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A mathematical model of dispersed bioparticle-blood flow through the stenosed coronary artery under the pulsatile boundary
conditions is proposed. Blood is assumed to be an incompressible non-Newtonian fluid and its flow is considered as turbulence
described by the Reynolds-averaged Navier-Stokes equations. Bioparticles are assumed to be spherical shape with the same density
as blood, and their translation and rotational motions are governed by Newtonian equations. Impact of particle movement on
the blood velocity, the pressure distribution, and the wall shear stress distribution in three different severity degrees of stenosis
including 25%, 50%, and 75% are investigated through the numerical simulation using ANSYS 18.2. Increasing degree of stenosis
severity results in higher values of the pressure drop and wall shear stresses. The higher level of bioparticle motion directly varies
with the pressure drop and wall shear stress.The area of coronary artery with higher density of bioparticles also presents the higher
wall shear stress.

1. Introduction

Atherosclerosis is a disease narrowing a coronary artery due
to plaque buildup. Generally, there is no symptom until it
severely narrows the artery causing serious problems includ-
ing heart attack, stroke, or even death. Critical information
of blood flow in the stenotic coronary arteries is a principle
factor of the development and progression of atherosclerosis.
Figure 1 presents an angiogram of a critical proximal left
anterior descending artery (LAD) in a patient with Wellens’
syndrome. Atherosclerosis is often associated with some
forms of abnormal blood flow in the blocked coronary
arteries.Dealingwith the pathogenesis of coronary artery dis-
eases (CAD), various practical treatment of CAD including
drug delivery, stent replacement, and coronary artery bypass
grafting (CABG) have been developed through a number of
in vivo and in vitro experiments. Due to the high rate of stent

and graft failures, development of vascular drug delivery, one
of the key rubrics of targeted therapeutics and nanodevices,
becomes more and more important [1]. Recently, several
drug delivery approaches are undergoing clinical testing and
medical industry development.

Over decades, many researchers have carried out experi-
mental models and computational simulations to explore the
flow phenomena in the stenotic arteries in order to optimize
medical methods of treatment. Due to the difficulty and
limitation in determining the critical flow conditions for
both in vivo and in vitro experiments, the exact mechanisms
involving these treatments are not well understood. Thus,
mathematical modelling and numerical simulation are cho-
sen to be a better alternative to analyze the problem. Complex
phenomena of blood flow in arteries subject to various
physiological conditions has been extensively analyzed using
various mathematical models [2–12]. The flow phenomena
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Figure 1: Tight, severe stenosis (95%) of the proximal LAD in a
patient with Wellens’ warning.

includes asymmetric flow, unsteady laminar-to-turbulent
flow [13–16]. The governing equations include the Navier-
Stoke equations and the continuity equations subjected to the
selected inlet velocity, no-slip condition at the arterywall, and
stress-free condition at the outflow surface.Theunsteady flow
also is characterized by a high pressure drop and high wall
shear stress (WSS) in the stenotic artery [1, 17–19].

For the requirement of simulation, the constant density
of blood is assumed to be equal to 1055 kg m−3. The vessel
wall may be considered as rigid or elastic and the Power law
non-Newtonian model or Carreau-Yasuda non-Newtonian
model are normally applied to describe the viscosity of blood.
Considering the blood flow as turbulent, the two-equation
turbulence model, so-called the standard k–𝜀 model or the
k–𝜔 model, has been commonly employed for the analysis.
Young (1973) studied blood flow through an occluded tube
under a pulsatile pressure gradient. Mazumdar et al. (1996)
investigated the unsteady Newtonian blood flow through
a stenosed artery and observed that the pressure gradient
attains the maximum at the throat of stenosis and decreases
with an increase of hematocrit parameter. Sanyal and Maiti
(1998) proposed a mathematical model of blood flow in the
artery with mild stenosis. They reported that the pressure
gradient increases with an increase in hematocrit value where
there is higher value in systolic and lower value in diastolic
pressure. Deplano and Siouffi (1999) performed experimental
and numerical study of pulsatile flows through a 75% severity
stenosis to determine the wall shear stress temporal evolution
downstream from the stenosis. The result shows high wall
shear stress values of about 120 Pa (or dyn cm−2) during
the cardiac cycle at the throat, and low values downstream
from the stenosis of about -2.5 Pa (or dyn cm−2). Lee and
Xu (2002) studied blood flow through a rigid mild stenosed
tube. Wiwatanapataphee and Wu (2012) investigated the
unsteady non-Newtonian blood flow through the real right
coronary artery bypass graft system under the real pulsatile
condition.They reported that the existence and intensity of a
stenosis in the artery have significant effect on the blood flow

behaviour. Gupta and Agrawal (2015) simulated the blood
flow passing through an irregular stenotic descending aorta
using a Finite Volume method. The results demonstrate that
the formation of wall shear stress in the stenotic region by
the irregular stenosis model is much complex than by regular
stenosis. High oscillation of wall shear stress appears behind
the irregular stenosis in which the Reynold number (Re) is
between 130 and 540.

As themechanical interaction between blood and arterial
wall has an important role in the propagation of pressure
wave from the heart to the whole body, many researchers
have investigated the fluid-structural response to pulsatile
blood flow through a stenosed vessel subject to various
physiological conditions. Chan (2006) investigated the fluid-
structural response to the pulsatile non-Newtonian blood
flow through an axisymmetric stenosed vessel using ANSYS.
The solid model was set to have isotropic elastic properties.
The Fluid-Structural Interaction (FSI) coupling was two-
way and iterative. It is found that interaction between vessel
wall and the blood gives reasonable results. Due to the wall
expansion, the axial velocity decreases and the recirculation
effect of the flow increases. Torii et al. (2009) studied blood
flow in the deformable cerebral artery using an FSI model
and reported that the maximum wall shear stress tends to
decrease when the blood flow impinges strongly on the wall.

The consideration of a non-Newtonian behaviour of
blood in small arteries gives more relevant results and
prediction and understanding of pressure distribution and
wall shear stress have significant importance in disease
diagnosis and surgical planning. The models with full three-
dimensional FSI problem increase the computational work.
Hence, development of the computational framework built
upon image-based CFD and discrete particle dynamics mod-
elling is a big challenge. Bernad et al. (2013) investigated the
particle motion in coronary serial stenoses to analyze the
hemodynamic significance of three serial stenoses, named
ST1, ST2, and ST3, in the right coronary artery (RCA) con-
structed from multislice computerized tomography images.
Blood was assumed to be an incompressible Newtonian fluid
and the artery walls was rigid and impermeable. Results
illustrate that pressure drop increases with an increase of
percentage stenosis. During the systolic phase, the pressure
drop is higher about 32.84 mmHg and 36.78 mmHg for the
stenosis ST1 and ST3 during the systolic phase while it is
lower about 4.62 mmHg and 4.81 mmHg during the diastolic
phase. For stenosis ST2, the pressure drop is not significant
during the systolic and diastolic phases. They reported that
wall shear stress distribution has a close reflection of the
outline of the stenosis and the formation of recirculation
zone. Range of wall shear stress varies from 7 to 262 Pa.
Three intense regions of wall shear stress appear downstream
at each stenosis, and its value is low in the recirculation
zone. Mukherjee and Shadden (2017) studied embolic par-
ticle dynamics and transport through swirling chaotic flow
structures of various vasculature beds. The results show the
complex interplay of particle inertia, fluid-particle density
ratio, and wall collisions, with chaotic flow structures, which
render the overall motion of the particles to be nontrivially
dispersive in nature. These researches motivate the present
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study to deal with the particle motion in a pulsatile blood
flow through a stenotic artery. However, a few attempts have
beenmade to study the flow phenomena in the stenotic artery
in which the fluid-particle interaction, the particle-particle
collision, and the particle-wall collision are considered.

The aim of this study is to investigate the hemodynamic
parameter, the pressure distribution, and wall shear stress
in a stenosed artery using Reynolds-averaged Navier-Stokes
equations for turbulence fluid modelling and Newtonian
equations for the translation and rotational motion of the
bioparticles. Using the pulsatile boundary conditions based
on a physiological waveforms of flow velocity and blood pres-
sure, the results are compared with those obtained from the
model with no particle to highlight the role of particlemotion
in the turbulence model of blood flow in the left coro-
nary artery (LCA) connecting to the stenosed left anterior
descending artery (LAD) (Figure 16) and the normal left
circumflex coronary artery (LCX) (Figure 15).The rest of this
paper is organized as follows. In the following sections, a
mathematical model describing the turbulence flow of fluid
and movement of dispersed phase under pulsatile condition
is taken into presentation. The governing equations of dis-
persed particle-blood flow are theoretically presented in Sec-
tion 2. Section 3 concerns numerical investigations to analyze
velocity field, pressure distribution, and wall shear stress
distribution along two investigated axial lines with respect to
different degrees of stenosis severity. At the end of this paper,
some discussion and conclusion are given in Section 4.

2. Mathematical Model

The computational domain is modelled by using two coor-
dinate systems, i.e., an Eulerian frame Ω(X1;X2;X3) for the
fluid flow and a Lagrangian frame Ω𝐿(x1;x2;x3) for particle
movement. The carrier fluid is assumed to behave as a non-
Newtonian incompressible fluid. Both phases of dispersed
particles and blood exchange momentum are allowed to
have the fluid-particle interaction. In this study, we focus
on two-way coupling model in which fluid phase influences
particulate phase via drag and turbulence, and particulate
phase influences fluid phase via source terms of mass and
momentum. The dispersion of particles due to turbulence
in the fluid phase is predicted using the stochastic tracking
(random walk) model including the effect of instantaneous
turbulent velocity fluctuations on the particle trajectories
through the use of stochastic methods [20]. The fluid flow
influences the particle trajectories and the dispersed particles
with the particle-particle collision and the particle-wall colli-
sion have a significant effect on the flow turbulence.

2.1. Laminar Flow of Non-Newtonian Incompressible Fluid.
The flow of a non-Newtonian incompressible fluid is gov-
erned by the continuity equation and the Navier-Stokes
equations as follows:𝜕𝑢𝑖𝜕𝑋𝑖 = 0, (1)

𝜌𝑓 𝜕𝑢𝑖𝜕𝑡 + 𝜌𝑓𝑢𝑗 𝜕𝑢𝑖𝜕𝑋𝑗 = − 𝜕𝜕𝑋𝑖𝑝 + 𝜕𝜕𝑋𝑗 (𝜇
𝜕𝑢𝑖𝜕𝑋𝑗) + 𝐹ext

𝑖 (2)

where 𝑢𝑖 and 𝐹ext
𝑖 denote, respectively, velocity component of

fluid and the external force, 𝑝 is the fluid pressure, 𝜌𝑓 is the
fluid density, and𝜇 is the viscosity of the non-Newtonian fluid
based on the Carreau model; i.e.,

𝜇 = 𝜇∞ + (𝜇0 − 𝜇∞) [[1 + (𝜆(√2∑
𝑖,𝑗

𝑆2𝑖𝑗)
𝑎

)
(𝑛−1)/𝑎]

] , (3)

where 𝜇0 and 𝜇∞ represent zero shear viscosity and infinite
shear viscosity, 𝑎 is constant shape parameter, 𝑛 is consistent
index, 𝜆 is time constant, and 𝑆𝑖𝑗 = (𝜕𝑢𝑖/𝜕𝑋𝑗 + 𝜕𝑢𝑗/𝜕𝑋𝑖)/2.
2.2. Turbulence Flow of Non-Newtonian Incompressible Fluid.
The turbulence flowof a non-Newtonian incompressible fluid
which is formulated on amoving reference frame is governed
by the mean continuity equation, the Reynolds-averaged
Navier-Stokes equations, and Menter’s SST 𝑘–𝜔 model [21]
as follows:

𝜕𝑢𝑖𝜕𝑋𝑖 = 0, (4)

𝜌𝑓𝐷𝑢𝑖𝐷𝑡 = − 𝜕𝑝𝜕𝑋𝑖 +
𝜕𝜏𝑖𝑗𝜕𝑋𝑗 + 𝐹ext

𝑖 , (5)

𝜌𝑓𝐷𝑘𝐷𝑡 = −𝜏𝑖𝑗 𝜕𝑢𝑖𝜕𝑋𝑗 − 𝜌𝑓𝛽∗𝜔𝑘
+ 𝜕𝜕𝑋𝑗 ((𝜇 + 𝜇𝑡𝜎𝑘) 𝜕𝑘𝜕𝑋𝑗) ,

(6)

𝜌𝑓𝐷𝜔𝐷𝑡 = − 𝛼𝜇𝑡 𝜏𝑖𝑗
𝜕𝑢𝑖𝜕𝑋𝑗 − 𝜌𝑓𝛽𝜔2

+ 𝜕𝜕𝑋𝑗 ((𝜇 + 𝜇𝑡𝜎𝜔) 𝜕𝜔𝜕𝑋𝑗)
+ 2𝜌𝑓 (1 − 𝑓1) 𝜎𝜔,2𝜔 𝜕𝑘𝜕𝑋𝑗

𝜕𝜔𝜕𝑋𝑗 ,
(7)

with the operator

𝐷𝐷𝑡 ≡ 𝜕𝜕𝑡 + 𝑢𝑗 𝜕𝜕𝑋𝑗 , (8)

where 𝑢𝑖 denote mean velocity component of fluid and 𝜇 is
the fluid viscosity based on the Carreau model (3). In (5),

𝜏𝑖𝑗 = 2𝜇(𝑆𝑖𝑗 − 13𝛿𝑖𝑗 𝜕𝑢𝑘𝜕𝑋𝑘) + 𝜏𝑖𝑗, (9)

where 𝜏𝑖𝑗 is the Reynolds stress term. According to the
concept of Reynolds decomposition, the individual instan-
taneous velocity component 𝑢𝑖, 𝑖 = 1, 2, 3 (the dependent
variables) of the continuity equation are decomposed into
Navier-Stokes equations. Consequently, the mean part 𝑢𝑖 and
the fluctuation part 𝑢𝑖 are defined as

𝑢𝑖 = 𝑢𝑖 + 𝑢𝑖 , (10)
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where 𝑢𝑖 , (𝑖 = 1, 2, 3) are constant functions of time obtained
from stochastic model and their random value is kept con-
stant over an time interval given by the characteristic lifetime
of the eddies.

In (9), 𝜏𝑖𝑗 representing the nonlinear convective transport
due to turbulent velocity fluctuations is defined by

𝜏𝑖𝑗 = 2𝜇𝑡 (𝑆𝑖𝑗 − 13𝛿𝑖𝑗 𝜕𝑢𝑘𝜕𝑋𝑘) − 23𝜌𝑓𝑘𝛿𝑖𝑗, (11)

where 𝑢𝑘 is component of themean velocity, 𝑆𝑖𝑗 = (𝜕𝑢𝑖/𝜕𝑋𝑗+𝜕𝑢𝑗/𝜕𝑋𝑖)/2, and 𝜇𝑡 is eddy viscosity defined by

𝜇𝑡 = 𝜌𝑓𝑘𝜔 1
max {1/𝛼∗, (𝑆𝑓2) / (𝑎1𝜔)} , (12)

for𝛼∗ = 𝛼∗∞(𝛼∗0 +Re𝑡/𝑅𝑘)(1+Re𝑡/𝑅𝑘)−1; Re𝑡 = 𝜌𝑓𝑘(𝜇𝜔)−1 and𝑅𝑘 = 6, 𝛼∗0 = 𝛽𝑖/3, 𝛽𝑖 = 0.072, 𝑎1 = 0.31, and 𝑆 ≡ (2𝑆𝑖𝑗𝑆𝑖𝑗)1/2
is the modulus of the mean rate-of-strain tensor.

Two blending functions𝑓1 in (7) and𝑓2 in (12) are defined
by

𝑓1 = tanh (𝜙41) ;
𝜙1 = min{max{ √𝑘𝛽∗∞𝜔𝑦,

500𝜇𝜌𝑦2𝜔} , 4𝜌𝑘𝜎𝜔,2𝐷+𝜔𝑦2} ; (13)

𝑓2 = tanh (𝜙22) ; 𝜙2 = max{2 √𝑘𝛽∗∞𝜔𝑦,
500𝜇𝜌𝑦2𝜔} (14)

with𝐷+𝜔 = max{2𝜌𝜎−1𝜔,2𝜔−1(𝜕𝑘/𝜕𝑋𝑗)(𝜕𝜔/𝜕𝑋𝑗), 10−10} and 𝑦 is
the distance to the next surface. In (6),

𝛽∗ = 𝛽∗∞ [
[
4/15 + (Re𝑡/𝑅𝛽)4
1 + (Re𝑡/𝑅𝛽)4 ]

] , (15)

where 𝛽∗∞ = 0.09 and 𝑅𝛽 = 8. Other four parameters 𝛼, 𝛽, 𝜎𝑘,
and 𝜎𝜔 in the SST 𝑘-𝜔model are determined by

𝛼 = 𝑓1𝛼1 + (1 − 𝑓1) 𝛼2,
𝜎𝑘 = 𝑓1𝜎𝑘,1 + (1 − 𝑓1) 𝜎𝑘,2, (16)

𝛽 = 𝑓1𝛽1 + (1 − 𝑓1) 𝛽2,
𝜎𝜔 = 𝑓1𝜎𝜔,1 + (1 − 𝑓1) 𝜎𝜔,2, (17)

which are the relationships that transform the constants of the
original 𝑘-𝜔model into the constants of the SST 𝑘-𝜔model.

The external force 𝐹ext
𝑖 in (5) is formulated by examining

the change in momentum of the solid particle passing
through each control volume computed as a function of the
particle mass flow rate �̇�𝑝 and the time step Δ𝑡; i.e.,

𝐹ext
𝑖 = 𝑛𝑝∑
𝑝=1

(18𝜇𝐶𝐷ReV24𝜌2𝑝 (𝑢𝑖 − 𝑢𝑖𝑝)) �̇�𝑝Δ𝑡, (18)

where 𝜌𝑝 is the particle density and Re] is the dimensionless
relative particle Reynolds number defined by

ReV = 𝜌𝑓𝑑𝑝
u − k𝑝

𝜇 (19)

The velocity component of the 𝑝th particle, V𝑖𝑝 , is the arith-
metic average nodal values on the face based onGreen–Gauss
node-based method defined by

V𝑖𝑝 = 1𝑁face

𝑁face∑
𝑝=1

Ṽ𝑖𝑝 , (20)

where 𝑁face represents number of nodes on face and Ṽ𝑖𝑝 is
nodal value on the face.

The drag coefficient, 𝐶𝐷, is based on the spherical drag
law [22, 23]; i.e.,

𝐶𝐷 = 𝛼1 + 𝛼2
ReV

+ 𝛼3
Re3V

(21)

for

𝛼1, 𝛼2, 𝛼3

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0, 24, 0 0.0 ≤ ReV < 0.1
3.690, 22.73, 0.0903 0.1 ≤ ReV < 1
1.222, 29.1667, −3.8889 1.0 ≤ ReV < 10
0.6167, 46.50, −116.67 10 ≤ ReV < 100
0.3644, 98.33, − 2778 100 ≤ ReV < 1000
0.357, 148.62, −47500 1000 ≤ ReV < 5000
0.46, −490.546, 578700 5000 ≤ ReV < 10000
0.5191, −1662.5, 5416700 ReV ≥ 10000.

(22)

To be more specific, the remaining constant model parame-
ters introduced in this subsection are declared as follows:

𝛼1 = 59 ,
𝛽1 = 340 ,

𝜎𝑘,1 = 0.85,
𝜎𝜔,1 = 0.5,
𝛼2 = 0.44,
𝛽2 = 0.0828,

𝜎𝑘,2 = 1,
𝜎𝜔,2 = 0.856.

(23)

2.3. Movement of Dispersed Particle Phase. For the dispersed
particle phase, we assume that all particles are spherical, and
heat and mass transfer are omitted. All particles are treated
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as point masses and inert type.The translation and rotational
motions of the 𝑝th particle, 𝑝 = 1, ..., 𝑛𝑝, are governed by the
following Newtonian equations:

𝑑x𝑝𝑑𝑡 = k𝑝, (24)

𝑚𝑝 𝑑k𝑝𝑑𝑡 = F𝑝𝑓 + F𝑝𝑐 (25)

𝐼𝑝 𝑑Ω𝑝𝑑𝑡 = 𝜌𝑝2 (𝑑𝑝2 )5 𝐶𝜔Υ, (26)

where x𝑝 denotes the particle position vector, k𝑝 andΩ𝑝 are,
respectively, Lagrangian velocity and angular velocity of the𝑝 particle, 𝑚𝑝 is the particle mass, and 𝐼𝑝 the moment of
rotational inertia given by 𝐼𝑝 = (𝜋/60)𝜌𝑝𝑑5𝑝 for the sphere
particle with diameter of 𝑑𝑝 and density of 𝜌𝑝. The right
side term of (26) is the resulting torque depending on the
rotational drag coefficient 𝐶𝜔 and the relative particle-fluid
angular velocity Υ defined by

Υ = 12∇ × 𝑢 − Ω𝑝; (27)

F𝑝𝑓 are the sum of various forces including drag force F𝐷,
Saffman force F𝑆, and the Magnus or rotational lift force F𝑅𝐿
acting on the particle by carrier fluid:

F𝐷 = u − k𝑝𝜏𝑝 , (28)

F𝑠 = 2𝜅√𝜐𝜌𝑓𝑑𝑖𝑗
𝜌𝑝𝑑𝑝 (𝑑𝑙𝑘𝑑𝑘𝑙)1/4 (u − k𝑝) , (29)

F𝑅𝐿 = 𝜌𝑓2 𝐴 𝑖𝑝𝐶𝑅𝐿 ‖V‖‖Υ‖ (V × Υ) , (30)

where 𝜏𝑝 = 𝜌𝑝𝑑2𝑝(18𝜇)−1 ⋅ 24(𝐶𝐷𝑅𝑒V)−1, 𝜅 = 2.594, and 𝑑𝑗𝑗 is
the deformation tensor along the path of particles defined by

𝑑𝑖𝑗 = 12 ( 𝜕V𝑖𝜕𝑥𝑗 +
𝜕V𝑗𝜕𝑥𝑖) (31)

Regarding (30), 𝐴 𝑖𝑝 is the 𝑖th projected particle surface area,
V is the relative fluid-particle velocity, and 𝐶𝑅𝐿 denotes the
rotational lift coefficient. Taking into account the effect of the
rotational Reynolds number Re𝜔 and the particle Reynold
number Re], the coefficients 𝐶𝑅𝐿 and 𝐶𝜔 are assigned as

𝐶𝑅𝐿 = 0.45
+ (Re𝜔

ReV
− 0.45) exp (−0.05684Re0.4𝜔 Re0.3V ) , (32)

𝐶𝜔 = 6.45√Re𝜔
+ 32.1
Re𝜔

;
Re𝜔 = 𝜌𝑓 ‖Ω‖ 𝑑2𝑝4𝜇

(33)

The term F𝑝𝑐 in (25) represents the contact forces due to the
particle-particle collision and the particle-wall collision; i.e.,
F𝑝𝑐 = F𝑝𝑞 + F𝑝𝑤. Based on the Spring-Dashpot Collision Law
[24], F𝑝𝑞 is given by

F𝑝𝑞 = (𝐾𝛿 − 𝛾 (k𝑝𝑞 ⋅ e𝑝𝑞)) e𝑝𝑞, (34)

where K is the elastic collision coefficient, 𝛿 is the overlap
of any two particles, 𝛾 is the damping coefficient, k𝑝𝑞 is the
relative velocity, and e𝑝𝑞 is a unit vector. For the position
vectors x𝑝, x𝑞 and the radii 𝑟𝑝 and 𝑟𝑞 of the particles 𝑝 and𝑞, we have

𝛿 = x𝑞 − x𝑝
 − (𝑟𝑝 + 𝑟𝑞) , (35)

k𝑝𝑞 = k𝑞 − k𝑝, (36)

e𝑝𝑞 = (x𝑞 − x𝑝)x𝑞 − x𝑝
 (37)

The damping coefficient 𝛾 in (34) depending on the mass loss
in the collision process𝑚𝑝𝑞 and the collision time scale 𝑡𝑐 are
defined by

𝛾 = 2𝑚𝑝𝑞 ln 𝜂𝑡𝑐 , (38)

𝑚𝑝𝑞 = 𝑚𝑝𝑚𝑞𝑚𝑝 + 𝑚𝑞 , (39)

𝑡𝑐 = √(𝜋2 + ln2𝜂) 𝑚𝑝𝑞𝐾 (40)

where 𝜂,𝑚𝑝, and 𝑚𝑞 denote the damper restriction coeffi-
cient, themass of particle𝑝, and themass of particle 𝑞, respec-
tively. The contact force due to the particle-wall collision F𝑝𝑤
is calculated in the same way as F𝑝𝑞.

2.4. Initial and Boundary Conditions. Initialization of the
particle properties in the domain is not required and there is
no interface boundary condition for point-mass particles. To
complete defining the boundary value problem, the following
boundary conditions are required. In this study, the pulsatile
mass flow inlet and the pulse pressure outlet are used. The
wave forms of the mass flow rate 𝑄(𝑡) and the pressure 𝑝(t)
are calculated by the following Fourier series:

𝑄 (𝑡) = 𝑄 + 4∑
𝑛=1

𝑎𝑄𝑛 cos (𝑛𝑤𝑡) + 𝑏𝑄𝑛 sin (𝑛𝑤𝑡) , (41)

𝑝 (𝑡) = 𝑝 + 4∑
𝑛=1

𝑎𝑝𝑛 cos (𝑛𝑤𝑡) + 𝑏𝑝𝑛 sin (𝑛𝑤𝑡) , (42)

where𝑤 denotes the angular frequency defined by𝑤 = 2𝜋/𝑇
with a cardiac period 𝑇, and all values of the parameters
are given by Wiwatanapataphee et al. [16]. On the inflow
boundary, we have the pulsatile velocity as

u = u = 𝑈𝑛 (𝑡) ;
k𝑝 = 𝑈𝑛 (𝑡 = 0.2𝑠) , (43)
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for

𝑈𝑛 (𝑡) = 𝑄 (𝑡)𝐴 (44)

where 𝑄(𝑡) is the pulsatile flow rate and 𝐴 is the inflow
surface area. The turbulence kinetic energy and the specific
dissipation rate at the inflow are

𝑘 = 32 (𝑈𝑛 (𝑡) 𝜍)2 , (45)

𝜔 = 0.1643𝑘1.5𝐿 (46)

with the percentage of turbulence intensity 𝜍 =0.16(𝜌𝑈𝑛(𝑡)𝐷/𝜇)1/8 and turbulence length scale 𝐿 = 0.07𝐷
for𝐷 = 1.13𝐴1/2.

On the outflow boundaries ΓLCA including ΓLCA1, ΓLCA2,
and ΓLCA3, the boundary conditions are set to 𝜎 ⋅ n = 𝑝(𝑡)n
and the normal pressure gradient field is corresponding to𝜕𝑝/𝜕n = 0. For an inert and point-mass particle, interface
condition between fluid and solid particle is not required.
Furthermore, it is also assumed that the wall has an infinite
radius and zero velocity, and no-slip condition is applied on
the arterial wall.

3. Numerical Investigation

This section presents numerical simulation of particle move-
ment and turbulence non-Newtonian fluid flow. The simu-
lation of discrete particles is carried out using the discrete
element method. With this method, particle trajectories are
calculated through the simulation domain in Lagrangian
reference. To reduce time-consuming simulation, a limited
number of representative trajectories is calculated. The sim-
ulation of the continuous phase is carried out using the
Finite Volume method. By this method, the mean continuity
equation, the Reynolds-averaged Navier-Stokes equations,
and the Menter’s SST 𝑘-𝜔 model are solved in Eulerian
reference frame.

3.1. Validation Study. Studying the turbulence fluid-solid
(two-phase) flow in the coronary arterywith stenosis requires
a reliable model that can fully describe the complex phe-
nomena occurring in the artery with nonlinear response.The
first task is undertaken for evaluating the suitability of the
mathematical model using ANSYS 18.2.The simulation of the
turbulence two-phase flow in the normal curved tube and
75% stenosis-curved tube was setup using the discrete model
coupled with the mean continuity equation, the Reynolds-
averaged Navier-Stokes equations, and Menter’s SST 𝑘-𝜔
model for a turbulent viscous incompressible non-Newtonian
fluid.The computational domains of both tubes are displayed
in Figure 2. Five complete pulses of pressure and flow velocity
were used in each simulation.The results as shown in Figures
3 and 4 indicate that pressure drop presents in the tube
with restricted area.Themodel with particle movement gives
variation of pressure in the area occupied by the particle.
These results show that our proposed model can capture
important phenomena in the flow channel without and with
restricted area.

2.725 mm

75% of stenosis

Figure 2: Computational domain of validation study.

Table 1: Mesh information.

% Stenosis Number of elements
0 % 314,150
25 % 318,897
50 % 350,265
75 % 444,764

3.2. Fluid-Particle Flow through the Human Left Coronary
Arterywith Stenosis. Tobegin the numerical simulation, a 3D
computational domain of a human left coronary artery with
its branches including the LAD and LCX is firstly constructed
by replicating the multislice computerized tomography (CT)
image as shown in Figure 5. Taking into account the flow
direction, there are a single inlet at the beginning of LCA and
three outlets at the tail ends of LAD and LCX.

Next, the effect of coronary stenosis on the flow of fluid
(blood) and discrete particles (bioparticles) is taken into
investigation. In this simulation, 414 particles are tracked
to determine the behaviour of the dispersed phase. The
distribution of the dispersed phase, bioparticles, in the midst
of blood inside the arterial vessel is closely focused when
there exists a stenosis. Three different degrees of stenosis
severity including 25%, 50%, and 75% are assigned at the
proximal part of LAD as can be seen in Figure 6(a). After grid
independent test, we obtained suitable domain mesh with 10
boundary layers with the size of the first cell 5 × 10−3 mm for
four cases including the normal artery and the artery with
25%, 50%, and 75% stenosis details as shown in Table 1.

The flow pattern, the pressure distribution, and the wall
shear stress (WSS) distribution are analyzed. To investigate
the effect of particle motion on pressure distribution and wall
shear stress distribution, 500 bioparticles are injected into
the LCA inflow surface at the same speed of the pulsatile
velocity in the first cardiac cycle, t = 0.2 s. Assigning values of
model parameters as in Table 2 and running the simulation
corresponding to various numerical options as in Table 3, the
numerical results along the left coronary artery connecting to
the critical LADwith various-degree stenosis and the normal
LCX simulated using ANSYS 18.2 for the turbulent dispersed
particle-fluid flow are obtained in Tables 2 and 3.

Focusing on the proximal part of LCA as shown in
Figure 7(a), the results obtained from the turbulent flow
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Figure 3: Blood pressure obtained from the model with no particle (solid line) and the model with particles (dotted line) in a normal curved
tube at two different peak systoles: (a) 𝑡 = 0.65 𝑠; (b) 𝑡 = 3.86s.
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Figure 4: Blood pressure obtained from the model with no particle (solid line) and the model with particles (dotted line) in the 75% stenosis
tube at two different peak systoles: (a) t = 0.65 s; (b) t = 3.86s.

Inlet

LCX Outlet 1

LAD Outlet 2

LAD Outlet 3

LCA

LCX

LAD

Figure 5: Computational domain of the LCA and its branches
including the LAD and the LCX.

Table 2: Model parameters.

Parameters value units
Blood density (𝜌) 1050 kg m−3

Zero shear viscosity (𝜇0) 0.56 g cm−1 s−1

Infinite shear viscosity (𝜇∞) 0.0345 g cm−1 s−1

Time constant (𝜆) 3.3130 s
Consistency index (n) 0.3568 -
Shape parameter (a) 2 -
Particle diameter (dp) 100 𝜇m
Particle density (𝜌p) 1050 kg m−3

Particle mass flow rate (�̇�𝑝) 5.50 x 10−8 kg s−1

Particle time step (Δ𝑡) 1 × 10−6 s

model and the turbulent dispersed particle-fluid flow model
demonstrate the effect of turbulence blood flow on the
particle trajectories and the impact of particle motion with
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Figure 6: Stenosis conditions at the proximal LAD, two investigated lines along the LCA connecting to the LAD and the LCX, and pulsatile
pressure with two investigated times at the peak systole in the first and the fifth cardiac cycles.

Table 3: Numerical setting.

Numerical Parameters Setting
Solver Pressure - based
Pressure – Velocity Coupling Coupled
Multigrid AMG
Under – relaxation factors 0.75 - momentum

0.75 - pressure
0.80 - turbulent kinetic energy
0.80 - specific dissipation rate
0.90 - discrete phase source

Spatial discretization Second order upwind - momentum
Second order upwind - turbulent kinetic energy
Second order upwind - specific dissipation rate
Second order upwind - transient formulation

Gradient Green - Gauss node - based

the particle-particle and the particle-wall collisions on the
blood flow pattern.

In the fluid flow model, small turbulent flow appears in
the transition area connecting the LCA with its branches as
shown in Figures 7(b) and 7(c). In the dispersed particle-fluid
flow model, high turbulent flow appears in the LCA region
and the particles continue to proportionally flow from LCA
to LAD and LCX as displayed in Figure 7(d). Considering the
blood velocity inside LCA, LAD, and LCX, the vector plots

in three different planes are exhibited in Figure 8. The higher
degree stenosis reduces number of particles flowing through
the downstream LAD and increases number of particles
flowing into the downstream LCX.The model with 0%, 25%,
50%, and 75% degree of stenosis severity on the proximal
LAD allows 12.0%, 6.4%, 3.4%, and 1% of all particles flowing
through the downstream LAD, respectively. Particles are
almost completely blocked in the LAD with critical 75%
stenosis.
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(a) A part of LCA (b) Streamline of blood flow

(c) Velocity field of blood flow (d) Particle deposition patterns

Figure 7: Dispersed phase flow in the LCA connecting to the LAD and LCX.

Distribution of systolic pressure along two axial lines
including the LCA-LAD line in as shown in Figure 6(b) and
the LCA-LCX line as shown in Figure 6(c) is investigated
in the first and the fifth cardiac cycle. Regarding the fluid
flowmodel and the dispersed particle-fluid flowmodel, blood
pressure at the peak systole at t = 0.65 s and t = 3.86 s along
the two axial lines with three different degrees of stenosis
severity are plotted in Figures 11 and 12, respectively. The
results indicate that a pressure drop across the 75% stenosis
is significant at the peak systole t = 0.65 s. In the fluid flow
model at the peak systole in a cardiac cycle, the pressure
drop is about 32 mmHg. In the dispersed particle, fluid flow
model, the pressure drop at the peak systole in the first

and the fifth cardiac cycles is significantly different due to
particle deposition patterns in the stenotic area. Higher level
of particle motion makes more pressure drop. At t = 0.65 s, a
pressure drop is about 55 mmHg and 40 mmHg at t = 3.86 s,
respectively.

The level of particle motion varies with time. The highest
level is at the peak systole of the first cardiac cycle t = 0.65
s. To show the effect of particle motion on the blood pressure
and thewall shear stress, the results at the peak systole t = 3.86
s obtained from the turbulent flow model and the turbulent
dispersed particle-fluid flow model are compared in Figures
9–14.The results indicate that the coronary arterywith critical
75% stenosis generates a sudden drop of pressure with high
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(a) Cutting plane

(a)

(b)

(c)

(b) Blood velocity in each plane

Figure 8: Vector plot of blood velocity at the peak systole at the time t = 0.65 s in three different planes.

(a) Model with no particle (b) Model with particle motion

Figure 9: Systolic pressure at t = 0.65 s in the artery model with 75% intensity of stenosis at the proximal LAD obtained from two different
models: (a) model with no particle; (b) model with particle motion.

Time = 3.86 [s]
Pressure [mmHg]

(a) Pressure distribution with particle deposition patterns

Time = 3.86 [s]

(b) Wall shear stress distribution with particle deposition patterns

Figure 10: Pressure distribution and wall shear stress distribution with particle deposition patterns in the artery model with 75% intensity of
stenosis at the proximal LAD at the peak systole in the fifth cardiac cycle at t = 3.86 s.
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Figure 11: Blood pressure at the peak systole t = 0.65 s and t = 3.86 s along the LCA-LAD axial line obtained from the model with no particle
(solid line) and the model with particles (dotted line) obtained from the domain with different intensity of stenosis at the proximal LAD: (a)
25%; (b) 50%; (c) 75%.

wall shear stress around the stenosis cite. Higher degree of
stenosis gives higher values of the pressure drop and wall
shear stresses. Pressure distribution and wall shear stresses
are plotted when the flow is at a maximum at the peak systole

in the first and the fifth cardiac cycles (t =0.65 s and t =3.86 s).
The dispersed particle-fluid flow model gives high variation
of pressure and wall shear stress, especially in the LCA to the
proximal LAD. Figures 11 and 12 describe the effect of particle
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Figure 12: Blood pressure at the peak systole t = 0.65 s and t = 3.86 s along the LCA-LCX axial line obtained from the model with no particle
(solid line) and the model with particles (dotted line) obtained from the domain with different intensity of stenosis at the proximal LAD: (a)
25%; (b) 50%; (c) 75%.

motion on the pressure distribution in two investigated lines,
the LCA-LAD axial line and the LCA-LCX axial line as shown
in Figures 6(b) and 6(c).

Wall shear stress along the first half of the LCA connect-
ing to the LAD is higher as shown in Figure 13. At the first
cardiac cycle t = 0.65 s, the maximum wall shear stress in the
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Figure 13:Wall shear stress at the peak systole t = 0.65 s and t = 3.86 s along the LCA-LAD axial line obtained from themodel with no particle
(solid line) and the model with particles (dotted line) obtained from the domain with different intensity of stenosis at the proximal LAD: (a)
25%; (b) 50%; (c) 75%.

proximal 75% stenosis of the LAD is about 225 Pa in the fluid
flow model and 275 Pa in the dispersed particle-fluid flow
model. In addition, at the fifth cardiac cycle t = 3.86 s, this
maximum wall shear stress is about 240 Pa in the fluid flow

model and 250Pa and the dispersed particle-fluid flowmodel.
In Figure 14, presents variation of wall shear stress along the
LCA connecting to the normal LCX in the first and the fifth
cardiac cycle. It indicates that particle motion in the carrier
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Figure 14:Wall shear stress at the peak systole t = 0.65 s and t = 3.86 s along the LCA-LCX axial line obtained from themodel with no particle
(solid line) and the model with particles (dotted line) obtained from the domain with different intensity of stenosis at the proximal LAD: (a)
25%; (b) 50%; (c) 75%.
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Figure 15:The system of coronary arteries including the base of the
aorta and the normal left and the normal right arteries.

Figure 16:The system of coronary arteries including the base of the
aorta and the 75% stenosed left artery and the normal right artery.

fluid as shown in Figure 10 has significant effect on the wall
shear stress. High wall shear stress occurs in the area with
high particle concentration (particle cluster).

4. Discussion and Conclusion

This paper presents the mathematical model of the dispersed
bioparticle-blood flow in the left coronary artery (LCA)
with its branches including the LAD and LCX. The com-
bination of the mean continuity equation, the Reynolds-
averaged Navier-Stokes equations, and the Menter’s SST k–𝜔
models is employed to investigate the turbulence flow of
blood, the non-Newtonian incompressible fluid. Describing
the movement of dispersed particle phase, the Newtonian
equations are used to examine the translation and rotational
motion of bioparticles. Running the simulation of two-phase
flow inside LCA, the 3D computational domain together
with initial and boundary conditions are necessary. The
dispersed phase flow, the pressure distribution and the wall
shear stress distribution are analyzed corresponding to three

different stenosis intensities of 25%, 50%, and 75% at the
proximal LAD. The results demonstrate a significant effect
of turbulence blood flow on the particle trajectories and
a high impact of particle motion with the particle-particle
and the particle-wall collisions on the blood flow pattern.
The coronary artery with critical 75% stenosis generates a
sudden drop of pressure with high wall shear stress around
the stenosis cite. Higher degree of stenosis gives higher
values of the pressure drop and wall shear stresses. Pressure
distribution and wall shear stresses are plotted when the flow
is at a maximum at the peak systole in the first and the fifth
cardiac cycle. Pressure drop is significantly different due to
particle deposition patterns in the stenotic area at the peak
systole. Higher level of particle motion makes more pressure
drop and has significant effect on the wall shear stress that
occurring in the area with higher particle concentration.
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Supplementary Materials

The symptoms of coronary heart disease depend on the
severity of the blockage in the 2 main coronary arteries, the
left main, and the right coronary arteries. Understanding
blood flow around the blockage is thus necessary for a bypass
surgery. Two supplementary figures show the coronary sys-
temof human arteries thatwas constructed using 1000 images
of computed tomography scans of the human coronary sys-
tem. The system consists of the base of the aorta connecting
with the normal right coronary artery (RCA) and the left
coronary (LCA) with appearance of a LAD stenosis located
at 5mm from the aorta-LCA connection.One supplementary
figure presents the normal coronary system. Another one is
the system with LAD stenosis of 75%. In this study, we con-
sidered only the left main coronary artery with two branches,
the left anterior descending artery (LAD), and the circumflex
artery (LCX), to investigate the effect of the severity of
coronary artery stenosis. (Supplementary Materials)
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