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This paper is concerned with the existence of asymptotically almost automorphic mild solutions to a class of abstract semilinear
fractional differential equations D𝛼𝑡 𝑥(𝑡) = 𝐴𝑥(𝑡) + D𝛼−1𝑡 𝐹(𝑡, 𝑥(𝑡), 𝐵𝑥(𝑡)), 𝑡 ∈ R, where 1 < 𝛼 < 2, 𝐴 is a linear densely defined
operator of sectorial type on a complex Banach space 𝑋 and 𝐵 is a bounded linear operator defined on 𝑋, 𝐹 is an appropriate
function defined on phase space, and the fractional derivative is understood in the Riemann-Liouville sense. Combining the fixed
point theorem due to Krasnoselskii and a decomposition technique, we prove the existence of asymptotically almost automorphic
mild solutions to such problems. Our results generalize and improve some previous results since the (locally) Lipschitz continuity
on the nonlinearity 𝐹 is not required.The results obtained are utilized to study the existence of asymptotically almost automorphic
mild solutions to a fractional relaxation-oscillation equation.

1. Introduction

The almost periodic function introduced seminally by Bohr
in 1925 plays an important role in describing the phe-
nomena that are similar to the periodic oscillations which
can be observed frequently in many fields, such as celes-
tial mechanics, nonlinear vibration, electromagnetic theory,
plasma physics, engineering, and ecosphere. The concept of
almost automorphy, which is an important generalization
of the classical almost periodicity, was first introduced in
the literature [1–4] by Bochner in relation to some aspects
of differential geometry. Since then, this pioneer work has
attracted more and more attention and has been substan-
tially extended in several different directions. Many authors
have made important contributions to this theory (see, for
instance, [5–17] and the references therein). Especially, in [5,
6], the authors gave an important overview about the theory
of almost automorphic functions and their applications to
differential equations.

As a natural extension of almost automorphy, the con-
cept of asymptotic almost automorphy, which is the central
issue to be discussed in this paper, was introduced in the

literature [18] by N’Guérékata in the early eighties. Since
then, this notion has found several developments and has
been generalized into different directions. Until now, the
asymptotically almost automorphic functions as well as the
asymptotically almost automorphic solutions for differential
systems have been investigated by many mathematicians;
see [19] by Bugajewski and N’Guérékata, [20] by Diagana,
Hernández, and dos Santos, and [21] by Ding, Xiao, and
Liang for the asymptotically almost automorphic solutions
to integrodifferential equations, see [22] by Zhao, Chang,
and N’Guérékata for the asymptotically almost automorphic
solutions to the nonlinear delay integral equations, and see
[23] by Chang and Tang and [24] by Zhao, Chang, and
Nieto for the asymptotically almost automorphic solutions
to stochastic differential equations, and the existence of
asymptotically almost automorphic solutions has becomeone
of the most attractive topics in the qualitative theory of
differential equations due to its significance and applications
in physics, mathematical biology, control theory, and so on.
We refer the reader to the monographs of N’Guérékata [25]
for the recently theory and applications of asymptotically
almost automorphic functions.
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With motivation coming from a wide range of engineer-
ing and physical applications, fractional differential equations
have recently attracted great attention of mathematicians
and scientists. This kind of equations is a generalization of
ordinary differential equations to arbitrary noninteger orders.
Fractional differential equations find numerous applications
in the field of viscoelasticity, feedback amplifiers, electri-
cal circuits, electro analytical chemistry, fractional multi-
poles, neuron modelling encompassing different branches of
physics, chemistry, and biological sciences [26–32]. Many
physical processes appear to exhibit fractional order behavior
that may vary with time or space. In recent years, there
has been a significant development in ordinary and partial
differential equations involving fractional derivatives; we
only enumerate here the monographs of Kilbas et al. [26, 27],
Diethelm [28], Hilfer [29], Podlubny [30], Miller [31], and
Zhou [32] and the papers of Agarwal et al. [33, 34], Benchohra
et al. [35, 36], El-Borai [37], Lakshmikantham et al. [38–41],
Mophou et al. [42–45],N’Guérékata [46], andZhou et al. [47–
50] and the reference therein.

The study of almost periodic and almost automorphic
type solutions to fractional differential equations was initi-
ated by Araya and Lizama [11]. In their work, the authors
investigated the existence and uniqueness of an almost
automorphic mild solution of the semilinear fractional dif-
ferential equation

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐹 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ R, 1 < 𝛼 < 2, (1)

when 𝐴 is a generator of an 𝛼-resolvent family and D𝛼𝑡 is the
Riemann-Liouville fractional derivative. In [51], Cuevas and
Lizama considered the fractional differential equation:

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) +D𝛼−1𝑡 𝐹 (𝑡, 𝑥 (𝑡)) ,
𝑡 ∈ R, 1 < 𝛼 < 2, (2)

where 𝐴 is a linear operator of sectorial negative type on
a complex Banach space 𝑋 and the fractional derivative is
understood in the Riemann-Liouville sense. Under suitable
conditions on 𝐹(𝑡, 𝑥), the authors proved the existence and
uniqueness of an almost automorphic mild solution to (2).
Cuevas et al. [52, 53] studied, respectively, the pseudo almost
periodic and pseudo almost periodic class infinity mild
solutions to (2) assuming that 𝐹 : R × 𝑋 󳨀→ 𝑋 and(𝑡, 𝑥) 󳨀→ 𝐹(𝑡, 𝑥) is a pseudo almost periodic and pseudo
almost periodic of class infinity function satisfying suitable
conditions in 𝑥 ∈ 𝑋. Agarwal et al. [54] studied the existence
and uniqueness of a weighted pseudo almost periodic mild
solution to equation (2). Ding et al. [55] investigated the
existence and uniqueness of almost automorphic solution to
(2) assuming that 𝐹 : R × 𝑋 󳨀→ 𝑋 and (𝑡, 𝑥) 󳨀→ 𝐹(𝑡, 𝑥) is
Stepanov-like almost automorphic in 𝑡 ∈ R satisfying some
kind of Lipschitz conditions. Cuevas et al. [56] studied the
existence of almost periodic (resp., pseudo almost periodic)
mild solutions to equation (2) assuming that 𝐹 : R×𝑋 󳨀→ 𝑋
and (𝑡, 𝑥) 󳨀→ 𝐹(𝑡, 𝑥) is Stepanov almost (resp., Stepanov-
like pseudo almost) periodic in 𝑡 ∈ R uniformly for 𝑥 ∈ 𝑋.
Chang et al. [57] studied the existence and uniqueness of
weighted pseudo almost automorphic solution to equation

(2) with Stepanov-like weighted pseudo almost automorphic
coefficient. He et al. [58] studied also the existence and
uniqueness of weighted Stepanov-like pseudo almost auto-
morphic mild solution to (2). Cao et al. [59] studied the
existence and uniqueness of antiperiodic mild solution to
(2). In [60], Cuevas et al. showed sufficient conditions to
ensure the existence and uniqueness of mild solution for (2)
in the following classes of vector-valued function spaces: peri-
odic functions, asymptotically periodic functions, pseudo
periodic functions, almost periodic functions, asymptotically
almost periodic functions, pseudo almost periodic func-
tions, almost automorphic functions, asymptotically almost
automorphic functions, pseudo almost automorphic func-
tions, compact almost automorphic functions, asymptotically
compact almost automorphic functions, pseudo compact
almost automorphic functions, 𝑆-asymptotically 𝜔-periodic
functions, decay functions, and mean decay functions.

Recently, Xia et al. [61] established some sufficient criteria
for the existence and uniqueness of (𝜇, ])-pseudo almost
automorphic solution to the semilinear fractional differential
equation

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) + D𝛼−1𝑡 𝐹 (𝑡, 𝐵𝑥 (𝑡)) , 𝑡 ∈ R, (3)

where 1 < 𝛼 < 2, 𝐴 is a sectorial operator of type 𝜔 < 0 on a
complex Banach space𝑋 and 𝐵 is a bounded linear operator.
The fractional derivative is understood in the Riemann-
Liouville sense.Their discussion is divided into two cases, i.e.,𝐹 : R × 𝑋 󳨀→ 𝑋, (𝑡, 𝑥) 󳨀→ 𝐹(𝑡, 𝑥) is (𝜇, ])-pseudo almost
automorphic and 𝐹 : R × 𝑋 󳨀→ 𝑋, and (𝑡, 𝑥) 󳨀→ 𝐹(𝑡, 𝑥)
is Stepanov-like (𝜇, ])-pseudo almost automorphic. Kavitha
et al. [62] studied weighted pseudo almost automorphic
solutions of the fractional integrodifferential equation

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) + D𝛼−1𝑡 𝐹 (𝑡, 𝑥 (𝑡) , 𝐾𝑥 (𝑡)) , 𝑡 ∈ R, (4)

where 1 < 𝛼 < 2 and
𝐾𝑥 (𝑡) = ∫𝑡

−∞
𝑘 (𝑡 − 𝑠) ℎ (𝑠, 𝑥 (𝑠)) d𝑠, (5)

𝐴 is a linear densely defined sectorial operator on a complex
Banach space 𝑋, 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋, and (𝑡, 𝑥, 𝑦) 󳨀→𝐹(𝑡, 𝑥, 𝑦) is a weighted pseudo almost automorphic function
in 𝑡 ∈ R for each 𝑥, 𝑦 ∈ 𝑋 satisfying suitable conditions.
The fractional derivative is understood in the Riemann-
Liouville sense. Mophou [63] investigated the existence and
uniqueness of weighted pseudo almost automorphic mild
solution to the fractional differential equation:

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) +D𝛼−1𝑡 𝐹 (𝑡, 𝑥 (𝑡) , 𝐵𝑥 (𝑡)) ,
𝑡 ∈ R, 1 < 𝛼 < 2, (6)

where 𝐴 : 𝐷(𝐴) ⊂ 𝑋 󳨀→ 𝑋 is a linear densely oper-
ator of sectorial type on a complex Banach space 𝑋, 𝐵 :𝑋 󳨀→ 𝑋 is a bounded linear operator and 𝐹 : R × 𝑋 ×𝑋 󳨀→ 𝑋, and (𝑡, 𝑥, 𝑦) 󳨀→ 𝐹(𝑡, 𝑥, 𝑦) is a weighted pseudo
almost automorphic function in 𝑡 ∈ R for each 𝑥, 𝑦 ∈ 𝑋
satisfying suitable conditions. The fractional derivative D𝛼𝑡 is
to be understood in Riemann-Liouville sense. Chang et al.
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[64] investigated some existence results of 𝜇-pseudo almost
automorphic mild solutions to (6) assuming that 𝐹 : R ×𝑋×𝑋 󳨀→ 𝑋 and (𝑡, 𝑥, 𝑦) 󳨀→ 𝐹(𝑡, 𝑥, 𝑦) is a 𝜇-pseudo almost
automorphic function in 𝑡 ∈ R for each 𝑥, 𝑦 ∈ 𝑋 satisfying
suitable conditions. For more on the almost periodicity and
almost automorphy for fractional differential equations and
related issues, we refer the reader to [65–67] and others.

Equation (6) is motivated by physical problems. Indeed,
due to their applications in fields of sciencewhere characteris-
tics of anomalous diffusion are presented, type (6) equations
are attracting increasing interest (cf. [68–70] and references
therein). For example, anomalous diffusion in fractals [69] or
in macroeconomics [71] has been recently well studied in the
setting of fractional Cauchy problems like (6). For this reason,
(6) has gotten a considerable attention in recent years (cf. [51–
64, 68–71] and the references therein).

To the best of our knowledge, much less is known
about the existence of asymptotically almost automorphic
mild solutions to (6) when the nonlinearity 𝐹(𝑡, 𝑥, 𝑦) as a
whole loses the Lipschitz continuity with respect to 𝑥 and𝑦. Motivated by the abovementioned works, the purpose
of this paper is to establish some new existence results of
asymptotically almost automorphic mild solutions to (6).
In our results, the nonlinearity 𝐹 : R × 𝑋 × 𝑋 󳨀→𝑋, (𝑡, 𝑥, 𝑦) 󳨀→ 𝐹(𝑡, 𝑥, 𝑦) does not have to satisfy a
(locally) Lipschitz condition (see Remark 22). However, in
many papers (for instance, [11, 51–64]) on almost periodic
type and almost automorphic type solutions to fractional
differential equations, to be able to apply the well-known
Banach contraction principle, a (locally) Lipschitz condition
for the nonlinearity of corresponding fractional differential
equations is needed. As can be seen, our results generalize
those as well as related research and have more broad
applications. In particular, as application and to illustrate
our main results, we will examine some sufficient conditions
for the existence of asymptotically almost automorphic mild
solutions to the fractional relaxation-oscillation equation
given by

𝜕𝛼𝑡 𝑢 (𝑡, 𝑥) = 𝜕2𝑥𝑢 (𝑡, 𝑥) − 𝑝𝑢 (𝑡, 𝑥) + 𝜕𝛼−1𝑡 [𝜇𝑎 (𝑡)

⋅ sin( 1
2 + cos 𝑡 + cos√2𝑡) [sin 𝑢 (𝑡, 𝑥) + 𝑢 (𝑡, 𝑥)]

+ ]𝑒−|𝑡| [𝑢 (𝑡, 𝑥) + sin 𝑢 (𝑡, 𝑥)]] , 𝑡 ∈ R, 𝑥 ∈ [0, 𝜋]

(7)

with boundary conditions 𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋) = 0, 𝑡 ∈ R, where𝑎(𝑡) ∈ 𝐵𝐶(R,R+) is a function and 𝑝, 𝜇, and ] are positive
constants.

The rest of this paper is organized as follows. In Section 2,
some concepts, the related notations, and some useful lem-
mas are introduced and established. In Section 3, we prove
the existence of asymptotically almost automorphic mild
solutions to such problems. The results obtained are utilized
to study the existence of asymptotically almost automorphic
mild solutions to a fractional relaxation-oscillation equation
given in Section 4.

2. Preliminaries

This section is concerned with some notations, definitions,
lemmas, and preliminary facts which are used in what
follows.

From now on, let (𝑋, ‖ ⋅ ‖) and (𝑌, ‖ ⋅ ‖𝑌) be two Banach
spaces and 𝐵𝐶(R, 𝑋) (resp., 𝐵𝐶(R × 𝑌 × 𝑌,𝑋)) is the space
of all 𝑋-valued bounded continuous functions (resp., jointly
bounded continuous functions 𝐹 : R × 𝑌 × 𝑌 󳨀→ 𝑋).
Furthermore, 𝐶0(R, 𝑋) (resp., 𝐶0(R × 𝑌 × 𝑌,𝑋)) is the
closed subspace of 𝐵𝐶(R, 𝑋) (resp., 𝐵𝐶(R × 𝑌 × 𝑌,𝑋))
consisting of functions vanishing at infinity (vanishing at
infinity uniformly in any compact subset of 𝑌 × 𝑌, in other
words,

lim
|𝑡|󳨀→+∞

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥, 𝑦)󵄩󵄩󵄩󵄩 = 0 uniformly for (𝑥, 𝑦) ∈ K, (8)

whereK is an any compact subset of 𝑌×𝑌). Let also L(𝑋) be
the Banach space of all bounded linear operators from𝑋 into
itself endowed with the norm:

‖𝑇‖L(𝑋) = sup {‖𝑇𝑥‖ : 𝑥 ∈ 𝑋, ‖𝑥‖ = 1} . (9)

For a bounded linear operator 𝐴 ∈ L(𝑋), let 𝜌(𝐴) and 𝐷(𝐴)
stand for the resolvent and domain of 𝐴, respectively.

First, let us recall some basic definitions and results on
almost automorphic and asymptotically almost automorphic
functions.

Definition 1 ((Bochner) [1] (N’Guérékata) [6]). A continuous
function 𝐹 : R 󳨀→ 𝑋 is said to be almost automorphic
if for every sequence of real numbers {𝑠󸀠𝑛}, there exists a
subsequence {𝑠𝑛} such that

Θ (𝑡) = lim
𝑛󳨀→∞

𝐹 (𝑡 + 𝑠𝑛) (10)

is well defined for each 𝑡 ∈ R and

lim
𝑛󳨀→∞

Θ(𝑡 − 𝑠𝑛) = 𝐹 (𝑡) for each 𝑡 ∈ R. (11)

Denote by 𝐴𝐴(R, 𝑋) the set of all such functions.

Remark 2 (see [6]). By the point-wise convergence, the
functionΘ(𝑡) inDefinition 1 ismeasurable but not necessarily
continuous. Moreover, if Θ(𝑡) is continuous, then 𝐹(𝑡) is
uniformly continuous (cf., e.g., [17], Theorem 2.6), and if
the convergence in Definition 1 is uniform on R, one gets
almost periodicity (in the sense of Bochner and von Neu-
mann). Almost automorphy is thus a more general concept
than almost periodicity. There exists an almost automorphic
functionwhich is not almost periodic.The function𝐹 : R 󳨀→
R given by

𝐹 (𝑡) = sin( 1
2 + cos 𝑡 + cos√2𝑡) (12)

is an example of such functions [72].

Lemma 3 (see [5]). 𝐴𝐴(R, 𝑋) is a Banach space with the
norm ‖𝐹‖∞ = sup𝑡∈R‖𝐹(𝑡)‖ .
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Definition 4 (see [6]). A continuous function𝐹 : R×𝑌×𝑌 󳨀→𝑋 is said to be almost automorphic in 𝑡 ∈ R uniformly for all(𝑥, 𝑦) ∈ 𝐾, where𝐾 is any bounded subset of𝑌×𝑌, if for every
sequence of real numbers {𝑠󸀠𝑛}, there exists a subsequence {𝑠𝑛}
such that

lim
𝑛󳨀→∞

𝐹 (𝑡 + 𝑠𝑛, 𝑥, 𝑦) = Θ (𝑡, 𝑥, 𝑦) exists

for each 𝑡 ∈ R and each (𝑥, 𝑦) ∈ 𝐾 (13)

and
lim
𝑛󳨀→∞

Θ(𝑡 − 𝑠𝑛, 𝑥, 𝑦) = 𝐹 (𝑡, 𝑥, 𝑦) exists

for each 𝑡 ∈ R and each (𝑥, 𝑦) ∈ 𝐾. (14)

The collection of those functions is denoted by 𝐴𝐴(R × 𝑌 ×𝑌,𝑋).
Remark 5. The function 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 given by

𝐹 (𝑡, 𝑥, 𝑦) = sin( 1
2 + cos 𝑡 + cos√2𝑡) [sin (𝑥) + 𝑦] (15)

is almost automorphic in 𝑡 ∈ R uniformly for all (𝑥, 𝑦) ∈ 𝐾,
where𝐾 is any bounded subset of 𝑋 × 𝑋, 𝑋 = 𝐿2[0, 𝜋].

Similar to Lemma 2.2 of [73] and Proposition 3.2 of
[63], we have the following result on almost automorphic
functions.

Lemma 6. Let 𝐹 : R×𝑋×𝑋 󳨀→ 𝑋 be almost automorphic in𝑡 ∈ R uniformly for all (𝑥, 𝑦) ∈ 𝐾, where 𝐾 is any bounded
subset of 𝑋 × 𝑋, and assume that 𝐹(𝑡, 𝑥, 𝑦) is uniformly
continuous on 𝐾 uniformly for 𝑡 ∈ R, that is, for any 𝜀 > 0,
there exists 𝛿 > 0 such that 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝐾 and ‖𝑥1 − 𝑦1‖ +‖𝑥2 − 𝑦2‖ < 𝛿 imply that󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑥1, 𝑥2) − 𝐹 (𝑡, 𝑦1, 𝑦2)󵄩󵄩󵄩󵄩 < 𝜀 ∀𝑡 ∈ R. (16)

Let 𝑥, 𝑦 : R 󳨀→ 𝑋 be almost automorphic. Then the functionΥ : R 󳨀→ 𝑋 defined by Υ(𝑡) = 𝐹(𝑡, 𝑥(𝑡), 𝑦(𝑡)) is almost
automorphic.

Proof. Suppose that {𝑠𝑛} is a sequence of real numbers. Then
by the definition of almost automorphic functions, we can
extract a subsequence {𝜏𝑛} of {𝑠𝑛} such that

(𝑃1) lim
𝑛󳨀→∞

𝑥 (𝑡 + 𝜏𝑛) = 𝑥 (𝑡) for each 𝑡 ∈ R,
(𝑃2) lim
𝑛󳨀→∞

𝑥 (𝑡 − 𝜏𝑛) = 𝑥 (𝑡) for each 𝑡 ∈ R,
(𝑃3) lim
𝑛󳨀→∞

𝑦 (𝑡 + 𝜏𝑛) = 𝑦 (𝑡) for each 𝑡 ∈ R,
(𝑃4) lim
𝑛󳨀→∞

𝑦 (𝑡 − 𝜏𝑛) = 𝑦 (𝑡) for each 𝑡 ∈ R,
(𝑃5) lim
𝑛󳨀→∞

𝐹 (𝑡 + 𝜏𝑛, 𝑥, 𝑦) = 𝐹 (𝑡, 𝑥, 𝑦)
for each 𝑡 ∈ R, 𝑥, 𝑦 ∈ 𝑋,

(𝑃6) lim
𝑛󳨀→∞

𝐹 (𝑡 − 𝜏𝑛, 𝑥, 𝑦) = 𝐹 (𝑡, 𝑥, 𝑦)
for each 𝑡 ∈ R, 𝑥, 𝑦 ∈ 𝑋.

(17)

Write

Υ̃ (𝑡) fl 𝐹 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 𝑡 ∈ R. (18)

Then
󵄩󵄩󵄩󵄩󵄩Υ (𝑡 + 𝜏𝑛) − Υ̃ (𝑡)󵄩󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩󵄩𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡 + 𝜏𝑛) , 𝑦 (𝑡 + 𝜏𝑛))
− 𝐹 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))󵄩󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡 + 𝜏𝑛) , 𝑦 (𝑡 + 𝜏𝑛))
− 𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡) , 𝑦 (𝑡))󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡) , 𝑦 (𝑡))
− 𝐹 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))󵄩󵄩󵄩󵄩󵄩 .

(19)

Since 𝑥(𝑡) and 𝑦(𝑡) are almost automorphic, then 𝑥(𝑡), 𝑦(𝑡)
and 𝑥(𝑡), and 𝑦(𝑡) are bounded. Therefore we can choose a
bounded subset𝐾 ⊂ 𝑋 × 𝑋, such that

(𝑥 (𝑡) , 𝑦 (𝑡)) ∈ 𝐾,
(𝑥 (𝑡) , 𝑦 (𝑡)) ∈ 𝐾

∀𝑡 ∈ R.
(20)

By (𝑃1), (𝑃3), and the uniform continuity of 𝐹(𝑡, 𝑥, 𝑦) in(𝑥(𝑡), 𝑦(𝑡)) ∈ 𝐾, we have

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡 + 𝜏𝑛) , 𝑦 (𝑡 + 𝜏𝑛))
− 𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡) , 𝑦 (𝑡))󵄩󵄩󵄩󵄩 = 0. (21)

Moreover, by (𝑃5),
lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡) , 𝑦 (𝑡)) − 𝐹 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))󵄩󵄩󵄩󵄩󵄩 = 0, (22)

so remembering the above triangle inequality, we deduce that

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩Υ (𝑡 + 𝜏𝑛) − Υ̃ (𝑡)󵄩󵄩󵄩󵄩󵄩 = 0 for each 𝑡 ∈ R. (23)

Using the same argument we can prove that

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩Υ̃ (𝑡 − 𝜏𝑛) − Υ (𝑡)󵄩󵄩󵄩󵄩󵄩 = 0 for each 𝑡 ∈ R. (24)

This proves that Υ(𝑡) is almost automorphic by the definition.

Remark 7. If 𝐹(𝑡, 𝑥, 𝑦) satisfies a Lipschitz condition with
respect to 𝑥 and 𝑦 uniformly in 𝑡 ∈ R, i.e., for each pair𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑥1, 𝑥2) − 𝐹 (𝑡, 𝑦1, 𝑦2)󵄩󵄩󵄩󵄩
≤ 𝐿 (󵄩󵄩󵄩󵄩𝑥1 − 𝑦1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥2 − 𝑦2󵄩󵄩󵄩󵄩)

(25)

uniformly in 𝑡 ∈ R, where 𝐿 > 0 is called the Lipschitz
constant for the function 𝐹(𝑡, 𝑥, 𝑦), then 𝐹(𝑡, 𝑥, 𝑦) is uni-
formly continuous on 𝐾 uniformly for 𝑡 ∈ R, where𝐾 is any
bounded subset of 𝑋 × 𝑋.
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Remark 8. If 𝐹(𝑡, 𝑥, 𝑦) satisfies a local Lipschitz condition
with respect to 𝑥 and 𝑦 uniformly in 𝑡 ∈ R, i.e., for each pair𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋, 𝑡 ∈ R,

󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑥1, 𝑥2) − 𝐹 (𝑡, 𝑦1, 𝑦2)󵄩󵄩󵄩󵄩
≤ 𝐿 (𝑡) (󵄩󵄩󵄩󵄩𝑥1 − 𝑦1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥2 − 𝑦2󵄩󵄩󵄩󵄩) ,

(26)

where 𝐿(𝑡) ∈ 𝐵𝐶(R,R+), then 𝐹(𝑡, 𝑥, 𝑦) is uniformly con-
tinuous on 𝐾 uniformly for 𝑡 ∈ R, where 𝐾 is any bounded
subset of 𝑋 × 𝑋.

Definition 9 (see [6]). A continuous function 𝐹 : R 󳨀→ 𝑋
is said to be asymptotically almost automorphic if it can be
decomposed as 𝐹(𝑡) = 𝐺(𝑡) + Φ(𝑡), where

𝐺 (𝑡) ∈ 𝐴𝐴 (R, 𝑋) ,
Φ (𝑡) ∈ 𝐶0 (R, 𝑋) . (27)

Denote by 𝐴𝐴𝐴(R, 𝑋) the set of all such functions.

Remark 10. The function 𝐹 : R 󳨀→ R defined by

𝐹 (𝑡) = 𝐺 (𝑡) + Φ (𝑡)
= sin( 1

2 + cos 𝑡 + cos√2𝑡) + 𝑒−|𝑡| (28)

is an asymptotically almost automorphic function with

𝐺 (𝑡) = sin( 1
2 + cos 𝑡 + cos√2𝑡) ∈ 𝐴𝐴 (R,R) ,

Φ (𝑡) = 𝑒−|𝑡| ∈ 𝐶0 (R,R) .
(29)

Lemma 11 (see [6]). 𝐴𝐴𝐴(R, 𝑋) is also a Banach space with
the supremum norm ‖ ⋅ ‖∞.
Definition 12 (see [6]). A continuous function 𝐹 : R × 𝑌 ×𝑌 󳨀→ 𝑋 is said to be asymptotically almost automorphic if
it can be decomposed as 𝐹(𝑡, 𝑥, 𝑦) = 𝐺(𝑡, 𝑥, 𝑦) + Φ(𝑡, 𝑥, 𝑦),
where

𝐺 (𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴 (R × 𝑌 × 𝑌,𝑋) ,
Φ (𝑡, 𝑥, 𝑦) ∈ 𝐶0 (R × 𝑌 × 𝑌,𝑋) . (30)

Denote by𝐴𝐴𝐴(R×𝑌×𝑌,𝑋) the set of all such functions.
Remark 13. The function 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 given by

𝐹 (𝑡, 𝑥, 𝑦) = 𝐺 (𝑡, 𝑥, 𝑦) + Φ (𝑡, 𝑥, 𝑦)
= sin( 1

2 + cos 𝑡 + cos√2𝑡) [sin (𝑥) + 𝑦]
+ 𝑒−|𝑡| [𝑥 + sin (𝑦)]

(31)

is asymptotically almost automorphic in 𝑡 ∈ R uniformly for
all (𝑥, 𝑦) ∈ 𝐾, where𝐾 is any bounded subset of 𝑋 × 𝑋, 𝑋 =𝐿2[0, 𝜋] and

𝐺 (𝑡, 𝑥, 𝑦) = sin( 1
2 + cos 𝑡 + cos√2𝑡) [sin (𝑥) + 𝑦]

∈ 𝐴𝐴 (R × 𝑋 × 𝑋,𝑋) ,
Φ (𝑡, 𝑥, 𝑦) = 𝑒−|𝑡| [𝑥 + sin (𝑦)] ∈ 𝐶0 (R × 𝑋 × 𝑋,𝑋) .

(32)

Next we give some basic definitions and properties of
the fractional calculus theory which are used further in this
paper.

Definition 14 (see [26]). The fractional integral of order 𝛼 > 0
with the lower limit 𝑡0 for a function 𝑓 is defined as

𝐼𝛼𝑓 (𝑡) = 1
Γ (𝛼) ∫𝑡

𝑡0
(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠) d𝑠, 𝑡 > 𝑡0, 𝛼 > 0 (33)

provided that the right-hand side is point-wise defined on[𝑡0,∞), where Γ is the Gamma function.

Definition 15 (see [26]). Riemann-Liouville derivative of
order 𝛼 > 0 with the lower limit 𝑡0 for a function 𝑓 :[𝑡0,∞) 󳨀→ R can be written as

𝐷𝛼𝑡 𝑓 (𝑡) = 1
Γ (𝑛 − 𝛼)

d𝑛

d𝑡𝑛 ∫
𝑡

𝑡0
(𝑡 − 𝑠)−𝛼 𝑓 (𝑠) d𝑠,

𝑡 > 𝑡0, 𝑛 − 1 < 𝛼 < 𝑛.
(34)

The first and maybe the most important property of
Riemann-Liouville fractional derivative is that, for 𝑡 > 𝑡0
and 𝛼 > 0, one has 𝐷𝛼𝑡 (𝐼𝛼𝑓(𝑡)) = 𝑓(𝑡), which means
that Riemann-Liouville fractional differentiation operator is
a left inverse to the Riemann-Liouville fractional integration
operator of the same order 𝛼.

It is important to define sectorial operator for the defini-
tion of mild solution of any fractional abstract equations. So,
let us nowgive the definitions of sectorial linear operators and
their associated solution operators.

Definition 16 ([74] sectorial operator). A closed and linear
operator 𝐴 is said to be sectorial of type 𝜔 and angle 𝜃 if
there exist 0 < 𝜃 < 𝜋/2, 𝑀 > 0, and 𝜔 ∈ R such that its
resolvent 𝜌(𝐴) exists outside the sector 𝜔 + 𝑆𝜃 fl {𝜔 + 𝜆 : 𝜆 ∈
C, |arg(−𝜆)| < 𝜃} and

󵄩󵄩󵄩󵄩󵄩(𝜆 − 𝐴)−1󵄩󵄩󵄩󵄩󵄩 ≤ 𝑀
|𝜆 − 𝜔| , 𝜆 ∉ 𝜔 + 𝑆𝜃. (35)

Sectorial operators are well studied in the literature,
usually for the case 𝜔 = 0. For a recent reference including
several examples and properties we refer the reader to [74].
Note that an operator 𝐴 is sectorial of type 𝜔 if and only if𝜔𝐼 − 𝐴 is sectorial of type 0.

Definition 17 (see [75]). Let𝐴 be a closed and linear operator
with domain 𝐷(𝐴) defined on a Banach space 𝑋. We call 𝐴
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the generator of a solution operator if there are 𝜔 ∈ R and
a strongly continuous function 𝑆𝛼 : R+ 󳨀→ L(𝑋) such that{𝜆𝛼 : Re𝜆 > 𝜔} ⊆ 𝜌(𝐴) and

𝜆𝛼−1 (𝜆𝛼 − 𝐴)−1 𝑥 = ∫∞
0

𝑒−𝜆𝑡𝑆𝛼 (𝑡) 𝑥 d𝑡,
Re𝜆 > 𝜔, 𝑥 ∈ 𝑋.

(36)

In this case, 𝑆𝛼(𝑡) is called the solution operator generated by𝐴.
Note that if𝐴 is sectorial of type𝜔with 0 ≤ 𝜃 ≤ 𝜋(1−𝛼/2),

then 𝐴 is the generator of a solution operator given by

𝑆𝛼 (𝑡) fl 1
2𝜋𝑖 ∫𝛾 𝑒

−𝜆𝑡𝜆𝛼−1 (𝜆𝛼 − 𝐴)−1 d𝜆, (37)

where 𝛾 is a suitable path lying outside the sector 𝜔 + Σ𝜃 (cf.
[74]).

Very recently, Cuesta in [74](Theorem 1) has proved that
if 𝐴 is a sectorial operator of type 𝜔 < 0 for some𝑀 > 0 and0 ≤ 𝜃 < 𝜋(1 − 𝛼/2), then there exists 𝐶 > 0 such that

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡)󵄩󵄩󵄩󵄩L(𝑋) ≤ 𝐶𝑀
1 + |𝜔| 𝑡𝛼 for 𝑡 ≥ 0. (38)

In the border case 𝛼 = 1, this is analogous to saying that 𝐴
is the generator of a exponentially stable 𝐶0-semigroup. The
main difference is that in the case 𝛼 > 1 the solution family𝑆𝛼(𝑡) decays like 𝑡−𝛼 . Cuesta’s result proves that 𝑆𝛼 (𝑡) is, in fact,
integrable.

In the following, we present the following compactness
criterion, which is a special case of the general compactness
result of Theorem 2.1 in [76].

Lemma 18 (see [76]). A set 𝐷 ⊂ 𝐶0(R, 𝑋) is relatively com-
pact if

(1) 𝐷 is equicontinuous;
(2) lim|𝑡|󳨀→∞𝑥(𝑡) = 0 uniformly for 𝑥 ∈ 𝐷;
(3) the set 𝐷(𝑡) fl {𝑥(𝑡) : 𝑥 ∈ 𝐷} is relatively compact in𝑋 for every 𝑡 ∈ R.

The following Krasnoselskii’s fixed point theorem plays a
key role in the proofs of our main results, which can be found
in many books.

Lemma 19 (see [77]). Let 𝑈 be a bounded closed and convex
subset of𝑋 and 𝐽1, 𝐽2 be maps of𝑈 into𝑋 such that 𝐽1𝑥+𝐽2𝑦 ∈𝑈 for every pair 𝑥, 𝑦 ∈ 𝑈. If 𝐽1 is a contraction and 𝐽2 is
completely continuous, then 𝐽1𝑥 + 𝐽2𝑥 = 𝑥 has a solution on𝑈.
3. Asymptotically Almost Automorphic
Mild Solutions

In this section, we study the existence of asymptotically
almost automorphic mild solutions for the semilinear frac-
tional differential equations of the form

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) +D𝛼−1𝑡 𝐹 (𝑡, 𝑥 (𝑡) , 𝐵𝑥 (𝑡)) ,
𝑡 ∈ R, 1 < 𝛼 < 2, (39)

where 𝐴 : 𝐷(𝐴) ⊂ 𝑋 󳨀→ 𝑋 is a linear densely defined
operator of sectorial type of 𝜔 < 0 on a complex Banach
space 𝑋, 𝐵 : 𝑋 󳨀→ 𝑋 is a bounded linear operator and𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋, and (𝑡, 𝑥, 𝑦) 󳨀→ 𝐹(𝑡, 𝑥, 𝑦) is a given
function to be specified later. The fractional derivative D𝛼𝑡 is
to be understood in Riemann-Liouville sense.

We recall the following definition that will be essential for
us.

Definition 20 (see [63]). Assume that 𝐴 generates an inte-
grable solution operator 𝑆𝛼(𝑡). A continuous function 𝑥 :
R 󳨀→ 𝑋 satisfying the integral equation

𝑥 (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝜎) 𝐹 (𝜎, 𝑥 (𝜎) , 𝐵𝑥 (𝜎))d𝜎, 𝑡 ∈ R (40)

is called a mild solution on R to (39).

In the proofs of our results, we need the following
auxiliary result.

Lemma 21. Given 𝑌(𝑡) ∈ 𝐴𝐴(R, 𝑋) and 𝑍(𝑡) ∈ 𝐶0(R, 𝑋), let
Φ1 (𝑡) fl ∫𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) 𝑌 (𝑠) 𝑑𝑠,

Φ2 (𝑡) fl ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝑍 (𝑠) 𝑑𝑠,
𝑡 ∈ R.

(41)

Then Φ1(𝑡) ∈ 𝐴𝐴(R, 𝑋),Φ2(𝑡) ∈ 𝐶0(R, 𝑋).
Proof. Firstly, note that

∫∞
0

1
1 + |𝜔| 𝑠𝛼 d𝑠 = |𝜔|−1/𝛼 𝜋

𝛼 sin (𝜋/𝛼) for 1 < 𝛼 < 2. (42)

Then

󵄩󵄩󵄩󵄩Φ1 (𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) 𝑌 (𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
+∞

0
𝑆𝛼 (𝜏) 𝑌 (𝑡 − 𝜏) d𝜏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝑀‖𝑌‖∞ ∫∞
0

1
1 + |𝜔| 𝜏𝛼 d𝜏

= 𝐶𝑀 |𝜔|−1/𝛼 𝜋
𝛼 sin (𝜋/𝛼) ‖𝑌‖∞ ,

(43)

which implies thatΦ1(𝑡) is well defined and continuous onR.
Since𝑌(𝑡) ∈ 𝐴𝐴(R, 𝑋), then for any 𝜀 > 0 and every sequence
of real numbers {𝑠󸀠𝑛}, there exist a subsequence {𝑠𝑛}, a function𝑌̃(𝑡), and 𝑁 ∈ N such that

󵄩󵄩󵄩󵄩󵄩𝑌 (𝑠 + 𝑠𝑛) − 𝑌̃ (𝑠)󵄩󵄩󵄩󵄩󵄩 < 𝜀
for each 𝑛 > 𝑁 and every 𝑠 ∈ R. (44)
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Define

Φ̃1 (𝑡) fl ∫𝑡
−∞

𝑇 (𝑡 − s) 𝑌̃ (𝑠) d𝑠. (45)

Then

󵄩󵄩󵄩󵄩󵄩Φ1 (𝑡 + 𝑠𝑛) − Φ̃1 (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡+𝑠𝑛

−∞
𝑆𝛼 (𝑡 + 𝑠𝑛 − 𝑠) 𝑌 (𝑠) d𝑠

− ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝑌 (𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
+∞

0
𝑆𝛼 (𝑠) 𝑌 (𝑡 + 𝑠𝑛 − 𝑠) d𝑠

− ∫+∞
0

𝑆𝛼 (𝑠) 𝑌 (𝑡 − 𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝑀∫∞

0

1
1 + |𝜔| 𝑠𝛼

󵄩󵄩󵄩󵄩󵄩𝑌 (𝑠 + 𝑠𝑛) − 𝑌̃ (𝑠)󵄩󵄩󵄩󵄩󵄩 d𝑠

≤ 𝐶𝑀 |𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼)

(46)

for each 𝑛 > 𝑁 and every 𝑡 ∈ R. This implies that

Φ̃1 (𝑡) = lim
𝑛󳨀→∞

Φ1 (𝑡 + 𝑠𝑛) (47)

is well defined for each 𝑡 ∈ R.
By a similar argument one can obtain

lim
𝑛󳨀→∞

Φ̃1 (𝑡 − 𝑠𝑛) = Φ1 (𝑡) for each 𝑡 ∈ R. (48)

ThusΦ1(𝑡) ∈ 𝐴𝐴(R, 𝑋).
Since 𝑍(𝑡) ∈ 𝐶0(R, 𝑋), one can choose an 𝑁1 > 0 such

that ‖𝑍(𝑡)‖ < 𝜀 for all 𝑡 > 𝑁1. This enables us to conclude
that, for all 𝑡 > 𝑁1,

󵄩󵄩󵄩󵄩Φ2 (𝑡)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑁1

−∞
𝑆𝛼 (𝑡 − 𝑠)𝑍 (𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

𝑁1
𝑆𝛼 (𝑡 − 𝑠) 𝑍 (𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝑀‖𝑍‖∞ ∫𝑁1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

+ 𝜀𝐶𝑀∫𝑡
𝑁1

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

≤ 𝐶𝑀‖𝑍‖∞|𝜔| ∫𝑁1
−∞

1
(𝑡 − 𝑠)𝛼 d𝑠

+ 𝐶𝑀 |𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼)

≤ 𝐶𝑀‖𝑍‖∞|𝜔|
1

(𝛼 − 1) (𝑡 − 𝑁1)𝛼−1

+ 𝐶𝑀|𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼) ,

(49)

which implies

lim
𝑡󳨀→+∞

󵄩󵄩󵄩󵄩Φ2 (𝑡)󵄩󵄩󵄩󵄩 = 0. (50)

On the other hand, from𝑍(𝑡) ∈ 𝐶0(R, 𝑋) it follows that there
exists an 𝑁2 > 0 such that ‖𝑍(𝑡)‖ < 𝜀 for all 𝑡 < −𝑁2.
This enables us to conclude that, for all 𝑡 < −𝑁2,

󵄩󵄩󵄩󵄩Φ2 (𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) 𝑍 (𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫𝑡
−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 ‖𝑍 (𝑠)‖ d𝑠

≤ 𝐶𝑀𝜀∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

= 𝐶𝑀 |𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼) ,

(51)

which implies

lim
𝑡󳨀→−∞

󵄩󵄩󵄩󵄩Φ2 (𝑡)󵄩󵄩󵄩󵄩 = 0. (52)

Now we are in position to state and prove our first main
result. To prove ourmain result, let us introduce the following
assumptions:(𝐻1) 𝐹(𝑡, 𝑥, 𝑦) = 𝐹1(𝑡, 𝑥, 𝑦) + 𝐹2(𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴𝐴(R × 𝑋 ×𝑋,𝑋) with

𝐹1 (𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴 (R × 𝑋 × 𝑋,𝑋) ,
𝐹2 (𝑡, 𝑥, 𝑦) ∈ 𝐶0 (R × 𝑋 × 𝑋,𝑋) (53)

and there exists a constant 𝐿 > 0 such that, for all 𝑡 ∈ R and𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋,
󵄩󵄩󵄩󵄩𝐹1 (𝑡, 𝑥1, 𝑥2) − 𝐹1 (𝑡, 𝑦1, 𝑦2)󵄩󵄩󵄩󵄩

≤ 𝐿 (󵄩󵄩󵄩󵄩𝑥1 − 𝑦1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥2 − 𝑦2󵄩󵄩󵄩󵄩) .
(54)

(𝐻2) There exist a function 𝛽(𝑡) ∈ 𝐶0(R,R+) and a
nondecreasing function Φ : R+ 󳨀→ R+ such that, for all𝑡 ∈ R and 𝑥, 𝑦 ∈ 𝑋 with ‖𝑥‖ + ‖𝑦‖ ≤ 𝑟,

󵄩󵄩󵄩󵄩𝐹2 (𝑡, 𝑥, 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝛽 (𝑡) Φ (𝑟)
and lim inf
𝑟󳨀→+∞

Φ (𝑟)
𝑟 = 𝜌1.

(55)

Remark 22. Assuming that 𝐹(𝑡, 𝑥, 𝑦) satisfies the assumption
(𝐻1), it is noted that 𝐹(𝑡, 𝑥, 𝑦) does not have to meet the
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Lipschitz continuity with respect to 𝑥 and 𝑦. Such class of
asymptotically almost automorphic functions 𝐹(𝑡, 𝑥, 𝑦) are
more complicated than those with Lipschitz continuity with
respect to 𝑥 and 𝑦 and little is known about them.

Let 𝛽(𝑡) be the function involved in assumption (𝐻2).
Define

𝜎 (𝑡) fl ∫𝑡
−∞

𝛽 (s)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠, 𝑡 ∈ R. (56)

Lemma 23. 𝜎(𝑡) ∈ 𝐶0(R,R+).
Proof. Since 𝛽(𝑡) ∈ 𝐶0(R,R+), one can choose a 𝑇1 > 0 such
that ‖𝛽(𝑡)‖ < 𝜀 for all 𝑡 > 𝑇1. This enables us to conclude that,
for all 𝑡 > 𝑇1,

‖𝜎 (𝑡)‖ ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑇1

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

𝑇1

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩∞ ∫𝑇1

−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

+ 𝜀∫𝑡
𝑇1

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

≤
󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩∞|𝜔| ∫𝑇1

−∞

1
(𝑡 − 𝑠)𝛼 d𝑠 +

|𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼)

≤
󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩∞|𝜔|

1
(𝛼 − 1) (𝑡 − 𝑇1)𝛼−1 +

|𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼) ,

(57)

which implies

lim
𝑡󳨀→+∞

‖𝜎 (𝑡)‖ = 0. (58)

On the other hand, from 𝛽(𝑡) ∈ 𝐶0(R,R+) it follows that
there exists a 𝑇2 > 0 such that ‖𝛽(𝑡)‖ < 𝜀 for all 𝑡 < −𝑇2.
This enables us to conclude that, for all 𝑡 < −𝑇2,

‖𝜎 (𝑡)‖ = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝜀∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠 = |𝜔|−1/𝛼 𝜋𝜀

𝛼 sin (𝜋/𝛼) ,
(59)

which implies

lim
𝑡󳨀→−∞

‖𝜎 (𝑡)‖ = 0. (60)

Theorem 24. Assume that 𝐴 is sectorial of type 𝜔 < 0. Let𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy the hypotheses (𝐻1) and (𝐻2).
Put 𝜌2 fl sup𝑡∈R𝜎(𝑡). Then (39) has at least one asymptotically
almost automorphic mild solution provided that

𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋
𝛼 sin (𝜋/𝛼)

+ 𝐶𝑀(1 + ‖𝐵‖L(𝑋)) 𝜌1𝜌2 < 1.
(61)

Proof. The proof is divided into the following five steps.

Step 1. Define a mapping Λ on 𝐴𝐴(R, 𝑋) by

(ΛV) (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)) d𝑠,
𝑡 ∈ R

(62)

and prove Λ has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).
Firstly, since the function 𝑠 󳨀→ 𝐹1(𝑠, V(𝑠), 𝐵V(𝑠)) is

bounded inR and

‖[ΛV] (𝑡)‖ ≤ ∫𝑡
−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 d𝑠

≤ 𝐶𝑀∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 d𝑠

≤ 𝐶𝑀󵄩󵄩󵄩󵄩𝐹1󵄩󵄩󵄩󵄩∞ ∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

= 𝐶𝑀𝐿 |𝜔|−1/𝛼 𝜋 󵄩󵄩󵄩󵄩𝐹1󵄩󵄩󵄩󵄩∞𝛼 sin (𝜋/𝛼) ,

(63)

this implies that (ΛV)(𝑡) exists. Moreover from 𝐹1(𝑡, 𝑥, 𝑦) ∈𝐴𝐴(R × 𝑋 × 𝑋,𝑋) satisfying (54), together with Lemma 6
and Remark 7, it follows that

𝐹1 (⋅, V (⋅) , 𝐵V (⋅)) ∈ 𝐴𝐴 (R, 𝑋)
for every V (⋅) ∈ 𝐴𝐴 (R, 𝑋) . (64)

This, together with Lemma 21, implies that Λ is well defined
and maps 𝐴𝐴(R, 𝑋) into itself.

In the sequel, we verify that Λ is continuous.
Let V𝑛(𝑡), V(𝑡) be in 𝐴𝐴(R, 𝑋)with V𝑛(𝑡) 󳨀→ V(𝑡) as 𝑛 󳨀→∞; then one has

󵄩󵄩󵄩󵄩[ΛV𝑛] (𝑡) − [ΛV] (𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V𝑛 (𝑠) , 𝐵V𝑛 (𝑠))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))] d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝐿∫𝑡
−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩
⋅ [󵄩󵄩󵄩󵄩V𝑛 (𝑠) − V (𝑠)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵V𝑛 (𝑠) − 𝐵V (𝑠)󵄩󵄩󵄩󵄩]d𝑠
≤ 𝐶𝑀𝐿∫𝑡

−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩V𝑛 (𝑠)

− V (𝑠)󵄩󵄩󵄩󵄩 d𝑠 ≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩∞
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⋅ ∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

= 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋
𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩∞ .

(65)

Therefore, as 𝑛 󳨀→ ∞ and ΛV𝑛 󳨀→ ΛV, hence Λ is
continuous.

Next, we prove that Λ is a contraction on 𝐴𝐴(R, 𝑋) and
has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).

In fact, let V1(𝑡), V2(𝑡) be in 𝐴𝐴(R, 𝑋), and similar to the
above proof of the continuity of Λ, one has

󵄩󵄩󵄩󵄩[ΛV1] (𝑡) − [ΛV2] (𝑡)󵄩󵄩󵄩󵄩
≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋

𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V1 − V2
󵄩󵄩󵄩󵄩∞ , (66)

which implies
󵄩󵄩󵄩󵄩[ΛV1] (𝑡) − [ΛV2] (𝑡)󵄩󵄩󵄩󵄩∞

≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋
𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V1 − V2

󵄩󵄩󵄩󵄩∞ . (67)

Together with (61), this proves that Λ is a contraction on𝐴𝐴(R, 𝑋). Thus, Banach’s fixed point theorem implies that Λ
has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).
Step 2. Set

Ω𝑟 fl {𝜔 (𝑡) ∈ 𝐶0 (R, 𝑋) : ‖𝜔 (𝑡)‖ ≤ 𝑟} . (68)

For the above V(𝑡), define Γ fl Γ1 + Γ2 on 𝐶0(R, 𝑋) as
(Γ1𝜔) (𝑡) = ∫𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]d𝑠,

(Γ2𝜔) (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝐹2 (𝑠, V (𝑠)
+ 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠

(69)

and prove that Γ maps Ω𝑘0 into itself, where 𝑘0 is a given
constant.

Firstly, from (54) it follows that, for all 𝑠 ∈ R and 𝜔(𝑠) ∈𝑋, 󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 ≤ 𝐿 [‖𝜔 (𝑠)‖ + ‖𝐵𝜔 (𝑠)‖]
≤ 𝐿 (1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖ ,

(70)

which implies that

𝐹1 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅))) − 𝐹1 (⋅, V (⋅) , 𝐵V (⋅))
∈ 𝐶0 (R, 𝑋) for every 𝜔 (⋅) ∈ 𝐶0 (R, 𝑋) . (71)

According to (55), one has

󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 ≤ 𝛽 (𝑠)
⋅ Φ(‖𝜔 (𝑠) + 𝐵𝜔 (𝑠)‖ + sup

𝑠∈R
‖V (𝑠) + 𝐵V (𝑠)‖)

≤ 𝛽 (𝑠) Φ((1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖

+ (1 + ‖𝐵‖L(𝑋)) sup
𝑠∈R

‖V (𝑠)‖) = 𝛽 (𝑠)

⋅ Φ((1 + ‖𝐵‖L(𝑋)) [‖𝜔 (𝑠)‖ + sup
𝑠∈R

‖V (𝑠)‖])

(72)

for all 𝑠 ∈ R and 𝜔(𝑠) ∈ 𝑋 with ‖𝜔(𝑠)‖ ≤ 𝑟; then
𝐹2 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅))) ∈ 𝐶0 (R, 𝑋)

as 𝛽 (⋅) ∈ 𝐶0 (R,R+) . (73)

Those, together with Lemma 21, yield that Γ is well defined
and maps 𝐶0(R, 𝑋) into itself.

On the other hand, in view of (55) and (61) it is not
difficult to see that there exists a constant 𝑘0 > 0 such that

𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋
𝛼 sin (𝜋/𝛼) 𝑘0

+ 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + sup
𝑠∈R

‖V (𝑠)‖))
≤ 𝑘0.

(74)

This enables us to conclude that, for any 𝑡 ∈ R and 𝜔1(𝑡),𝜔2(𝑡) ∈ Ω𝑘0 ,
󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) + (Γ2𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫

𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))] d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠))) d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫𝑡
−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠)
+ 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 d𝑠 + ∫𝑡

−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠
≤ 𝐶𝑀∫𝑡

−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 [󵄩󵄩󵄩󵄩𝜔1 (𝑠)󵄩󵄩󵄩󵄩
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+ 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠)󵄩󵄩󵄩󵄩] d𝑠
+ 𝐶𝑀∫𝑡

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼Φ(󵄩󵄩󵄩󵄩𝜔2 (𝑠)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵𝜔2 (𝑠)󵄩󵄩󵄩󵄩

+ ‖V (𝑠)‖ + ‖𝐵V (𝑠)‖) d𝑠 ≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋))
⋅ 󵄩󵄩󵄩󵄩𝜔1󵄩󵄩󵄩󵄩∞ ∫𝑡

−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠 + 𝐶𝑀𝜎 (𝑡) Φ ((1

+ ‖𝐵‖L(𝑋)) (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩∞ + ‖V (𝑠)‖∞))
= 𝐶𝑀𝐿 |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) ‖𝜔‖∞
+ 𝐶𝑀𝜌2Φ ((1 + ‖𝐵‖L(𝑋)) (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩∞ + ‖V (𝑠)‖∞))
≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋

𝛼 sin (𝜋/𝛼) 𝑘0 + 𝐶𝑀𝜌2Φ((1
+ ‖𝐵‖L(𝑋)) (𝑘0 + ‖V (𝑠)‖∞)) ≤ 𝑘0,

(75)

which implies that (Γ1𝜔1)(𝑡) + (Γ2𝜔2)(𝑡) ∈ Ω𝑘0 . Thus Γ mapsΩ𝑘0 into itself.
Step 3. Show that Γ1 is a contraction onΩ𝑘0 .

In fact, for any 𝜔1(𝑡), 𝜔2(𝑡) ∈ Ω𝑘0 and 𝑡 ∈ R, from (54) it
follows that

󵄩󵄩󵄩󵄩[𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]
− [𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]󵄩󵄩󵄩󵄩 ≤ 𝐿 [󵄩󵄩󵄩󵄩𝜔1 (𝑠) − 𝜔2 (𝑠)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠) − 𝐵𝜔2 (𝑠)󵄩󵄩󵄩󵄩] ≤ 𝐿 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠)
− 𝜔2 (𝑠)󵄩󵄩󵄩󵄩 .

(76)

Thus

󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) [(𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))

− (𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))]d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝐿∫𝑡

−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠)

− 𝜔2 (𝑠)󵄩󵄩󵄩󵄩 d𝑠 ≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ ∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠 = 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋

𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩𝜔1
− 𝜔2󵄩󵄩󵄩󵄩∞ ,

(77)

which implies that

󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩∞
≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋

𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ .
(78)

Thus, in view of (61), one obtains the conclusion.

Step 4. Show that Γ2 is completely continuous onΩ𝑘0 .
Given 𝜀 > 0. Let {𝜔𝑘}+∞𝑘=1 ⊂ Ω𝑘0 with 𝜔𝑘 󳨀→ 𝜔0 in𝐶0(R, 𝑋) as 𝑘 󳨀→ +∞. Since 𝜎(𝑡) ∈ 𝐶0(R,R+), one may

choose a 𝑡1 > 0 big enough such that, for all 𝑡 ≥ 𝑡1,
Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞)) 𝜎 (𝑡) < 𝜀

3𝐶𝑀. (79)

Also, in view of (𝐻1), we have
𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))

󳨀→ 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠))) (80)

for all 𝑠 ∈ (−∞, 𝑡1] as 𝑘 󳨀→ +∞ and

󵄩󵄩󵄩󵄩𝐹2 (⋅, V (⋅) + 𝜔𝑘 (⋅) , 𝐵 (V (⋅) + 𝜔𝑘 (⋅)))
− 𝐹2 (⋅, V (⋅) + 𝜔0 (⋅) , 𝐵 (V (⋅) + 𝜔0 (⋅)))󵄩󵄩󵄩󵄩
≤ 2Φ ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞)) 𝛽 (⋅)
∈ 𝐿1 (−∞, 𝑡1] .

(81)

Hence, by the Lebesgue dominated convergence theorem we
deduce that there exists an𝑁 > 0 such that

𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠)

+ 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠))) − 𝐹2 (𝑠, V (𝑠)
+ 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠 ≤ 𝜀

3

(82)
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whenever 𝑘 ≥ 𝑁. Thus

󵄩󵄩󵄩󵄩󵄩(Γ2𝜔𝑘) (𝑡) − (Γ2𝜔0) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) 𝐹2 (𝑠, V (𝑠)

+ 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))d𝑠 − ∫𝑡
−∞

𝑆𝛼 (𝑡

− 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠))) d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠)

+ 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠))) − 𝐹2 (𝑠, V (𝑠)
+ 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠 + 2𝐶𝑀Φ((1
+ ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞)) ∫

max{𝑡,𝑡1}

𝑡1

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

≤ 𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠)

+ 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠))) − 𝐹2 (𝑠, V (𝑠)
+ 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠 + 2𝐶𝑀Φ((1
+ ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞)) 𝜎 (𝑡) ≤ 𝜀

3 + 2𝜀
3 = 𝜀

(83)

whenever 𝑘 ≥ 𝑁. Accordingly, Γ2 is continuous onΩ𝑘0 .
In the sequel, we consider the compactness of Γ2.
Set 𝐵𝑟(𝑋) for the closed ball with center at 0 and radius 𝑟

in 𝑋, 𝑉 = Γ2(Ω𝑘0), and 𝑧(𝑡) = Γ2(𝑢(𝑡)) for 𝑢(𝑡) ∈ Ω𝑘0 . First,
for all 𝜔(𝑡) ∈ Ω𝑘0 and 𝑡 ∈ R,

󵄩󵄩󵄩󵄩󵄩(Γ2𝜔) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝑀𝜎 (𝑡)Φ ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞)) ,

(84)

and in view of 𝜎(𝑡) ∈ 𝐶0(R,R+), which follows from
Lemma 23, one concludes that

lim
|𝑡|󳨀→+∞

(Γ2𝜔) (𝑡) = 0 uniformly for 𝜔 (𝑡) ∈ Ω𝑘0 . (85)

As

󵄩󵄩󵄩󵄩󵄩(Γ2𝜔) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) 𝐹2 (𝑠, V (𝑠)

+ 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
+∞

0
𝑆𝛼 (𝜏)

⋅ 𝐹2 (𝑡 − 𝜏, V (𝑡 − 𝜏)
+ 𝜔 (𝑡 − 𝜏) , 𝐵 (V (𝑡 − 𝜏) + 𝜔 (𝑡 − 𝜏))) d𝜏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .

(86)

Hence, given 𝜀0 > 0, one can choose a 𝜉 > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
+∞

𝜉
𝑆𝛼 (𝜏) 𝐹2 (𝑡 − 𝜏, V (𝑡 − 𝜏)

+ 𝜔 (𝑡 − 𝜏) , 𝐵 (V (𝑡 − 𝜏) + 𝜔 (𝑡 − 𝜏))) d𝜏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< 𝜀0.

(87)

Thus we get

𝑧 (𝑡) ∈ 𝜉𝑐 ({𝑆𝛼 (𝜏) 𝐹2 (𝜆, V (𝜆) + 𝜔 (𝜆) , 𝐵 (V (𝜆) + 𝜔 (𝜆))) : 0 ≤ 𝜏 ≤ 𝜉, 𝑡 − 𝜉 ≤ 𝜆 ≤ 𝜉, ‖𝜔‖∞ ≤ 𝑟}) + 𝐵𝜀0 (𝑋) , (88)

where 𝑐(𝐾) denotes the convex hull of 𝐾. Using that 𝑆𝛼(⋅) is
strongly continuous, we infer that

𝐾 = {𝑆𝛼 (𝜏) 𝐹2 (𝜆, V (𝜆) + 𝜔 (𝜆) , 𝐵 (V (𝜆) + 𝜔 (𝜆))) : 0
≤ 𝜏 ≤ 𝜉, 𝑡 − 𝜉 ≤ 𝜆 ≤ 𝜉, ‖𝜔‖∞ ≤ 𝑟} (89)

is a relatively compact set and 𝑉 ⊂ 𝜉𝑐(𝐾) + 𝐵𝜀0(𝑋), which
implies that 𝑉 is a relatively compact subset of 𝑋.

Next, we verify the equicontinuity of the set {(Γ2𝜔)(𝑡) :𝜔(𝑡) ∈ Ω𝑘0}.
Let 𝑘 > 0 be small enough and 𝑡1, 𝑡2 ∈ R and 𝜔(𝑡) ∈ Ω𝑘0 .

Then by (55) we have

󵄩󵄩󵄩󵄩󵄩(Γ2𝜔) (𝑡2) − (Γ2𝜔) (𝑡1)󵄩󵄩󵄩󵄩󵄩 ≤ ∫𝑡2
𝑡1

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠)
⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠

+ ∫𝑡1−𝑘
−∞

󵄩󵄩󵄩󵄩[𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)]
⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠
+ ∫𝑡1
𝑡1−𝑘

󵄩󵄩󵄩󵄩[𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)]
⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠
≤ 𝐶𝑀Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞))
⋅ ∫𝑡2
𝑡1

𝛽 (𝑠)
1 + |𝜔| (𝑡2 − 𝑠)𝛼 d𝑠 + Φ ((1 + ‖𝐵‖L(𝑋)) (𝑘0

+ ‖V‖∞)) sup
𝑠∈[−∞,𝑡1−𝑘]

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)󵄩󵄩󵄩󵄩
⋅ ∫𝑡1−𝑘
−∞

𝛽 (𝑠) d𝑠 + 𝐶𝑀Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0
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+ ‖V‖∞)) ∫
𝑡1

𝑡1−𝑘
( 𝛽 (𝑠)
1 + |𝜔| (𝑡2 − 𝑠)𝛼

+ 𝛽 (𝑠)
1 + |𝜔| (𝑡1 − 𝑠)𝛼) d𝑠 󳨀→ 0

as 𝑡2 − 𝑡1 󳨀→ 0, 𝑘 󳨀→ 0,
(90)

which implies the equicontinuity of the set {(Γ2𝜔)(𝑡) : 𝜔(𝑡) ∈Ω𝑘0}.
Now an application of Lemma 18 justifies the compact-

ness of Γ2.
Step 5. Show that (39) has at least one asymptotically almost
automorphic mild solution.

Firstly, the complete continuity of Γ2, together with the
results of Steps 2 and 3 as well as Lemma 19, yields that Γ
has at least one fixed point 𝜔(𝑡) ∈ Ω𝑘0 ; furthermore 𝜔(𝑡) ∈𝐶0(R, 𝑋).

Then, consider the following coupled system of integral
equations:

V (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)) d𝑠, 𝑡 ∈ R,

𝜔 (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠)
⋅ [𝐹1 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))] d𝑠 + ∫𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠,
𝑡 ∈ R.

(91)

From the result of Step 1, together with the above fixed point𝜔(𝑡) ∈ 𝐶0(R, 𝑋), it follows that
(V (𝑡) , 𝜔 (𝑡)) ∈ 𝐴𝐴 (R, 𝑋) × 𝐶0 (R, 𝑋) (92)

is a solution to system (91). Thus

𝑥 (𝑡) fl V (𝑡) + 𝜔 (𝑡) ∈ 𝐴𝐴𝐴 (R, 𝑋) (93)

and it is a solution to the integral equation

𝑥 (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠)) d𝑠, 𝑡 ∈ R; (94)

that is, 𝑥(𝑡) is an asymptotically almost automorphic mild
solution to (39).

Taking 𝐴 = −𝜌𝛼𝐼 with 𝜌 > 0 in (39), the above theorem
gives the following corollary.

Corollary 25. Let 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy (𝐻1) and(𝐻2). Put 𝜌2 fl sup𝑡∈R𝜎(𝑡). Then (39) admits at least one
asymptotically almost automorphic mild solution whenever

𝐶𝐿 (1 + ‖𝐵‖L(𝑋)) 𝜌𝜋𝛼 sin (𝜋/𝛼) + 𝐶 (1 + ‖𝐵‖L(𝑋)) 𝜌1𝜌2 < 1. (95)

Remark 26. It is interesting to note that the function 𝛼 󳨀→𝛼sin(𝜋/𝛼)/𝜌𝜋 is increasing from 0 to 2/𝜌𝜋 in the interval 1 <𝛼 < 2. Therefore, with respect to condition (61), the class of
admissible terms 𝐹1(𝑡, 𝑥(𝑡), 𝐵𝑥(𝑡)) is the best in the case 𝛼 = 2
and the worst in the case 𝛼 = 1.

Theorem 24 can be extended to the case of 𝐹1(𝑡, 𝑥, 𝑦)
being locally Lipschitz continuous with respect to 𝑥 and 𝑦,
where we have the following result.(𝐻󸀠1) 𝐹(𝑡, 𝑥, 𝑦) = 𝐹1(𝑡, 𝑥, 𝑦) + 𝐹2(𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴𝐴(R × 𝑋 ×𝑋,𝑋) with

𝐹1 (𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴 (R × 𝑋 × 𝑋,𝑋) ,
𝐹2 (𝑡, 𝑥, 𝑦) ∈ 𝐶0 (R × 𝑋 × 𝑋,𝑋) (96)

and for all 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋, 𝑡 ∈ R,
󵄩󵄩󵄩󵄩𝐹1 (𝑡, 𝑥1, 𝑥2) − 𝐹1 (𝑡, 𝑦1, 𝑦2)󵄩󵄩󵄩󵄩

≤ 𝐿 (𝑡) (󵄩󵄩󵄩󵄩𝑥1 − 𝑦1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥2 − 𝑦2󵄩󵄩󵄩󵄩) ,
(97)

where 𝐿(𝑡) is a function on R.

Theorem 27. Assume that 𝐴 is sectorial of type 𝜔 < 0. Let𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy the hypotheses (𝐻󸀠1) and (𝐻2)
with 𝐿(𝑡) ∈ 𝐵𝐶(R,R+). Put 𝜌2 fl sup𝑡∈R𝜎(𝑡). Let ‖𝐿‖ =
sup𝑡∈R ∫𝑡+1𝑡 𝐿(𝑠)d𝑠. Then (39) has at least one asymptotically
almost automorphic mild solution provided that

𝐶𝑀𝐿 ‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼)
+ 𝐶𝑀𝜌1𝜌2 (1 + ‖𝐵‖L(𝑋)) < 1.

(98)

Proof. The proof is divided into the following five steps.

Step 1. Define a mapping Λ on 𝐴𝐴(R, 𝑋) by (62) and prove
that Λ has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).

Firstly, similar to the proof in Step 1 of Theorem 24, we
can prove that (ΛV)(𝑡) exists. Moreover from 𝐹1(𝑡, 𝑥, 𝑦) ∈𝐴𝐴(R × 𝑋 × 𝑋,𝑋) satisfying (97), together with Lemma 6
and Remark 8, it follows that

𝐹1 (⋅, V (⋅) , 𝐵V (⋅)) ∈ 𝐴𝐴 (R, 𝑋)
for every V (⋅) ∈ 𝐴𝐴 (R, 𝑋) . (99)

This, together with Lemma 21, implies that Λ is well defined
and maps 𝐴𝑃(R, 𝑋) into itself.

In the sequel, we verify that Λ is continuous.
Let V𝑛(𝑡), V(𝑡) be in 𝐴𝐴(R, 𝑋)with V𝑛(𝑡) 󳨀→ V(𝑡) as 𝑛 󳨀→∞; then one has

󵄩󵄩󵄩󵄩[ΛV𝑛] (𝑡) − [ΛV] (𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V𝑛 (𝑠) , 𝐵V𝑛 (𝑠))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ ∫𝑡
−∞

𝐿 (𝑠) 󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡
− 𝑠)󵄩󵄩󵄩󵄩 [󵄩󵄩󵄩󵄩V𝑛 (𝑠) − V (𝑠)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵V𝑛 (𝑠) − 𝐵V (𝑠)󵄩󵄩󵄩󵄩] d𝑠
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≤ 𝐶𝑀∫𝑡
−∞

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩V𝑛 (𝑠)

− V (𝑠)󵄩󵄩󵄩󵄩 d𝑠 ≤ 𝐶𝑀(1 + ‖𝐵‖L(𝑋))
⋅ (+∞∑
𝑚=0

∫𝑡−𝑚
𝑡−(𝑚+1)

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠) 󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩∞

≤ 𝐶𝑀(1 + ‖𝐵‖L(𝑋))
⋅ (+∞∑
𝑚=0

1
1 + |𝜔|𝑚𝛼 ∫

𝑡−𝑚

𝑡−(𝑚+1)
𝐿 (𝑠) d𝑠) 󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩∞

≤ 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩∞ .
(100)

Therefore, as 𝑛 󳨀→ ∞ and ΛV𝑛 󳨀→ ΛV, hence Λ is
continuous.

Next, we prove that Λ is a contraction on 𝐴𝐴(R, 𝑋) and
has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).

In fact, for V1(𝑡), V2(𝑡) in 𝐴𝐴(R, 𝑋), similar to the above
proof of the continuity of Λ, one has

󵄩󵄩󵄩󵄩(ΛV1) (𝑡) − (ΛV2) (𝑡)󵄩󵄩󵄩󵄩
≤ 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V1 − V2

󵄩󵄩󵄩󵄩∞ , (101)

which implies that
󵄩󵄩󵄩󵄩(ΛV1) (𝑡) − (ΛV2) (𝑡)󵄩󵄩󵄩󵄩∞

≤ 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V1 − V2
󵄩󵄩󵄩󵄩∞ . (102)

Hence, by (98), together with the contraction principle,Λ has
a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).
Step 2. Set

Ω𝑟 fl {𝜔 (𝑡) ∈ 𝐶0 (R, 𝑋) : ‖𝜔 (𝑡)‖ ≤ 𝑟} . (103)

For the above V(𝑡), define Γ fl Γ1+Γ2 on𝐶0(R, 𝑋) as (69) and
prove that ΓmapsΩ𝑘0 into itself, where 𝑘0 is a given constant.

Firstly, from (97) it follows that, for all 𝑠 ∈ R, 𝜔(𝑠) ∈ 𝑋,
󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))

− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 ≤ 𝐿 (𝑠) [‖𝜔 (𝑠)‖ + ‖𝐵𝜔 (𝑠)‖]
≤ 𝐿 (𝑠) (1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖ ,

(104)

which together with 𝐿(𝑠) ∈ 𝐵𝐶(R,R+) implies that

𝐹1 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅)))
− 𝐹1 (⋅, V (⋅) , 𝐵V (⋅)) ∈ 𝐶0 (R, 𝑋)

for every 𝜔 (⋅) ∈ 𝐶0 (R, 𝑋) .
(105)

According to (55), one has󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 ≤ 𝛽 (𝑠)
⋅ Φ(‖𝜔 (𝑠) + 𝐵𝜔 (𝑠)‖ + sup

𝑠∈R
‖V (𝑠) + 𝐵V (𝑠)‖)

≤ 𝛽 (𝑠) Φ((1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖

+ (1 + ‖𝐵‖L(𝑋)) sup
𝑠∈R

‖V (𝑠)‖) ≤ 𝛽 (𝑠)

⋅ Φ((1 + ‖𝐵‖L(𝑋)) [‖𝜔 (𝑠)‖ + sup
𝑠∈R

‖V (𝑠)‖])

(106)

for all 𝑠 ∈ R and 𝜔(𝑠) ∈ 𝑋 with ‖𝜔(𝑠)‖ ≤ 𝑟; then
𝐹2 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅))) ∈ 𝐶0 (R, 𝑋)

as 𝛽 (⋅) ∈ 𝐶0 (R,R+) . (107)

Those, together with Lemma 21, yield that Γ is well defined
and maps 𝐶0(R, 𝑋) into itself.

On the other hand, in view of (55) and (98) it is not
difficult to see that there exists a constant 𝑘0 > 0 such that

𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 𝑘0
+ 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + sup

𝑠∈R
‖V (𝑠)‖))

≤ 𝑘0.

(108)

This enables us to conclude that, for any 𝑡 ∈ R and 𝜔1(𝑡),𝜔2(𝑡) ∈ Ω𝑘0 ,
󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) + (Γ2𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫

𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠))) d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫𝑡
−∞

𝐿 (𝑠) 󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 [󵄩󵄩󵄩󵄩𝜔1 (𝑠)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠)󵄩󵄩󵄩󵄩] d𝑠 + 𝐶𝑀∫𝑡

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼Φ

⋅ (󵄩󵄩󵄩󵄩𝜔2 (𝑠)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵𝜔2 (𝑠)󵄩󵄩󵄩󵄩 + ‖V (𝑠)‖ + ‖𝐵V (𝑠)‖)d𝑠
≤ 𝐶𝑀∫𝑡

−∞

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 (1 + ‖𝐵‖L(𝑋))

⋅ 󵄩󵄩󵄩󵄩𝜔1 (𝑠)󵄩󵄩󵄩󵄩 d𝑠 + 𝐶𝑀∫𝑡
−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼Φ ((1

+ ‖ 𝐵‖L(𝑋)) (󵄩󵄩󵄩󵄩𝜔2 (𝑠)󵄩󵄩󵄩󵄩 + ‖V (𝑠)‖) d𝑠 ≤ 𝐶𝑀(1
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+ ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1󵄩󵄩󵄩󵄩∞ ∫𝑡
−∞

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

+ 𝐶𝑀𝜎 (𝑡) Φ((1 + ‖𝐵‖L(𝑋)) (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩∞
+ sup
𝑠∈R

‖V (𝑠)‖))

≤ 𝐶𝑀(+∞∑
𝑚=0

∫𝑡−𝑚
𝑡−(𝑚+1)

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠) (1

+ ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1󵄩󵄩󵄩󵄩∞ + 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋))

⋅ (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩∞ + sup
𝑠∈R

‖V (𝑠)‖))

≤ 𝐶𝑀(+∞∑
𝑚=0

1
1 + |𝜔|𝑚𝛼 ∫

𝑡−𝑚

𝑡−(𝑚+1)
𝐿 (𝑠) d𝑠) (1

+ ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1󵄩󵄩󵄩󵄩∞ + 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0

+ sup
𝑠∈R

‖V (𝑠)‖)) ≤ 𝐶𝑀(+∞∑
𝑚=0

1
1 + |𝜔|𝑚𝛼) ‖𝐿‖ (1

+ ‖𝐵‖L(𝑋)) 𝑘0 + 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋))(𝑘0

+ sup
𝑠∈R

‖V (𝑠)‖))

= 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 𝑘0
+ 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + sup

𝑠∈R
‖V (𝑠)‖))

≤ 𝑘0,
(109)

which implies that (Γ1𝜔1)(𝑡) + (Γ2𝜔2)(𝑡) ∈ Ω𝑘0 . Thus Γ mapsΩ𝑘0 into itself.
Step 3. Show that Γ1 is a contraction onΩ𝑘0 .

In fact, for any 𝜔1(𝑡), 𝜔2(𝑡) ∈ Ω𝑘0 and 𝑡 ∈ R, from (97) it
follows that

󵄩󵄩󵄩󵄩[𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]
− [𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]󵄩󵄩󵄩󵄩 ≤ 𝐿 (𝑠) [󵄩󵄩󵄩󵄩𝜔1 (𝑠) − 𝜔2 (𝑠)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠) − 𝐵𝜔2 (𝑠)󵄩󵄩󵄩󵄩] ≤ 𝐿 (𝑠) (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠)
− 𝜔2 (𝑠)󵄩󵄩󵄩󵄩 .

(110)

Thus

󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) [(𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))

− (𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))] d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ ∫𝑡
−∞

𝐿 (𝑠) 󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠)

− 𝜔2 (𝑠)󵄩󵄩󵄩󵄩d𝑠 ≤ 𝐶𝑀∫𝑡
−∞

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠) − 𝜔2 (𝑠)󵄩󵄩󵄩󵄩 d𝑠

≤ 𝐶𝑀(+∞∑
𝑚=0

∫𝑡−𝑚
𝑡−(𝑚+1)

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠) (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ ≤ 𝐶𝑀(+∞∑

𝑚=0

1
1 + |𝜔|𝑚𝛼 ∫

𝑡−𝑚

𝑡−(𝑚+1)
𝐿 (𝑠) d𝑠) (1

+ ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ ≤ 𝐶𝑀(+∞∑
𝑚=0

1
1 + |𝜔|𝑚𝛼) ‖𝐿‖ (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞

= 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ ,

(111)

which implies that

󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩∞
≤ 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ .

(112)

Thus, in view of (98), one obtains the conclusion.

Step 4. Show that Γ2 is completely continuous on Ω𝑘0 .
The proof is similar to the proof in Step 4 of Theorem 24.

Step 5. Show that (39) has at least one asymptotically almost
automorphic mild solution.
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The proof is similar to the proof in Step 5 of Theorem 24.

Taking 𝐴 = −𝜌𝛼𝐼 with 𝜌 > 0 in (39), Theorem 27 gives
the following corollary.

Corollary 28. Let 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy (𝐻󸀠1) and(𝐻2) with 𝐿(𝑡) ∈ 𝐵𝐶(R,R+). Put 𝜌2 fl sup𝑡∈R𝜎(𝑡). Let ‖𝐿‖ =
sup𝑡∈R ∫𝑡+1𝑡 𝐿(𝑠)d𝑠.Then (39) admits at least one asymptotical-
ly almost automorphic mild solution whenever

𝐶 ‖𝐿‖ 𝜌𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) + 𝐶𝜌1𝜌2 (1 + ‖𝐵‖L(𝑋)) < 1. (113)

Now we consider a more general case of equations intro-
ducing a new class of functions 𝐿(𝑡). We have the following
result.

(𝐻󸀠2) There exists a function 𝛽(𝑡) ∈ 𝐶0(R,R+) such that,
for all 𝑡 ∈ R and 𝑥, 𝑦 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝐹2 (𝑡, 𝑥, 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝛽 (𝑡) (‖𝑥‖ + 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩) . (114)

Theorem 29. Assume that 𝐴 is sectorial of type 𝜔 < 0.
Let 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy the hypotheses (𝐻󸀠1)
and (𝐻󸀠2) with 𝐿(𝑡) ∈ 𝐵𝐶(R,R+). Moreover the integral
∫𝑡−∞max{𝐿(𝑠), 𝛽(𝑠)}d𝑠 exists for all 𝑡 ∈ R. Then (39) has at
least one asymptotically almost automorphic mild solution.

Proof. The proof is divided into the following five steps.

Step 1. Define a mapping Λ on 𝐴𝐴(R, 𝑋) by (62) and prove
that Λ has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).

Firstly, similar to the proof in Step 1 ofTheorem 27,we can
prove that Λ is well defined and maps 𝐴𝑃(R, 𝑋) into itself;
moreover Λ is continuous.

Next, we prove that Λ is a contraction on 𝐴𝐴(R, 𝑋) and
has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).

In fact, for V1(𝑡), V2(𝑡) is in 𝐴𝐴(R, 𝑋) and defines a new
norm

|‖𝑥‖| fl sup
𝑡∈R

{𝜇 (𝑡) ‖𝑥 (𝑡)‖} , (115)

where 𝜇(𝑡) fl 𝑒−𝑘∫𝑡−∞ max{𝐿(𝑠),𝛽(𝑠)}d𝑠 and 𝑘 is a fixed positive
constant. Let 𝐶𝛼 fl sup𝑡∈R‖𝑆𝛼(𝑡)‖; then we have

𝜇 (𝑡) 󵄩󵄩󵄩󵄩ΛV1 (𝑡) − ΛV2 (𝑡)󵄩󵄩󵄩󵄩 = 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝜎)

⋅ [𝐹1 (𝜎, V1 (𝜎) , 𝐵V1 (𝜎))
− 𝐹1 (𝜎, V2 (𝜎) , 𝐵V2 (𝜎))] d𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝛼 ∫

𝑡

−∞
𝜇 (𝑡) 𝐿 (𝜎) [󵄩󵄩󵄩󵄩V1 (𝜎) − V2 (𝜎)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵V1 (𝜎)

− 𝐵V2 (𝜎)󵄩󵄩󵄩󵄩] d𝜎 = 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝜇 (𝜎) 𝐿 (𝜎)

⋅ 𝜇 (𝜎)−1 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩V1 (𝜎) − V2 (𝜎)󵄩󵄩󵄩󵄩 d𝜎
≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

𝜇 (𝑡) 𝜇 (𝜎)−1

⋅ 𝐿 (𝜎) d𝜎 = 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2
󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩

⋅ ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑡𝜎max{𝐿(𝜏),𝛽(𝜏)}d𝜏𝐿 (𝜎) d𝜎

≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2
󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩

⋅ ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑡𝜎 𝐿(𝜏)d𝜏𝐿 (𝜎) d𝜎

= 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2
󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩

⋅ ∫𝑡
−∞

d
d𝜎 (𝑒𝑘∫𝜎𝑡 𝐿(𝜏)d𝜏) d𝜎

= 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 (1 − 𝑒−𝑘∫𝑡−∞ 𝐿(𝜏)d𝜏) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2
󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩

≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2
󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ,

(116)

which implies that

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩Λ𝑥 (𝑡) − Λ𝑦 (𝑡)󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 . (117)

Hence Λ has a unique fixed point 𝑥 ∈ 𝐴𝐴(R, 𝑋) when 𝑘 is
greater than 𝐶𝛼(1 + ‖𝐵‖L(𝑋)).
Step 2. Set Θ𝑟 fl {𝜔(𝑡) ∈ 𝐶0(R, 𝑋) : |‖𝜔(𝑡)‖| ≤ 𝑟}. For the
above V(𝑡), define Γ fl Γ1 + Γ2 on 𝐶0(R, 𝑋) as (69) and prove
that Γmaps Θ𝑘0 into itself, where 𝑘0 is a given constant.

Firstly, from (97) it follows that, for all 𝑠 ∈ R, 𝜔(𝑠) ∈ 𝑋,
󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))

− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 ≤ 𝐿 (𝑠) [‖𝜔 (𝑠)‖ + ‖𝐵𝜔 (𝑠)‖]
≤ 𝐿 (𝑠) (1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖ + ‖𝐵𝜔 (𝑠)‖ ,

(118)

which together with 𝐿(𝑠) ∈ 𝐵𝐶(R,R+) implies that

𝐹1 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅))) − 𝐹1 (⋅, V (⋅) , 𝐵V (⋅))
∈ 𝐶0 (R, 𝑋) for every 𝜔 (⋅) ∈ 𝐶0 (R, 𝑋) . (119)

According to (114), one has
󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 ≤ 𝛽 (𝑠)

⋅ (‖𝜔 (𝑠) + 𝐵𝜔 (𝑠)‖ + ‖V (𝑠) + 𝐵V (𝑠)‖) ≤ 𝛽 (𝑠)
⋅ ((1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖ + (1 + ‖𝐵‖L(𝑋)) ‖V (𝑠)‖)
≤ 𝛽 (𝑠) ((1 + ‖𝐵‖L(𝑋)) [‖𝜔 (𝑠)‖ + ‖V (𝑠)‖])

(120)
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for all 𝑠 ∈ R and 𝜔(𝑠) ∈ 𝑋 with ‖𝜔(𝑠)‖ ≤ 𝑟; then
𝐹2 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅))) ∈ 𝐶0 (R, 𝑋)

as 𝛽 (⋅) ∈ 𝐶0 (R,R+) . (121)

Those, together with Lemma 21, yield that Γ is well defined
and maps 𝐶0(R, 𝑋) into itself.

On the other hand, it is not difficult to see that there exists
a constant 𝑘0 > 0 such that

2𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 𝑘0 + 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 |‖V (𝑠)|‖
≤ 𝑘0,

(122)

when 𝑘 is large enough. This enables us to conclude that, for
any 𝑡 ∈ R and 𝜔1(𝑡), 𝜔2(𝑡) ∈ Θ𝑘0 ,

𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) + (Γ2𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 + 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡

− 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠)))d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝐿 (𝑠) (󵄩󵄩󵄩󵄩𝜔1 (𝑠)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠)󵄩󵄩󵄩󵄩) d𝑠

+ 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝛽 (𝑠) (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩 + ‖V (𝑠)‖ + 󵄩󵄩󵄩󵄩𝐵𝜔2󵄩󵄩󵄩󵄩

+ ‖𝐵V (𝑠)‖) d𝑠 = 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝜇 (𝑠) 𝐿 (𝑠) 𝜇 (𝑠)−1

⋅ (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠)󵄩󵄩󵄩󵄩 d𝑠 + 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝜇 (𝑠)

⋅ 𝛽 (𝑠) 𝜇 (𝑠)−1 (1 + ‖𝐵‖L(𝑋)) (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩 + ‖V (𝑠)‖) d𝑠
≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡

−∞
𝜇 (𝑡) 𝜇 (𝑠)−1 𝐿 (𝑠) d𝑠

+ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋)) (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V (𝑠)|‖ ) ∫𝑡
−∞

𝜇 (𝑡)

⋅ 𝜇 (𝑠)−1 𝛽 (𝑠) d𝑠 = 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩
⋅ ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑠𝑡 max{𝐿(𝜏),𝛽(𝜏)}d𝜏𝐿 (𝑠) d𝑠 + 𝐶𝛼 (1

+ ‖𝐵‖L(𝑋)) (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V (𝑠)|‖ )
⋅ ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑠𝑡 max{𝐿(𝜏),𝛽(𝜏)}d𝜏𝛽 (𝑠) d𝑠

≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩
⋅ ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑠𝑡 𝐿(𝜏)d𝜏𝐿 (𝑠) d𝑠 + 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))

⋅ (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V (𝑠)|‖ ) ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑠𝑡 𝛽(𝜏)d𝜏𝛽 (𝑠) d𝑠

= 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

d
d𝑠 (𝑒𝑘 ∫𝑠𝑡 𝐿(𝜏)d𝜏) d𝑠

+ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋)) (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V (𝑠)|‖ )
⋅ ∫𝑡
−∞

d
d𝑠 (𝑒𝑘 ∫𝑠𝑡 𝛽(𝜏)d𝜏) d𝑠

= 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 (1 − 𝑒−𝑘∫𝑡−∞ 𝐿(𝜏)d𝜏) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩
+ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 (1 − 𝑒−𝑘∫𝑡−∞ 𝛽(𝜏)d𝜏) (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩
+ |‖V (𝑠)|‖ ) ≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + 𝐶𝛼𝑘 (1
+ ‖𝐵‖L(𝑋)) (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V (𝑠)|‖ ) ≤ 𝑘0,

(123)

which implies that (Γ1𝜔1)(𝑡) + (Γ2𝜔2)(𝑡) ∈ Θ𝑘0 . Thus Γ mapsΘ𝑘0 into itself.
Step 3. Show that Γ1 is a contraction on Θ𝑘0 .

In fact, for any 𝜔1(𝑡), 𝜔2(𝑡) ∈ Θ𝑘0 and 𝑡 ∈ R, from (97) it
follows that

󵄩󵄩󵄩󵄩[𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]
− [𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]󵄩󵄩󵄩󵄩 ≤ 𝐿 (𝑠) [󵄩󵄩󵄩󵄩𝜔1 (𝑠) − 𝜔2 (𝑠)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠) − 𝐵𝜔2 (𝑠)󵄩󵄩󵄩󵄩] ≤ 𝐿 (𝑠) (1 + ‖𝐵‖L(𝑋))
⋅ 󵄩󵄩󵄩󵄩𝜔1 (𝑠) − 𝜔2 (𝑠)󵄩󵄩󵄩󵄩 .

(124)

Thus

𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) [(𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))

− (𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))] d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶𝛼 ∫

𝑡

−∞
𝜇 (𝑡) 𝐿 (𝜎) (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝜎)
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− 𝜔2 (𝜎)󵄩󵄩󵄩󵄩 d𝜎 = 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝜇 (𝜎) 𝐿 (𝜎) 𝜇 (𝜎)−1 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝜎) − 𝜔2 (𝜎)󵄩󵄩󵄩󵄩 d𝜎 ≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1

− 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

𝜇 (𝑡) 𝜇 (𝜎)−1 𝐿 (𝜎) d𝜎 = 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑡𝜎 max{𝐿(𝜏),𝛽(𝜏)}d𝜏𝐿 (𝜎) d𝜎

≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑡𝜎 𝐿(𝜏)d𝜏𝐿 (𝜎) d𝜎 = 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

d
d𝜎 (𝑒𝑘∫𝜎𝑡 𝐿(𝜏)d𝜏) d𝜎

= 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 (1 − 𝑒−𝑘∫𝑡−∞ 𝐿(𝜏)d𝜏) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ,
(125)

which implies
󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩 (Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 .
(126)

Thus, when 𝑘 is greater than 𝐶𝛼(1 + ‖𝐵‖L(𝑋)), one obtains the
conclusion.

Step 4. Show that Γ2 is completely continuous on Θ𝑘0 .
Given 𝜀 > 0. Let {𝜔𝑛}+∞𝑛=1 ⊂ Θ𝑘0 with 𝜔𝑛 󳨀→ 𝜔0 in Θ𝑘0 as𝑛 󳨀→ +∞. Since 𝜎(𝑡) ∈ 𝐶0(R,R+), one may choose a 𝑡1 > 0

big enough such that, for all 𝑡 ≥ 𝑡1,
(1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ ) 𝜎 (𝑡) < 𝜀

3𝐶𝑀. (127)

Also, in view of (𝐻󸀠1), we have
𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))

󳨀→ 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠))) (128)

for all 𝑠 ∈ (−∞, 𝑡1] as 𝑘 󳨀→ +∞ and

𝜇 (⋅) 󵄩󵄩󵄩󵄩𝐹2 (⋅, V (⋅) + 𝜔𝑛 (⋅) , 𝐵 (V (⋅) + 𝜔𝑛 (⋅)))
− 𝐹2 (⋅, V (⋅) + 𝜔0 (⋅) , 𝐵V (⋅) + 𝜔0 (⋅)) )󵄩󵄩󵄩󵄩 ≤ 𝜇 (⋅)
⋅ 𝛽 (⋅) (󵄩󵄩󵄩󵄩𝜔𝑛 (⋅)󵄩󵄩󵄩󵄩 + ‖V (⋅)‖ + 󵄩󵄩󵄩󵄩𝐵𝜔𝑛 (⋅)󵄩󵄩󵄩󵄩 + ‖𝐵V (⋅)‖
+ 󵄩󵄩󵄩󵄩𝜔0 (⋅)󵄩󵄩󵄩󵄩 + ‖V (⋅)‖ + 󵄩󵄩󵄩󵄩𝐵𝜔0 (⋅)󵄩󵄩󵄩󵄩 + ‖𝐵V (⋅)‖) ≤ 𝛽 (⋅)
⋅ (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔𝑛󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V|‖ + 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝐵𝜔𝑛󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖𝐵V|‖ + 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔0󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩
+ |‖V|‖ + 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝐵𝜔0󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖𝐵V|‖ ) ≤ 𝛽 (⋅)
⋅ (2 (1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ )) ∈ 𝐿1 (−∞, 𝑡1] .

(129)

Hence, by the Lebesgue dominated convergence theorem we
deduce that there exists an 𝑁 > 0 such that

𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 𝜇 (𝑡)

⋅ 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))

− 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠
≤ 𝜀

3
(130)

whenever 𝑘 ≥ 𝑁. Thus

𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩(Γ2𝜔𝑘) (𝑡) − (Γ2𝜔0) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠))) d𝑠
− ∫𝑡
−∞

S𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠))) d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼𝜇 (𝑡)

⋅ 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))
− 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩d𝑠
+ 𝐶𝑀(2 (1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ ))
⋅ ∫max{𝑡,𝑡1}

𝑡1

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

≤ 𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼𝜇 (𝑡)

⋅ 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))
− 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩d𝑠
+ 𝐶𝑀𝜎 (𝑡) (2 (1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ )) ≤ 𝜀

3
+ 2𝜀

3 = 𝜀

(131)

whenever 𝑘 ≥ 𝑁. Accordingly, Γ2 is continuous on Θ𝑘0 .
In the sequel, we consider the compactness of Γ2.
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Set 𝐵𝑟(𝑋) for the closed ball with center at 0 and radius 𝑟
in 𝑋, 𝑉 = Γ2(Θ𝑘0), and 𝑧(𝑡) = Γ2(𝑢(𝑡)) for 𝑢(𝑡) ∈ Θ𝑘0 . First,
for all 𝜔(𝑡) ∈ Θ𝑘0 and 𝑡 ∈ R,

𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩(Γ2𝜔) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝑀∫𝑡

−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 𝜇 (𝑡)

⋅ 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠
≤ 𝐶𝑀∫𝑡

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 𝜇 (𝑡) (‖V (𝑠)‖ + ‖𝜔 (𝑠) )

+ ‖𝐵V (𝑠)‖ + ‖𝐵𝜔 (𝑠) )‖) d𝑠
≤ 𝐶𝑀∫𝑡

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 𝜇 (𝑡) (1 + ‖𝐵‖L(𝑋))

⋅ (‖V (𝑠)‖ + ‖𝜔 (𝑠) ) ) d𝑠 ≤ 𝐶𝑀𝜎 (𝑡) (1
+ ‖𝐵‖L(𝑋)) (𝑘0 + |‖V (𝑠)|‖ ) ,

(132)

in view of 𝜎(𝑡) ∈ 𝐶0(R,R+) which follows from Lemma 23;
one concludes that

lim
|𝑡|󳨀→+∞

(Γ2𝜔) (𝑡) = 0 uniformly for 𝜔 (𝑡) ∈ Θ𝑘0 . (133)

as

(Γ2𝜔) (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝐹2 (𝑠, V (𝑠)
+ 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠 = ∫+∞

0
𝑆𝛼 (𝜏)

⋅ 𝐹2 (𝑡 − 𝜏, V (𝑡 − 𝜏)
+ 𝜔 (𝑡 − 𝜏) , 𝐵 (V (𝑡 − 𝜏) + 𝜔 (𝑡 − 𝜏))) d𝜏.

(134)

Hence, for given 𝜀0 > 0, one can choose a 𝜉 > 0 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
+∞

𝜉
𝑆𝛼 (𝜏) 𝐹2 (𝑡 − 𝜏, V (𝑡 − 𝜏) + 𝜔 (𝑡 − 𝜏) , 𝐵 (V (𝑡 − 𝜏) + 𝜔 (𝑡 − 𝜏))) d𝜏󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < 𝜀0. (135)

Thus we get

𝑧 (𝑡) ∈ 𝜉𝑐 ({𝑆𝛼 (𝜏) 𝐹2 (𝜆, V (𝜆) + 𝜔 (𝜆) , 𝐵 (V (𝜆) + 𝜔 (𝜆))) : 0 ≤ 𝜏 ≤ 𝜉, 𝑡 − 𝜉 ≤ 𝜆 ≤ 𝜉, |‖𝜔|‖ ≤ 𝑘0}) + 𝐵𝜀0 (Θ𝑘0) , (136)

where 𝑐(𝐾) denotes the convex hull of 𝐾. Using the fact that𝑆𝛼(⋅) is strongly continuous, we infer that
𝐾 = {𝑆𝛼 (𝜏) 𝐹2 (𝜆, V (𝜆) + 𝜔 (𝜆) , 𝐵 (V (𝜆) + 𝜔 (𝜆))) : 0

≤ 𝜏 ≤ 𝜉, 𝑡 − 𝜉 ≤ 𝜆 ≤ 𝜉, |‖𝜔|‖ ≤ 𝑘0} (137)

is a relatively compact set and 𝑉 ⊂ 𝜉𝑐(𝐾) + 𝐵𝜀0(Θ𝑘0), which
implies that 𝑉 is a relatively compact subset of Θ𝑘0 .

Next, we verify the equicontinuity of the set {(Γ2𝜔)(𝑡) :𝜔(𝑡) ∈ Θ𝑘0}, given 𝜀1 > 0. In view of (114), together with the
continuity of {𝑆𝛼(𝑡)}𝑡>0, there exists an 𝜂 > 0 such that, for all𝜔(𝑡) ∈ Ω𝑘0 and 𝑡2 ≥ 𝑡1 with 𝑡2 − 𝑡1 < 𝜂,

∫𝑡2
𝑡1

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠 < 𝜀14 ,

∫𝑡1
𝑡1−𝜂

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠 < 𝜀14 .
(138)

Also, one can choose a 𝑘 > 0 such that

∫𝑡1−𝜂
𝑡1−𝑘

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠 < 𝜀14
(1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ ) sup

𝑠∈[−∞,𝑡1−𝑘]

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)󵄩󵄩󵄩󵄩 ∫
𝑡1−𝑘

−∞
𝛽 (𝑠) d𝑠 < 𝜀14 ,

(139)
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which implies that, for all 𝜔(𝑡) ∈ Ω𝑘0 and 𝑡2 ≥ 𝑡1,

∫𝑡1−𝑘
−∞

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠

≤ (1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ ) sup
𝑠∈[−∞,𝑡1−𝑘]

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)󵄩󵄩󵄩󵄩 ∫
𝑡1−𝑘

−∞
𝛽 (𝑠) d𝑠 < 𝜀14 .

(140)

Then one has

󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩(Γ2𝜔) (𝑡2) − (Γ2𝜔) (𝑡1)󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡2

−∞
𝑆𝛼 (𝑡2 − 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠 − ∫𝑡1

−∞
𝑆𝛼 (𝑡1 − 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ ∫𝑡2
𝑡1

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠

+ ∫𝑡1
𝑡1−𝜂

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠

+ ∫𝑡1−𝑘
−∞

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠

+ ∫𝑡1−𝜂
𝑡1−𝑘

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠 < 𝜀1,

(141)

which implies the equicontinuity of the set {(Γ2𝜔)(𝑡) : 𝜔(𝑡) ∈Θ𝑘0}.
Now an application of Lemma 18 justifies the compact-

ness of Γ2.
Step 5. Show that (39) has at least one asymptotically almost
automorphic mild solution.

The proof is similar to the proof in Step 5 of Theorem 24.

Taking 𝐴 = −𝜌𝛼𝐼 with 𝜌 > 0 in (39), Theorem 29 gives
the following corollary.

Corollary 30. Let 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy (𝐻󸀠1)
and (𝐻󸀠2) with 𝐿(𝑡) ∈ 𝐵𝐶(R,R+). Moreover the integral
∫𝑡−∞max{𝐿(𝑠), 𝛽(𝑠)}d𝑠 exists for all 𝑡 ∈ R. Then (39) has at
least one asymptotically almost automorphic mild solution.

4. Applications

In this section we give an example to illustrate the above
results.

Consider the following fractional relaxation-oscillation
equation:

𝜕𝛼𝑡 𝑢 (𝑡, 𝑥) = 𝜕2𝑥𝑢 (𝑡, 𝑥) − 𝑝𝑢 (𝑡, 𝑥)
+ 𝜕𝛼−1𝑡 [𝜇𝑎 (𝑡) sin( 1

2 + cos 𝑡 + cos√2𝑡)

× [sin 𝑢 (𝑡, 𝑥) + 𝑢 (𝑡, 𝑥)]
+ ]𝑒−|𝑡| [𝑢 (𝑡, 𝑥) + sin 𝑢 (𝑡, 𝑥)]] ,

𝑡 ∈ R, 𝑥 ∈ [0, 𝜋] ,
𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 ∈ R,

(142)

where 𝑎(𝑡) ∈ 𝐵𝐶(R,R+) is a function and 𝑝, 𝜇, and ] are
positive constants.

Take 𝑋 = 𝐿2([0, 𝜋]) and define the operator 𝐴 by

𝐴𝜑 fl 𝜑󸀠󸀠 − 𝑝𝜑, 𝜑 ∈ 𝐷 (𝐴) , (143)

where

𝐷 (𝐴) fl {𝜑 ∈ 𝑋 : 𝜑󸀠󸀠 ∈ 𝑋, 𝜑 (0) = 𝜑 (𝜋)} ⊂ 𝑋. (144)

It is well known that 𝐵𝑢 = 𝑢󸀠󸀠 is self-adjoint, with compact
resolvent, and is the infinitesimal generator of an analytic
semigroup on𝑋. Hence,𝑝𝐼−𝐵 is sectorial of type𝜔 = −𝑝 < 0.
Let

𝐹1 (𝑡, 𝑥 (𝜉) , 𝑦 (𝜉)) fl 𝜇𝑎 (𝑡)
⋅ sin( 1

2 + cos 𝑡 + cos√2𝑡) [sin 𝑥 (𝜉) + 𝑦 (𝜉)] ,
𝐹2 (𝑡, 𝑥 (𝜉) , 𝑦 (𝜉)) fl ]𝑒−|𝑡| [𝑥 (𝜉) + sin 𝑦 (𝜉)] .

(145)
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Then it is easy to verify that 𝐹1, 𝐹2 : R × 𝑋 × 𝑋 󳨀→ 𝑋 are
continuous and 𝐹1(𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴(R × 𝑋 × 𝑋,𝑋) satisfying

󵄩󵄩󵄩󵄩𝐹1 (𝑡, 𝑥1, 𝑦1) − 𝐹1 (𝑡, 𝑥2, 𝑦2)󵄩󵄩󵄩󵄩22
≤ ∫𝜋
0

𝜇2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑎 (𝑡) sin( 1
2 + cos 𝑡 + cos√2𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

⋅ 󵄨󵄨󵄨󵄨[sin 𝑥1 (𝑠) + 𝑦1 (𝑠)] − [sin 𝑥2 (𝑠) + 𝑦2 (𝑠)]󵄨󵄨󵄨󵄨 d𝑠
≤ 𝜇2𝑎2 (𝑡) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sin( 1

2 + cos 𝑡 + cos√2𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

⋅ (󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝑦1 − 𝑦2󵄩󵄩󵄩󵄩22) ,

(146)

that is,
󵄩󵄩󵄩󵄩𝐹1 (𝑡, 𝑥1, 𝑦1) − 𝐹1 (𝑡, 𝑥2, 𝑦2)󵄩󵄩󵄩󵄩2

≤ 𝜇𝑎 (𝑡) (󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑦1 − 𝑦2󵄩󵄩󵄩󵄩2)
∀𝑡 ∈ R, 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝑋;

(147)

furthermore
󵄩󵄩󵄩󵄩𝐹1 (𝑡, 𝑥1, 𝑦1) − 𝐹1 (𝑡, 𝑥2, 𝑦2)󵄩󵄩󵄩󵄩2

≤ 𝜇 ‖𝑎‖∞ (󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑦1 − 𝑦2󵄩󵄩󵄩󵄩2)
∀𝑡 ∈ R, 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝑋.

(148)

And

󵄩󵄩󵄩󵄩𝐹2 (𝑡, 𝑥, 𝑦)󵄩󵄩󵄩󵄩22 ≤ ∫𝜋
0
]2𝑒−2|𝑡| 󵄨󵄨󵄨󵄨𝑥 (𝑠) + sin 𝑦 (𝑠)󵄨󵄨󵄨󵄨 d𝑠

≤ ]2𝑒−2|𝑡| (‖𝑥‖22 + 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩22) ,
(149)

that is,
󵄩󵄩󵄩󵄩𝐹2 (𝑡, 𝑥, 𝑦)󵄩󵄩󵄩󵄩2 ≤ ]𝑒−|𝑡| (‖𝑥‖2 + 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2)

∀𝑡 ∈ R, 𝑥, 𝑦 ∈ 𝑋, (150)

which implies 𝐹2(𝑡, 𝑥, 𝑦) ∈ 𝐶0(R × 𝑋 × 𝑋,𝑋). Furthermore

𝐹 (𝑡, 𝑥, 𝑦) = 𝐹1 (𝑡, 𝑥, 𝑦) + 𝐹2 (𝑡, 𝑥, 𝑦)
∈ 𝐴𝐴𝐴 (R × 𝑋 × 𝑋,𝑋) . (151)

Thus, (142) can be reformulated as the abstract problem (39)
and the assumptions (𝐻1) and (𝐻2) hold with

𝐿 = 𝜇 ‖𝑎‖∞ ,
Φ (𝑟) = 𝑟,
𝛽 (𝑡) = ]𝑒−|𝑡|,

𝜌1 = 1,
𝜌2 ≤ ],

(152)

the assumption (𝐻󸀠1) holds with 𝐿(𝑡) = 𝜇𝑎(𝑡), and the
assumption (𝐻󸀠2) holds.

In consequence, the fractional relaxation-oscillation
equation (142) has at least one asymptotically almost auto-
morphic mild solutions if either

𝜇𝐶𝑀‖𝑎‖∞ 𝜋 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨−1/𝛼𝛼 sin (𝜋/𝛼) + 𝐶𝑀] < 1
2 (153)

(Theorem 24) or

𝜇𝐶𝑀‖𝑎‖ 𝜋 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨−1/𝛼𝛼 sin (𝜋/𝛼) + 𝐶𝑀] < 1
2 (154)

(Theorem 27), where ‖𝑎‖ = sup𝑡∈R ∫𝑡+1𝑡 𝑎(𝑠)d𝑠 or the integral
∫𝑡
−∞

max {𝜇𝑎 (𝑠) , ]𝑒−|𝑡|} d𝑠 (155)

exists for all 𝑡 ∈ R (Theorem 29).
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d’équations différentielles abstraites,” Annales des Sciences
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results for some fractional differential equations with nonlocal
conditions,”Nonlinear Studies.The International Journal, vol. 17,
no. 1, pp. 15–21, 2010.



22 International Journal of Differential Equations

[43] G. M. Mophou and G. M. N’Guérékata, “Existence of the mild
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