apply Fredholm theory. But, when β ∈ R \ (− 1

2 , 1
2 ],

authors in [4] showed that βI − K∗ is invertible on L2(∂Ω) (see [4]).
Careful consideration on geometric property of domain allows us to obtain

certain spectral property of layer potential operator for some limited cases.
For example, when Ω is a convex bounded Lipschitz domain, authors in [6]
showed that the spectral radius of K∗ over L2(∂Ω) is 1

2 and the spectral radius
of K∗ over L2

0(∂Ω) is strictly less than 1
2 (see [6]).

Several authors were interested in the resolvent sets of double layer poten-
tials related to other equations ([1], [2], [3], [7], [8]).
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In this paper, we will improve the result in [6] for more general domain than
convex Lipschitz domains. For example, we will consider a certain domain
which may not be a convex domain. Also, we will show that resolvent sets of
K∗ over H−α(∂Ω),0 ≤ α ≤ 1 are contained in {z ∈ C : |z| > 1

2 }. In particular,
the resolvent set of K∗ over H− 1

2 (∂Ω) is contained in C \ (− 1
2 , 1

2 ].
In Section 2, we state main results and in Sections 3 and 4 we present the

proofs of the main theorems.

2. Statement of main results

For a given domain Ω, the letters P,Q denote points on the boundary of
the domain. Also, we denote points in Rn by X .

We introduce the fundamental solution of the Laplace equation

Γ(X) =
1

ωn(n − 2)
1

|X|n−2
if n ≥ 3,

Γ(X) =
1
2π

log |X| if n = 2,

where ωn is the measure of the unit sphere in Rn.
For 0 < α < 1, we introduce the Besov space

Hα(∂Ω) =
{

f ∈ L2(∂Ω)
∣∣∣
∫ ∫

∂Ω×∂Ω

|f(P ) − f(Q)|2
|P − Q|n−1+2α

dP dQ < ∞
}

with the norm

‖f ‖Hα(∂Ω) := ‖f ‖L2(∂Ω) +
(∫ ∫

∂Ω×∂Ω

|f(P ) − f(Q)|2
|P − Q|n−1+2α

dP dQ

) 1
2

.

We denote H0(∂Ω) := L2(∂Ω),H1(∂Ω) := L2
1(∂Ω). Hα(∂Ω),0 < α < 1 are real

interpolation spaces, i.e.,

(L2(∂Ω),L2
1(∂Ω))α,2 = Hα(∂Ω).

Let us denote the dual space of Hα(∂Ω) by H−α(∂Ω).
We define the single layer potential of f ∈ L2(∂Ω) by

u(X) = Sf(X) =
∫

∂Ω

Γ(X − Q)f(Q)dQ, X ∈ Rn \ ∂Ω.(2.1)

Then we have

Δu = 0 in Rn \ ∂Ω

and for P ∈ ∂Ω, we have

Sf(P ) = lim
X→P,X∈Γ±(P )

Sf(X) =
∫

∂Ω

Γ(P − Q)f(Q)dQ.

Let

K∗f(P ) = p.v
1

ωn

∫
∂Ω

〈P − Q,n(P )〉
|P − Q|n f(Q)dQ,
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where n(P ) is the outer normal vector at P ∈ ∂Ω. Then

∂u

∂n± = − 1
2
I ± K∗,

where ∂u
∂n+ is outer normal derivative from Ω and ∂u

∂n− is outer normal deriv-
ative from Rn \ Ω̄.

Also, we define the double layer potential K. Let f ∈ L2(∂Ω). Then the
double layer potential is defined by

Kf(X) =
1

ωn

∫
∂Ω

〈Q − X,n(Q)〉
|X − Q|n f(Q)dQ, X ∈ Rn \ ∂Ω.

It is known that for P ∈ ∂Ω

lim
X→P,X∈Γ±

Kf(X) =
(

± 1
2
I + K

)
f(P ),

where Kf(P ) = p.v. 1
ωn

∫
∂Ω

〈Q−P,n(Q)〉
|P −Q|n f(Q)dQ.

K : L2(∂Ω) → L2(∂Ω), H1(∂Ω) → H1(∂Ω) are bounded operators (see
[9]). By interpolation theorem, it follows that K : Hα(∂Ω) → Hα(∂Ω), 0 <
α < 1 is a bounded operator, and hence the dual operator K∗ of K is also a
bounded operator from H−α(∂Ω) to H−α(∂Ω).

Next, we define single layer potential in H− 1
2 (∂Ω). Given f ∈ H− 1

2 (∂Ω),
we define single layer potential as

u(X) = Sf(X) = 〈f,Γ(X − ·)〉, X ∈ Rn \ ∂Ω,

and
Sf(P ) = lim

X→P
Sf(X).

Then we have u ∈ H1(Ω), ∇u ∈ L2(Rn \ Ω̄) and S : H− 1
2 (∂Ω) → H

1
2 (∂Ω) is

bounded operator. Define ∂u
∂n+ , ∂u

∂n− ∈ H− 1
2 (∂Ω) as〈

∂u

∂n
, v

〉
=

∫
Ω

∇u · ∇V +,

〈
∂u

∂n− , v

〉
=

∫
Rn \Ω

∇u · ∇V −,

where v ∈ H
1
2 (∂Ω) and V + ∈ H1(Ω), V − ∈ H1(Rn \ Ω̄) with V +|∂Ω = v =

V − |∂Ω and ‖V ‖H1(Ω) ≤ c‖v‖H1/2(∂Ω), ‖V ‖H1(Rn \Ω̄) ≤ c‖v‖H1/2(∂Ω). Then∥∥∥∥ ∂u

∂n+

∥∥∥∥
H−1/2(∂Ω)

≤ c

∫
Ω

| ∇u|2,
(2.2) ∥∥∥∥ ∂u

∂n−

∥∥∥∥
H−1/2(∂Ω)

≤ c

∫
Rn \Ω̄

| ∇u|2.

Moreover, 〈 ∂u
∂n+ ,1〉 = 0 and

∂u

∂n+
=

(
− 1

2
I + K∗

)
f,

∂u

∂n− = −
(

1
2
I + K∗

)
f.(2.3)
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Hence, − 1
2I +K∗ is a bounded operator from H− 1

2 (∂Ω) to H
− 1

2
0 (∂Ω) := {f ∈

H− 1
2 (∂Ω) : 〈f,1〉 = 0}.

The following proposition is available (see [9]).

Proposition 2.1. Let Ω is bounded Lipschitz domain in Rn, n ≥ 2. Then
(1) 1

2I + K is invertible in L2(∂Ω),
(2) 1

2I + K is invertible in H1(∂Ω),
(3) S is invertible from L2(∂Ω) to H1(∂Ω) for n ≥ 3,
(4) S is invertible from H−1(∂Ω) to L2(∂Ω) for n ≥ 3,
(5) when n = 2, for any f0 �= 0 satisfying (− 1

2I + K∗)f0 = 0, if Sf0 �= 0,
then S is invertible from L2(∂Ω) to H1(∂Ω) and if Sf0 = 0, then the range of
S is H1

0 (∂Ω) = {f ∈ H1(∂Ω)|
∫

f = 0}.

Remark 2.2. By Proposition 2.1 and the interpolation theorem, the op-
erator 1

2I + K is invertible from Hα(∂Ω) to Hα(∂Ω) and S is invertible from
H−α(∂Ω) to H1−α(∂Ω) for 0 ≤ α ≤ 1, n ≥ 3.

Definition 2.3. We call Ω ⊂ Rn a locally convex bounded Lipschitz do-
main if there are r0 > 0 and Pi ∈ ∂Ω,1 ≤ i ≤ N , such that ∂Ω ⊂

⋃N
i=1 Br0(Pi)

and for each i there is a Lipschitz function ψi on Rn−1 which is either convex
or concave satisfying

Ω ∩ Br0(Pi) = {(x,xn) ∈ Rn : xn > ψi(x)} ∩ Br0(Pi).

For example, when n ≥ 2 the domain (−2,2)n \ B1(0) is a locally convex
bounded Lipschitz domain. When n = 2, the domains with boundary consist-
ing of finite number of edges are also locally convex ones.

Now, we state our main results.

Theorem 2.4. Let Ω be a locally convex bounded Lipschitz domain in Rn.
Then for all complex numbers β satisfying |β| > 1

2 , βI − K∗ is invertible in
H−α(∂Ω),0 ≤ α ≤ 1.

Theorem 2.5. Let Ω be a bounded Lipschitz domain in Rn. Then for any
β ∈ C \ (− 1

2 , 1
2 ], βI − K∗ is invertible in H− 1

2 (∂Ω).

3. Proof of Theorem 2.4

For a given β ∈ C, we denote the operator βI − K∗ by Tβ . We prepare the
following lemmas for the proof of Theorem 2.4.

Lemma 3.1. Let Ω be a bounded Lipschitz domain, then Tβ is one-to-one
in H− 1

2 (∂Ω) for β ∈ C \ (− 1
2 , 1

2 ].

Proof. Suppose that Tβ is not one-to-one for some β ∈ C \ (− 1
2 , 1

2 ]. Then
there is f ∈ H− 1

2 (∂Ω), such that Tβf = 0 and f is not identically zero. Since

Tβf = (β − 1
2 )f +(1

2I − K∗)f and ( 1
2I − K∗)f ∈ H

− 1
2

0 (∂Ω), we have 〈f,1〉 = 0.
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Set u = Sf . Then u satisfies |u(X)| = O(|X|1−n) and | ∇u(X)| = O(|X|−n)
at infinity for n ≥ 2. Since f is not identically zero, the following numbers A
and B cannot be zero:

A =
∫

Ω

| ∇u|2 dX and B =
∫
Rn \Ω

| ∇u|2 dX.

By Green’s formula, we have

A =
〈(

− 1
2
I + K∗

)
f,Sf

〉
and B =

〈(
1
2
I + K∗

)
f,Sf

〉
.

Since Tβf = 0, we have that β = 1
2

B−A
B+A . Note that β is real and |β| ≤ 1

2 since
A,B ≥ 0.

Now, we have a contradiction for β ∈ C \ [− 1
2 , 1

2 ]. If β = − 1
2 , we have

B = 0. By the decay of u at infinity, we have u ≡ 0 in Rn \ Ω. Since u
is continuous up to the boundary of Ω, u ≡ 0 in Rn by maximum principle.
Hence, 0 = ∂u

∂n + ∂u
∂n− = −f by (2.3). We also have a contradiction for β = − 1

2 .
Therefore, Tβ is one-to-one in H− 1

2 (∂Ω) for β ∈ C \ (− 1
2 , 1

2 ]. �

Lemma 3.2. Let n ≥ 2 and D = {X = (x,xn) ∈ Rn|xn > φ(x)} be a convex
Lipschitz graph domain. Then the spectral radius ρ(K∗) of K∗ over L2(∂D)
is strictly less than 1

2 .

Proof. Let f ∈ L2(∂D) be a Lipschitz function, compact support, and
u(X) = Sf(X) for X ∈ Rn \ ∂D. By Rellich-identity, we have∫

∂D

〈en,n〉 | ∇u|2 = 2
∫

∂D

〈en, ∇u〉 ∂u

∂n
,

where en = (0, . . . , −1). Since 〈en,n〉 ≥ c > 0 on ∂D and ∇u = ∂u
∂nn +∑i=n−1

i=1
∂u
∂Ti

Ti where Ti are unit tangential vectors on ∂D, we have

c1

∫
∂D

∣∣∣∣∂u

∂n

∣∣∣∣
2

≤
∫

∂D

i=n−1∑
i=1

∣∣∣∣ ∂u

∂Ti

∣∣∣∣
2

≤ c2

∫
∂D

∣∣∣∣∂u

∂n

∣∣∣∣
2

with the positive constants c1, c2 depending only on the Lipschitz constant of
the domain. Hence, we get

c1

∫
∂D

∣∣∣∣ − 1
2
f + K∗f

∣∣∣∣
2

≤
∫

∂D

i=n−1∑
i=1

∣∣∣∣ ∂u

∂Ti

∣∣∣∣
2

(3.1)

≤ c2

∫
∂D

∣∣∣∣ − 1
2
f + K∗f

∣∣∣∣
2

.

For the domain Rn \ D̄, we have similar inequalities:

c1

∫
∂D

∣∣∣∣12f + K∗f

∣∣∣∣
2

≤
∫

∂D

i=n−1∑
i=1

∣∣∣∣ ∂u

∂Ti

∣∣∣∣
2

≤ c2

∫
∂D

∣∣∣∣12f + K∗f

∣∣∣∣
2

.(3.2)
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Combining (3.1) and (3.2), we obtain

‖f ‖L2(∂D) ≤
∥∥∥∥ − 1

2
f − K∗f

∥∥∥∥
L2(∂D)

+
∥∥∥∥1

2
f − K∗f

∥∥∥∥
L2(∂D)

≤ c

∥∥∥∥ ± 1
2
f − K∗f

∥∥∥∥
L2(∂D)

which holds not only for Lipschitz functions with compact support, but also
for functions in L2(∂D) by approximation.

For real β satisfying |β| > 1
2 , we already have (see [6])

‖f ‖L2(∂D) ≤ cβ ‖βf − K∗f ‖L2(∂D).

In other words, Tβ is one to one and has closed range for any real |β| ≥ 1
2 .

Let’s assume that the spectral radius ρ(K∗) of K∗ is β0 ≥ 1
2 . Then we have

‖f ‖L2(∂D) ≤ cβ0 ‖Tβ0f ‖L2(∂D)(3.3)

for all f ∈ L2(∂D). Since K∗ is a positive preserving operator in L2(∂D) by
the convexity of the domain, β0 belongs to the spectrum of Tβ0 . This implies
that Tβ0 cannot be onto. Meanwhile, Tβ is invertible for |β| > β0. Hence,
we can take a sequence {βi} such that βi → β0 and Tβi are invertible. Let
g ∈ L2(∂D). Then there is fi ∈ L2(∂D) such that Tβifi = g for all i. If {fi}
is bounded in L2(∂D), then we are complete since there are a subsequence
(we say {fi}) and f ∈ L2(∂D) such that fi weakly converges to f and we can
observe∣∣∣∣

∫
(Tβ0f − g)h̄

∣∣∣∣ =
∣∣∣∣
∫

(Tβ0f − Tβ0fi + Tβ0fi − Tβifi)h̄
∣∣∣∣

≤
∣∣∣∣
∫

(f − fi)T ∗
β0

h

∣∣∣∣ + |β0 − βi| ‖fi‖L2(∂D)‖h‖L2(∂D)

for any h ∈ L2(∂D). Now, suppose that {fi} is unbounded in L2(∂D). Setting
Fi = fi

‖fi ‖L2(∂D)
, we have TβiFi → 0 in L2(∂D) and ‖Fi‖L2(∂D) = 1. By weak

compactness of Hilbert spaces, there is a subsequence (we again say {Fi})
such that Fi weakly converges to F for some F ∈ L2(∂D). Then by (3.3) we
get

1 = ‖Fi‖L2(∂D) ≤ cβ0 ‖Tβ0Fi‖L2(∂D) ≤ cβ0

(
|β0 − βi| + ‖TβiFi‖L2(∂D)

)
→ 0

and we have a contradiction. Hence, β0 = ρ(K∗) < 1
2 . �

We can derive the following lemma from Lemma 2.3 in [6].

Lemma 3.3 (Localization lemma). Let Ω be a bounded Lipschitz domain
in Rn, n ≥ 2. Fix a complex number β and assume that there are a fi-
nite number of points Pi ∈ ∂Ω,1 ≤ i ≤ N, and a positive number r0 > 0 with
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∂Ω ⊂
⋃i=N

i=1 Br0(Pi) and positive constants Ci,1 ≤ i ≤ N, such that for each
boundary ball Δi,r := ∂Ω ∩ Br(Pi),0 < r ≤ r0, we have

‖f ‖L2(Δi,r) ≤ C‖(βI − K∗)(fχΔi,r)‖L2(Δi,r)

for all f ∈ L2(Δi,r) where χE denotes the characteristic function of the set E.
If β is not an eigenvalue of K∗ on L2(∂Ω), then βI − K∗ has closed range on
L2(∂Ω).

Fix |β| > 1
2 . We prove Theorem 2.4 with α = 0 first.

We take r0, Pi, ψi from Definition 2.3, and for each i, we define Ωi :=
{(x,xn) ∈ Rn|xn > ψi(x)}. Let K∗

i be the double layer potential on ∂Ωi.
Since Ωi is a convex domain or Rn \ Ω̄i is a convex domain, the spectral ra-
dius ρ(K∗

i ) = ρ(−K∗
i ) over L2(∂Ωi) is strictly less than 1

2 by Lemma 3.2. Then
the spectral radius ρ(K∗

i,r) of K∗
i,r := χΔi,rK

∗χΔi,r over L2(Δi,r) is strictly
less than 1

2 since

lim
k→∞

‖(K∗
i,r)

k ‖1/k ≤ lim
k→∞

‖(K∗
i )k ‖1/k <

1
2

(see [6]). Hence, βI − K∗
i,r is invertible in L2(Δi,r) and we have

‖f ‖L2(Δi,r) ≤ ‖(βI − K∗
i,r)

−1‖ ‖(βI − K∗
i,r)f ‖L2(Δi,r)

with an observation

‖(βI − K∗
i,r)

−1‖ ≤ 1
|β|

∞∑
k=0

1
|β|k ‖(K∗

i,r)
k ‖

≤ 1
|β|

∞∑
k=0

1
|β|k ‖(K∗

i )k ‖

≤ 1
|β|

N∑
k=0

1
|β|k ‖(K∗

i )k ‖ +
1

|β|

∞∑
k=N+1

1
|β|k

(
1
2

)k

=: Ci

for some N . Note that Ci only depends on K∗
i . Since β is not an eigenvalue

by Lemma 3.1, we can use Lemma 3.3 and βI − K∗ as closed range.
Now, we will show that βI − K∗ is onto for |β| > 1

2 . Suppose that βI − K∗

is not onto for some |β| > 1
2 . Since the resolvent set is open in C, we assume

that β is in boundary of the resolvent set. Hence, we can take a sequence
{βi}, |βi| > 1

2 such that βi → β and βiI − K∗ is invertible in L2(∂Ω). By
closed graph theorem, there is a positive constant C such that

‖f ‖L2(∂Ω) ≤ C‖(βI − K∗)f ‖L2(∂Ω)(3.4)

for all f ∈ L2(∂Ω). The rest follows as in the proof of Lemma 3.2 and the
invertibility follows.

Next, we consider the case 0 < α ≤ 1. It is known that

KS = SK∗(3.5)
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in H1(∂Ω) (see [9]). When n ≥ 3, S : L2(∂Ω) → H1(∂Ω) is invertible, and
hence we can have −K = −SK∗S−1. Adding βI on both sides, we have

βI − K = S(βI − K∗)S−1(3.6)

in H1(∂Ω). Since βI − K∗ is invertible in L2(∂Ω), βI − K is invertible in
H1(∂Ω), and hence, by duality, βI − K∗ is invertible in H−1(∂Ω) for |β| > 1

2 .
Using the real interpolation theorem, we have that βI − K∗ is invertible in
H−α(∂Ω),0 ≤ α ≤ 1 for |β| > 1

2 .
Now, let n = 2. By the above argument and duality, it suffices to show that

βI − K is invertible in H1(∂Ω). Since βI − K is invertible in L2(∂Ω), βI − K is
one-to-one in H1(∂Ω). So, we only need to show that βI − K is onto. We use
Proposition 2.1. If Sf0 �= 0, then S : L2(∂Ω) → H1(∂Ω) is invertible. Then
βI − K is invertible in H1(∂Ω) as in the case of n ≥ 3. Let’s assume Sf0 = 0
and choose f ∈ H1

0 (∂Ω). Then again by Proposition 2.1, there is a function φ ∈
L2(∂Ω) such that Sφ = f . Then we can get (βI − K)S(βI − K∗)−1φ = f , using
(3.5) and invertibility of βI − K∗ in L2(∂Ω). Hence, H1

0 (∂Ω) is a subspace of
the range of βI − K. On the other hand, we observe (βI − K)1 = (β − 1

2 )1
which implies that constants are also contained in the range of βI − K. By
considering decomposition of functions in H1(∂Ω), we conclude that βI − K
is onto in H1(∂Ω). Theorem 2.4 is proved.

Remark 3.4. The proof of Theorem 2.4 says more than the statement of
the theorem. In fact, the resolvent set ρ(K∗) of K∗ over H−α(∂Ω) is contained
in C \ (B 1

2 −ε(0) ∪ [− 1
2 , 1

2 )) for some ε > 0.

4. Proof of Theorem 2.5

We will use the following simple lemma.

Lemma 4.1. Let H1,H2 be Hilbert spaces and H1 = H11 ⊕ H12 where
dimH12 = N is finite. Let T : H1 → H2 be a bounded operator and one-to-one.
If T (H11) is a closed subspace of H2, then T has closed range.

Proof. Assume that Tgk converges to f ∈ H2 for some {gk } ⊂ H1. If {gk }
is bounded sequence in H1, then it is trivial. Suppose that {gk } is un-
bounded in H1. We let Gk = gk

‖gk ‖H1
. Then TGk converges to zero in H2

and ‖Gk ‖H1 = 1. Let {ei}1≤i≤N be an orthonormal basis of H12. We decom-
pose Gk to Gk = Gk1 +

∑N
i=1 akiei where Gk1 ∈ H11 and aki ∈ C. Since {Gk }

is bounded, by weakly compactness of Hilbert space there is subsequence (we
say {Gk }) such that Gk weakly converges to zero since T is one-to-one. Since
H11 and H12 are orthonormal, Gk1,Gk2 also weakly converge to zero. Hence,
{aki} converge to zero for 1 ≤ i ≤ N . Hence, ‖Gk1‖H1 → 1 and TGk1 con-
verges to zero. By the injectivity of T and closedness of T (H11), we have Gk1

converges to zero. It contradicts for ‖Gk1‖H1 converges to 1. Hence, T has
closed range. �
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Take β ∈ C \ (− 1
2 , 1

2 ]. By Lemma 3.1 and (3.6), Tβ is one-to-one in
H− 1

2 (∂Ω). We will show that Tβ has closed range in H− 1
2 (∂Ω). By the help

of Lemma 4.1 it is enough to show that Tβ(H− 1
2

0 (∂Ω)) is closed in H− 1
2 (∂Ω).

Assume Tβgk converges to f ∈ H− 1
2 (∂Ω) for some sequence {gk } ⊂ H

− 1
2

0 (∂Ω).
If {gk } is bounded, then we are done as in Lemma 3.2. Suppose that {gk } is
unbounded in H− 1

2 (∂Ω). We let Gk = gk

‖gk ‖
H−1/2(∂Ω)

. Then ‖Gk ‖H−1/2(∂Ω) = 1

for all k and TβGk converges to zero in H− 1
2 (∂Ω). Set uk = SGk. Since

{Gk } ⊂ H
− 1

2
0 (∂Ω), uk ∈ H1(Ω) and ∇uk ∈ L2(Rn \ Ω̄) (in particular, when

n = 2). Let

Ak =
∫

Ω

| ∇uk |2 dX and Bk =
∫
Rn \Ω

| ∇uk |2 dX.

By Green’s formula, we have

Ak = 〈TβGk, SGk 〉 +
〈(

1
2

+ β

)
Gk, SGk

〉
,

Bk = 〈TβGk, SGk 〉 −
〈(

1
2

− β

)
Gk, SGk

〉
.

Hence, we have β = 1
2

Bk −Ak −2εk

Ak+Bk
for all k with εk = 〈TβGk, SGk 〉. Suppose

that Ak + Bk goes to zero as k → ∞. Then by (2.2), we have∥∥∥∥∂uk

∂n

∥∥∥∥
H−1/2(∂Ω)

≤ cAk,

∥∥∥∥ ∂uk

∂n−

∥∥∥∥
H−1/2(∂Ω)

≤ cBk

and ∂uk

∂n+ + ∂uk

∂n− = −Gk goes to zero in H− 1
2 (∂Ω). But, it contradicts

‖Gk ‖H−1/2(∂Ω) = 1. Hence, Ak + Bk has a lower bound which is bigger than
zero. Since, εk go to zero, β has to be real and |β| ≤ 1

2 . We have a contradic-
tion. Hence, Tβ has closed range in H− 1

2 (∂Ω).
The surjectivity of Tβ in H− 1

2 (∂Ω) follows as in the proof of Theorem 2.4
and we finish the proof.
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