THE TOTAL ABSOLUTE CURVATURE OF OPEN CURVES IN E^{3}

KAZUYUKI ENOMOTO, JIN-ICHI ITOH, AND ROBERT SINCLAIR

Abstract

The total absolute curvature of open curves in E^{3} is discussed. We study the curves which attain the infimum of the total absolute curvature in the set of curves with fixed endpoints, end-directions, and length. We show that if the total absolute curvature of a sequence of curves in this set tends to the infimum, the limit curve must lie in a plane. Moreover, it is shown that the limit curve is either a subarc of a closed plane convex curve or a piecewise linear curve with at most three edges. The uniqueness of the curves minimizing the total absolute curvature is also discussed. This extends the results in [Yokohama Math. J. 48 (2000), 83-96], which deals with a similar problem for curves in E^{2}.

1. Introduction

Let Σ be a C^{2} curve in the 3-dimensional Euclidean space E^{3}. The total absolute curvature $\tau(\Sigma)$ of Σ is the total integral of the curvature of Σ. If Σ is only piecewise C^{2}, we add the exterior angles at nonsmooth points to define $\tau(\Sigma)$. In particular, the total absolute curvature of a piecewise linear curve is just the sum of the exterior angles.

The study of the total absolute curvature of curves has a long history since Fenchel proved that the total absolute curvature of any closed curve in E^{3} is not less than 2π and the infimum is attained by a plane convex curve [11]. Fenchel's theorem has been extended in various directions ([16], etc.), but it seems that most results are concerned with closed curves and not much has been done for open curves. In this paper, we study the total absolute curvature of open curves in E^{3}.

When we are given points p and q in E^{3}, unit tangent vectors X at p and Y at q and a positive constant $L(>|p q|)$, we denote by $\mathcal{C}(p, X, q, Y, L)$ the set of all piecewise C^{2} curves in E^{3} whose endpoints, end-directions, and length are p, q, X, Y, and L. We study the shape of a curve which minimizes the total absolute curvature in $\mathcal{C}(p, X, q, Y, L)$. Fenchel's theorem says that, if the curve is closed (i.e., $p=q, X=Y$), then $\inf \{\tau(\Sigma): \Sigma \in \mathcal{C}(p, X, q, Y, L)\}=2 \pi$, which does not depend on L. For the open case, in contrast, $\inf \{\tau(\Sigma): \Sigma \in$ $\mathcal{C}(p, X, q, Y, L)\}$ usually depends on the length L. This can be seen even in the planar case (i.e., the case when Σ lies in a plane), as Remark 5.8 shows. The planar case is studied in our previous paper [8]. We also note that the problem becomes almost trivial if we do not fix the length, as we explain in Remark 5.9. Furthermore, in certain biological and engineering contexts, to be discussed below, it is natural to specify the length.

Another difference between the closed case and the open case is that for the open case $\inf \{\tau(\Sigma): \Sigma \in \mathcal{C}(p, X, q, Y, L)\}$ is not necessarily attained by an element of $\mathcal{C}(p, X, q, Y, L)$; When the total absolute curvature of a sequence of curves in $\mathcal{C}(p, X, q, Y, L)$ tends to $\inf \{\tau(\Sigma): \Sigma \in \mathcal{C}(p, X, q, Y, L)\}$, the limit curve Σ_{0} may have end-directions different from X or Y, and then Σ_{0} becomes only an element of $\mathcal{C}(p, q, L)$, the set of all piecewise C^{2} curves whose endpoints and length are p, q and L. This phenomenon has already been seen in the planar case [8].

In the main theorem of the present paper (Theorem 5.3), we show that if $\left\{\Sigma_{k}: k=1,2,3, \ldots\right\}$ is a sequence of curves in $\mathcal{C}(p, X, q, Y, L)$ such that $\tau\left(\Sigma_{k}\right)$ tends to $\inf \{\tau(\Sigma): \Sigma \in \mathcal{C}(p, X, q, Y, L)\}$ as $k \rightarrow \infty$, then the limit curve must lie in a plane. Moreover, it is shown that the limit curve is either a subarc of a closed plane convex curve or a piecewise linear curve with at most three edges (Theorem 5.3).

Since the limit curve may have different end-directions, we introduce the notion of the "extended total absolute curvature" $\tilde{\tau}$, which is defined, for curves in $\mathcal{C}(p, q, L)$, as the sum of $\tau(\Sigma)$, the angle between X and the initial tangent vector, and the angle between Y and the terminal tangent vector (Definition 2.2). If a sequence of curves $\left\{\Sigma_{k}\right\}$ in $\mathcal{C}(p, X, q, Y, L)$ converges to Σ_{0}, then $\tau\left(\Sigma_{k}\right)$ converges to $\tilde{\tau}\left(\Sigma_{0}\right)$.

We first study the simple case when the curve is only a piecewise linear curve with two edges, and determine the shape of the curve minimizing the extended total absolute curvature among all piecewise linear curves with two edges in $\mathcal{C}(p, q, L)$ (Theorem 3.8). Then we study in Section 4 the case when the curve is a piecewise linear curve with three edges. Using Theorem 3.8, we show that if $\tilde{\tau}$ is minimized by P_{0} in the set of all piecewise linear curves with three edges, then P_{0} must lie in a plane. Moreover, it is shown that P_{0} is part of a convex quadrilateral or what we call a "Z-curve" or actually a piecewise linear curve with two edges (Theorem 4.3). Theorem 4.3 implies through an induction argument that if $\tilde{\tau}$ in the set of all piecewise linear
curves with n edges is minimized by P_{0}, then P_{0} lies in a plane and P_{0} is part of a convex polygon or a Z-curve or a piecewise linear curve with two edges (Theorem 5.1). Through approximation of a piecewise smooth curve by a piecewise linear curve, we finally show that if a piecewise smooth curve Σ_{0} minimizes $\tilde{\tau}$, then Σ_{0} lies in a plane and Σ_{0} is part of a closed plane convex curve or a Z-curve or a piecewise linear curve with two edges (Theorem 5.3).

The uniqueness of the curves minimizing the extended total absolute curvature is also discussed. When a piece of a closed plane convex curve minimizes $\tilde{\tau}$, including the case when the curve is closed, the shape of the curve is relatively flexible. However, when piecewise linear curves are the only possibility to minimize $\tilde{\tau}$, the shape of the curve is unique in most cases. We explain what are the exceptional cases and how many curves minimize $\tilde{\tau}$ in those cases (Theorem 3.8, Theorem 5.3). In the process, we study the cut locus of the "two-sided" disk in the unit 2 -sphere, which is described in the Appendix. What we prove in the Appendix is used in the proof of Theorem 3.8. One may have an independent interest in the subject of the Appendix.

The present paper generalizes the results in [8], in which we study a similar problem for curves in E^{2}. This problem is also studied for curves in S^{2} in [9] and [10].

Our problem is somehow similar to the problem of elastic curves, which can be described as the problem of finding a curve in $\mathcal{C}(p, X, q, Y, L)$ minimizing $\int_{\Sigma} k(s)^{2} d s$. However, the shape of the curve minimizing the functional and the method of solution seem very different between these two problems. (See, for example, [22].) Milnor [17] studied functionals such as $\int_{\Sigma} \sqrt{k(s)^{2}+\tau(s)^{2}} d s$ and $\int_{\Sigma}|\tau(s)| d s$ for closed curves in E^{3}, where τ is the torsion. It may be interesting to study the problem of finding a curve in $\mathcal{C}(p, X, q, Y, L)$ minimizing those functionals.

Biology provides us with a strong motivation to explore geometric optimization problems of fixed-length open chains. The protein folding problem [6] is one of the greatest unsolved problems in molecular biology, with immediate implications for the understanding of neurodegenerative diseases ([7], [18]) and applications in drug design ([1], [14], [15]). A protein can be modeled as a chain of fixed length with a large number of links, usually in the hundreds. The concept of curvature can be defined and is of biological relevance [24]. Its final structure is determined by its sequence of amino acids, which are usually known. What is not known is the mechanism by which a protein folds into its correct shape. It is believed that the correct shape can be predicted as a solution of an energy minimization problem ([19], [23]). The point we wish to make here is that a mathematical understanding of geometric optimization problems of finite length open curves or chains will either directly help in gaining a handle on the protein folding problem itself or at least provide us with a language with which to describe the eventual solution. Much more mathematical work needs to be done in this direction (although much has
already been done, see [21] for but one example). The reader may find [4] of interest, as a serious attempt to explain molecular biology and its challenges to a mathematical audience. The special case of finding an optimal configuration of an open chain with given endpoints is known as the loop closure problem [3]. The problem is also of practical importance in robotics [5], where we expect that our results will find application.

2. Preliminaries

Let Σ be a piecewise C^{2} curve in the 3-dimensional Euclidean space E^{3}. Let ℓ be the length of Σ and $x(s)(0 \leq s \leq \ell)$ be a parameterization of Σ by its arclength. Let $0=s_{0}<s_{1}<\cdots<s_{n}=\ell$ be the subdivision of [0, ℓ] such that $\left\{x(s): s_{i-1}<s<s_{i}\right\}$ is C^{2} for each $i=1, \ldots, n$. If Σ is C^{2} at $x(s)$, the curvature $k(s)$ of Σ is defined by $k(s)=\left|d^{2} x / d s^{2}\right|$. Let $T=T(s)=d x / d s$ be the unit tangent vector of Σ. For each i, let $\theta_{i}\left(0 \leq \theta_{i} \leq \pi\right)$ be the angle at $x\left(s_{i}\right)$ between $\lim _{s \rightarrow s_{i}-0} T(s)$ and $\lim _{s \rightarrow s_{i}+0} T(s)$.

Definition 2.1. The total absolute curvature $\tau(\Sigma)$ of Σ is defined by

$$
\tau(\Sigma)=\sum_{i=1}^{n} \int_{s_{i-1}}^{s_{i}} k(s) d s+\sum_{i=1}^{n-1} \theta_{i}
$$

We now define several classes of curves. Here, p and q are points in E^{3}, X and Y are unit tangent vectors of E^{3} at p and q, respectively, and L is a positive constant greater than $|p q|$. Let

$$
\begin{aligned}
\mathcal{C}(p, q) & =\{\Sigma: x(s) \mid x(0)=p, x(\ell)=q\} \\
\mathcal{C}(p, q, L) & =\{\Sigma \in \mathcal{C}(p, q) \mid \ell=L\} \\
\mathcal{C}(p, X, q, Y) & =\{\Sigma \in \mathcal{C}(p, q) \mid T(0)=X, T(\ell)=Y\} \\
\mathcal{C}(p, X, q, Y, L) & =\mathcal{C}(p, q, L) \cap \mathcal{C}(p, X, q, Y)
\end{aligned}
$$

Let n be a positive integer and let \mathcal{P}_{n} be the set of all piecewise linear curves with n edges. For all $m<n$, we regard \mathcal{P}_{m} as a subset of \mathcal{P}_{n} by allowing angles between two edges to be zero. Let $\mathcal{P}_{n}(p, q, L)=\mathcal{P}_{n} \cap \mathcal{C}(p, q, L)$.

When $\left\{\Sigma_{k}: k=1,2, \ldots\right\}$ is a sequence of curves in $\mathcal{C}(p, X, q, Y)$, the limit curve $\lim _{k \rightarrow \infty} \Sigma_{k}$ may not be an element of $\mathcal{C}(p, X, q, Y)$, since the limit curve may not be tangent to X or Y (Figure 2.1). If $\Sigma \in \mathcal{C}(p, q)$ is the limit curve of $\left\{\Sigma_{k} \in \mathcal{C}(p, X, q, Y): k=1,2, \ldots\right\}$, then we have

$$
\lim _{k \rightarrow \infty} \tau\left(\Sigma_{k}\right)=\angle(X, T(0))+\tau(\Sigma)+\angle(T(\ell), Y)
$$

This leads us to the following notion of the extended total absolute curvature.

Definition 2.2. For $\Sigma \in \mathcal{C}(p, q)$, the extended total absolute curvature $\tilde{\tau}(\Sigma)$ is defined by

$$
\tilde{\tau}(\Sigma)=\angle(X, T(0))+\tau(\Sigma)+\angle(T(\ell), Y)
$$

Figure 2.1. Illustration of the length condition and jumps of the tangents from the initial conditions to the limit tangents at the ends, as incorporated into the definition of extended total absolute curvature.
where $\angle(\cdot, \cdot)$ denotes the angle between two vectors with value in $[0, \pi]$.
Note that the definition of $\tilde{\tau}$ depends on the choice of X and Y, and $\tilde{\tau}(\Sigma)$ may be regarded as the total absolute curvature of $\Sigma \in \mathcal{C}(p, q)$ "as a curve in $\mathcal{C}(p, X, q, Y)$ ". If Σ happens to lie in $\mathcal{C}(p, X, q, Y)$, then we have $\tilde{\tau}(\Sigma)=\tau(\Sigma)$.

Definition 2.3. An element Σ_{0} of $\mathcal{C}(p, q, L)$ is called an extremal curve in $\mathcal{C}(p, X, q, Y, L)$ if

$$
\tilde{\tau}\left(\Sigma_{0}\right) \leq \tau(\Sigma)
$$

holds for any $\Sigma \in \mathcal{C}(p, X, q, Y, L)$.
For $\Sigma \in \mathcal{C}(p, q, L)$, let T_{Σ} be the piecewise C^{1} curve in S^{2} which consists of $\bigcup_{i=1}^{n}\left\{T(s): s_{i-1}<s<s_{i}\right\}$, the geodesic arcs between $\lim _{s \rightarrow s_{i}-0} T(s)$ and $\lim _{s \rightarrow s_{i}+0} T(s)(i=1, \ldots, n)$, the geodesic arc between X and $T(0)$ and the geodesic arc between Y and $T(L)$. Then the length of T_{Σ} is equal to $\tilde{\tau}(\Sigma)$.

Definition 2.4. A subarc of a closed plane convex curve (the boundary of a convex domain in a plane) is called a plane convex arc. $\{p, X, q, Y, L\}$ is said to satisfy the convexity condition if there exists a plane convex arc Σ in $\mathcal{C}(p, X, q, Y, L)$.

If $\{p, X, q, Y, L\}$ satisfies the convexity condition, then every plane convex $\operatorname{arc} \Sigma$ in $\mathcal{C}(p, X, q, Y, L)$ becomes an extremal curve in $\mathcal{C}(p, X, q, Y, L)$. If a sequence of plane convex arcs in $\mathcal{C}(p, X, q, Y, L)$ converges to a plane convex $\operatorname{arc} \Sigma_{0}$ in $\mathcal{C}(p, q, L)$, then Σ_{0} is an extremal curve in $\mathcal{C}(p, X, q, Y, L)$. For a plane convex arc Σ_{0} the curve $T_{\Sigma_{0}}$ becomes a subarc of a great circle.

REMARK 2.5. If $p=q$, the convexity condition is automatically satisfied by $\{p, X, q, Y, L\}$ for any X, Y and L.

3. Piecewise linear curves with two edges

In this section, we study the shape of a piecewise linear curve with two edges which attains $\inf \left\{\tilde{\tau}(P): P \in \mathcal{P}_{2}(p, q, L)\right\}$. Since $\mathcal{P}_{2}(p, q, L)$ is compact and $\tilde{\tau}$ is continuous in $\mathcal{P}_{2}(p, q, L)$, such a piecewise linear curve always exists.

Any element P of $\mathcal{P}_{2}(p, q, L)$ is expressed as

$$
P=p p_{1} \cup p_{1} q
$$

with $\left|p p_{1}\right|+\left|p_{1} q\right|=L$. Then we have

$$
\tilde{\tau}(P)=\angle\left(X, \overrightarrow{p_{1}}\right)+\angle\left(\overrightarrow{p_{1}}, \overrightarrow{p_{1} q}\right)+\angle\left(\overrightarrow{p_{1} q}, Y\right)
$$

If we set

$$
\xi=\frac{\overrightarrow{p p_{1}}}{\left|p p_{1}\right|}
$$

then $\xi \in S^{2}$ is uniquely determined by P. Conversely, for any $\xi \in S^{2}$, there exists a unique point p_{1} which satisfies

$$
\frac{\overrightarrow{p p_{1}}}{\left|p p_{1}\right|}=\xi, \quad\left|p p_{1}\right|+\left|p_{1} q\right|=L
$$

By this, $\mathcal{P}_{2}(p, q, L)$ is identified with S^{2}. Thus, $\tilde{\tau}(P)$ on $\mathcal{P}_{2}(p, q, L)$ may be regarded as a function $\tilde{\tau}(\xi)$ on S^{2}. Let

$$
f(\xi)=\frac{\overrightarrow{p_{1} q}}{\left|p_{1} q\right|}
$$

Then f defines a bijective map (Figure 3.1) on the unit sphere S^{2}.
If d denotes the distance in S^{2}, we have
$\angle\left(X, \overrightarrow{p p_{1}}\right)=d(X, \xi), \quad \angle\left(\overrightarrow{p p_{1}}, \overrightarrow{p_{1} q}\right)=d(\xi, f(\xi)), \quad \angle\left(\overrightarrow{p_{1} q}, Y\right)=d(f(\xi), Y)$.
Hence, $\tilde{\tau}$ on $\mathcal{P}_{2}(p, q, L)$, as a function in S^{2}, is written as (Figure 3.2)

$$
\begin{equation*}
\tilde{\tau}(\xi)=d(X, \xi)+d(\xi, f(\xi))+d(f(\xi), Y) \tag{3.1}
\end{equation*}
$$

When $p \neq q$, we define a unit vector Z by

$$
Z=\frac{\overrightarrow{p q}}{|p q|}
$$

Since $\xi, f(\xi)$ and Z lie in a plane as vectors in E^{3}, they lie on a great circle as points in S^{2}.
$\{p, X, q, Y, L\}$ satisfies the convexity condition if and only if we have either $p=q$ or $p \neq q$ and $\left\{X, f^{-1}(Y), Z, f(X), Y,-Z\right\}$ lies on a great circle in S^{2} in this order (Figure 3.3).

Figure 3.1. The map f.

Figure 3.2. Illustration of the computation of $\tilde{\tau}$ in (3.1).

In the following argument, we assume $p \neq q$. Let $d_{X}=d(X, \cdot), d_{Y}=d(Y, \cdot)$ and $d_{Z}=d(Z, \cdot)$. Then (3.1) is rewritten as

$$
\begin{equation*}
\tilde{\tau}(\xi)=d_{X}(\xi)+d_{Z}(\xi)+d_{Z}(f(\xi))+d_{Y}(f(\xi)) \tag{3.2}
\end{equation*}
$$

At any ξ with $\xi \neq \pm X, d_{X}$ is differentiable and its gradient vector ∇d_{X} is defined. ∇d_{X} is identical with the unit tangent vector of the oriented geodesic from X to ξ. $\tilde{\tau}(\xi)$ is differentiable for all ξ with $\xi \neq \pm X$ and $\xi \neq f^{-1}(\pm Y)$. Note that $d_{Z}(\xi)+d_{Z}(f(\xi))=d(\xi, f(\xi))$ is differentiable for all ξ.

Let T be a tangent vector of S^{2} at ξ. Let f_{*} be the differential of f. To describe a property of $f_{*} T$, we take a positively oriented orthonormal frame $\left\{E_{1}, E_{2}\right\}$ of the tangent bundle of S^{2} defined in $S^{2} \backslash\{Z,-Z\}$ with $E_{1}=\nabla d_{Z}$. In the following lemma, λ is a function defined by

$$
\lambda=\frac{\left|p p_{1}\right|}{\left|p_{1} q\right|}
$$

We set $D=|p q|$. Then we have

$$
\left|p p_{1}\right|=\frac{L^{2}-D^{2}}{2(L-D \cos d(Z, \xi))}
$$

Figure 3.3. The convexity condition.
λ, as a function in ξ, is given by

$$
\begin{align*}
\lambda(\xi) & =\frac{\left|p p_{1}\right|}{L-\left|p p_{1}\right|} \tag{3.3}\\
& =\frac{L^{2}-D^{2}}{L^{2}+D^{2}-2 L D \cos d(Z, \xi)}
\end{align*}
$$

Lemma 3.1. For any tangent vector T of S^{2} at ξ, we have

$$
f_{*} T=\lambda(\xi)\left(-\left\langle T, E_{1}(\xi)\right\rangle E_{1}(f(\xi))+\left\langle T, E_{2}(\xi)\right\rangle E_{2}(f(\xi))\right)
$$

Proof. Let $\xi(t)$ be the point on the oriented geodesic $Z \xi$ such that $d(Z, \xi(t))=t$. Then $\xi^{\prime}(t)=E_{1}(\xi(t))$. Let $p_{1}(t)$ be the point in E^{3} which corresponds to $\xi(t)$. Since $p_{1}(t)$ lies in one plane for all $t, f(\xi(t))$ moves along the geodesic through Z and ξ, which implies that $f_{*}\left(E_{1}(\xi(t))\right)$ is parallel to $E_{1}(f(\xi(t))) . d(Z, f(\xi(t)))=\angle\left(\overrightarrow{p q}, \overrightarrow{p_{1}(t) q}\right)$ is related to $t=d(Z, \xi(t))=$ $\angle\left(\overrightarrow{p q}, \overrightarrow{p p_{1}(t)}\right)$ as

$$
d(Z, f(\xi(t)))=\arccos \left(\frac{2 L D-\left(L^{2}+D^{2}\right) \cos t}{L^{2}+D^{2}-2 L D \cos t}\right)
$$

Thus, we have

$$
\begin{align*}
f_{*}\left(E_{1}(\xi(t))\right) & =\frac{d}{d t} d(Z, f(\xi(t))) E_{1}(f(\xi(t))) \tag{3.4}\\
& =-\frac{L^{2}-D^{2}}{L^{2}+D^{2}-2 L D \cos t} E_{1}(f(\xi(t))) \\
& =-\lambda(\xi(t)) E_{1}(f(\xi(t)))
\end{align*}
$$

The circle centered at Z of radius $d(Z, \xi)$ is an integral curve of E_{2}. When ξ moves along this circle, $f(\xi)$ moves along the circle centered at Z of radius $d(Z, f(\xi))$, and we see that (Figure 3.4)

$$
\begin{align*}
f_{*}\left(E_{2}(\xi)\right) & =\frac{\sin d(Z, f(\xi))}{\sin d(Z, \xi)} E_{2}(f(\xi)) \tag{3.5}\\
& =\frac{\left|p p_{1}\right|}{\left|p_{1} q\right|} E_{2}(f(\xi)) \\
& =\lambda(\xi) E_{2}(f(\xi))
\end{align*}
$$

From (3.4) and (3.5), we have

$$
\begin{aligned}
f_{*} T & =\left\langle T, E_{1}(\xi)\right\rangle f_{*}\left(E_{1}(\xi)\right)+\left\langle T, E_{2}(\xi)\right\rangle f_{*}\left(E_{2}(\xi)\right) \\
& =\lambda(\xi)\left(-\left\langle T, E_{1}(\xi)\right\rangle E_{1}(f(\xi))+\left\langle T, E_{2}(\xi)\right\rangle E_{2}(f(\xi))\right)
\end{aligned}
$$

Lemma 3.2. Suppose $\nabla \tilde{\tau}=0$ at ξ_{0}. Then either (1) or (2) holds:
(1) $\{p, X, q, Y, L\}$ satisfies the convexity condition and ξ_{0} is a point on the geodesic segment $X f^{-1}(Y)$.
(2) $d\left(Z, \xi_{0}\right)=\arccos (D / L)$.

Figure 3.4. The geometry of (3.5).
Proof. Let T be a tangent vector of S^{2} at ξ. By (3.2), we have

$$
\begin{aligned}
T \tilde{\tau}= & \left\langle\nabla d_{X}(\xi), T\right\rangle+\left\langle\nabla d_{Z}(\xi), T\right\rangle+\left\langle\nabla d_{Z}(f(\xi)), f_{*} T\right\rangle \\
& +\left\langle\nabla d_{Y}(f(\xi)), f_{*} T\right\rangle
\end{aligned}
$$

If we set $T=E_{1}(\xi)=\nabla d_{Z}(\xi)$, using Lemma 3.1, we have
(3.6) $\quad E_{1} \tilde{\tau}=\left\langle\nabla d_{X}(\xi), E_{1}(\xi)\right\rangle+1+\lambda(\xi)\left(-1-\left\langle\nabla d_{Y}(f(\xi)), E_{1}(f(\xi))\right\rangle\right)$.

If we set $T=E_{2}(\xi)$, we have

$$
\begin{equation*}
E_{2} \tilde{\tau}=\left\langle\nabla d_{X}(\xi), E_{2}(\xi)\right\rangle+\lambda(\xi)\left\langle\nabla d_{Y}(f(\xi)), E_{2}(f(\xi))\right\rangle \tag{3.7}
\end{equation*}
$$

If $\nabla \tilde{\tau}=0$ at ξ_{0}, then (3.6) gives

$$
\begin{equation*}
\left\langle\nabla d_{X}\left(\xi_{0}\right), E_{1}\left(\xi_{0}\right)\right\rangle+1=\lambda\left(\xi_{0}\right)\left(1+\left\langle\nabla d_{Y}\left(f\left(\xi_{0}\right)\right), E_{1}\left(f\left(\xi_{0}\right)\right)\right\rangle\right) \tag{3.8}
\end{equation*}
$$

and (3.7) gives

$$
\begin{equation*}
\left\langle\nabla d_{X}\left(\xi_{0}\right), E_{2}\left(\xi_{0}\right)\right\rangle=-\lambda\left(\xi_{0}\right)\left\langle\nabla d_{Y}\left(f\left(\xi_{0}\right)\right), E_{2}\left(f\left(\xi_{0}\right)\right)\right\rangle \tag{3.9}
\end{equation*}
$$

Combining (3.8) and (3.9) with

$$
\begin{equation*}
\left\langle\nabla d_{X}\left(\xi_{0}\right), E_{1}\left(\xi_{0}\right)\right\rangle^{2}+\left\langle\nabla d_{X}\left(\xi_{0}\right), E_{2}\left(\xi_{0}\right)\right\rangle^{2}=\left|\nabla d_{X}\left(\xi_{0}\right)\right|^{2}=1 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\langle\nabla d_{Y}\left(f\left(\xi_{0}\right)\right), E_{1}\left(f\left(\xi_{0}\right)\right)\right\rangle^{2}+\left\langle\nabla d_{Y}\left(f\left(\xi_{0}\right)\right), E_{2}\left(f\left(\xi_{0}\right)\right)\right\rangle^{2} \tag{3.11}\\
& \quad=\left|\nabla d_{Y}\left(f\left(\xi_{0}\right)\right)\right|^{2}=1
\end{align*}
$$

we obtain

$$
\begin{equation*}
\left(\left\langle\nabla d_{X}\left(\xi_{0}\right), E_{1}\left(\xi_{0}\right)\right\rangle+1\right)\left(1-\lambda\left(\xi_{0}\right)\right)=0 \tag{3.12}
\end{equation*}
$$

This implies that either

$$
\begin{equation*}
\nabla d_{X}\left(\xi_{0}\right)=-\nabla d_{Z}\left(\xi_{0}\right) \tag{3.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda\left(\xi_{0}\right)=1 \tag{3.14}
\end{equation*}
$$

holds.

Figure 3.5. The geometry of Lemma 3.2.

If (3.13) holds, then (3.8) gives

$$
\begin{equation*}
\nabla d_{Y}\left(f\left(\xi_{0}\right)\right)=-\nabla d_{Z}\left(f\left(\xi_{0}\right)\right) \tag{3.15}
\end{equation*}
$$

(3.13) and (3.15) imply that we have $\left\{X, \xi_{0}, Z, f\left(\xi_{0}\right), Y\right\}$ on a great circle in this order. Since $d(Z, X) \geq d\left(Z, \xi_{0}\right)$, we have $d(Z, f(X)) \leq d\left(Z, f\left(\xi_{0}\right)\right)$. Hence, if such ξ_{0} exists, we have $d(Z, f(X)) \leq d(Z, Y)$, or equivalently, $d(Z, X) \geq$ $d\left(Z, f^{-1}(Y)\right)$. Thus, $\{p, X, q, Y, L\}$ satisfies the convexity condition.

If (3.14) holds, we have $d\left(Z, \xi_{0}\right)=\arccos (D / L)$.

Remark 3.3.

(1) If $\{p, X, q, Y, L\}$ satisfies the convexity condition, we have $\nabla \tilde{\tau}=0$ at any point on the geodesic segment $X f^{-1}(Y)$.
(2) In the case (2) in Lemma 3.2, ξ_{0} lies on the circle of radius $\arccos (D / L)$ centered at Z. Then we have $\left|p p_{1}\right|=\left|p_{1} q\right|$ by (3.3) and (3.14) (Figure 3.5).

Since $\tilde{\tau}(\xi)$ is continuous in S^{2}, it attains its minimum at some ξ_{0}. If $\tilde{\tau}$ is differentiable at ξ_{0}, ξ_{0} has the property described in Lemma 3.2. If $\tilde{\tau}$ is not differentiable at ξ_{0}, by (3.1), we see that either $\xi_{0}= \pm X$ or $\xi_{0}=f^{-1}(\pm Y)$. Among these points $\xi_{0}=-X$ and $\xi_{0}=f^{-1}(-Y)$ are not possible to be the minimal points of $\tilde{\tau}$, as we see in the following lemma.

Lemma 3.4. Neither $\xi=-X$ nor $\xi=f^{-1}(-Y)$ can attain $\min \tilde{\tau}$.
Proof. We will show that $\tilde{\tau}(-X)>\tilde{\tau}(X)$.
Let $P=p p_{1} \cup p_{1} q$ be the element of $\mathcal{P}_{2}(p, q, L)$ with $\overrightarrow{p p_{1}} /\left|p p_{1}\right|=X$ and $P^{\prime}=p p_{1}^{\prime} \cup p_{1}^{\prime} q$ be the one with $\overrightarrow{p p_{1}^{\prime}} /\left|p p_{1}^{\prime}\right|=-X$. Then we have (Figure 3.6)

$$
\begin{aligned}
\tilde{\tau}(X) & =\angle\left(\overrightarrow{p_{1}}, \overrightarrow{p_{1} q}\right)+\angle\left(\overrightarrow{p_{1} q}, Y\right) \\
& =\angle\left(\overrightarrow{p p_{1}}, \overrightarrow{p q}\right)+\angle\left(\overrightarrow{p q}, \overrightarrow{p_{1} q}\right)+\angle\left(\overrightarrow{p_{1} q}, Y\right) \\
& \leq \angle(X, \overrightarrow{p q})+\angle\left(\overrightarrow{p q}, \overrightarrow{p_{1} q}\right)+\angle\left(\overrightarrow{p_{1} q}, \overrightarrow{p q}\right)+\angle(\overrightarrow{p q}, Y)
\end{aligned}
$$

while

$$
\tilde{\tau}(-X)=\pi+\angle\left(\overrightarrow{p p_{1}^{\prime}}, \overrightarrow{p_{1}^{\prime} q}\right)+\angle\left(\overrightarrow{p_{1}^{\prime} q}, Y\right)
$$

Figure 3.6. Computations in the proof of Lemma 3.4.

$$
\begin{aligned}
& =\pi+\angle\left(\overrightarrow{p p_{1}^{\prime}}, \overrightarrow{p q}\right)+\angle\left(\overrightarrow{p q}, \overrightarrow{p_{1}^{\prime} q}\right)+\angle\left(\overrightarrow{p_{1}^{\prime} q}, Y\right) \\
& \geq 2 \pi-\angle(X, \overrightarrow{p q})+\angle(\overrightarrow{p q}, Y)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\tilde{\tau}(-X)-\tilde{\tau}(X) & \geq 2 \pi-2 \angle(X, \overrightarrow{p q})-2 \angle\left(\overrightarrow{p q}, \overrightarrow{p_{1} q}\right) \\
& =2 \pi-2 \angle\left(\overrightarrow{p p_{1}}, \overrightarrow{p_{1} q}\right) \\
& >0
\end{aligned}
$$

By a similar argument, one can show that $\tilde{\tau}\left(f^{-1}(-Y)\right)>\tilde{\tau}\left(f^{-1}(Y)\right)$.
Lemma 3.5 (Figure 3.7).
(1) If $d(X, Z)<\arccos (D / L)$, then $\xi=X$ cannot attain $\min \tilde{\tau}$, unless $\{p, X$, $q, Y, L\}$ satisfies the convexity condition.
(2) If $d(Y, Z)<\arccos (D / L)$, then $\xi=f^{-1}(Y)$ cannot attain $\min \tilde{\tau}$, unless $\{p, X, q, Y, L\}$ satisfies the convexity condition.
Proof. Let $\left\{E_{1}, E_{2}\right\}$ be a positively oriented orthonormal frame of the tangent bundle of S^{2} with $E_{1}=\nabla d_{Z}$. For any unit tangent vector T at X, we have $\left|f_{*} T\right|=\lambda(X)$ by Lemma 3.1. We choose T so that

$$
f_{*} T=-\lambda(X) \nabla d_{Y}(f(X))
$$

Figure 3.7. Illustration of the conditions of Lemma 3.5.

If we write T as

$$
T=\cos \omega E_{1}(X)+\sin \omega E_{2}(X)
$$

then $f_{*} T$ becomes

$$
f_{*} T=-\lambda(X)\left(\cos \omega E_{1}(f(X))+\sin \omega E_{2}(f(X))\right)
$$

$\tilde{\tau}(\xi)$ is not differentiable at $\xi=X$ because $d_{X}(\xi)$ is not differentiable there. However, the directional derivative of $d_{X}(\xi)$ does exist even at X, and we have $T d_{X}=1$. Hence,

$$
\begin{aligned}
T \tilde{\tau} & =1+\left\langle\nabla d_{Z}, T\right\rangle+\left\langle\nabla d_{Z}(f(X)), f_{*} T\right\rangle+\left\langle\nabla d_{Y}(f(X)), f_{*} T\right\rangle \\
& =1+\cos \omega-\lambda(X) \cos \omega-\lambda(X) \\
& =(1+\cos \omega)(1-\lambda(X)) .
\end{aligned}
$$

Since $d(X, Z)<\arccos (D / L)$, we have $\lambda(X)>1$. We also have $\omega \neq \pi$, unless $\{p, X, q, Y, L\}$ satisfies the convexity condition. Thus, we have $T \tilde{\tau}<0$, which implies that $\tilde{\tau}$ is not minimal at $\xi=X$. The proof for $\xi=f^{-1}(Y)$ is similar.

Lemma 3.6 (Figure 3.8). If $d(X, Z)>d(Y, Z) \geq \arccos (D / L)$ holds, then we have $\tilde{\tau}(X) \leq \tilde{\tau}\left(f^{-1}(Y)\right)$. The equality holds if and only if $\{p, X, q, Y, L\}$ satisfies the convexity condition.

Proof. We have

$$
\begin{align*}
\tilde{\tau}(X) & =d(X, f(X))+d(f(X), Y) \tag{3.16}\\
& =d(X, Z)+d(Z, f(X))+d(f(X), Y)
\end{align*}
$$

and

$$
\begin{align*}
\tilde{\tau}\left(f^{-1}(Y)\right) & =d\left(X, f^{-1}(Y)\right)+d\left(f^{-1}(Y), Y\right) \tag{3.17}\\
& =d\left(X, f^{-1}(Y)\right)+d\left(f^{-1}(Y), Z\right)+d(Z, Y)
\end{align*}
$$

Set

$$
R=d(X, Z), \quad r=d(Z, Y), \quad R_{1}=d(Z, f(X)), \quad r_{1}=d\left(f^{-1}(Y), Z\right)
$$

$d(X, Z)>d(Y, Z) \geq \arccos (D / L)$

$(p r=r q=L / 2)$

Figure 3.8. Illustration of the conditions of Lemma 3.6.

Figure 3.9. The geometry of (3.18).
and

$$
\theta=\angle X Z f^{-1}(Y)
$$

Using the plane trigonometry for $\triangle p p_{1} q$ with $\overrightarrow{p p_{1}} /\left|p p_{1}\right|=X$, we have (Figure 3.9)

$$
\begin{align*}
\sin R_{1} & =\frac{\left(L^{2}-D^{2}\right) \sin R}{L^{2}+D^{2}-2 L D \cos R} \\
\cos R_{1} & =\frac{-\left(L^{2}+D^{2}\right) \cos R+2 L D}{L^{2}+D^{2}-2 L D \cos R} \tag{3.18}
\end{align*}
$$

For $\triangle p p_{1} q$ with $\overrightarrow{p_{1} q} /\left|p_{1} q\right|=Y$, we have

$$
\begin{align*}
\sin r_{1} & =\frac{\left(L^{2}-D^{2}\right) \sin r}{L^{2}+D^{2}-2 L D \cos r} \\
\cos r_{1} & =\frac{-\left(L^{2}+D^{2}\right) \cos r+2 L D}{L^{2}+D^{2}-2 L D \cos r} \tag{3.19}
\end{align*}
$$

Using the sphere trigonometry for $\triangle X f^{-1}(Y) Z$, we have

$$
\begin{equation*}
\cos \left(d\left(X, f^{-1}(Y)\right)\right)=\cos R \cos r_{1}+\cos \theta \sin R \sin r_{1} \tag{3.20}
\end{equation*}
$$

For $\triangle f(X) Y Z$, we have

$$
\begin{equation*}
\cos (d(f(X), Y))=\cos r \cos R_{1}+\cos \theta \sin r \sin R_{1} \tag{3.21}
\end{equation*}
$$

Now we set

$$
\delta=d\left(X, f^{-1}(Y)\right)-d(f(X), Y)
$$

and regard it as a function in θ. By (3.20) and (3.21), δ is explicitly written as

$$
\begin{align*}
\delta(\theta)= & \arccos \left(\cos R \cos r_{1}+\cos \theta \sin R \sin r_{1}\right) \tag{3.22}\\
& -\arccos \left(\cos r \cos R_{1}+\cos \theta \sin r \sin R_{1}\right)
\end{align*}
$$

Then we have

$$
\begin{align*}
\frac{d \delta}{d \theta}= & \sin \theta \sin R \sin r_{1}\left(1-\left(\cos R \cos r_{1}+\cos \theta \sin R \sin r_{1}\right)^{2}\right)^{-1 / 2} \tag{3.23}\\
& -\sin \theta \sin r \sin R_{1}\left(1-\left(\cos r \cos R_{1}+\cos \theta \sin r \sin R_{1}\right)^{2}\right)^{-1 / 2}
\end{align*}
$$

$d \delta / d \theta=0$ holds if and only if we have either $\sin \theta=0$ or

$$
\begin{align*}
& \sin R \sin r_{1}\left(1-\left(\cos R \cos r_{1}+\cos \theta \sin R \sin r_{1}\right)^{2}\right)^{-1 / 2} \tag{3.24}\\
& \quad=\sin r \sin R_{1}\left(1-\left(\cos r \cos R_{1}+\cos \theta \sin r \sin R_{1}\right)^{2}\right)^{-1 / 2}
\end{align*}
$$

Using (3.18) and (3.19), we can rewrite (3.24) as

$$
\begin{align*}
& (1+\cos R \cos r+\cos \theta \sin R \sin r)\left(\frac{D}{L}\right)^{2}-2(\cos R+\cos r) \frac{D}{L} \tag{3.25}\\
& \quad+(1+\cos R \cos r-\cos \theta \sin R \sin r)=0
\end{align*}
$$

Since

$$
\begin{aligned}
& (\cos R+\cos r)^{2}-(1+\cos R \cos r+\cos \theta \sin R \sin r) \\
& \quad \times(1+\cos R \cos r-\cos \theta \sin R \sin r)=-\sin ^{2} \theta \sin ^{2} R \sin ^{2} r,
\end{aligned}
$$

(3.25) holds if and only if $\sin \theta=0$. Hence $d \delta / d \theta=0$ holds if and only if $\sin \theta=0$. If $\theta=0, \delta=R-r_{1}+R_{1}-r<0$. If $\theta=\pi, \delta=R+r_{1}-R_{1}-r>0$. Thus, we see that the minimum of δ is $R-r_{1}+R_{1}-r$, and hence

$$
\begin{align*}
& d\left(X, f^{-1}(Y)\right)-d(f(X), Y) \tag{3.26}\\
& \quad \geq d(X, Z)-d\left(f^{-1}(Y), Z\right)+d(Z, f(X))-d(Z, Y)
\end{align*}
$$

(3.26) gives

$$
\begin{align*}
& d(X, Z)+d(Z, f(X))+d(f(X), Y) \tag{3.27}\\
& \quad \leq d\left(X, f^{-1}(Y)\right)+d\left(f^{-1}(Y), Z\right)+d(Z, Y)
\end{align*}
$$

which means $\tilde{\tau}(X) \leq \tilde{\tau}\left(f^{-1}(Y)\right)$. The equality holds if and only if $\theta=0$, or equivalently, $\{p, X, q, Y, L\}$ satisfies the convexity condition.

Lemma 3.7. If either $d(X, Z)>\arccos (D / L)$ or $d(Y, Z)>\arccos (D / L)$ holds, then ξ with $d_{Z}(\xi)=\arccos (D / L)$ cannot attain $\min \tilde{\tau}$, with the only exception that $\{p, X, q, Y, L\}$ satisfies the convexity condition and ξ is the point on the geodesic segment $X f^{-1}(Y)$ with $d_{Z}(\xi)=\arccos (D / L)$.

Proof. We assume that $d(X, Z)>\arccos (D / L)$. Let ξ be any point in S^{2} with $d_{Z}(\xi)=\arccos (D / L)$. Then we may apply (3.27) with $Y=f(\xi)$ to have

$$
\begin{align*}
& d(X, Z)+d(Z, f(X))+d(f(X), f(\xi)) \tag{3.28}\\
& \quad \leq d(X, \xi)+d(\xi, Z)+d(Z, f(\xi)) .
\end{align*}
$$

By (3.28), we have

$$
\begin{aligned}
\tilde{\tau}(X) & =d(X, Z)+d(Z, f(X))+d(f(X), Y) \\
& \leq d(X, \xi)+d(\xi, Z)+d(Z, f(\xi))-d(f(X), f(\xi))+d(f(X), Y) \\
& \leq d(X, \xi)+d(\xi, Z)+d(Z, f(\xi))+d(f(\xi), Y) \\
& =\tilde{\tau}(\xi),
\end{aligned}
$$

where the equalities hold if and only if $\{p, X, q, Y, L\}$ satisfies the convexity condition and ξ is a point on $X f^{-1}(Y)$. This shows that if the convexity condition is not satisfied, ξ with $d_{Z}(\xi)=\arccos (D / L)$ cannot attain min $\tilde{\tau}$. The proof for the case when $d(Y, Z)>\arccos (D / L)$ is similar.

We now state the main result of this section.
THEOREM 3.8. Suppose that $P_{0}=p p_{1} \cup p_{1} q$ is an extremal curve in $\mathcal{P}_{2}(p, X$, $q, Y, L)$.
(1) If $\{p, X, q, Y, L\}$ satisfies the convexity condition, then P_{0} lies in a plane containing X and Y. In this case, p_{1} can be any point such that $\overrightarrow{p p_{1}} /\left|p p_{1}\right|$ lies on the geodesic segment $X f^{-1}(Y)$ in S^{2}.
(2) If $p \neq q$ and if $\angle(X, \overrightarrow{p q})<\arccos (D / L)$ and $\angle(Y, \overrightarrow{p q})<\arccos (D / L)$, then p_{1} is a point which satisfies $\left|p p_{1}\right|=\left|p_{1} q\right|=L / 2$. Moreover, the following holds:
(2-1) If $\angle(X, \overrightarrow{p q}) \neq \angle(Y, \overrightarrow{p q})$, then p_{1} is unique.
(2-2) If $X=Y=\overrightarrow{p q} /|p q|$, then p_{1} can be any point with $\left|p p_{1}\right|=\left|p_{1} q\right|=$ $L / 2$.
(2-3) If $\angle(X, \overrightarrow{p q})=\angle(Y, \overrightarrow{p q})=\alpha \neq 0$ and if $\angle(X, Y) \geq \arccos \left(\left(L^{2}-D^{2}-\right.\right.$ $\left.2 D^{2} \sin ^{2} \alpha \tan ^{2} \alpha\right) /\left(L^{2}-D^{2}\right)$, then p_{1} is unique.
(2-4) If $\angle(X, \overrightarrow{p q})=\angle(Y, \overrightarrow{p q})=\alpha \neq 0$ and if $\angle(X, Y)<\arccos \left(\left(L^{2}-D^{2}-\right.\right.$ $\left.\left.2 D^{2} \sin ^{2} \alpha \tan ^{2} \alpha\right) /\left(L^{2}-D^{2}\right)\right)$, then there are exactly two choices for p_{1}.
(3) If $\{p, X, q, Y, L\}$ does not satisfy the convexity condition and if $\angle(X, \overrightarrow{p q}) \geq$ $\arccos (D / L)$ and $\angle(X, \overrightarrow{p q})>\angle(Y, \overrightarrow{p q})$, then p_{1} is the unique point determined by $\overrightarrow{p p_{1}} /\left|p p_{1}\right|=X$.
(4) If $\{p, X, q, Y, L\}$ does not satisfy the convexity condition and if $\angle(Y, \overrightarrow{p q}) \geq$ $\arccos (D / L)$ and $\angle(Y, \overrightarrow{p q})>\angle(X, \overrightarrow{p q})$, then p_{1} is the unique point determined by $\overrightarrow{p_{1} q} /\left|p_{1} q\right|=Y$.
(5) If $\{p, X, q, Y, L\}$ does not satisfy the convexity condition and $\angle(X, \overrightarrow{p q})=$ $\angle(Y, \overrightarrow{p q}) \geq \arccos (D / L)$, then p_{1} is either the point determined by $\overrightarrow{p p_{1}} /\left|p p_{1}\right|=X$ or the point determined by $\overrightarrow{p_{1} q} /\left|p_{1} q\right|=Y$.

Proof (Figure 3.10). Suppose $p=q$. Then for any $\xi \in S^{2}$ we have $f(\xi)=$ $-\xi$, and hence by (3.1),

$$
\begin{aligned}
\tilde{\tau}(\xi) & =d(X, \xi)+\pi+d(-\xi, Y) \\
& =d(X, \xi)+\pi+\pi-d(\xi, Y) \\
& \geq 2 \pi-d(X, Y) .
\end{aligned}
$$

Here, the equality holds if and only if ξ lies on the geodesic segment $X f^{-1}(Y)$. This proves (1) for the case when $p=q$.

Suppose $p \neq q$ and $\{p, X, q, Y, L\}$ satisfies the convexity condition. Then either $d(X, Z) \geq \arccos (D / L)$ or $d(Z, Y) \geq \arccos (D / L)$ holds, where $Z=$ $\overrightarrow{p q} /|p q|$. If $d(X, Z)>\arccos (D / L)$ or $d(Z, Y)>\arccos (D / L)$ holds, (1) follows

Figure 3.10. Illustration of the proof of Theorem 3.8.
from Lemma 3.7. Otherwise, we must have $d(X, Z)=d(Z, Y)=\arccos (D / L)$. Then we see that $\tilde{\tau}$ becomes minimal if and only if $\xi=X=f^{-1}(Y)$, which proves (1) for the case when $p \neq q$.

To prove (2) let $\xi_{0}=\overrightarrow{p p_{1}} /\left|p p_{1}\right|$. Under the assumption in (2), $\{p, X, q, Y, L\}$ cannot satisfy the convexity condition. By Lemmas 3.4 and 3.5, we see that $\nabla \tilde{\tau}=0$ at ξ_{0}. By Lemma 3.2, we have $d\left(Z, \xi_{0}\right)=\arccos (D / L)$, or equivalently, $\left|p p_{1}\right|=\left|p_{1} q\right|=L / 2$. If we restrict the function $\tilde{\tau}(\xi)$ to the small circle $d_{Z}(\xi)=$ $\arccos (D / L)$, it is written as

$$
\begin{equation*}
\tilde{\tau}(\xi)=d(X, \xi)+d(f(\xi), Y)+2 \arccos (D / L) \tag{3.29}
\end{equation*}
$$

by (3.1). Hence, ξ_{0} minimizes $d(X, \xi)+d(f(\xi), Y)$ among all ξ on the small circle $d_{Z}(\xi)=\arccos (D / L)$. Let Y^{\prime} be the point on S^{2} which is symmetric to Y with respect to Z. Then we have

$$
\begin{equation*}
d(X, \xi)+d(f(\xi), Y)=d(X, \xi)+d\left(\xi, Y^{\prime}\right) \tag{3.30}
\end{equation*}
$$

Both X and Y^{\prime} are points in the disk D of radius $\arccos (D / L)$ centered at Z. If we regard D as a "two-sided" disk and regard X as a point on the "top" and Y^{\prime} as a point on the "bottom", ξ_{0} is the point where the shortest path from X to Y^{\prime} in D meets the circle $d_{Z}(\xi)=\arccos (D / L)$. Now we use the proposition in the Appendix. If $X=Y=Z\left(=Y^{\prime}\right)$, by (2) of the proposition, we can find the shortest path from X to Y^{\prime} in all directions at X, which proves (2-2). In all other cases, there exist only one or two shortest paths from X to Y^{\prime}, and we have choices of the corresponding number for p_{1}. There are two choices for p_{1} if and only if $Y^{\prime} \in C_{0}$, where C_{0} is the curve described in the Appendix. The condition that $Y^{\prime} \in C_{0}$ is equivalent to the condition that

$$
\begin{equation*}
d(X, Z)=d(Y, Z), \quad 0 \leq \angle X Z Y<\pi-2 \theta_{0} \tag{3.31}
\end{equation*}
$$

where θ_{0} is as given in the Appendix. (3.31) is equivalent to

$$
\begin{equation*}
\angle(X, \overrightarrow{p q})=\angle(Y, \overrightarrow{p q}), \quad \angle(X, Y)<2 \arcsin \left(\frac{\sin \alpha \tan \alpha}{\tan R}\right) \tag{3.32}
\end{equation*}
$$

where $\alpha=\angle(X, \overrightarrow{p q})$ and $R=\arccos (D / L)$. Now, (2) follows since we have

$$
2 \arcsin \left(\frac{\sin \alpha \tan \alpha}{\tan R}\right)=\arccos \left(\frac{L^{2}-D^{2}-2 d^{2} \sin ^{2} \alpha \tan ^{2} \alpha}{L^{2}-D^{2}}\right)
$$

In (3), $\{p, X, q, Y, L\}$ does not satisfy the convexity condition and we have $d(X, Z) \geq \arccos (D / L)$ and $d(X, Z)>d(Z, Y)$. If $d(X, Z)>\arccos (D / L)$, by Lemma 3.7, $\tilde{\tau}$ is not differentiable at ξ_{0}, and hence by Lemma 3.4, we have $\xi_{0}=X$ or $\xi_{0}=f^{-1}(Y)$. Then by Lemma 3.6, we see that $\xi_{0}=X$. If $d(X, Z)=$ $\arccos (D / L), \xi_{0}$ may be a point with $d\left(\xi_{0}, Z\right)=\arccos (D / L)$. By (3.29) and (3.30), ξ_{0} minimizes $d(X, \xi)+d\left(\xi, Y^{\prime}\right)$ for ξ with $d(\xi, Z)=\arccos (D / L)$. Hence, we must have $\xi_{0}=X$, since $d(X, \xi)+d\left(\xi, Y^{\prime}\right) \geq d\left(X, Y^{\prime}\right)$ and the equality holds if and only if $\xi=X$. This proves (3). The proof for (4) is similar to that for (3).

In (5), $\{p, X, q, Y, L\}$ does not satisfy the convexity condition and we have $d(X, Z)=d(Z, Y) \geq \arccos (D / L)$. If $d(X, Z)=d(Z, Y)>\arccos (D / L)$, by Lemma 3.7 and Lemma 3.4, we have $\xi_{0}=X$ or $\xi_{0}=f^{-1}(Y)$. Since $\tilde{\tau}(X)=$ $\tilde{\tau}\left(f^{-1}(Y)\right)$ in this case, both of them minimize $\tilde{\tau}$. If $d(X, Z)=d(Z, Y)=$ $\arccos (D / L), \xi_{0}$ may be a point with $d\left(\xi_{0}, Z\right)=\arccos (D / L)$. By (3.29) and (3.30), ξ_{0} minimizes $d(X, \xi)+d\left(\xi, Y^{\prime}\right)$ for ξ with $d(\xi, Z)=\arccos (D / L)$. Hence, both $\xi_{0}=X$ and $\xi_{0}=f^{-1}(Y)$ minimize $\tilde{\tau}$ since $d(X, \xi)+d\left(\xi, Y^{\prime}\right) \geq$ $d\left(X, Y^{\prime}\right)$ and the equality holds if and only if $\xi=X$ or $\xi=Y^{\prime}$. This proves (5).

Remark 3.9. If we regard the closed case $(p=q)$ as the limit $(|p q| \rightarrow 0)$ of the open case $(p \neq q)$ with $\overrightarrow{p q} /|p q|=-Y$, (1) for $p=q$ is derived from (1) for $p \neq q$.

4. Piecewise linear curves with three edges

In this section, we study the shape of a piecewise linear curve which attains $\inf \left\{\tilde{\tau}(P): P \in \mathcal{P}_{3}(p, q, L)\right\}$. Since $\mathcal{P}_{3}(p, q, L)$ is compact and $\tilde{\tau}$ is continuous, such a piecewise linear curve always exists. Suppose that $P_{0}=p p_{1} \cup p_{1} p_{2} \cup p_{2} q$ is an extremal curve in $\mathcal{P}_{3}(p, X, q, Y, L)$.

Let $P_{0}^{1}=p p_{1} \cup p_{1} p_{2}$ and $P_{0}^{2}=p_{1} p_{2} \cup p_{2} q$. Let $X_{1}=\overrightarrow{p p_{1}} /\left|p p_{1}\right|, X_{2}=$ $\overrightarrow{p_{1} p_{2}} /\left|p_{1} p_{2}\right|, X_{3}=\overrightarrow{p_{2} q} /\left|p_{2} q\right|, L_{1}=\left|p p_{1}\right|+\left|p_{1} p_{2}\right|$ and $L_{2}=\left|p_{1} p_{2}\right|+\left|p_{2} q\right|$. Let $f_{k}(k=1,2)$ be the map defined as f in Section 3 with $L=L_{k}$ and $\{p, q\}=$ $\left\{p, p_{2}\right\}$ for $f_{1},\{p, q\}=\left\{p_{1}, q\right\}$ for $f_{2} . \quad P_{0}^{1}$ must be an extremal curve in $\mathcal{P}_{2}\left(p, X, p_{2}, X_{3}, L_{1}\right)$, since if not, the replacement of P_{0}^{1} by an extremal curve in $\mathcal{P}_{2}\left(p, X, p_{2}, X_{3}, L_{1}\right)$ would produce an element of $\mathcal{P}_{3}(p, q, L)$ whose $\tilde{\tau}$ is smaller
than $\tilde{\tau}\left(P_{0}\right)$, which contradicts the minimality of $\tilde{\tau}\left(P_{0}\right)$. By Theorem 3.8, one of the following holds:
(a1) $\left\{p, X, p_{2}, X_{3}, L_{1}\right\}$ satisfies the convexity condition and X_{1}, as a point in S^{2}, lies on the geodesic segment $X f_{1}^{-1}\left(X_{3}\right)$.
(b1) $\left\{p, X, p_{2}, X_{3}, L_{1}\right\}$ does not satisfy the convexity condition and $\left|p p_{1}\right|=$ $\left|p_{1} p_{2}\right|$.
(c1) $\left\{p, X, p_{2}, X_{3}, L_{1}\right\}$ does not satisfy the convexity condition and $X_{1}=X$.
(d1) $\left\{p, X, p_{2}, X_{3}, L_{1}\right\}$ does not satisfy the convexity condition and $X_{2}=X_{3}$.
Note that if (d1) occurs, then P_{0} becomes a piecewise linear curve with two edges, and if (a1) occurs, then P_{0} is a plane convex arc.

Similarly, P_{0}^{2} must be an extremal curve in $\mathcal{P}_{2}\left(p_{1}, X_{1}, q, Y, L_{2}\right)$, and one of the following holds:
(a2) $\left\{p_{1}, X_{1}, q, Y, L_{2}\right\}$ satisfies the convexity condition and X_{2}, as a point in S^{2}, lies on the geodesic segment $X_{1} f_{2}^{-1}(Y)$.
(b2) $\left\{p_{1}, X_{1}, q, Y, L_{2}\right\}$ does not satisfy the convexity condition and $\left|p_{1} p_{2}\right|=$ $\left|p_{2} q\right|$.
(c2) $\left\{p_{1}, X_{1}, q, Y, L_{2}\right\}$ does not satisfy the convexity condition and $X_{2}=X_{1}$. (d2) $\left\{p_{1}, X_{1}, q, Y, L_{2}\right\}$ does not satisfy the convexity condition and $X_{3}=Y$.
If (c2) occurs, then P_{0} becomes a piecewise linear curve with two edges, and if (a2) occurs, then P_{0} is a plane convex arc.

Definition 4.1. A piecewise linear curve with three edges $P=p p_{1} \cup p_{1} p_{2} \cup$ $p_{2} q$ is called a Z-curve (Figure 4.1) if P satisfies $\overrightarrow{p p_{1}} /\left|p p_{1}\right|=\overrightarrow{p_{2} q} /\left|p_{2} q\right|$.

We note that any Z-curve lies in a plane.
Lemma 4.2. Suppose $X=Y$. If a Z-curve $P=p p_{1} \cup p_{1} p_{2} \cup p_{2} q$ with $\overrightarrow{p p_{1}} /\left|p p_{1}\right|=X$ and $\overrightarrow{p_{2} q} /\left|p_{2} q\right|=Y$ becomes an extremal curve in $\mathcal{P}_{3}(p, X, q$, $Y, L)$, then we have $\angle(X, \overrightarrow{p q}) \geq \arccos (D / L)$.

Proof. Let $P^{\prime}=p p_{1}^{\prime} \cup p_{1}^{\prime} q$ be the element of $\mathcal{P}_{2}(p, q, L)$ which satisfies $\overrightarrow{p p_{1}^{\prime}} /\left|p p_{1}^{\prime}\right|=X$. Since $X=Y$, we have $\tilde{\tau}(P)=\tilde{\tau}\left(P^{\prime}\right)$. If P is an extremal curve in $\mathcal{P}_{3}(p, X, q, Y, L)$, then P^{\prime} must be an extremal curve in $\mathcal{P}_{2}(p, X, q, Y, L)$. By Theorem 3.8, we have $\angle(X, \overrightarrow{p q}) \geq \arccos (D / L)$.

The main result in this section is stated as follows.

Figure 4.1. A Z-curve.

THEOREM 4.3. Suppose that $P_{0}=p p_{1} \cup p_{1} p_{2} \cup p_{2} q$ is an extremal curve in $\mathcal{P}_{3}(p, X, q, Y, L)$. Then P_{0} must lie in a plane. Moreover, P_{0} is actually an element of $\mathcal{P}_{2}(p, q, L)$ except for the following two cases:
(1) $\{p, X, q, Y, L\}$ satisfies the convexity condition and P_{0} is a plane convex arc. (In this case, p_{1} and p_{2} can be any points such that $X, \overrightarrow{p p_{1}} /\left|p p_{1}\right|$, $\overrightarrow{p_{1} p_{2}} /\left|p_{1} p_{2}\right|, \overrightarrow{p_{2} q} /\left|p_{2} q\right|, Y, \overrightarrow{q p} /|q p|$ lie on a geodesic in S^{2} in this order.)
(2) $p \neq q, X=Y, \angle(X, \overrightarrow{p q}) \geq \arccos (D / L)$ and P_{0} is a Z-curve tangent to X at p and to Y at q.

Proof. We define unit vectors $Z_{k}(k=1,2)$ by $Z_{1}=\overrightarrow{p p_{2}} /\left|p p_{2}\right|$ and $Z_{2}=$ $\overrightarrow{p_{1} q} /\left|p_{1} q\right|$. In the following argument, $\angle_{p}\left(X_{1}, Z_{1}\right)$, for example, denotes the angle between X_{1} and Z_{1} at p. We also set $\gamma_{1}=\arccos \left(d_{1} / L_{1}\right)$ and $\gamma_{2}=$ $\arccos \left(d_{2} / L_{2}\right)$, where $d_{1}=\left|p p_{2}\right|$ and $d_{2}=\left|p_{1} q\right|$.

Suppose (b1) and (b2) simultaneously hold for P_{0}. Since (b1) holds, we have

$$
\begin{align*}
\angle_{p}\left(X, Z_{1}\right) & \leq \gamma_{1} \\
{\angle p_{2}}\left(X_{3}, Z_{1}\right) & \leq \gamma_{1} \tag{4.1}\\
\angle_{p}\left(X_{1}, Z_{1}\right) & =\angle_{p_{2}}\left(X_{2}, Z_{1}\right)=\gamma_{1}
\end{align*}
$$

Since (b2) holds, we have

$$
\begin{align*}
\angle p_{1}\left(X_{1}, Z_{2}\right) & \leq \gamma_{2} \\
\angle{ }_{q}\left(Y, Z_{2}\right) & \leq \gamma_{2} \tag{4.2}\\
\angle_{p_{1}}\left(X_{2}, Z_{2}\right) & =\angle_{q}\left(X_{3}, Z_{2}\right)=\gamma_{2}
\end{align*}
$$

Using (4.1) and (4.2), we obtain

$$
\begin{align*}
\angle_{p_{2}}\left(X_{3}, Z_{1}\right) & \geq \angle_{p_{2}}\left(X_{2}, X_{3}\right)-\angle_{p_{2}}\left(X_{2}, Z_{1}\right) \tag{4.3}\\
& =2 \gamma_{2}-\angle_{p_{2}}\left(X_{2}, Z_{1}\right) \\
& \geq \gamma_{2}+\angle_{p_{1}}\left(X_{1}, Z_{2}\right)-\angle_{p_{2}}\left(X_{2}, Z_{1}\right) \\
& =\angle_{p_{1}}\left(X_{2}, Z_{2}\right)+\angle_{p_{1}}\left(X_{1}, Z_{2}\right)-\angle_{p_{2}}\left(X_{2}, Z_{1}\right) \\
& \geq \angle_{p_{1}}\left(X_{1}, X_{2}\right)-\angle_{p_{2}}\left(X_{2}, Z_{1}\right) \\
& =2 \gamma_{1}-\angle_{p_{2}}\left(X_{2}, Z_{1}\right) \\
& =\gamma_{1} .
\end{align*}
$$

From (4.1) and (4.3), we have

$$
\begin{equation*}
\angle_{p_{2}}\left(X_{3}, Z_{1}\right)=\gamma_{1} \tag{4.4}
\end{equation*}
$$

and all equalities in (4.3) must hold, i.e.,

$$
\begin{align*}
\angle_{p_{1}}\left(X_{1}, Z_{2}\right)+\angle_{p_{1}}\left(X_{2}, Z_{2}\right) & =\angle_{p_{1}}\left(X_{1}, X_{2}\right) \tag{4.5}\\
\angle_{p_{2}}\left(X_{2}, Z_{1}\right)+\angle_{p_{2}}\left(X_{3}, Z_{1}\right) & =\angle_{p_{2}}\left(X_{2}, X_{3}\right), \tag{4.6}\\
\angle_{p_{1}}\left(X_{1}, Z_{2}\right) & =\gamma_{2} \tag{4.7}
\end{align*}
$$

(4.5) and (4.6) imply that P_{0} lies in a plane. If $\angle_{p}\left(X, Z_{1}\right)<\gamma_{1}$, (4.4) implies that $p_{1} p_{2}$ is tangent to X_{3}, which means that P_{0} is an element of $\mathcal{P}_{2}(p, q, L)$. Hence, if P_{0} is not an element of $\mathcal{P}_{2}(p, q, L)$, by (4.1), we must have $\angle_{p}\left(X, Z_{1}\right)=\gamma_{1}$ and $p p_{1}$ is tangent to X. By a similar reason, $p_{2} q$ is tangent to Y. Combining (4.2), (4.5), and (4.7), we obtain

$$
\begin{align*}
2 \gamma_{2} & =\angle_{p_{1}}\left(X_{1}, Z_{2}\right)+\angle_{p_{1}}\left(X_{2}, Z_{2}\right) \tag{4.8}\\
& =\angle_{p_{1}}\left(X_{1}, X_{2}\right) \\
& =2 \gamma_{1} .
\end{align*}
$$

Since $\left\{p, X, p_{2}, X_{3}, L_{1}\right\}$ does not satisfy the convexity condition, (4.8) implies that $X=Y$, and P is a Z-curve which is tangent to X at p and tangent to Y at q.

Suppose (c1) and (b2) simultaneously hold for P_{0}. Since (c1) holds, we have

$$
\begin{align*}
& \angle_{p}\left(X, Z_{1}\right) \geq \gamma_{1} \tag{4.9}\\
& \angle_{p}\left(X, Z_{1}\right) \geq \angle_{p_{2}}\left(X_{3}, Z_{1}\right) .
\end{align*}
$$

Using (4.2) and (4.9), we obtain

$$
\begin{align*}
\angle_{p_{2}}\left(X_{3}, Z_{1}\right) \geq & \angle_{p_{2}}\left(X_{2}, X_{3}\right)-\angle_{p_{2}}\left(X_{2}, Z_{1}\right) \tag{4.10}\\
= & 2 \gamma_{2}-\angle_{p_{2}}\left(X_{2}, Z_{1}\right) \\
\geq & \gamma_{2}+\angle_{p_{1}}\left(X_{1}, Z_{2}\right)-\angle_{p_{2}}\left(X_{2}, Z_{1}\right) \\
= & \gamma_{2}+\angle_{p_{1}}\left(X_{1}, Z_{2}\right)-\angle_{p_{1}}\left(X_{1}, X_{2}\right)+\angle_{p}\left(X_{1}, Z_{1}\right) \\
\geq & \gamma_{2}+\angle_{p_{1}}\left(X_{1}, Z_{2}\right)-\angle_{p_{1}}\left(X_{2}, Z_{2}\right)-\angle_{p_{1}}\left(X_{1}, Z_{2}\right) \\
& +\angle_{p}\left(X_{1}, Z_{1}\right) \\
= & \angle_{p}\left(X_{1}, Z_{1}\right) \\
= & 厶_{p}\left(X, Z_{1}\right) .
\end{align*}
$$

From (4.9) and (4.10), we have

$$
\begin{equation*}
\angle_{p_{2}}\left(X_{3}, Z_{1}\right)=\angle_{p}\left(X, Z_{1}\right) \tag{4.11}
\end{equation*}
$$

and all equalities in (4.10) must hold, i.e.,

$$
\begin{align*}
\angle_{p_{1}}\left(X_{1}, Z_{2}\right)+\angle_{p_{1}}\left(X_{2}, Z_{2}\right) & =\angle_{p_{1}}\left(X_{1}, X_{2}\right) \tag{4.12}\\
\angle_{p_{2}}\left(X_{2}, Z_{1}\right)+\angle_{p_{2}}\left(X_{3}, Z_{1}\right) & =\angle_{p_{2}}\left(X_{2}, X_{3}\right), \tag{4.13}\\
\angle_{p_{1}}\left(X_{1}, Z_{2}\right) & =\gamma_{2} \tag{4.14}
\end{align*}
$$

(4.12) and (4.13) imply that P lies in a plane. If $\angle_{q}\left(Y, Z_{2}\right)<\gamma_{2}$, (4.7) implies that $p_{1} p_{2}$ is tangent to X_{1}, which means that P_{0} is an element of $\mathcal{P}_{2}(p, q, L)$. Hence, if P_{0} is not an element of $\mathcal{P}_{2}(p, q, L)$, by (4.2), we must have $\angle_{p}\left(Y, Z_{2}\right)=\gamma_{2}$ and $p_{2} q$ is tangent to Y. Since $X=X_{1}$, (4.11) implies that $p p_{1}$ is parallel to $p_{2} q$. Now we see that $X=Y$ and P_{0} is a Z-curve which is tangent to X at p and tangent to Y at q.

By a similar reasoning，we see that if（b1）and（d2）simultaneously hold for P_{0} ，then P_{0} must be a Z－curve which is tangent to X at p and tangent to Y at q ．

Suppose（c1）and（d2）simultaneously hold for P_{0} ．Since（d2）holds，we have

$$
\begin{align*}
& \angle_{q}\left(Y, Z_{2}\right) \geq \gamma_{2} \\
& \angle_{q}\left(Y, Z_{2}\right) \geq \angle_{p_{1}}\left(X_{1}, Z_{2}\right) \tag{4.15}
\end{align*}
$$

Using（4．9）and（4．15），we obtain

$$
\begin{align*}
\angle_{p_{1}}\left(X_{1}, Z_{2}\right) \geq & \angle_{p_{1}}\left(X_{1}, X_{2}\right)-\angle_{p_{1}}\left(X_{2}, Z_{2}\right) \tag{4.16}\\
= & 厶_{p_{1}}\left(X_{1}, X_{2}\right)-\angle_{p_{2}}\left(X_{2}, X_{3}\right)+\angle_{q}\left(X_{3}, Z_{2}\right) \\
= & \angle_{p_{1}}\left(X_{1}, X_{2}\right)-\angle_{p_{2}}\left(X_{2}, X_{3}\right)+\angle_{q}\left(Y, Z_{2}\right) \\
\geq & \angle_{p_{1}}\left(X_{1}, X_{2}\right)-\angle_{p_{2}}\left(X_{3}, Z_{1}\right)-\angle_{p_{2}}\left(X_{2}, Z_{1}\right) \\
& +\angle_{q}\left(Y, Z_{2}\right) \\
= & \angle_{p}\left(X_{1}, Z_{1}\right)+\angle_{p_{2}}\left(X_{2}, Z_{1}\right)-\angle_{p_{2}}\left(X_{3}, Z_{1}\right) \\
& -\angle_{p_{2}}\left(X_{2}, Z_{1}\right)+\angle_{q}\left(Y, Z_{2}\right) \\
= & 厶_{p}\left(X_{1}, Z_{1}\right)-\angle_{p_{2}}\left(X_{3}, Z_{1}\right)+\angle_{q}\left(Y, Z_{2}\right) \\
= & 厶_{p}\left(X, Z_{1}\right)-\angle_{p_{2}}\left(X_{3}, Z_{1}\right)+\angle_{q}\left(Y, Z_{2}\right) \\
\geq & 厶_{q}\left(Y, Z_{2}\right) .
\end{align*}
$$

From（4．15）and（4．16），we have

$$
\begin{equation*}
\angle_{p_{1}}\left(X_{1}, Z_{2}\right)=\angle_{q}\left(Y, Z_{2}\right) \tag{4.17}
\end{equation*}
$$

and all equalities in（4．16）must hold，i．e．，

$$
\begin{align*}
\angle_{p_{1}}\left(X_{1}, Z_{2}\right)+\angle_{p_{1}}\left(X_{2}, Z_{2}\right) & =\angle_{p_{1}}\left(X_{1}, X_{2}\right), \tag{4.18}\\
\angle_{p_{2}}\left(X_{2}, Z_{1}\right)+{ }_{p_{2}}\left(X_{3}, Z_{1}\right) & =\angle_{p_{2}}\left(X_{2}, X_{3}\right), \tag{4.19}\\
\angle_{p}\left(X, Z_{1}\right) & =\angle_{p_{2}}\left(X_{3}, Z_{1}\right) . \tag{4.20}
\end{align*}
$$

（4．18）and（4．19）imply that P lies in a plane．Since $X=X_{1}$ and $\left\{p, X, p_{2}, X_{3}\right.$ ， $\left.L_{1}\right\}$ does not satisfy the convexity condition，（4．20）implies that $p p_{1}$ is parallel to $p_{2} q$ ．Since $p p_{1}$ is tangent to X and $p_{2} q$ is tangent to Y ，we see that $X=Y$ and P_{0} is a Z－curve which is tangent to X at p and tangent to Y at q ．

Now we see that one of（a1），（d1），（a2），and（c2）must hold for P_{0} unless P_{0} is a Z－curve tangent to X at p and to Y at q ．Any of（a1），（d1），（a2）， and（c2）implies that P_{0} lies in a plane．

Having（d1）or（c2）means that P_{0} is actually an element of $\mathcal{P}_{2}(p, q, L)$ ．
Suppose that（a1）and（b2）hold simultaneously for P_{0} ．By（a1），P_{0} is a convex arc and we have $\angle_{p_{1}}\left(X_{1}, Z_{2}\right)>\angle_{p_{1}}\left(X_{2}, Z_{2}\right)=\gamma_{2}$ ，while（b2）gives $\angle_{p_{1}}\left(X_{1}, Z_{2}\right) \leq \gamma_{2}$ ．Hence，（a1）and（b2）cannot simultaneously hold for P_{0} ． Similarly，（b1）and（a2）cannot simultaneously hold for P_{0} ．
(a1) and (d2) cannot simultaneously hold for P_{0}, because if this happens, $Y=X_{3}$ holds and $\left\{p_{1}, X_{1}, q, Y, L_{2}\right\}$ satisfies the convexity condition, which contradicts (d2). Similarly, (c1) and (a2) cannot simultaneously hold for P_{0}.

The remaining case is when (a1) and (a2) simultaneously hold for P_{0}. To prove that $\{p, X, q, Y, L\}$ satisfies the convexity condition, we take p_{2}^{\prime} so that $\overrightarrow{p_{1} p_{2}^{\prime}}\left|p_{1} p_{2}^{\prime}\right|=X_{1}$. Then $p p_{2}^{\prime} \cup p_{2}^{\prime} q$ becomes an element of $\mathcal{P}_{2}(p, q, L)$ whose $\tilde{\tau}$ is equal to $\tilde{\tau}\left(P_{0}\right)$. Since we can move p_{1} continuously preserving $\tilde{\tau}$, this construction gives infinitely many elements of $\mathcal{P}_{2}(p, q, L)$ which are extremal curves in $\mathcal{P}_{2}(p, X, q, Y, L)$. Such a thing cannot happen unless $\{p, X, q, Y, L\}$ satisfies the convexity condition, by Theorem 3.8. Now we prove that P_{0} is a plane convex arc. (a1) implies that we have $\left\{X, X_{1}, X_{2}, X_{3}\right\}$ on a great circle in S^{2} in this order. (a2) implies that we have $\left\{X_{1}, X_{2}, X_{3}, Y\right\}$ on the same great circle in this order. Since $\{p, X, q, Y, L\}$ satisfies the convexity condition, we have $\{X, Z, Y,-Z\}$ on the same great circle in this order. Thus, on this great circle, we have $\left\{X_{1}, X_{2}, X_{3},-Z\right\}$ in this order. This implies that the quadrilateral $p p_{1} p_{2} q$ is convex, and hence P_{0} is a plane convex arc.

Now we have checked all possible combinations between $\{(\mathrm{a} 1)$, (b1), (c1), (d1) \} and $\{(\mathrm{a} 2),(\mathrm{b} 2),(\mathrm{c} 2),(\mathrm{d} 2)\}$, and see we have only three possibilities for P_{0} :
(i) $\{p, X, q, Y, L\}$ satisfies the convexity condition and P_{0} is a plane convex arc.
(ii) $X=Y$ and P_{0} is a Z-curve with $\overrightarrow{p p_{1}} /\left|p p_{1}\right|=X$ and $\overrightarrow{p_{2} q} /\left|p_{2} q\right|=Y$.
(iii) P_{0} is actually an element of $\mathcal{P}_{2}(p, q, L)$.

If $X=Y$, then $\{p, X, q, Y, L\}$ does not satisfy the convexity condition. If $X=Y$ and $L<\arccos (D / L)$, then we see from Lemma 4.2 that P_{0} cannot be a Z-curve, and hence P_{0} must be an element of $\mathcal{P}_{2}(p, q, L)$. If $X=Y$ and $L \geq \arccos (D / L)$, then we see from Theorem 3.8(5) that, among all elements of $\mathcal{P}_{2}(p, q, L), p p_{1} \cup p_{1} q$ with $\overrightarrow{p p_{1}} /\left|p p_{1}\right|=X$ and $p p_{1} \cup p_{1} q$ with $\overrightarrow{p_{1} q} /\left|p_{1} q\right|=Y$ minimize $\tilde{\tau}$. Since $X=Y$, any Z-curve tangent to X at p and tangent to Y at q has the same value of $\tilde{\tau}$ as these curves. Thus we see that Z-curves tangent to X at p and tangent to Y at q and the elements of $\mathcal{P}_{2}(p, q, L)$ given in Theorem 3.8(5) are extremal curves in this case.

5. Piecewise linear curves with n edges and piecewise smooth curves

In this section, we study the shape of a piecewise linear curve which attains $\inf \left\{\tilde{\tau}(P): P \in \mathcal{P}_{n}(p, q, L)\right\}$. Since $\mathcal{P}_{n}(p, q, L)$ is compact and $\tilde{\tau}$ is continuous, such a piecewise linear curve always exists.

Theorem 5.1. Suppose that $P_{0} \in \mathcal{P}_{n}(p, q, L)$ is an extremal curve in $\mathcal{P}_{n}(p, X, q, Y, L)$. Then P_{0} must lie in a plane. Moreover, P_{0} is actually an element of $\mathcal{P}_{2}(p, q, L)$, except for the following two cases:
(1) $\{p, X, q, Y, L\}$ satisfies the convexity condition and P_{0} is a plane convex arc.
(2) $p \neq q, X=Y, \angle(X, \overrightarrow{p q}) \geq \arccos (D / L)$ and P_{0} is a Z-curve tangent to X at p and to Y at q.

Proof. If $n \leq 3$, this theorem follows from Theorem 4.3. Hence, it suffices to show that if $n \geq 4$ and $P_{0} \in \mathcal{P}_{n}(p, q, L)$ is not an element of $\mathcal{P}_{n-1}(p, q, L)$, then P_{0} must be a plane convex arc. We write P_{0} as $P_{0}=p_{0} p_{1} \cup p_{1} p_{2} \cup \cdots \cup$ $p_{n-2} p_{n-1} \cup p_{n-1} p_{n}$ with $p_{0}=p, p_{n}=q$. Here, we fix some notations. Let

$$
\begin{aligned}
P_{0}^{k} & =p_{k-1} p_{k} \cup p_{k} p_{k+1} \cup p_{k+1} p_{k+2} \quad(k=1, \ldots, n-2) \\
L_{k} & =\left|p_{k-1} p_{k}\right|+\left|p_{k} p_{k+1}\right|+\left|p_{k+1} p_{k+2}\right| \quad(k=1, \ldots, n-2), \\
X_{k} & =\overrightarrow{p_{k-1} p_{k}} /\left|p_{k-1} p_{k}\right| \quad(k=1, \ldots, n), \quad X_{0}=X, \quad X_{n+1}=Y .
\end{aligned}
$$

Since P_{0} is an extremal curve in $\mathcal{P}_{n}(p, X, q, Y, L)$, for every k with $1 \leq k \leq$ $n-2, P_{0}^{k}$ must be an extremal curve in $\mathcal{P}_{3}\left(p_{k-1}, X_{k-1}, p_{k+2}, X_{k+3}, L_{k}\right)$. By assumption, P_{0}^{k} is not an element of $\mathcal{P}_{2}\left(p_{k-1}, p_{k+2}, L_{k}\right)$. Then by Theorem 4.3, we have two possibilities:
(i) $\left\{p_{k-1}, X_{k-1}, p_{k+2}, X_{k+3}, L_{k}\right\}$ satisfies the convexity condition and we have $\left\{X_{k-1}, X_{k}, X_{k+1}, X_{k+2}, X_{k+3}\right\}$ on a great circle in this order.
(ii) $X_{k-1}=X_{k+3}$ and P_{0}^{k} is a Z-curve with $X_{k}=X_{k-1}$ and $X_{k+2}=X_{k+3}$.

Since $n \geq 4$, if (ii) occurs for some k, then P_{0} becomes an element of $\mathcal{P}_{n-1}(p, q, L)$, which contradicts our assumption. Thus, we must have (i) for all k. Then $\left\{X_{k-1}, \ldots, X_{k+3}\right\}$, as points in S^{2}, lie on a great circle in this order. Hence, $\left\{X, X_{1}, \ldots, X_{n}, Y\right\}$ lie on a great circle in this order, which implies that P_{0} lies in a plane. To prove that P_{0} is a plane convex arc, it suffices to show that we have $\left\{X_{1}, \ldots, X_{n},-Z\right\}$ on a great circle in this order. As we see in the proof for Theorem 4.3 , there exists p_{k}^{\prime} such that $p_{k-1} p_{k}^{\prime} \cup$ $p_{k}^{\prime} p_{k+2}$ becomes an extremal curve in $\mathcal{P}_{3}\left(p_{k-1}, X_{k-1}, p_{k+2}, X_{k+3}, L_{k}\right)$. Moreover, there are infinitely many choices for p_{k}^{\prime}. After replacing P_{0}^{k} by $p_{k-1} p_{k}^{\prime} \cup$ $p_{k}^{\prime} p_{k+2}$, the curve is still an extremal curve in $\mathcal{P}_{n}(p, X, q, Y, L)$. Hence, if it is not an element of $\mathcal{P}_{2}(p, X, q, Y, L)$, we can find an extremal curve in $\mathcal{P}_{n}(p, X, q, Y, L)$ with fewer vertices by a similar replacement. We may repeat this until we obtain an element of $\mathcal{P}_{2}(p, X, q, Y, L)$ which is an extremal curve in $\mathcal{P}_{n}(p, X, q, Y, L)$. This curve is an extremal curve in $\mathcal{P}_{2}(p, X, q, Y, L)$ as well and there are infinitely many choices for such a curve. Such a thing cannot happen in a plane unless $\{p, X, q, Y, L\}$ satisfies the convexity condition. This implies that we have $\{X, Z, Y,-Z\}$ on a great circle in this order, and hence we have $\left\{X_{1}, \ldots, X_{n},-Z\right\}$ on a great circle in this order.

Remark 5.2. If $\{p, X, q, Y, L\}$ satisfies the convexity condition and if $P_{0}=$ $p p_{1} \cup p_{1} p_{2} \cup \cdots \cup p_{n-2} p_{n-1} \cup p_{n-1} q$ is an extremal curve in $\mathcal{P}_{n}(p, X, q, Y, L)$, P_{0} must be a plane convex arc. Moreover, as we see in the proof, p_{1}, \ldots, p_{n-1} can be any points which satisfy the following conditions:
(i) $\left|p p_{1}\right|+\left|p_{1} p_{2}\right|+\cdots+\left|p_{n-2} p_{n-1}\right|+\left|p_{n-1} q\right|=L$.
(ii) $\left\{X, \overrightarrow{p p_{1}} /\left|p p_{1}\right|, \overrightarrow{p_{1} p_{2}} /\left|p_{1} p_{2}\right|, \ldots, \overrightarrow{p_{n-1} q} /\left|p_{n-1} q\right|, Y, \overrightarrow{q p} /|q p|\right\}$ lies on a great circle in this order.

Now we state our main result of the present paper.
TheOrem 5.3. Suppose that Σ_{0} an extremal curve in $\mathcal{C}(p, X, q, Y, L)$. Then Σ_{0} must lie in a plane. Moreover, Σ_{0} is actually an element of $\mathcal{P}_{2}(p, q, L)$ except for the following two cases:
(1) $\{p, X, q, Y, L\}$ satisfies the convexity condition and Σ_{0} is a plane convex arc.
(2) $p \neq q, X=Y, \angle(X, \overrightarrow{p q}) \geq \arccos (D / L)$ and Σ_{0} is a Z-curve tangent to X at p and to Y at q.

Proof. Suppose that Σ_{0} in $\mathcal{C}(p, q, L)$ satisfies $\tilde{\tau}\left(\Sigma_{0}\right)=\inf \{\tilde{\tau}(\Sigma): \Sigma \in \mathcal{C}(p, q$, $L)\}$ but does not lie in any plane. If $x(s)(0 \leq s \leq L)$ is a parameterization of Σ_{0} by arclength, we can construct a piecewise linear curve with n edges by connecting $x((i-1) L / n)$ and $x(i L / n)$ for $i=1, \ldots, n$. By taking a point p_{i} in a neighborhood of $x(i L / n)$ for $i=1, \ldots, n-1$, we can construct another piecewise linear curve P_{n} whose length is L. Since Σ_{0} does not lie in a plane, P_{n} does not lie in a plane for some n. Then P_{n} cannot be an extremal curve in $\mathcal{P}_{n}(p, X, q, Y, L)$ by Theorem 5.1 and we must have

$$
\begin{equation*}
\tilde{\tau}\left(P_{n}\right)>\inf \left\{\tilde{\tau}(P): P \in \mathcal{P}_{n}(p, q, L)\right\}+\delta \tag{5.1}
\end{equation*}
$$

for some $\delta>0$. For any positive constant $\varepsilon<\delta$, if we take n sufficiently large, we have

$$
\begin{equation*}
\tilde{\tau}\left(P_{n}\right)<\tilde{\tau}\left(\Sigma_{0}\right)+\varepsilon . \tag{5.2}
\end{equation*}
$$

It follows from (5.1) and (5.2) that

$$
\begin{aligned}
\inf \left\{\tilde{\tau}(P): P \in \mathcal{P}_{n}(p, q, L)\right\} & <\tilde{\tau}\left(P_{n}\right)-\delta \\
& <\tilde{\tau}\left(\Sigma_{0}\right)+\varepsilon-\delta \\
& <\tilde{\tau}\left(\Sigma_{0}\right) \\
& =\inf \{\tilde{\tau}(\Sigma): \Sigma \in \mathcal{C}(p, q, L)\} .
\end{aligned}
$$

This is a contradiction, since we must have

$$
\inf \left\{\tilde{\tau}(P): P \in \mathcal{P}_{n}(p, q, L)\right\} \geq \inf \{\tilde{\tau}(\Sigma): \Sigma \in \mathcal{C}(p, q, L)\}
$$

Thus Σ_{0} must lie in a plane.
Suppose that none of (1)-(3) holds. Then none of (1)-(3) in Theorem 5.1 holds for P_{n}, an element of $\mathcal{P}_{n}(p, q, L)$ which is defined from Σ_{0} as above. Since P_{n} is not an extremal curve in $\mathcal{P}_{n}(p, X, q, Y, L)$, we must have (5.1) again for some $\delta>0$. We also have (5.2) again for any positive constant $\varepsilon<\delta$, if we take n sufficiently large. This gives a contradiction again. Thus, (1)-(3) must hold for Σ_{0}.

Figure 5.1. The shapes of extremal curves as a function of their length.

Corollary 5.4. For any $\{p, X, q, Y, L\}$, there exists an element of $\mathcal{P}_{2}(p, q$, $L)$ which is an extremal curve in $\mathcal{C}(p, X, q, Y, L)$.

Corollary 5.5. If X, Y and $\overrightarrow{p q}$ do not lie in a plane, then every extremal curve in $\mathcal{C}(p, X, q, Y, L)$ is an element of $\mathcal{P}_{2}(p, q, L)$.

Remark 5.6. Theorem 5.3 generalizes the results in [8], where a similar problem is considered for curves in E^{2}.

Remark 5.7. One may apply Theorem 5.3 for closed curves by setting $p=q$ and $X=Y$. As a result, one can derive the classical Fenchel's theorem from Theorem 5.3.

Remark 5.8. Even if we fix p, q, X, and Y, the shape of the extremal curves in $\mathcal{C}(p, X, q, Y, L)$ changes by the length L (Figure 5.1). For example, let $p=(1,0,0), q=(-1,0,0), X=(\cos (5 \pi / 6), \sin (5 \pi / 6), 0)$ and $Y=$ $(\cos (4 \pi / 3), \sin (4 \pi / 3), 0)$. If $2<L<1+\sqrt{3},\{p, X, q, Y, L\}$ satisfies the convexity condition and there are infinitely many convex arcs in $\mathcal{C}(p, q, L)$ which become extremal curves in $\mathcal{C}(p, X, q, Y, L)$. If $L=1+\sqrt{3},\{p, X, q, Y, L\}$ satisfies the convexity condition but $p p_{1} \cup p_{1} q$ with $\overrightarrow{p p_{1}} /\left|p p_{1}\right|=X$ and $\overrightarrow{p_{1} q} /\left|p_{1} a\right|=Y$ is the only extremal curve in $\mathcal{C}(p, X, q, Y, L)$. If $1+\sqrt{3}<L \leq 4,\{p, X, q, Y, L\}$ satisfies the condition in Theorem 3.8(3) and $p p_{1} \cup p_{1} q$ with $\overrightarrow{p p_{1}} /\left|p p_{1}\right|=X$ is the only extremal curve in $\mathcal{C}(p, X, q, Y, L)$. If $L>4,\{p, X, q, Y, L\}$ satisfies the condition in Theorem 3.8(2-1) and $p p_{1} \cup p_{1} q$ with $p_{1}=\left(0, \sqrt{L^{2}-4} / 2,0\right)$ $\left(\left|p p_{1}\right|=\left|p_{1} q\right|\right)$ is the only extremal curve in $\mathcal{C}(p, X, q, Y, L)$.

REmark 5.9. If we do not fix the length, the problem becomes almost trivial. Let us denote by $\mathcal{C}(p, X, q, Y)$ the set of all piecewise C^{2} curves in E^{3} whose endpoints and end-directions are p, q, X, Y. For any $\Sigma \in$ $\mathcal{C}(p, X, q, Y)$, let $\bar{\Sigma}$ be the closed curve defined by $\Sigma \cup q p$. Then we have $\tau(\bar{\Sigma})=\tau(\Sigma)+\angle(Y, \overrightarrow{q p} /|q p|)+\angle(\overrightarrow{q p} /|q p|, X)$. Since $\tau(\bar{\Sigma}) \geq 2 \pi$, we have $\tau(\Sigma) \geq$ $2 \pi-\angle(Y, \overrightarrow{q p} /|q p|)-\angle(\overrightarrow{q p} /|q p|, X)=\angle(X, \overrightarrow{p q} /|p q|)+\angle(\overrightarrow{p q} /|p q|, Y)$. Thus, we
see that $\inf \{\tau(\Sigma): \Sigma \in \mathcal{C}(p, X, q, Y)\}=\angle(X, \overrightarrow{p q} /|p q|)+\angle(\overrightarrow{p q} /|p q|, Y)$ and the infimum is attained by $\Sigma=p q$.

Appendix. Cut locus of a two-sided disk in the unit 2-sphere

Let C be a small circle of radius $R(R<\pi / 2)$ in the unit 2 -sphere. Let D be the "two-sided" round disk bounded by C. We denote the top of D by D_{1} and the bottom by D_{2}. Let $\pi: D \rightarrow D_{1}$ be the natural projection. Let d be the distance on D which is naturally induced from the standard metric of the unit 2 -sphere. For $x \in D_{1}$ and $y \in D_{2}$, we have

$$
d(x, y)=\min \{d(x, \xi)+d(\xi, y) ; \xi \in C\}
$$

We will see how many different points on C can attain $d(x, y)$. If there exist more than one points as such, y is a cut point of x. Let $Z_{i}(i=1,2)$ be the center of D_{i}. We now assume that $x \neq Z_{1}$. For $\eta \in D_{1} \backslash\left\{Z_{1}\right\}$ let $\theta(\eta)$ be the oriented angle $(0 \leq \theta(\eta)<2 \pi)$ from the geodesic $Z_{1} x$ to $Z_{1} \eta$. Let ξ_{0} be the point on C with $0<\theta\left(\xi_{0}\right)<\pi / 2$ such that the geodesic $x \xi_{0}$ intersects $Z_{1} x$ perpendicularly at x. Let $\theta_{0}=\theta\left(\xi_{0}\right)$. θ_{0} is explicitly given by

$$
\theta_{0}=\arccos \frac{\tan \alpha}{\tan R}
$$

where $\alpha=d\left(x, Z_{1}\right)$. We extend θ to a function in D by defining $\theta(y)$ for $y \in D_{2}$ as $\theta(\pi(y))$. Let (Figure A.1)

$$
C_{0}=\left\{y \in D_{2}: d\left(y, Z_{2}\right)=\alpha, 2 \theta_{0}<\theta(y)<2 \pi-2 \theta_{0}\right\} .
$$

The main result in this appendix is stated as follows.

Proposition.

(1) Suppose $x \in D_{1}$ and $x \neq Z_{1}$. If $y \in C_{0}$, two geodesics from x to y realize $d(x, y)$. If $y \notin C_{0}$, only one geodesic from x to y realizes $d(x, y)$.
(2) Suppose $x=Z_{1}$. If $y=Z_{2}$, every geodesic $x \xi \cup \xi y(\xi \in C)$ realizes $d(x, y)$. If $y \neq Z_{2}$, only one geodesic from x to y realizes $d(x, y)$.

Figure A.1. The set C_{0}.

Figure A.2. The two cases of the proof of the proposition.

Proof. Let $x \in D_{1}$ and $y \in D_{2}$. Since C is parameterized by θ, we regard $d(x, \xi)+d(\xi, y)$ for $\xi \in C$ as a function in θ, and denote it by $f(\theta)$. Setting $y_{1}=\pi(y), f(\theta)$ is written as

$$
f(\theta)=d(x, \xi(\theta))+d\left(\xi(\theta), y_{1}\right)
$$

Then

$$
f^{\prime}(\theta)>0 \quad(=0,<0)
$$

if and only if

$$
\angle\left(\nabla d_{x}(\xi(\theta)), \nabla d_{Z_{1}}(\xi(\theta))\right)-\angle\left(\nabla d_{y_{1}}(\xi(\theta)), \nabla d_{Z_{1}}(\xi(\theta))\right)>0 \quad(=0,<0),
$$

respectively. Suppose $x \neq Z_{1}$ and let y be a point which satisfies $d\left(y, Z_{2}\right)=\alpha$. Then we have $f^{\prime}(\theta(y) / 2)=0$ and $f^{\prime}(\theta(y) / 2+\pi)=0$. These are the only critical points of $f(\theta)$ if $0 \leq \theta(y) \leq 2 \theta_{0}$ or $2 \pi-2 \theta_{0} \leq \theta(y) \leq 2 \pi$, while there are two more critical points $\theta_{1}\left(0<\theta_{1}<\theta(y) / 2\right)$ and $\theta(y)-\theta_{1}$ if $2 \theta_{0}<\theta(y)<$ $2 \pi-2 \theta_{0}$ (Figure A.2). $f(\theta)$ becomes minimal at $\theta=\theta(y) / 2$ if $0 \leq \theta(y) \leq 2 \theta_{0}$ or $2 \pi-2 \theta_{0} \leq \theta(y) \leq 2 \pi$, while $f(\theta)$ becomes minimal at $\theta=\theta_{1}$ and $\theta=\theta(y)-\theta_{1}$ if $2 \theta_{0}<\theta(y)<2 \pi-2 \theta_{0}$.

This means that for every $y \in C_{0}$ there are two distinct minimizing geodesics from x to y. Let

$$
\bar{C}_{0}=\left\{y \in D_{2}: d\left(y, Z_{2}\right)=\alpha, 2 \theta_{0} \leq \theta(y) \leq 2 \pi-2 \theta_{0}\right\} .
$$

Then we see that every point η in D lies on a minimizing geodesic from x to some point y in \bar{C}_{0}. If $\eta \neq y$, the subarc of the geodesic from x to y is the only minimizing geodesic from x to η. In fact, if there is another minimizing geodesic from x to η, we can find a shortcut to construct a path from x to y shorter than the original minimizing geodesic, which is a contradiction. Hence, for every $\eta \in D \backslash \bar{C}_{0}$ there exists only one minimizing geodesic from x to η. If $y \in \bar{C}_{0} \backslash C_{0}, \theta(y)=2 \theta_{0}, 2 \pi-2 \theta_{0}$ and there exists only one minimizing geodesic from x to y. Thus, there are two distinct minimizing geodesics from x to y if $y \in C_{0}$, while there is only one minimizing geodesic from x to y if $y \notin C_{0}$. This completes the proof for (1).

Figure A.3. A "lens surface" with an approximation to the cut locus [12] from a point below the equator on the far side.

If $x=Z_{1}$ and $y=Z_{2}$, then $f(\theta)$ becomes a constant $2 R$. This means that any geodesic $Z_{1} \xi \cup \xi Z_{2}(\xi \in C)$ is minimizing. Any $y \neq Z_{2}$ lies on some minimizing geodesic from Z_{1} to Z_{2}, and the subarc of that geodesic is the only minimizing geodesic from Z_{1} to y. This proves (2).

Remark. The problem of determining the structure of the cut loci of the 2-sided disk in S^{2} may be studied from a slightly different point of view. If we flip D_{2} and attach D_{1} and D_{2} along the small circle C, then the resulting surface (which may be called a "lens surface", Figure A.2) becomes a closed convex surface of revolution (which is not smooth along the small circle). The cut locus of $x \in D_{1}$ should appear in this surface in the same way as in our 2 -sided disk. Put simply, our proposition claims that the cut locus of a point in the "southern hemisphere" appears as a subarc of a circle of constant latitude in the northern hemisphere.

The reader is invited to compare such a construction of two smooth surfaces sewn with a distribution of curvature along the boundary with the case of billiards. A beautiful discussion of the conjugate loci of circular billiard tables is to be found in [2].

Remark. The problem of determining the structure of the cut loci of the 2-sided disk in S^{2} may be studied from a slightly different point of view. If we attach two round disks D_{1} and D_{2} along the small circle C so that the resulting surface becomes a closed convex surface of revolution (which is not smooth along the small circle), the cut locus of $x \in D_{1}$ should appear in this surface in the same way as in our 2 -sided disk. If one smooths the surface along the small circle, one obtains a closed surface of revolution with positive Gaussian curvature. The structure of cut loci is studied on some smooth surfaces of revolution [20], or general ellipsoids [13], and the behaviors of geodesics in our case are quite similar to their case. The results in their papers also suggest that the cut locus of x is a subarc of the small circle $\left\{y \in D_{2}: d\left(y, Z_{2}\right)=d\left(x, Z_{1}\right)\right\}$.

Acknowledgments. The authors express their thanks to Minoru Tanaka for his valuable suggestions. We are also very grateful to the referee for his many valuable comments.

References

[1] P. A. Alexander, Y. He, Y. Chen, J. Orban and P. N. Bryan, The design and characterization of two proteins with 88% sequence identity but different structure and function, Proc. Natl. Acad. Sci. USA 104 (2007), 11963-11968.
[2] R. L. Bishop, Circular billiard tables, conjugate loci, and a cardioid, Regul. Chaotic Dyn. 8 (2003), 83-95. MR 1963970
[3] A. A. Canutescu and R. L. Dunbrack, Jr., Cyclic coordinate descent: A robotics algorithm for protein loop closure, Protein Sci. 12 (2003), 963-972.
[4] A. Carbone and M. Gromov, Mathematical slices of molecular biology, Gaz. Math. 88, suppl. (2001), 1-80. MR 1834502
[5] G. S. Chirikjian and J. W. Burdick, Kinematically optimal hyper-redundant manipulator configurations, IEEE Trans. Robot. Autom. 11 (1995), 794-806.
[6] V. Daggett and A. Fersht, The present view of the mechanism of protein folding, Nat. Rev. Mol. Cell Biol. 4 (2003), 497-502.
[7] C. M. Dobson, Protein folding and misfolding, Nature 426 (2003), 884-890.
[8] K. Enomoto, The total absolute curvature of open plane curves of fixed length, Yokohama Math. J. 48 (2000), 83-96. MR 1788833
[9] K. Enomoto and J. Itoh, The total absolute curvature of nonclosed curves in S^{2}, Results Math. 45 (2004), 21-34. MR 2044010
[10] K. Enomoto and J. Itoh, The total absolute curvature of nonclosed curves in S^{2} (II), Results Math. 45 (2004), 230-240. MR 2078450
[11] W. Fenchel, Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929), 238-252. MR 1512528
[12] J. Itoh and R. Sinclair, Thaw: A tool for approximating cut loci on a triangulation of a surface, Experiment. Math. 13 (2004), 309-325. MR 2103329
[13] J. Itoh and K. Kiyohara, The cut loci and conjugate loci on ellipsoids, Manuscripta Math. 114 (2004), 247-264. MR 2067796
[14] W. Jin, O. Kambara, H. Sasakawa, A. Tamura and S. Takada, De novo design of foldable proteins with smooth folding tunnel: Automated negative design and experimental verification, Structure 11 (2003), 581-590.
[15] B. Kuhlman, G. Dantas, G. C. Ireton, G. Vanini, B. L. Stoddard and D. Baker, Design of a novel globular protein fold with atomic-level accuracy, Science 302 (2003), 13641368.
[16] J. Milnor, On the total curvature of knots, Ann. Math. 52 (1953), 248-257. MR 0037509
[17] J. Milnor, On total curvatures of closed space curves, Math. Scand. 1 (1953), 289-296. MR 0059030
[18] S. B. Prusiner, Shattuck lecture-neurodegenerative diseases and prions, N. Engl. J. Med. 344 (2001), 1516-1526.
[19] J. W. H. Schymkowitz, F. Rousseau and L. Serrano, Surfing on protein folding energy landscapes, Proc. Natl. Acad. Sci. USA 99 (2002), 15846-15848.
[20] R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and Toponogov's comparison theorem, Tohoku Math. J. 59 (2007), 379-399. MR 2365347
[21] E. L. Starostin, On the writhing number of a non-closed curve, Physical and numerical models in knot theory including applications to the life sciences (J. A. Calvo et al., eds.), Series on Knots and Everything, vol. 36, World Scientific Publishing, Singapore, 2005, pp. 525-546, Chapter 26. MR 2197956
[22] C. Truesdell, The influence of elasticity on analysis; the classical heritage, Bull. Amer. Math. Soc. 9 (1983), 293-310. MR 0714991
[23] P. G. Wolynes, Energy landscapes and solved protein-folding problems, Philos. Trans. R. Soc. Lond. Ser. A 363 (2005), 453-467.
[24] J. M. Zimmerman and L. J. Maher III, Solution measurement of DNA curvature in papillomavirus E2 binding sites, Nucl. Acids Res. 31 (2003), 5134-5139.

Kazuyuki Enomoto, Faculty of Industrial Science and Technology, Tokyo University of Science, Oshamambe, Hokkaido 049-3514, Japan

E-mail address: enomoto@rs.kagu.tus.ac.jp
Jin-ichi Itoh, Faculty of Education, Kumamoto University, Kumamoto, KuMAMOTO 860-8555, JAPAN

E-mail address: j-itoh@gpo.kumamoto-u.ac.jp
Robert Sinclair, Mathematical Biology Unit, Okinawa Institute of Science and Technology, Okinawa Industrial Technology Center Annex, 12-2 Suzaki, Uruma, Okinawa 904-2234, Japan

E-mail address: sinclair@oist.jp

