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The approximate analytical solution of the fractional Cahn-Hilliard and Gardner equations has been acquired successfully via
residual power series method (RPSM). The approximate solutions obtained by RPSM are compared with the exact solutions as
well as the solutions obtained by homotopy perturbation method (HPM) and q-homotopy analysis method (q-HAM). Numerical
results are known through different graphs and tables.The fractional derivatives are described in the Caputo sense.The results light
the power, efficiency, simplicity, and reliability of the proposed method.

1. Introduction

Fractional differential equations (FDEs) have found appli-
cations in many problems in physics and engineering [1,
2]. Since most of the nonlinear FDEs cannot be solved
exactly, approximate and numerical methods must be used.
Some of the recent analytical methods for solving nonlinear
problems include the Adomian decomposition method [3,
4], variational iteration method [5], homotopy perturbation
method [6, 7], homotopy analysis method [8, 9], spectral
collocation method [10], the tanh-coth method [11], exp-
function method [12], Mittag-Leffler function method [13],
differential quadrature method [14], and reproducing kernel
Hilbert space method [15, 16].

The Gardner equation [17] (combined KdV-mKdV equa-
tion) is a useful model for the description of internal solitary
waves in shallow water,

𝑢𝑡 + 6𝑢𝑢𝑥 ± 6𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (1)

Those two models will be classified as positive Gardner
equation and negative Gardner equation depending on the
sign of the cubic nonlinear term [18, 19]. Gardner equation
is widely used in various branches of physics, such as plasma
physics, fluid physics, and quantum field theory [20, 21]. It

also describes a variety of wave phenomena in plasma and
solid state [22, 23].

The Cahn-Hilliard equation [24] is one type of partial
differential equations (PDEs) andwas first introduced in 1958
as a model for process of phase separation of a binary alloy
under the critical temperature [25],

𝑢𝑡 = 𝛾𝑢𝑥 + 6𝑢𝑢2𝑥 + (3𝑢2 − 1) 𝑢𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥, 𝛾 ≥ 0. (2)

This equation is related to a number of interesting physical
phenomena like the spinodal decomposition, phase separa-
tion, and phase ordering dynamics. On the other hand it
becomes important in material sciences [26, 27].

The aim of this paper is to study the time-fractional
Gardner equation [28–30] and time-fractional Cahn-Hilliard
equation [31–37] of this form,

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 6 (𝑢 − 𝜀2𝑢2) 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, (3)

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) − 𝑢𝑥 − 6𝑢𝑢2𝑥 − (3𝑢2 − 1) 𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 = 0, (4)

where 0 < 𝛼 ≤ 1, −∞ < 𝑥 < ∞, and 0 ≤ 𝑡 < 𝑅. Numer-
ous methods have been used to solve this equations, for
example, q-Homotopy analysis method [28], the new version
of F-expansion method [29], reduced differential transform
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method [30], the generalized tanh-coth method [38], the
generalized Kudryashov method [39], extended fractional
Riccati expansion method [31], subequation method [32],
homotopy analysis method [33], the Adomian decompo-
sition method [34], improved (�̀�/𝐺)−expansion method
[35], homotopy perturbation method [36], and variational
iteration method [37]. We solve Cahn-Hilliard equation and
Gardner equation by RPSM.

The RPSM was first devised in 2013 by the Jordanian
mathematician Omar Abu Arqub as an efficient method for
determining values of coefficients of the power series solution
for first and the second-order fuzzy differential equations
[40]. The RPSM is an effective and easy to construct power
series solution for strongly linear and nonlinear equations
without linearization, perturbation, or discretization. In the
last few years, the RPSM has been applied to solve a growing
number of nonlinear ordinary and PDEs of different types,
classifications, and orders. It has been successfully applied
in the numerical solution of the generalized Lane-Emden
equation [41], which is a highly nonlinear singular differential
equation, in the numerical solution of higher-order regular
differential equations [42], in approximate solution of the
nonlinear fractional KdV-Burgers equation [43], in construct
and predict the solitary pattern solutions for nonlinear
time-fractional dispersive PDEs [44], and in predicting and
representing the multiplicity of solutions to boundary value
problems of fractional order [45]. The RPSM distinguishes
itself from various other analytical and numerical methods
in several important aspects [46]. Firstly, the RPSM does not
need to compare the coefficients of the corresponding terms
and a recursion relation is not required. Secondly, the RPSM
provides a simple way to ensure the convergence of the series
solution byminimizing the related residual error.Thirdly, the
RPSM is not affected by computational rounding errors and
does not require large computer memory and time. Fourthly,
the RPSM does not require any converting while switching
from the low-order to the higher-order and from simple
linearity to complex nonlinearity; as a result, the method
can be applied directly to the given problem by choosing an
appropriate initial guess approximation.

2. Fundamental Concepts

Definition 1 (see [43]). The Caputo time-fractional deriva-
tives of order 𝛼 > 0 of 𝑢(𝑥, 𝑡) is defined as

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡)

=
{{{{{{{

1
Γ (𝑛 − 𝛼) ∫𝑡

0
(𝑡 − 𝜏)𝑛−𝛼−1 𝜕𝑛𝑢 (𝑥, 𝜏)

𝜕𝜏𝑛 𝑑𝜏, 𝑛 − 1 < 𝛼 < 𝑛,
𝜕𝑛𝑢 (𝑥, 𝑡)

𝜕𝑡𝑛 , 𝛼 = 𝑛 ∈ 𝑁.
(5)

Definition 2 (see [47, 48]). A power series representation of
the form
∞∑
𝑛=0

𝐶𝑛 (𝑡 − 𝑡0)𝑛𝛼 = 𝐶0 + 𝐶1 (𝑡 − 𝑡0)𝛼 + 𝐶2 (𝑡 − 𝑡0)2𝛼

+ . . .
(6)

where 0 ≤ 𝑛−1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁 𝑎𝑛𝑑 𝑡 ≥ 𝑡0 is called fractional
power series about 𝑡0.
Theorem 3 (see [47, 48]). Suppose that 𝑓 has a fractional
power series representation at 𝑡0 of the form
𝑓 (𝑡) = ∞∑

𝑛=0

𝐶𝑛 (𝑡 − 𝑡0)𝑛𝛼 ,
𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛 𝑎𝑛𝑑 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅.

(7)

If𝐷𝑛𝛼𝑓(𝑡) are continuous on (𝑡0, 𝑡0 +𝑅), 𝑛 = 0, 1, 2, 3, . . ., then
coefficients 𝐶𝑛 will take the form

𝐶𝑛 = 𝐷𝑛𝛼𝑓 (𝑡0)Γ (𝑛𝛼 + 1) . (8)

Definition 4 (see [43]). A power series representation of the
form

∞∑
𝑛=0

𝑓𝑛 (𝑥) (𝑡 − 𝑡0)𝑛𝛼 = 𝑓0 (𝑥) + 𝑓1 (𝑥) (𝑡 − 𝑡0)𝛼

+ 𝑓2 (𝑥) (𝑡 − 𝑡0)2𝛼 + . . .
(9)

is called a multiple fractional power series about 𝑡 = 𝑡0.
Theorem 5 (see [43, 44]). Suppose that 𝑢(𝑥, 𝑡) has a multiple
fractional Power series representation at 𝑡0 of the form
𝑢 (𝑥, 𝑡) = ∞∑

𝑛=0

𝑓𝑛 (𝑥) (𝑡 − 𝑡0)𝑛𝛼 ,
𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝐼, 0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛 𝑎𝑛𝑑 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅.

(10)

If𝐷𝑛𝛼𝑡 𝑢(𝑥, 𝑡) are continuous on 𝐼×(𝑡0, 𝑡0+𝑅), 𝑛 = 0, 1, 2, 3, . . .,
then coefficients 𝑓𝑛(𝑥) will take the form

𝑓𝑛 (𝑥) = 𝐷𝑛𝛼𝑡 𝑢 (𝑥, 𝑡0)Γ (𝑛𝛼 + 1) . (11)

Corollary 6 (see [44]). Suppose that 𝑢(𝑥, 𝑦, 𝑡) has a multiple
fractional Power series representation at 𝑡0 of the form

𝑢 (𝑥, 𝑦, 𝑡) = ∞∑
𝑛=0

𝑓𝑛 (𝑥, 𝑦) (𝑡 − 𝑡0)𝑛𝛼 ,
(𝑥, 𝑦) ∈ 𝐼1 × 𝐼2, 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅.

(12)

If 𝐷𝑛𝛼𝑡 𝑢(𝑥, 𝑦, 𝑡) are continuous on 𝐼1 × 𝐼2 × (𝑡0, 𝑡0 + 𝑅), 𝑛 =0, 1, 2, 3, . . ., then 𝑓𝑛(𝑥, 𝑦) will take the form
𝑓𝑛 (𝑥, 𝑦) = 𝐷𝑛𝛼𝑡 𝑢 (𝑥, 𝑦, 𝑡0)Γ (𝑛𝛼 + 1) . (13)

3. Basic Idea of RPSM

To give the approximate solution of nonlinear fractional
order differential equations by means of the RPSM, we
consider a general nonlinear fractional differential equation:

𝐷𝛼𝑢 (𝑥, 𝑡) = 𝑁 (𝑢) + 𝑅 (𝑢) (14)
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where 𝑁(𝑢) is nonlinear term and 𝑅(𝑢) is a linear term.
Subject to the initial condition

𝑢 (𝑥, 0) = 𝑓 (𝑥) . (15)

TheRPSMproposes the solution for (14) as a fractional power
series about the initial point 𝑡 = 0,
𝑢 (𝑥, 𝑡) = ∞∑

𝑛=0

𝑓𝑛 (𝑥) 𝑡𝑛𝛼
Γ (1 + 𝑛𝛼) ,

0 < 𝛼 ≤ 1, −∞ < 𝑥 < ∞, 0 ≤ 𝑡 < 𝑅.
(16)

Next we let 𝑢𝑘(𝑥, 𝑡) denote the kth truncated series of 𝑢(𝑥, 𝑡),
𝑢𝑘 (𝑥, 𝑡) = 𝑘∑

𝑛=0

𝑓𝑛 (𝑥) 𝑡𝑛𝛼
Γ (1 + 𝑛𝛼) . (17)

The 0th RPS approximate solution of 𝑢(𝑥, 𝑡) is
𝑢0 (𝑥, 𝑡) = 𝑢 (𝑥, 0) = 𝑓 (𝑥) . (18)

Equation (17) can be written as

𝑢𝑘 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑘∑
𝑛=1

𝑓𝑛 (𝑥) 𝑡𝑛𝛼
Γ (1 + 𝑛𝛼) ,

𝑘 = 1, 2, 3, . . . .
(19)

We define the residual function for (14)

𝑅𝑒𝑠𝑢 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) − 𝑁 (𝑢) − 𝑅 (𝑢) . (20)

Therefore, the kth residual function 𝑅𝑒𝑠𝑢,𝑘 is
𝑅𝑒𝑠𝑢,𝑘 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢𝑘 (𝑥, 𝑡) − 𝑁 (𝑢𝑘) − 𝑅 (𝑢𝑘) . (21)

As in [40, 41], 𝑅𝑒𝑠𝑢(𝑥, 𝑡) = 0 𝑎𝑛𝑑 lim𝑘→∞𝑅𝑒𝑠𝑘(𝑥, 𝑡) =𝑅𝑒𝑠(𝑥, 𝑡).𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝐷𝑛𝛼𝑡 𝑅𝑒𝑠(𝑥, 𝑡) = 0 since the fractional
derivative of a constant in the Caputo sense is zero and
the fractional derivatives 𝐷𝑛𝛼𝑡 of 𝑅𝑒𝑠(𝑥, 𝑡) and 𝑅𝑒𝑠𝑘(𝑥, 𝑡) are
matching at 𝑡 = 0 for each 𝑛 = 0, 1, 2, . . . ., 𝑘.; that is,𝐷𝑛𝛼𝑡 𝑅𝑒𝑠(𝑥, 0) = 𝐷𝑛𝛼𝑡 𝑅𝑒𝑠𝑘(𝑥, 0) = 0, 𝑛 = 0, 1, 2, . . . ., 𝑘.

To determine 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), . . . we consider 𝑘 =1, 2, 3, .. in (19) and substitute it into (21), applying the
fractional derivative 𝐷(𝑘−1)𝛼𝑡 in both sides, 𝑘 = 1, 2, 3, . . ., and
finally we solve

𝐷(𝑘−1)𝛼𝑡 𝑅𝑒𝑠𝑢,𝑘 (𝑥, 0) = 0, 𝑘 = 1, 2, 3, . . . . (22)

4. Applications

To illustrate the basic idea of RPSM,we consider the following
two time-fractional Gardner and Cahn-Hilliard equations.

4.1. Time-Fractional Gardner Equation. Consider the time-
fractional homogeneous Gardner equation

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 6 (𝑢 − 𝜀2𝑢2) 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (23)

Subject to the initial Condition

𝑢 (𝑥, 0) = 1
2 + 1

2 tanh [𝑥
2 ] . (24)

The exact solution when 𝜀 = 1, 𝛼 = 1 is

𝑢 (𝑥, 𝑡) = 1
2 + 1

2 tanh [𝑥 − 𝑡
2 ] . (25)

We define the residual function for (23) as

𝑅𝑒𝑠𝑢 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 6 (𝑢 − 𝜀2𝑢2) 𝑢𝑥 + 𝑢𝑥𝑥𝑥, (26)

therefore, for the kth residual function 𝑅𝑒𝑠𝑢,𝑘(𝑥, 𝑡),

𝑅𝑒𝑠𝑢,𝑘 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢𝑘 + 6 (𝑢𝑘 − 𝜀2𝑢2𝑘) 𝑢𝑘𝑥 + 𝑢𝑘𝑥𝑥𝑥. (27)

To determine 𝑓1(𝑥), we consider (𝑘 = 1) in (27)

𝑅𝑒𝑠𝑢,1 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢1 + 6𝑢1𝑢1𝑥 − 6𝜀2𝑢21𝑢1𝑥 + 𝑢1𝑥𝑥𝑥. (28)

But from (19) at 𝑘 = 1,

𝑢1 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼
Γ (1 + 𝛼) , (29)

𝑅𝑒𝑠𝑢,1 (𝑥, 𝑡) = 𝑓1 + 6𝑓𝑓𝑥 − 6𝜀2𝑓𝑥𝑓2 + 𝑓𝑥𝑥𝑥 + [6𝑓𝑓1𝑥
+ 6𝑓1𝑓𝑥 − 12𝜀2𝑓𝑥𝑓𝑓1 − 6𝜀2𝑓1𝑥𝑓2 + 𝑓1𝑥𝑥𝑥]
⋅ 𝑡𝛼
Γ (1 + 𝛼) + [6𝑓1𝑓1𝑥 − 6𝜀2𝑓𝑥𝑓21 − 12𝜀2𝑓1𝑥𝑓𝑓1]

⋅ 𝑡2𝛼
Γ (1 + 𝛼)2 − 6𝜀2𝑓1𝑥𝑓21 𝑡3𝛼

Γ (1 + 𝛼)3 .

(30)

Now depending on the result of (22) In the case of k=1,
we have 𝑅𝑒𝑠𝑢

1

(𝑥, 0) = 0,

𝑓1 = −6𝑓𝑓𝑥 + 6𝜀2𝑓𝑥𝑓2 − 𝑓𝑥𝑥𝑥, (31)

𝑓1 (𝑥) = 1
8 sech [𝑥

2 ]4 (−1 + (−4 + 3𝜀2) cosh [𝑥]
+ 3 (−1 + 𝜀2) sinh [𝑥]) .

(32)

To determine 𝑓2(𝑥), we consider (𝑘 = 2) in (27)

𝑅𝑒𝑠𝑢,2 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢2 + 6𝑢2𝑢2𝑥 − 6𝜀2𝑢22𝑢2𝑥 + 𝑢2𝑥𝑥𝑥. (33)
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But from (19) at 𝑘 = 2,
𝑢2 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼

Γ (1 + 𝛼) + 𝑓2 (𝑥)

⋅ 𝑡2𝛼
Γ (1 + 2𝛼) ,

(34)

𝑅𝑒𝑠𝑢,2 (𝑥, 𝑡) = 𝑓1 + 6𝑓𝑓𝑥 − 6𝜀2𝑓𝑥𝑓2 + 𝑓𝑥𝑥𝑥 + [𝑓2
+ 6𝑓𝑓1𝑥 + 6𝑓1𝑓𝑥 − 12𝜀2𝑓𝑥𝑓𝑓1 − 6𝜀2𝑓1𝑥𝑓2 + 𝑓1𝑥𝑥𝑥]
⋅ 𝑡𝛼
Γ (1 + 𝛼) + [6𝑓𝑓2𝑥 + 6𝑓2𝑓𝑥 − 12𝜀2𝑓𝑥𝑓𝑓2

− 6𝜀2𝑓2𝑥𝑓2 + 𝑓2𝑥𝑥𝑥] 𝑡2𝛼
Γ (1 + 2𝛼) + [6𝑓1𝑓1𝑥

− 6𝜀2𝑓𝑥𝑓21 − 12𝜀2𝑓1𝑥𝑓𝑓1] 𝑡2𝛼
Γ (1 + 𝛼)2 + [6𝑓1𝑓2𝑥

+ 6𝑓2𝑓1𝑥 − 12𝜀2𝑓𝑥𝑓1𝑓2 − 12𝜀2𝑓1𝑥𝑓𝑓2
− 12𝜀2𝑓2𝑥𝑓𝑓1] 𝑡3𝛼

Γ (1 + 𝛼) Γ (1 + 2𝛼) − 6𝜀2𝑓1𝑥𝑓21
⋅ 𝑡3𝛼
Γ (1 + 𝛼)3 + [6𝑓2𝑓2𝑥 − 6𝜀2𝑓𝑥𝑓22 − 12𝜀2𝑓2𝑥𝑓𝑓2]

⋅ 𝑡4𝛼
Γ (1 + 2𝛼)2 + [−12𝜀2𝑓1𝑥𝑓1𝑓2 − 6𝜀2𝑓2𝑥𝑓21 ]

⋅ 𝑡4𝛼
Γ (1 + 𝛼)2 Γ (1 + 2𝛼) + [−6𝜀2𝑓1𝑥𝑓22

− 12𝜀2𝑓2𝑥𝑓1𝑓2] 𝑡5𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼)2 − 6𝜀2𝑓2𝑥𝑓22

⋅ 𝑡6𝛼
Γ (1 + 2𝛼)3 .

(35)

Applying 𝐷𝛼𝑡 on both sides and solving the equation𝐷𝛼𝑡 𝑅𝑒𝑠𝑢,2(𝑥, 0) = 0, then we get

𝑓2 = −6𝑓𝑓1𝑥 − 6𝑓1𝑓𝑥 + 12𝜀2𝑓𝑥𝑓𝑓1 + 6𝜀2𝑓1𝑥𝑓2
− 𝑓1𝑥𝑥𝑥, (36)

𝑓2 (𝑥) = −1
64 sech [𝑥

2 ]7 (−24 (−1 + 𝜀2) cosh [𝑥
2 ]

− 6 (22 − 37𝜀2 + 15𝜀4) cosh [3𝑥
2 ] + 24 cosh [5𝑥

2 ]
− 42𝜀2 cosh [5𝑥

2 ] + 18𝜀4 cosh [5𝑥
2 ]

+ 206 sinh [𝑥
2 ] − 204𝜀2 sinh [𝑥

2 ]
− 129 sinh [3𝑥

2 ] + 222𝜀2 sinh [3𝑥
2 ]

− 90𝜀4 sinh [3𝑥
2 ] + 25 sinh [5𝑥

2 ]
− 42𝜀2 sinh [5𝑥

2 ] + 18𝜀4 sinh [5𝑥
2 ]) .

(37)

The solution in series form is given by

𝑢 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼
Γ (1 + 𝛼) + 𝑓2 (𝑥) 𝑡2𝛼

Γ (1 + 2𝛼)
+ . . .

(38)

4.2. Time-Fractional Cahn-Hilliard Equation. Consider the
time-fractional Cahn-Hilliard equation

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) − 𝑢𝑥 − 6𝑢𝑢2𝑥 − (3𝑢2 − 1) 𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 = 0. (39)

Subject to the initial condition

𝑢 (𝑥, 0) = tanh[√2
2 𝑥] . (40)

The exact solution when 𝛼 = 1 is
𝑢 (𝑥, 𝑡) = tanh[√2

2 (𝑥 + 𝑡)] . (41)

We define the residual function for (39) as

𝑅𝑒𝑠𝑢 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) − 𝑢𝑥 − 6𝑢𝑢2𝑥 − (3𝑢2 − 1) 𝑢𝑥𝑥
+ 𝑢𝑥𝑥𝑥𝑥,

(42)

therefore, for the kth residual function 𝑅𝑒𝑠𝑢,𝑘(𝑥, 𝑡),
𝑅𝑒𝑠𝑢,𝑘 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢𝑘 − 𝑢𝑘𝑥 − 6𝑢𝑘𝑢2𝑘𝑥 − (3𝑢2𝑘 − 1) 𝑢𝑘𝑥𝑥

+ 𝑢𝑘𝑥𝑥𝑥𝑥.
(43)

To determine 𝑓1(𝑥), we consider (𝑘 = 1) in (43)

𝑅𝑒𝑠𝑢,1 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢1 − 𝑢1𝑥 − 6𝑢1𝑢21𝑥 − (3𝑢21 − 1) 𝑢1𝑥𝑥
+ 𝑢1𝑥x𝑥𝑥.

(44)

From (19) at 𝑘 = 1,
𝑢1 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼

Γ (1 + 𝛼) , (45)

𝑅𝑒𝑠𝑢,1 (𝑥, 𝑡) = 𝑓1 − 𝑓𝑥 − 6𝑓𝑓2𝑥 − 3𝑓2𝑓𝑥𝑥 + 𝑓𝑥𝑥
+ 𝑓𝑥𝑥𝑥𝑥 + [−𝑓1𝑥 − 6𝑓1𝑓2𝑥 − 12𝑓𝑓𝑥𝑓1𝑥 − 6𝑓𝑓1𝑓𝑥𝑥
− 3𝑓2𝑓1𝑥𝑥 + 𝑓1𝑥𝑥 + 𝑓1𝑥𝑥𝑥𝑥] 𝑡𝛼

Γ (1 + 𝛼) + [−6𝑓𝑓21𝑥
− 12𝑓1𝑓𝑥𝑓1𝑥 − 3𝑓21𝑓𝑥𝑥 − 6𝑓𝑓1𝑓1𝑥𝑥] 𝑡2𝛼

Γ (1 + 𝛼)2
+ [−6𝑓1𝑓21𝑥 − 3𝑓21𝑓1𝑥𝑥] 𝑡3𝛼

Γ (1 + 𝛼)3 .

(46)



International Journal of Differential Equations 5

If we put 𝑅𝑒𝑠𝑢,1(𝑥, 0) = 0, then

𝑓1 (𝑥) = 𝑓𝑥 + 6𝑓 (𝑥) 𝑓2𝑥 + 3𝑓2𝑓𝑥𝑥 − 𝑓𝑥𝑥 − 𝑓𝑥𝑥𝑥𝑥, (47)

𝑓1 (𝑥) = sech [𝑥/√2]2
√2 . (48)

Similarity, to determine 𝑓2(𝑥), we substitute

𝑢2 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼
Γ (1 + 𝛼)

+ 𝑓2 (𝑥) 𝑡2𝛼
Γ (1 + 2𝛼) ,

(49)

into (43) where 𝑘 = 2,

𝑅𝑒𝑠𝑢,2 (𝑥, 𝑡) = [𝑓1 − 𝑓𝑥 − 6𝑓𝑓2𝑥 − 3𝑓2𝑓𝑥𝑥 + 𝑓𝑥𝑥
+ 𝑓𝑥𝑥𝑥𝑥] + [𝑓2 − 𝑓1𝑥 − 6𝑓1𝑓2𝑥 − 12𝑓𝑓𝑥𝑓1𝑥
− 6𝑓𝑓1𝑓𝑥𝑥 − 3𝑓2𝑓1𝑥𝑥 + 𝑓1𝑥𝑥 + 𝑓1𝑥𝑥𝑥𝑥] 𝑡𝛼

Γ (1 + 𝛼)
+ [−𝑓2𝑥 − 12𝑓𝑓𝑥𝑓2𝑥 − 6𝑓2𝑓2𝑥 − 6𝑓𝑓2𝑓𝑥𝑥
− 3𝑓2𝑥𝑥𝑓2 + 𝑓2𝑥𝑥 + 𝑓2𝑥𝑥𝑥𝑥] 𝑡2𝛼

Γ (1 + 2𝛼) + [−6𝑓𝑓21𝑥
− 12𝑓1𝑓𝑥𝑓1𝑥 − 3𝑓21𝑓𝑥𝑥 − 6𝑓𝑓1𝑓1𝑥𝑥] 𝑡2𝛼

Γ (1 + 𝛼)2
+ [−12𝑓𝑓1𝑥𝑓2𝑥 − 12𝑓2𝑓𝑥𝑓1𝑥 − 6𝑓1𝑓2𝑓𝑥𝑥
− 6𝑓𝑓2𝑓1𝑥𝑥 − 12𝑓1𝑓𝑥𝑓2𝑥 − 6𝑓2𝑥𝑥𝑓𝑓1]
⋅ 𝑡3𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼) + [−6𝑓1𝑓21𝑥 − 3𝑓21𝑓1𝑥𝑥]

⋅ 𝑡3𝛼
Γ (1 + 𝛼)3 + [−6𝑓𝑓22𝑥 − 12𝑓2𝑓𝑥𝑓2𝑥 − 3𝑓22𝑓𝑥𝑥

− 6𝑓2𝑥𝑥𝑓𝑓2] 𝑡4𝛼
Γ (1 + 2𝛼)2 + [−12𝑓1𝑓1𝑥𝑓2𝑥 − 6𝑓2𝑓21𝑥

− 6𝑓1𝑓2𝑓1𝑥𝑥 − 3𝑓2𝑥𝑥𝑓21 ] 𝑡4𝛼
Γ (1 + 𝛼)2 Γ (1 + 2𝛼)

+ [−6𝑓1𝑓22𝑥 − 12𝑓2𝑓1𝑥f2𝑥 − 3𝑓22𝑓1𝑥𝑥 − 6𝑓2𝑥𝑥𝑓1𝑓2]
⋅ 𝑡5𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼)2 + [−6𝑓2𝑓22𝑥 − 3𝑓2𝑥𝑥𝑓22 ]

⋅ 𝑡6𝛼
Γ (1 + 2𝛼)3 .

(50)

Solving the equation 𝐷𝛼𝑡 𝑅𝑒𝑠𝑢,2(𝑥, 0) = 0, we find that

𝑓2 (𝑥) = 𝑓1𝑥 + 6𝑓1𝑓2𝑥 + 12𝑓𝑓𝑥𝑓1𝑥 + 6𝑓𝑓1𝑓𝑥𝑥
+ 3𝑓2𝑓1𝑥𝑥 − 𝑓1𝑥𝑥 − 𝑓1𝑥𝑥𝑥𝑥,

(51)

𝑓2 (𝑥) = − sech [ 𝑥
√2]2 tanh [ 𝑥

√2] . (52)

To determine 𝑓3(𝑥), we substitute
𝑢3 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼

Γ (1 + 𝛼)
+ 𝑓2 (𝑥) 𝑡2𝛼

Γ (1 + 2𝛼) + 𝑓3 (𝑥) 𝑡3𝛼
Γ (1 + 3𝛼) ,

(53)

into (43) where k=3,

𝑅𝑒𝑠𝑢,3 (𝑥, 𝑡) = 𝑓1 − 𝑓𝑥 − 6𝑓𝑓2𝑥 − 3𝑓2𝑓𝑥𝑥 + 𝑓𝑥𝑥
+ 𝑓𝑥𝑥𝑥𝑥 + [𝑓2 − 𝑓1𝑥 − 12𝑓𝑓𝑥𝑓1𝑥 − 6𝑓1𝑓2𝑥
− 6𝑓𝑓1𝑓𝑥𝑥 − 3𝑓2𝑓1𝑥𝑥 + 𝑓1𝑥𝑥 + 𝑓1𝑥𝑥𝑥𝑥] 𝑡𝛼

Γ (1 + 𝛼)
+ [𝑓3 − 𝑓2𝑥 − 12𝑓𝑓𝑥𝑓2𝑥 − 6𝑓2𝑓2𝑥 − 6𝑓𝑓2𝑓𝑥𝑥
− 3𝑓2𝑥𝑥𝑓2 + 𝑓2𝑥𝑥 + 𝑓2𝑥𝑥𝑥𝑥] 𝑡2𝛼

Γ (1 + 2𝛼) + [−6𝑓𝑓21𝑥
− 12𝑓1𝑓𝑥𝑓1𝑥 − 3𝑓21𝑓𝑥𝑥 − 6𝑓𝑓1𝑓1𝑥𝑥] 𝑡2𝛼

Γ (1 + 𝛼)2
+ [−12𝑓𝑓𝑥𝑓3𝑥 − 𝑓3𝑥 − 6𝑓3𝑓2𝑥 − 6𝑓𝑓3𝑓𝑥𝑥
− 3𝑓2𝑓3𝑥𝑥 + 𝑓3𝑥𝑥 + 𝑓3𝑥𝑥𝑥𝑥] 𝑡3𝛼

Γ (1 + 3𝛼)
+ [−12𝑓𝑓1𝑥𝑓2𝑥 − 12𝑓1𝑓𝑥𝑓2𝑥 − 12𝑓2𝑓𝑥𝑓1𝑥
− 6𝑓1𝑓2𝑓𝑥𝑥 − 6𝑓𝑓2𝑓1𝑥𝑥 − 6𝑓2𝑥𝑥𝑓𝑓1]
⋅ 𝑡3𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼) + [−6𝑓1𝑓21𝑥 − 3𝑓21𝑓1𝑥𝑥]

⋅ 𝑡3𝛼
Γ (1 + 𝛼)3 + [−12𝑓1𝑓1𝑥𝑓2𝑥 − 6𝑓2𝑓21𝑥

− 6𝑓1𝑓2𝑓1𝑥𝑥 − 3𝑓2𝑥𝑥𝑓21 ] 𝑡4𝛼
Γ (1 + 𝛼)2 Γ (1 + 2𝛼)

+ [−6𝑓𝑓22𝑥 − 12𝑓2𝑓𝑥𝑓2𝑥 − 3𝑓22𝑓𝑥𝑥 − 6𝑓2𝑥𝑥𝑓𝑓2]
⋅ 𝑡4𝛼
Γ (1 + 2𝛼)2 + [−12𝑓𝑓1𝑥𝑓3𝑥 − 12𝑓1𝑓𝑥𝑓3𝑥

− 12𝑓3𝑓𝑥𝑓1𝑥 − 6𝑓1𝑓3𝑓𝑥𝑥 − 6𝑓𝑓3𝑓1𝑥𝑥 − 6𝑓𝑓1𝑓3𝑥𝑥]
⋅ 𝑡4𝛼
Γ (1 + 𝛼) Γ (1 + 3𝛼) + [−6𝑓1𝑓22𝑥 − 12𝑓2𝑓1𝑥𝑓2𝑥
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Figure 1: (a) Absolute errors of fractional Gardner equation, at 𝑥 = 2, 𝜀 = 1. (b) Absolute errors of fractional Chan-Hilliard equation at 𝑥 = 2.

− 3𝑓22𝑓1𝑥𝑥 − 6𝑓2𝑥𝑥𝑓1𝑓2] 𝑡5𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼)2

+ [−12𝑓𝑓2𝑥𝑓3𝑥 − 12𝑓2𝑓𝑥𝑓3𝑥 − 12𝑓3𝑓𝑥𝑓2𝑥
− 6𝑓2𝑓3𝑓𝑥𝑥 − 6𝑓𝑓3𝑓2𝑥𝑥 − 6𝑓𝑓2𝑓3𝑥𝑥]
⋅ 𝑡5𝛼
Γ (1 + 2𝛼) Γ (1 + 3𝛼) + [−12𝑓1𝑓1𝑥𝑓3𝑥 − 6𝑓3𝑓21𝑥

− 3𝑓21𝑓3𝑥𝑥 − 6𝑓1𝑓3𝑓1𝑥𝑥] 𝑡5𝛼
Γ (1 + 𝛼)2 Γ (1 + 3𝛼)

+ [−12𝑓1𝑓2𝑥𝑓3𝑥 − 12𝑓2𝑓1𝑥𝑓3𝑥 − 12𝑓3𝑓1𝑥𝑓2𝑥
− 6𝑓2𝑓3𝑓1𝑥𝑥 − 6𝑓1𝑓3𝑓2𝑥𝑥 − 6𝑓1𝑓2𝑓3𝑥𝑥]
⋅ 𝑡6𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼) Γ (1 + 3𝛼) + [−6𝑓2𝑓22𝑥

− 3𝑓2𝑥𝑥𝑓22 ] 𝑡6𝛼
Γ (1 + 2𝛼)3 + [−6𝑓𝑓23𝑥 − 12𝑓3𝑓𝑥𝑓3𝑥

− 3𝑓23𝑓𝑥𝑥 − 6𝑓𝑓3𝑓3𝑥𝑥] 𝑡6𝛼
Γ (1 + 3𝛼)2 + [−6𝑓1𝑓23𝑥

− 12𝑓3𝑓1𝑥𝑓3𝑥 − 3𝑓23𝑓1𝑥𝑥 − 6𝑓1𝑓3𝑓3𝑥𝑥]
⋅ 𝑡7𝛼
Γ (1 + 𝛼) Γ (1 + 3𝛼)2 + [−12𝑓2𝑓2𝑥𝑓3𝑥 − 6𝑓3𝑓22𝑥

− 6𝑓2𝑓3𝑓2𝑥𝑥 − 3𝑓22𝑓3𝑥𝑥] 𝑡7𝛼
Γ (1 + 3𝛼) Γ (1 + 2𝛼)2

+ [−6𝑓2𝑓23𝑥 − 12𝑓3𝑓2𝑥𝑓3𝑥 − 3𝑓23𝑓2𝑥𝑥 − 6𝑓3𝑥𝑥𝑓3𝑓2]
⋅ 𝑡8𝛼
Γ (1 + 2𝛼) Γ (1 + 3𝛼)2 + [−6𝑓3𝑓23𝑥 − 3𝑓23𝑓3𝑥𝑥]

⋅ 𝑡9𝛼
Γ (1 + 3𝛼)3 .

(54)

Applying 𝐷2𝛼𝑡 on both sides and then solving the equation
𝐷2𝛼𝑡 𝑅𝑒𝑠𝑢,3(𝑥, 0) = 0, we get

𝑓3 (𝑥) = [𝑓2𝑥 + 12𝑓𝑓𝑥𝑓2𝑥 + 6𝑓2𝑓2𝑥 + 6𝑓𝑓2𝑓𝑥𝑥
+ 3𝑓2𝑥𝑥𝑓2 − 𝑓2𝑥𝑥 − 𝑓2𝑥𝑥𝑥𝑥] + [6𝑓𝑓21𝑥 + 12𝑓1𝑓𝑥𝑓1𝑥
+ 3𝑓21𝑓𝑥𝑥 + 6𝑓𝑓1𝑓1𝑥𝑥] Γ (1 + 2𝛼)

Γ (1 + 𝛼)2 ,
(55)

𝑓3 (𝑥) = 1
8 sech [ 𝑥

√2]6 (−4√2
+ (264 − 96 cosh [√2𝑥] + √2 sinh [2√2𝑥])
⋅ tanh [ 𝑥

√2]) + (−21
2 sech [ 𝑥

√2]6 tanh [ 𝑥
√2]

+ 12 sech [ 𝑥
√2]4 tanh [ 𝑥

√2]3) Γ (1 + 2𝛼)
Γ (1 + 𝛼)2 .

(56)

The solution in series form is given by

𝑢 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼
Γ (1 + 𝛼) + 𝑓2 (𝑥) 𝑡2𝛼

Γ (1 + 2𝛼)
+ 𝑓3 (𝑥) 𝑡3𝛼

Γ (1 + 3𝛼) + . . .
(57)

5. Numerical Results

This section deals with the approximate analytical solu-
tions obtained by RPSM for Gardner and Cahn-Hilliard
equations. In classical case(𝛼 → 1), Figure 1 and Tables
1 and 2 describe the comparison between RPSM with q-
HAM [28] and HPM [36]. In fractional case, Figures 2, 3,
and 4 describe the geometrical behavior of the solutions
obtained by RPSM for different fractional value 𝛼 of the two
equations.



International Journal of Differential Equations 7

t

 = 1

u exact

 = .9
 = .8

 = .7

0.0 0.2 0.4 0.6 0.8 1.0

0.982

0.984

0.986

0.988

0.990

0.992

(a)

 = 1
u exact

 = .9
 = .8

 = .7

t
0.0 0.2 0.4 0.6 0.8 1.0

0.9985

0.9990

0.9995

1.0000

(b)

Figure 2: (a) Fractional Gardner equation at 𝑥 = 5, 𝜀 = 1. (b) Fractional Chan-Hilliard equation at 𝑥 = 5.
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Figure 3: The approximate solution for fractional Gardner equation at 𝜀 = 1: (a) 𝛼 = 1, (b) Exact solution, (c) 𝛼 = .99, and (d) 𝛼 = .95.

6. Conclusions

This work has used the RPSM for finding the solution of the
time-fractional Gardner andCahn-Hilliard equations. A very
good agreement between the results obtained by the RPSM
and q-HAM [28] was observed in Figure 1(a) and Table 1.
Figure 1(b) and Table 2 indicate that the mentioned method
achieves a higher level of accuracy than HPM [36]. Conse-
quently, the work emphasized that the method introduces a
significant improvement in this field over existing techniques.

Data Availability

[1] The [approximate solution obtained by q-homotopy
analysis method] data used to support the findings of
this study have been deposited in the [article] repository
([doi.org/10.1016/j.asej.2014.03.014]) [28]. [2] The [approxi-
mate solution obtained by homotopy perturbation method]
data used to support the findings of this study have
been deposited in the [article] repository ([doi.org/10.1080/
10288457.2013.867627]) [36].



8 International Journal of Differential Equations

(a) (b)
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Figure 4: The approximate solution for fractional Chan-Hilliard equation: (a) 𝛼 = 1, (b) Exact solution, (c) 𝛼 = .99, and (d) 𝛼 = .95.

Table 1:The absolute errors |𝑢𝑒𝑥𝑎𝑐𝑡 −𝑢3| for Gardner equation when𝑡 = .2, 𝜀 = 1, 𝛼 → 1.
x 𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑅𝑃𝑆 𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑞𝐻𝐴𝑀
.1 166.002 × 10−6 166.002 × 10−6
.2 162.707 × 10−6 162.707 × 10−6
.3 156.257 × 10−6 156.257 × 10−6
.4 146.917 × 10−6 146.917 × 10−6
.5 135.064 × 10−6 135.064 × 10−6

Table 2: The absolute errors |𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢4| for Cahn-Hilliard when𝑡 = .2, 𝛼 → 1.
x 𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑅𝑃𝑆 𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐻𝑃𝑀
.1 25.5541 × 10−6 4.68338 × 10−3
.2 41.5291 × 10−6 7.28902 × 10−3
.3 54.2246 × 10−6 9.6162 × 10−3
.4 62.8898 × 10−6 11.5931 × 10−3
.5 67.2637 × 10−6 13.174 × 10−3
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