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In this paper we consider a numerical method for solving nonhomogeneous backward heat conduction problem. Coupled with
the likewise Crank Nicolson scheme and an intermediate variable, the backward problem is transformed to a nonhomogeneous
Helmholtz type problem; the unknown initial temperature can be obtained by solving this Helmholtz type problem. To illustrate
the effectiveness and accuracy of the proposed method, we solve several problems in both two and three dimensions. The results
show that this numerical method can solve nonhomogeneous backward heat conduction problem effectively and precisely, even
though the final temperature is disturbed by significant noise.

1. Introduction

The heat conduction equation is a kind of very important
time-dependent parabolic partial differential equation; it
describes the distribution of heat or temperature in a given
region over time and is widely used in diverse scientific fields,
such as the study of Brownian motion [1], to solve the Black-
Scholes partial differential equation [2] and the research of
chemical diffusion. Many works have been done to study the
heat conduction problem [3–5]. The purpose of this article is
to numerically solve nonhomogeneous backward heat con-
duction problem. This problem is one kind of inverse prob-
lem, also called final value problem or time inverse problem.

In many engineering and application areas we need to
reconstruct the unknown initial heat energy or temperature
from the final measured one; it is a typical inverse problem
which is related to the initial boundary value problems in
heat conduction. As we all know, there are many kinds of
inverse problems in mathematical physics, such as boundary
inverse problems [6, 7], coefficient inverse problems [8, 9],
and evolutionary inverse problems (or time inverse problem)
[10, 11]. The backward heat conduction problem is a time
inverse problem, inwhich the initial conditions are unknown;
instead the final data are observable.

In the sense of Hadamard [12], the inverse problem is
always considered as a class of classically ill-posed problem,
which means that a small error in the input data may
cause enormous error to the result. The backward heat
conduction problem is a typically ill-posed problem, because
of the measurement error of the input data. Most standard
numerical method can not achieve a good result in solving
an ill-posed problem, due to the ill-posedness of the problem
and the ill-conditioning of the discretized matrix, so, it is very
important to find a stable and efficient numerical algorithm
to solve ill-posed problems.

The backward heat conduction problem arises in many
physical and chemical fields and has attracted the attention
of many researchers. The improperly posed backward heat
conduction problem has been considered by L. Payne [13],
and Miranker [14] has given a research of the uniqueness
conditions for the backward heat conduction problem.There
are also many works that have been done to numerically
solve the ill-posed backward heat conduction problem. In
[15], Fourier regularization method is used to solve one-
dimensional backward heat problem, H. Han [16] has con-
sidered this problem using boundary element method, and
also some other numerical methods for solving backward
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heat conduction problem have been given in many works,
such as finite difference method [17, 18], iterative bound-
ary element method [19, 20], the method of fundamental
solution [21], etc. Most of these methods are used to solve
one-dimensional homogeneous situations; there are a few
papers on the nonhomogeneous case in higher dimensional
space. Scientists M. Denche and A. Abdessemed [22] gave
extensions of the quasi-boundary methods to the nonho-
mogeneous case. Paper [23] regularized the two-dimensional
nonhomogeneous backward heat problem by perturbing the
final value. M. Li, T. S. Jiang, and Y. C. Hon have solved
nonhomogeneous situations by using a newmeshlessmethod
based on radial basis functions [11].

In this paper we consider the nonhomogeneous back-
ward heat conduction problem in two- or three-dimensional
spatial domains. We propose a new numerical method
to solve this severely ill-posed problem; coupled with the
likewise Crank-Nicolson scheme and a new variable, the
backward problem is transformed to a nonhomogeneous
Helmholtz type problem; by solving this nonhomogeneous
Helmholtz type problem and submitting back to the new
variable, we can get the solution of the initial condi-
tion.

The structure of the paper is organized as follows:
In Section 2, we briefly introduce the formulation of the
nonhomogeneous backward heat conduction problem. In
Section 3, we introduce the numerical method and apply
this method on the inverse problem. The results of sev-
eral two- and three-dimensional numerical experiments are
presented to illustrate the stability and accuracy of the
proposed method in Section 4. Section 5 is dedicated to a
brief conclusion. Finally, some references are introduced at
the end.

2. The Formulation of the Problem

We consider the nonhomogeneous backward heat conduc-
tion problem in a bounded and connected domain Ω ⊂
R𝑑 (𝑑 = 2, 3) with the boundary Γ = 𝜕Ω in the following,

𝜕𝜕𝑡𝑢 (x, 𝑡) = Δ𝑢 (x, 𝑡) + 𝑓 (x, 𝑡) , x ∈ Ω, 𝑡 ∈ (0, 𝑇) , (1)

with the final temperature condition,

𝑢 (x, 𝑇) = 𝑔 (x) , x ∈ Ω, (2)

and the Dirichlet boundary conditions,

𝑢 (x, 𝑡) = ℎ (x, 𝑡) , x ∈ Γ, 𝑡 ∈ (0, 𝑇) , (3)

where 𝑓(x, 𝑡), 𝑔(x), and ℎ(x, 𝑡) are known functions, Δ is
Laplace Operator, and 𝑢(x, 𝑡) satisfies the nonhomogeneous
heat conduction equation (1). The problem which we want to
solve in this paper is the backward heat conduction problem;
we will determine the temperature before some particular
time 𝑇 from the known data (2) at time 𝑇 and the boundary
conditions (3).

3. The Computational Algorithm

To solve the backward problem (1)–(3) numerically, we
introduce the grid of time,

𝜛𝑡 = {𝑡𝑛 | 𝑡𝑛 = 𝑛𝜏, 𝑛 = 0, 1, . . . , 𝑁, 𝑁𝜏 = 𝑇} . (4)

Using the notation 𝑢𝑛(x) = 𝑢(x, 𝑡𝑛) and a similar format
as Crank-Nicolson (C-N) scheme to approximate the heat
equation (1) with second order at the time moment 𝑡𝑛+1/2 =(𝑡𝑛+1 + 𝑡𝑛)/2, we have

𝑢𝑛+1 − 𝑢𝑛𝜏 = 12 (Δ𝑢𝑛+1 + Δ𝑢𝑛) + 𝑓 (x, 𝑡𝑛+1/2) , (5)

where 𝑛 = 0, 1, . . . , 𝑁 − 1. Here, it is worth mentioning that
in (5) we did not use the C-N approximation scheme, but a
scheme has a similar format as C-N scheme, which we called
the likewise C-N scheme [24].

By using a new intermediate variable 𝑢̃, which is given as
follows,

𝑢̃ = 12 (𝑢𝑛+1 + 𝑢𝑛) , (6)

(5) can be transformed in the following new form,

2𝑢𝑛+1 − 2𝑢̃𝜏 = Δ𝑢̃ + 𝑓 (x, 𝑡𝑛+1/2) . (7)

By simplifying (7), we can get

Δ𝑢̃ + 2𝜏 𝑢̃ = 2𝜏𝑢𝑛+1 − 𝑓 (x, 𝑡𝑛+1/2) . (8)

Notice that (8) is a nonhomogeneous Helmholtz equation
with 𝑢̃ as solution; it can be written as

Δ𝑢̃ + 𝑘2𝑢̃ = 𝐹 (x, 𝑡) , (9)

where

𝑘2 = 2𝜏 ,
𝐹 (x, 𝑡) = 2𝜏𝑢𝑛+1 − 𝑓 (x, 𝑡𝑛+1/2) , (10)

with the boundary conditions,

𝑢̃ = 12 (ℎ𝑛+1 (x) + ℎ𝑛 (x)) , x ∈ Γ, (11)

where ℎ𝑛(x) = ℎ(x, 𝑡𝑛) is known from the Dirichlet boundary
conditions (3).

To get the solution 𝑢̃ from the nonhomogeneous
Helmholtz equation (9) with boundary conditions (11), the
finite element method is used. Wemultiply by a test function
V, which vanishes on the boundary, and apply integration by
parts, getting the variational problemwith 𝑛 = 0, 1, . . . , 𝑁 − 1
as follows,

− ∫ ∇𝑢̃ ⋅ ∇V dx + 𝑘2 ∫ 𝑢̃V dx = ∫ 𝐹 (x, 𝑡) V dx (12)

where 𝑘2, 𝐹(x, 𝑡) are given in (10). We can obtain the value of𝑢̃ by solving the nonhomogeneous Helmholtz equation (8)
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(or (9)); then, the solution 𝑢𝑛 can be computed from (6).
After repeating the above steps 𝑁 times, we can get the initial
temperature at 𝑛 = 0.

The Helmholtz equation often appears in the study of
physical problems; it is caused by the propagation of time har-
monics and applied in many science and engineering fields,
such as acoustic, electromagnetic science, and geophysical
problems. Many experts have studied solving Helmholtz
equation by finite element method (FEM); F. Ihlenburg and I.
Babu ̆𝑠ka studied the finite element solution of the Helmholtz
equation with high wave number by using the h-version
[25] and h-p version [26] of the FEM. The Least-Squares
stabilization of finite element computation for the Helmholtz
equation is considered by I. Harari and F. Magoulès [27]. Y.
Wong and G. Li [28] consider a new finite difference scheme
for solving the Helmholtz equation at any wavenumber, etc.

From [25–28] and the references it can be found that, due
to the so-called pollution effect [29], to compute approximate
solutions of the Helmholtz equation for high wave numbers
by the standard finite element method (FEM) is unreliable,
so, in (9), the wave number should be not high. Suppose the
numerical discrete grid size isℎ; in order to ensure an accurate
numerical solution, the condition 𝑘2ℎ < 1 must be enforced
and it is necessary to require 𝑘ℎ to be small. A conclusion that
the stability constant does not depend on 𝑘 if 𝑘2ℎ is bounded
using FEM to solve the Helmholtz equation was given in [25,
26]. Also, a convergence theorem is stated in [30] under the
assumption that 𝑘2ℎ is sufficiently small. As a result of the
fact that the wave number 𝑘 in the Helmholtz equation (9)
is related to the time step 𝜏, in order to ensure stability and
accuracy, the time step 𝜏 should be selected carefully; it can
not be chosen too small.

4. Numerical Examples

In this section we give several numerical examples in both
2D and 3D to demonstrate the effectiveness and stability of
the new computationmethod. In the computation, we impose
the noise to the final temperature condition. We set

𝑔𝛿 (x) = 𝑔 (x) ⋅ (1 + 𝛿 × rand 𝑛) , (13)

where 𝑔(x) denotes the exact final temperature condition, 𝛿
is the tolerated noise level, and rand 𝑛 is Gaussian random
number with mean 0 and variance 1.

Two kinds of errors are used to compare the accuracy
of the numerical solutions with the exact solutions. The
maximum error (Maxerror) and the root-mean-square error
(RMSE) are defined as follows,

MaxError = max
1⩽𝑖⩽𝑀

󵄨󵄨󵄨󵄨𝑢̃𝑖 − 𝑢𝑖󵄨󵄨󵄨󵄨 ,
RMSE = √ 1𝑀

𝑀∑
𝑖=1

(𝑢̃𝑖 − 𝑢𝑖)2, (14)

where 𝑀 is the total number of testing nodes within the
domain and 𝑢̃𝑖 denotes the approximate solution at the ith
node; 𝑢𝑖 is the exact one.

Figure 1: The domain with computational grid.
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Figure 2: The numerical solutions 𝑢(x, 0).
Example 1. In this example we consider the two-dimensional
nonhomogeneous heat conduction equation (1), with the
Dirichlet boundary conditions,

𝑢 (x, 𝑡) = (𝑦 sin (𝜋𝑥) + 𝑥 cos (𝜋𝑦)) cos 𝑡,
x = (𝑥, 𝑦) ∈ Γ, 𝑡 ∈ (0, 𝑇) , (15)

the final conditions,

𝑢 (x, 𝑇) = (𝑦 sin (𝜋𝑥) + 𝑥 cos (𝜋𝑦)) cos𝑇, x ∈ Ω, (16)

and 𝑓(x, 𝑡) = 𝜋2(𝑦 sin(𝜋𝑥) + 𝑥 cos(𝜋𝑦)) cos 𝑡 − (𝑦 sin(𝜋𝑥) +𝑥 cos(𝜋𝑦)) sin 𝑡.
Thecomputational domainΩ is a given rectangle in (𝑥, 𝑦)

space such that 0 < 𝑎 ⩽ 𝑥 ⩽ 𝑏 and 𝑐 ⩽ 𝑦 ⩽ 𝑑, using the map

𝑥 = 𝑥 cos (𝜃𝑦) ,
𝑦 = 𝑥 sin (𝜃𝑦) , (17)

to take a point in the rectangular (𝑥, 𝑦) geometry and to map
it to a point (𝑥, 𝑦) in a big hollow cylinder.

In the computation we choose the mesh 41 × 81 on the
rectangular and using the same map to put the mesh on the
hollow cylinder, the mesh on the computational domain with𝑎 = 𝑐 = 0.5, 𝑏 = 1.0, 𝑑 = 1.5, and 𝜃 = 𝜋/2 is shown in
Figure 1.

The Maxerror and RMSE for 𝑇 = 1.0, 2.0, and 3.0 are
shown in Table 1 with noise level 𝛿 = 10−3 and various time
steps 𝜏. It can be seen from Table 1 that the proposed method
performs well for solving the backward problem.

The figure of numerical initial solutions with 𝑇 = 1.0, 𝜏 =0.25, and 𝛿 = 10−3 is presented in Figure 2.
For further investigations, we give a research of the results

with a disturbed 𝛿 of the final time conditions; the figure of
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Table 1: Maxerror and RMSE for 𝑇 = 1.0, 2.0 and 3.0 with different 𝜏.
𝜏 = 0.2 𝜏 = 0.25 𝜏 = 0.5 𝜏 = 1.0𝑇 = 1.0

Maxerror 4.951 × 10−4 3.714 × 10−4 8.721 × 10−4 1.635 × 10−2
RMSE 2.230 × 10−4 2.358 × 10−4 4.734 × 10−4 8.604 × 10−3𝑇 = 2.0
Maxerror 2.393 × 10−3 2.041 × 10−3 4.100 × 10−3 1.569 × 10−2
RMSE 1.172 × 10−3 1.016 × 10−3 2.133 × 10−3 8.278 × 10−3𝑇 = 3.0
Maxerror 2.336 × 10−3 1.620 × 10−3 6.557 × 10−3 3.554 × 10−3
RMSE 1.046 × 10−3 1.766 × 10−3 3.320 × 10−3 8.416 × 10−4

Table 2: Maxerror and RMSE for 𝑇 = 1.0, 2.0, 3.0 with different grids.

21 × 41 41 × 81 81 × 161 161 × 321𝑇 = 1.0
Maxerror 3.256 × 10−4 2.205 × 10−4 1.466 × 10−4 3.418 × 10−4
RMSE 6.786 × 10−5 1.358 × 10−4 8.334 × 10−5 2.276 × 10−4𝑇 = 2.0
Maxerror 1.362 × 10−3 1.665 × 10−3 2.013 × 10−3 1.982 × 10−3
RMSE 2.888 × 10−4 8.172 × 10−4 1.020 × 10−3 1.009 × 10−3𝑇 = 3.0
Maxerror 2.061 × 10−3 5.661 × 10−3 3.301 × 10−3 7.441 × 10−3
RMSE 5.832 × 10−4 2.751 × 10−3 1.565 × 10−3 3.705 × 10−3
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Figure 3: The errors of RMSE with different 𝛿, 𝑇 = 1.0.

RMSE with different noisy level 𝛿 with 𝜏 = 0.25 is present in
Figures 3 and 4 for 𝑇 = 1.0 and 𝑇 = 2.0, respectively.

We also discuss the results under different grids; the
Maxerror and RMSE for 𝑇 = 1.0, 2.0 and 3.0 are shown in
Table 2 with various grids with noise level 𝛿 = 10−3 and time
steps 𝜏 = 0.25.

To illustrate the generality, we choose different variables
for the computational domain. The figures of the exact and
numerical initial solutions are given in Figures 5–7 with
different variables of the computational domain. In this

RM
SE

10
−1

10
−2

10
−3

10
−4

10
−5

10
−4

10
−3

10
−2

10
−1

10
−6



T = 2.0

Figure 4: The errors of RMSE with different 𝛿, 𝑇 = 2.0.
computation we choose the mesh 81 × 161, 𝜏 = 0.2 and𝛿 = 10−3, 𝑇 = 1.
Example 2. We also consider the 2D nonhomogeneous back-
ward heat conduction problem in this example; the known
conditions are presented as follows,

ℎ (x, 𝑡) = sin (𝜋𝑥𝑦) exp (−𝑡) ,
𝑔 (x) = sin (𝜋𝑥𝑦) exp (−𝑇) , (18)

and 𝑓(x, 𝑡) = (𝜋2𝑦2 + 𝜋2𝑥2 − 1) sin(𝜋𝑥𝑦) exp(−𝑡).
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(a) The exact solutions 𝑢(x, 0)
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(b) The numerical solutions 𝑢(x, 0)

Figure 5: The figure with 𝑎 = 1.0, 𝑏 = 1.5, 𝑐 = 0, 𝑑 = 1.0, and 𝜃 = 𝜋/4.
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(b) The numerical solutions 𝑢(x, 0)

Figure 6: The figure with 𝑎 = 1.0, 𝑏 = 1.5, 𝑐 = 1.0, 𝑑 = 2.0, and 𝜃 = 𝜋/2.
In this example, the calculation area is a square of the

center at origin; side length is 1. In the computation using the
mesh 51 × 51, the computational grid is shown in Figure 8.
The Maxerror and RMSE for 𝑇 = 1.0, 2.0, 3.0 are shown in
Table 3 with 𝛿 = 10−3 and various 𝜏.

The errors of RMSE with different 𝛿 are also given in
Figure 9. In this figure 𝜏 = 0.2, and the mesh is the same as
Figure 8.

The same with Example 1, we also consider the results
with different meshes; the Maxerror and RMSE for 𝑇 =1.0, 2.0 and 3.0 are shown inTable 4 with various meshes with
noise level 𝛿 = 10−3 and time steps 𝜏 = 0.2.

The figure of numerical solutions 𝑢(𝑥, 𝑦, 0) with 𝑇 =1, 𝜏 = 0.2, and 𝛿 = 10−3 is presented in Figure 10; the
computational mesh is 51 × 51.

We also consider a slightly more complicated computa-
tional area, one unit square to remove a small rectangle and

two small circles. In this case, the computation is a little more
complicated; we define the unite square as Ω1 and the small
rectangle as Ω2,

Ω1 = {(𝑥, 𝑦) | 0 ⩽ 𝑥, 𝑦 ⩽ 1} ,
Ω2 = {(𝑥, 𝑦) | 0.3 < 𝑥 < 0.4, 0.2 < 𝑦 < 0.5} , (19)

the two small circles as

Ω3 = {(𝑥, 𝑦) | (𝑥 − 0.1)2 + (𝑦 − 0.9)2 < 0.052} ,
Ω4 = {(𝑥, 𝑦) | (𝑥 − 0.7)2 + (𝑦 − 0.6)2 < 0.12} , (20)

and the computational domain is defined as

Ω = Ω1 − Ω2 − Ω3 − Ω4. (21)
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Table 3: Maxerror and RMSE for 𝑇 = 1, 2, 3 with different 𝜏.
𝜏 = 1.0 𝜏 = 0.5 𝜏 = 0.25 𝜏 = 0.2𝑇 = 1.0

Maxerror 1.301 × 10−3 1.374 × 10−4 2.504 × 10−4 4.221 × 10−4
RMSE 5.907 × 10−4 5.727 × 10−5 1.409 × 10−4 2.280 × 10−4𝑇 = 2.0
Maxerror 7.725 × 10−4 1.513 × 10−4 6.912 × 10−5 2.041 × 10−4
RMSE 3.463 × 10−4 6.095 × 10−5 3.407 × 10−5 1.015 × 10−4𝑇 = 3.0
Maxerror 9.877 × 10−4 2.187 × 10−4 6.443 × 10−5 4.832 × 10−4
RMSE 4.474 × 10−4 9.301 × 10−5 1.911 × 10−5 2.457 × 10−4
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0.59488

0.79743

1.898e-01

1.000e+00
Exact

(a) The exact solutions 𝑢(x, 0)

0.39214

0.59458

0.79702

1.897e-01

9.995e-01
Numerical

(b) The numerical solutions 𝑢(x, 0)

Figure 7: The figure with 𝑎 = 0.5, 𝑏 = 1.0, 𝑐 = −0.5, 𝑑 = 0.5, and 𝜃 = 𝜋/4.

Figure 8: The square domain with computational grid.
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Figure 9:The errors of RMSE with different 𝛿, 𝑇 = 1.0 and 𝑇 = 3.0.
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Table 4: Maxerror and RMSE for 𝑇 = 1.0, 2.0, 3.0 with different grids.

21 × 21 51 × 51 101 × 101 201 × 201𝑇 = 1.0
Maxerror 4.767 × 10−4 4.114 × 10−4 9.978 × 10−5 1.744 × 10−4
RMSE 1.409 × 10−4 2.221 × 10−4 4.938 × 10−5 9.225 × 10−5𝑇 = 2.0
Maxerror 2.644 × 10−4 2.124 × 10−4 3.899 × 10−4 3.138 × 10−4
RMSE 4.982 × 10−5 1.058 × 10−4 1.986 × 10−4 1.621 × 10−4𝑇 = 3.0
Maxerror 5.485 × 10−4 4.497 × 10−4 5.738 × 10−4 6.567 × 10−4
RMSE 2.807 × 10−4 2.288 × 10−4 2.925 × 10−4 3.353 × 10−4

-0.35349

0

0.35349

-7.070e-01

7.070e-01
Numerical

Figure 10: The numerical solutions of 𝑢(𝑥, 𝑦, 0).

Figure 11: The domain with computational grid.

The figure of the domain with the computational mesh
can be seen in Figure 11 and the figure of solutions 𝑢(𝑥, 𝑦, 0)
ia also given in Figure 12 with 𝑇 = 3, 𝜏 = 0.2.

Example 3. In this example we consider the inverse problem
in three dimensions with the Dirichlet boundary conditions,

ℎ (x, 𝑡) = sin 𝑥 sin 𝑦 sin 𝑧 cos 𝑡,
x = (𝑥, 𝑦, 𝑧) ∈ Γ, 𝑡 ∈ (0, 𝑇) , (22)

the final conditions,

𝑔 (x) = sin 𝑥 sin 𝑦 sin 𝑧 cos𝑇, x = (𝑥, 𝑦, 𝑧) ∈ Ω, (23)

and 𝑓(x, 𝑡) = sin 𝑥 sin 𝑦 sin 𝑧(3 cos 𝑡 − sin 𝑡); the analytical
solution is

𝑢 (x, 𝑡) = sin 𝑥 sin 𝑦 sin 𝑧 cos 𝑡. (24)

In this example we choose the 3D computational domain
defined as a cube without a cylinder insider. The cube is
defined as

Ω1 = {(𝑥, 𝑦, 𝑧) | −0.5 ⩽ 𝑥, 𝑦 ⩽ 0.5, −1 ⩽ 𝑧 ⩽ 1} , (25)

the cylinder is defined as

Ω2 = {(𝑥, 𝑦, 𝑧) | (4𝑥)2 + (4𝑦)2 < 1, −1 ⩽ 𝑧 ⩽ 1} , (26)

and the computational domain is Ω = Ω1 − Ω2. The domain
with the computational grid is shown in Figure 13.

The Maxerror and RMSE for 𝑇 = 1.0, 3.0, 5.0 are shown
in Table 5 with noise level 𝛿 = 10−3 and various 𝜏.

The figure of numerical initial solutions with 𝑇 = 1, 𝜏 =0.2 with noisy level 𝛿 = 10−3 can be seen in Figure 14.

Example 4. In this example we also consider the inverse
problem with the same conditions in Example 3, but the
computational domain is a sphere with the center at origin
and the diameter is 1. The domain with the computational
grid is shown in Figure 15.

The Maxerror and RMSE for 𝑇 = 1.0, 2.0, 3.0 are shown
in Table 6 with noise level 𝛿 = 10−3 and various 𝜏.

The figure of numerical initial solutions with 𝑇 = 3, 𝜏 =0.2 with noisy level 𝛿 = 10−3 can be seen in Figure 16.

5. Conclusion

In this paper, we proposed a new numerical scheme to
solve nonhomogeneous backward heat conduction problem
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Table 5: Maxerror and RMSE for 𝑇 = 1, 3, 5 with different 𝜏.
𝜏 = 1/2 𝜏 = 1/3 𝜏 = 1/4 𝜏 = 1/5𝑇 = 1.0

Maxerror 4.726 × 10−4 2.014 × 10−3 4.399 × 10−4 1.409 × 10−3
RMSE 5.653 × 10−5 1.499 × 10−4 4.827 × 10−5 1.489 × 10−4𝑇 = 3.0
Maxerror 1.807 × 10−3 1.161 × 10−4 1.717 × 10−3 2.961 × 10−4
RMSE 1.983 × 10−4 3.789 × 10−5 1.974 × 10−4 6.815 × 10−5𝑇 = 5.0
Maxerror 6.437 × 10−4 1.125 × 10−3 6.596 × 10−4 1.206 × 10−3
RMSE 6.681 × 10−5 1.225 × 10−4 7.013 × 10−5 1.629 × 10−4
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0.5

0.75

0.000e+00

1.000e+00
Exact

(a) The exact solutions 𝑢(x, 0)

0.25

0.5

0.75

0.000e+00

1.000e+00
Numerical

(b) The numerical solutions 𝑢(x, 0)

Figure 12: The figures of exact and numerical solutions of 𝑢(𝑥, 𝑦, 0).

Figure 13: The 3D domain with computational grid.

with two- and three-dimensional computational domain.
In our method, using likewise Crank Nicolson scheme
and introducing a new intermediate variable, transforming
the backward problem to a nonhomogeneous Helmholtz
problem, and solving the Helmholtz problem using finite

element method, we get the initial temperature. This
new method is easy to calculate and from the numer-
ical results presented in the previous it can be seen
that this new method is effective for solving such prob-
lems.
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Figure 14: The numerical solutions 𝑢(𝑥, 𝑦, 0) with 𝑇 = 1, 𝜏 = 0.2.

Figure 15: The sphere domain with computational grid.

Table 6: Maxerror and RMSE for 𝑇 = 1, 2, 3 with different 𝜏.
𝜏 = 1/2 𝜏 = 1/3 𝜏 = 1/4 𝜏 = 1/5𝑇 = 1.0

Maxerror 3.765 × 10−5 1.119 × 10−4 3.521 × 10−5 1.119 × 10−4
RMSE 7.204 × 10−6 1.780 × 10−5 6.112 × 10−6 1.766 × 10−5𝑇 = 2.0
Maxerror 1.021 × 10−4 1.028 × 10−4 1.025 × 10−4 1.031 × 10−4
RMSE 1.742 × 10−5 1.645 × 10−5 1.658 × 10−5 1.638 × 10−5𝑇 = 3.0
Maxerror 1.431 × 10−4 1.364 × 10−5 1.463 × 10−4 3.104 × 10−4
RMSE 2.497 × 10−5 3.921 × 10−6 2.324 × 10−5 1.172 × 10−5
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Figure 16: The numerical solutions 𝑢(𝑥, 𝑦, 0) with 𝑇 = 3, 𝜏 = 0.2.
It is worth to note that, due to the limitations of the stan-

dard finite element method in solving Helmholtz equations
with high wave numbers, to solve the Helmholtz problem
(9) by FEM, the time step 𝜏 should be carefully chosen, in
order to ensure the wave number in (9) is not high, and for
high dimension problem, dense grids need to be generated to
ensure accuracy, resulting in increased computational time.
Many works have been done in solving Helmholtz problem
with high wave numbers [25–28]; these methods can be used
instead of the standard FEM to solve the Helmholtz problem
(9), so that these problems will be somewhat improved.
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