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We study the equations governing the high-speed transmission in long-haul electrical systems id,u — (1/ 3)|E)X|3 u = i)uax(lulzu),
(t,x) € R* xR, u(0, x) = uy(x), x € R, where A € R, [0,|* = F'|£|*F, and F is the Fourier transformation. Our purpose in this
paper is to obtain the large time asymptotics for the solutions under the nonzero mass condition J uy(x)dx # 0.

1. Introduction

We study the equations governing the high-speed transmis-
sion in long-haul electrical systems

1
i~ ~ [0 u=iAd, (ju’u), (tx)€R" xR,
3 )
u(0,x) =uy(x), x€R,
where A € R, |ax|3 = FYEPF, and F is the Fourier
transformation defined by ¢ = (1/v2m) I e_ix‘f(p dx. Note
that we have the relation u(—t, x) = u(t, —x), so we can only
consider the case t > 0. For the regular solution of (1) we have
the conservation law [lu(t)||l 2 = lluyll2. We are interested in
the case of nonzero mass condition JR uy(x)dx # 0. By (1) we

get the conservation of the mass IR u(t, x)dx = IR uy(x)dx +
Oforallt > 0.

This equation arises in the context of high-speed soliton
transmission in long-haul optical communication system [1].
Also it can be considered as a particular form of the higher
order nonlinear Schrodinger equation introduced by [2] to
describe the nonlinear propagation of pulses through optical
fibers. This equation also represents the propagation of pulses
by taking higher dispersion effects into account than those
given by the Schrodinger equation (see [3-11]).

The higher order nonlinear Schrédinger equations have
been widely studied recently. For the local and global well-
posedness of the Cauchy problem we refer to [12-14] and
references cited therein. The dispersive blow-up was obtained
in [15]. The existence and uniqueness of solutions to (1) were
proved in [16-25] and the smoothing properties of solutions
were studied in [18-21, 24, 26-31]. The blow-up effect for a
special class of slowly decaying solutions of Cauchy problem
(1) was found in [32].

As far as we know the question of the large time asymp-
totics for solutions to Cauchy problem (1) is an open problem.
We develop here the factorization technique originated in our
previous papers [33-38].

We denote the Lebesgue space by L? = {¢ € §';|¢]l» <
oo}, where the norm [¢[l;, = (f lp(x)|Pdx)" /P for 1 < p <
00 and [[¢llo = sup,gl$(x)|. The weighted Sobolev space

is H® = {p € S';||¢||H;M = [{x)*(i0,)"¢ll, < ool
p < 00, {(x) = V1+x2 and
(id,) = /1 —02. We also use the notations H™* = H}",
H" = H™ shortly, if it does not cause any confusion.
Let C(I; B) be the space of continuous functions from an

interval I to a Banach space B. Different positive constants
might be denoted by the same letter C. We denote by #¢ or

</3(E) = (1/V2m) jR e_ix‘5</>(x)dx the Fourier transform of the

where m,s € R, 1 <
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function ¢, then the inverse Fourier transformation is given

by F ¢ = (1/V2n) [, €™ p(&)dE.

We are now in a position to state our result.

Theorem 1. Assume that the initial data u, € H' N H*' have

a sufficiently small norm |[ugllgiager < €. Then there exists a
;. 3

unique global solution Fe R0y ¢ ([0, 00); L® N H™Y)

of Cauchy problem (1). Furthermore the estimate

sup (||ge—(it/3)|ax|3u (t)”L(x,

t>0

+ (07 e 1) ®)

L2
1/3)(1-1
+ O b)), ) < Ce
is true, where p > 4.

Next we prove the existence of the self-similar solutions
v, (t,x) =t f, (™).

Theorem 2. There exists a unique solution of Cauchy problem
(1) in the self-similar form v, (t, x) = t"1/3fm(xt_l/3), such that

1 1
m= W Lvm(t,x)dx= EJRfm(x)dx?EO, (3)

where m is sufficiently small number and

. 3
Fe P, e C([1,00);1L%),

o (4)
xe_(lt/3)|ax| Vi cC ([1, OO) ; L2) )
Furthermore the estimate
. 3
sup (||ge—(1t/3)|ax| v, (t)“
t>1 L=
. 3
+1/6 "xe_(’m)la"| v, (1) " (5)

+ t(1/3)(1*1/P) “Vm (t)“LP) <C |m|

is true, where p > 4.

Now we state the stability of solutions to Cauchy problem
(1) in the neighborhood of the self-similar solution v,,(t, x).

Theorem 3. Suppose that

\/Lz_anfm(x)dx:\/Lz_ﬂjkuo(x)dx:mio. 6)

Let u(t, x) and v,,(t, x) be the solutions constructed in Theo-
rems 1 and 2, respectively. Then there exists small y > 0 such
that the asymptotics

Ju.(8) = vy (O oo < CE2 )

are true fort > 1.
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Our approach is based on the factorization techniques.

Define the free evolution group %(t) = F e "/ I and
write

. 3
U F ¢ = %J % jR AR ) dg,  (®)
where 9,¢ = |t|71/ 2(/5(x/t) is the dilation operator. There
is a unique stationary point & = pu(x) = (x/ Ix)v/]x] in
the integral fR -/ 3)|§|3)¢(E)df, which is defined as the
root of the equation &[] = x for all x € R. Define the
scaling operator (AB¢)(x) = ¢(u(x)). Hence we find the
following decomposition % ()F "¢ = D,BMZ ¢, where

@it/3)Inl*

the multiplication factor M = e and the deformation

operator

7 ()¢ = \/ L—i jR e "¢ (&) dE, ©)

where the phase function S(&,7) = (1/3)E) - (1/3)|11|3 -
nlnl(€ = n). Denote of, = Mk(1/2t|17|)8,7Mk, k =0,1. We
have o, = &/ + in, and also 7" = V&, [in, V'] = -4, 75
therefore we obtain the commutator 8,1‘7 = =2tiyllin, 7.

Since 9:S(§,17) = &l§| — #lyl, then we get it[xlnl, 7’1p =
~7 0z¢. Also we need the representation for the inverse

evolution group FU(-t)¢ = Z*MAB'D;', where the
inverse dilation operator &;'¢ = [t|'2p(xt), the inverse

scaling operator (B '¢)(n) = ¢(xlyl), and the inverse
deformation operator

7 ()¢ = \j % JR 0 () Inldn.  (10)
We have i£7"¢ = 7 d,¢. Hence the commutator
(i€, 7] = "o, Define the new dependent variable § =
FU(-t)u(t). Since FU(-)ZL = 0, FU(-t) with & = 0, +
@i/ 3)|ax|3 , applying the operator F%(-t) to (1), substituting
u(t) = UMW) F _1q3 = D,BM7 §, and using the factorization
techniques, we get

0§ = FU(-t) Lu=iXeFU (1) (Jul’ u)
= i7" MB ', (|2,BMV G|’ 2,BM7§)
=it MB ™ (| BMT §|" BMT §) (1)
=Mt 7 M (M7 g M7'G)
=it 7 (|79 7°¢)
since the nonlinearity is gauge invariant. Finally we mention
some important identities. The operator ¥ = %(t)x%(-t) =
x + ito,|0,| plays a crucial role in the large time asymptotic

estimates. Note that £ commutes with &, thatis, [ 7, <] = 0.
To avoid the derivative loss we also use the operator & =

—_ . 3
3t0, + 0, x. Note the commutator relation [ %, e /¥ = o
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with @ = 3t0, — &0;. Thus using u(t) = UHF ¢ =
DMV = F e WPRIG we get Pu = U F ' Pj. Also
we have the identity 7 = 8;193 - 3ta;lff and [ &, 2] = 3%
holds.

2. Estimates in the Uniform Norm

2.1. Kernels. Define the kernel

Aj (t, 11) _ \]% JR e—itS(fJ])@ (Eﬂ—l) Ejdf (12)

for n # 0, where the cutoff function O(z) € C*(R) is
such that ®(z) = O0forz < 1/3orz > 3 and O(z) =
1 for 2/3 < z < 3/2. We change & = 7y, then we

. 3 Zitll? .
get A;(t,m) = Inln’VItl/2n I1/3 e MG @(y) yidy, where

S(y,n) = In’G(y) and G(y) = (1/3)(y +2)(y = )%, y > 0.
To compute the asymptotics of the kernel A ;(¢,#) for large ¢
we apply the stationary phase method (see [39], p. 110)

J 0 f (y)dy
R
izg(y, 2 i(r/4)sgn g’ )
— g y(y)f(yo)\/ > AMseng" () (13)
z|g" ()|
+O(z_3/2)

for z — +00, where the stationary point y, is defined by the
equation g'(y,) = 0. By virtue of formula (13) with g(y) =

-G(y), f(y) = ©(y)y’, and y, = 1, we get

£12 j ; -1
A;(tn) = [l n +0 (t1/2111+] <t113> ) (14)
2i i)

for t113 — 00. Also we have the estimate |A Gl <
Ct1/2|r]|j+1 (tﬂ3>71/2‘
In the same manner changing# = £y, we get for the kernel

A* (t, E) — \jm JR eitS(E,rl)@ (}15—1) |;7| d}’]

Vi
(15)

_ 2 21t [P werc)

=8\=| e O (y)|yldy
ToJiy3

for & # 0, where S(§,&y) = |E|35(y) with (~?(y) =(1/3)2y +

D(y - 1)?, y > 0. Then by virtue of formula (13) with g(y) =

G(»), f(y) = ©(y)lyl, and y, = 1, we obtain

for t£2 — ©o. Also we have the estimate |A*(t,§)| <
Ct1/2£2<t£3>71/2‘

2.2. Asymptotics for the Operator 7. In the next lemma we
estimate the operator 7 in the uniform norm. Define the
cutoff function y,(z) € C%(R) such that x1(z) = 0for|z] > 3
and y,(z) = 1 for |z| < 2and y,(2z) = 1 - x,(2). Consider two
operators

V() = J % jR ey (&) x; (Ey ) dE, ()

so that we have 7'(t)¢ = 7", ()¢ + 7', (t)¢p for 1 # 0. Define
the norm [|glly = glleo + /10l 2.

Lemma 4. The following estimates |%lfj</> - At )|
CEPP Py T gy if § = 0 and 7,84
C1‘1/6_1/3(t1/3;1)]_3/2||(/>||Y if j = 0,1 are valid for all t >
n+0.

IN A

—

>

Proof. We write
Itl
2m

7151¢ _ Aj(/) - \/ JR e tSGn (¢ @& -¢ (71))

0 (En—l)gjdg N \j |t] J' e 1SED g ()

27 Jw

(18)

(&) -o (")) gdE =1, +1,

for n # 0. For the summand I, we integrate by parts via
identity

e*its(fa'l) — Hlaf ((E _ 11) e*its(fﬂ)) (19)
with Hy = (1 - it(§ — 17)0:S(§, 17))71, to get

I, = ce'l? jR D (6(8) ¢ (n)) (- 1)
0 (H,© (&) &) dg

(20)
+ 2 J'R o1& (£—y) H,© (51771)
-El0gp () d&.
We find the estimates
|H,© (&77") &) +|(§ ~ ) o (H,© (&n7") &)
Claf =

S,
L+t (§—n)
in the domain 1/3 < &/y < 3. Therefore we obtain

|11| <ct'? |’7|j
& —n|dE
L+t (-0 (@2)

. &—n| |0 ()| dE
copepp| ol Gl
13<tin<3 1+t |y (& 1)

¢ (&) — ¢ (n)]
&7l

Jl/3<§/r1<3



By the Hardy inequality -[1/3<f/f1<3(|¢(£) —$P/IE - nP)dE <

C ||ag¢||iz and by the Cauchy-Schwarz inequality, changing
& =5y we find

|| < CE2 [l g

(o ie5)”
1/3<€/n<3 (1 +t |11| (E - 71)2)2

<t g |ogg . (23)

1/2
(r (y-1)"dy >
’ 2
B (141t | (v - 1)%)
j+3/2 -3/4
ol ()

To estimate the integral I, we integrate by parts via the
identity

< Ct'"? |ogg

e—its(f::ﬂ) _ HzaE (Ee—ifs(i)ﬂ)) (24)
with H, = (1 - it&9:S(, 1)) ™", to get

I, = Ct'%¢ (0)
. JR e—itS(E,f])EaE (Gu (&) - © (&) FLE) d

L Cl? J oi1SEN)
R

(25)
€)-¢(0) -1 1
LELO8 (u (o) -0 (b))

L) dé + il J o itSEn (i (877)
R

-0 (&) HE ¢, () dE.

We find the estimates [£0;((y,(&n") — ©(En ") H,E)| <
CIEF /(1 + t|Ely*) and

| (&n7") - @ (&n7")) HLE™|
+ (80 ((a (&) - (6r7")) )|

(26)
1+j
< Ckl
1+t|E|n?
Then by the Hardy inequality we obtain
jdf
L| < ct'?|¢(0) J _paE
g 1+ <l 1+ £ €]
(27)
2i 1/2
62 2j dE
s ([, B )
El<3inl (1 + t&n?)
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We have [i._,, (EPAE/(1+ tEl?) < Clnl’™! [[(/dy/(1+
tal’y) < Clal™ (o)™ log(tn’) and [, (1EF"dE/

(1 + el < ClyP™ Lf(yzj”dy/(l + tlPy)?) <
Clyl ). Thus we  have |I,] <
Ct2(¢O) Ity + CE2110:pl 2 Il (t17?) " for all
>1,n+0. A

To estimate 7",&’¢p we integrate by parts via identity (24)

7,8 ¢ = Ct''*¢ (0)
L g (o, (7))

+ 2 J —itS(E,n)
RE (28)

P -¢(0)
£

L O JR e MSEVE ) () Hyy () dE.

80 (Hyy, (8n7") &) dE

We find the estimates [£0;(H, y, (&7~ )&/)| < CIEV /(1 + t|E[)

and [E%0;(H, x,(&n &) + [E x,(En™)H,| < CIEI"™ /(1 +
t|&) in the domain || > (3/2)4]. Then by the Hardy
inequality we obtain

|7,8¢|

j
d
< Ctl/z |¢ (0)| J |El E3
lE=/2)1n1 1+t €] (29)

_ 1/2
+C'2 o J ﬁ
§P |2 [E1=3/2) 1] (1 +t |E|3)2 |

|rl|(|f|jdf/(1+t|§|3)) < Cly" I;Z(yjdy/(H
3.3 —(+1)/3 4, 3\ (j-2)/3 2+2j
) = CEOMP P 2 and [ BP0
tEP?) < Clylt¥ f3/2(}’2+21d)//(1 + tyl’y’)?) <
Ct_zj/3_1(t113>2j/3_1 if j = 0,1. Thus we have |7,E¢| <

Cl(O)|E P (4?02 4 Clloggllyet 73 (1) 7712 for all
t > 1if j =0, 1. Lemma 13 is proved. OJ

We have f|£|2(3/2)

2.3. Asymptotics for the Operator 7”*. 'We next consider the
operator 77 Since |7 ¢l < C|t|1/2||11¢||L1 and |77l <
Cll\/Inl¢lly2, then by the Riesz interpolation theorem (see
[40], p. 52) we have

|78l < Cl0M7 1o 77 | (30)

Lo/(p-D

for 2 < p < co. In the next lemma we find the asymptotics
of 7*. Denote &€ = &t'/3. Also define the norm "¢”I¢xﬁ =

gl ) 3,z + 71" @) P .
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Lemma5. Let 1/4+23 < o <5/2-2f,0 < f3 < 1/2. Then

the estimate | (E)P (7" ¢ — A*¢)||pe0 < CtE V2 gl , is valid
forallt > 1.

Proof. We write

Vp- AP

) Jm JO; e (¢ (1) - ¢ ©) © (™) Il dy

7
(1)
20t [ isEn) 1 J
T\, | e ¢(n)(1-©(nE")) Inldn
=1, +1,
for & # 0. In the integral I, we use the identity
=10, (- F)
with Hy = (1 +it(n - £)0,8 )™, 0,8, 1) = —2Inl(€ — n),
and integrate by parts
Il _ Ctl/zj 11.‘5(517)‘75 ¢(f) | | < > )
—00 }’]
3, (Hs '™ ()@ (n«s“)) dy
(33)

+ Ctl/z J-:)O eitS(E,n) (11 _ E) H, |’7|1—a <ﬁ>ﬁ ® (’76‘1)
0, (Il ) * ¢ () dn.

Then apply the estimates |(71—E)H3|11|1_“(ﬁ)/3®(17£_1)| +|(n-
E)2<ﬁ>ﬁaq(H3|’7|17[x®(7]£71))| < CIEI"* ()P In—&1/ 1+t (-
£)?) in the domain 1/3 < n/& < 3.1f [x(x)| < Clx(yx)| for all
y € (0, 1) then we find the Hardy inequality

@ Lx ¢ () dty“ﬁ

|M (6() - $(0))
X 12

! !
“ @ | 4 )y
LZ

< (34)

c|[, <9 e

1 1
< | e @ el ar < | 5y |,

5

— O/ = EP* @) Fdy <
. Therefore changing 17 = y&, we have

Hence 1/3511/&30(/5(17)
Clglz,,

& 1| < e g (&)

) 1/2
, J (n—-&)"dn
1/3<n/E<3 (1 +1 |£| (’1 _ f)2)2
< ot e 7 (@) ol (39)
3 2 12
‘ <J»3 |€| (13_ )’) d)’z 2> < Ctl/z |El5/27(x
W (1t (1-))

2-9/4 o
(& ol = i gl

if1/4 + 23 < a < 5/2. In the integral I, using the identity

PSR H4a” (;,leifs(f,ﬂ)) (36)

with H, = (1 + itr]anS(E, r]))_l, 8,78(&, n) = =2|7l(€ - 1), we

integrate by parts
(09

I = 2 J SHSEm
—00

. 1" ¢ (n) ;12(—)’7 (H4 (1 i (}75—1)) |17|1—oc

n (i)’ (37)

. (ﬁ)ﬁ) dn + ct'/? J_ eits(g’”)fsz1 (1

=0 (™) Il ™ @) 3, (" ) ¢ (n)) dn.

Then using the estimates aqS(E, n) = O(nl(& + Inl)) in the
domains 77/& < 1/3 and /& > 3, we get

73, (Ha (1=© (n& ™) In] = ()"
tlnH, (1-0 () W@ 5,

_ Chl @t
Lo (I8 + )

Therefore by the Hardy inequality

@l = &' o, (" @ s ).,
(I @ bl dn )”2 < i g
oo (1+ 2 ([E] + ) ke (39)

| < [> @7 >”2
< (o (8 + W)’




We have

Joo & @) n|
o (1+t? (€] + [n]))”
o (i Gy
o (L+tn* (|E] + [1]))

2B/3-2 28 ’72ﬁ **dn
S N e

1
<C L 2 (@) dy

(40)
1
e [y gy gy

[ee]
v [

4B—2a-2 dn

1/3

< 53 JO e <n>2ﬁ—6 dn

1/3

+ )13 J ’74—4;3—204 <’7>6B—6 dn + Cf4BI32
0

< Ct(Z[x—S)/?a

if1/4+2B < a <5/2-2B,0 < f < 1/2. Therefore we get

&PIL)| < Ct<“‘”/3||¢>||,w. Lemma 5 is proved. O

3. Commutators with 77

First we estimate the Fourier type integral
W=t | i e@ds @

in the L*-norm. In the particular factorized case q(t, &) =
,(6)q, (1), with estimate |q, (u(x))| < |u(x)|"/?, we find

|7, <t |Ma, (1)

) JR eimzse—(it/a)IEqu & &) dE”L2

£12 g (u(x)) |;4(x)| 1/2 (42)

‘ JR e,'txse—(it/3)|§|3ql G163 dEHLZ

. 3
<C ”e*(lf/3)|fl .

L =Cladl:.

Next we obtain a more general result.

Lemma 6. Suppose that I(naq)kq(t, Enl < Clgy" )" for all
&n € Rk = 0,1,2, where v € (0,1). Then the estimate
|||17|1/2%/¢||Lz < Cll¢lly2 is true for all t > 1.
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Proof. We write

2
il g, =CtI d’7|’1|j dé
R R

. j ) dge " SCN=SEM g (1 &, 1) ¢ (€) q (8,5, M) )

(43)
-Ct JR e IE g 5y

: j AT EOK (1,8,0),
R

where the kernel K(t,&, () = fR dnlnle™™E0 gt & nq(t, ).
Integrating two times by parts via the identity ¢™"¢% =
HO, (e 9), with H = (1 + 2ityly|(E - )™ we get

K(tE0) = JR "0, (Hyo, (H |nl q (& n)

q(t.5m))) dn
Since |9, (Hnd, (Hlnlq(t, & n)q(t.{,m))| < Clyliay> &~/
1+ thIE —{))* we get
K (t,&0)
< CJI @ @ |l dn
o (L+tP[E-¢))’
0 ~\ =27 d
c J () : |nldn 2
(L+tr? [E-¢))
1+2vd’7
(1+ P2 [E-¢))°

0 1-2v
L J' n dn .
(L0 )

2 (|f 3 Cl t)v—l J
g

(44)

<cr 2/3J

(45)

0" ()" dn

SO (ST
+COP (el #P) (-0

+CEP (e T (E- DT

Then by the Cauchy-Schwarz inequality and Young inequality
we obtain

[
N (@-0e) s @lad] |+ gl

] G-y (o) o

+CE P g

2
b <C gl

@) dt|
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NJ e @- 00 el

<ct'? “<£t1/3>—1—”

ol
e (SN W

+ G (g0 (6, ol < el
(46)

if v € (0,1). Lemma 14 is proved. O

Next we estimate 7'¢(0).

Lemma 7. Suppose that I(Eaf)kq(t, Enl < Cyl +1ED! for

all&,n € R, k = 0,1. Then the estimate |||11|1/2W1||Lz < Ct'f®
is true.

Proof. As in the proof of Lemma 13 we decompose

o = {12 JR e—its(E,n)q (&, 1) dE
_An jR efitS(E,r/)q (tEn)© (&fl) dE
o JR e "0 (8,8,1)

(&) -o(&n))ae

L J’R e—itS(E,n)q tE1) 1 (&7—1) dE=1,

(47)

+1, + 1,
for # # 0. In the first summand I; we integrate by parts via
identity (19), to get
I, = CHP? J' SN (£ _ )
® (48)
0 (Hiq(6,E1)© (E7")) dE.

Using the estimate [(§ — #)d:(Hq(t.§, neEr )l <
C|11|_1/(1 +tlyl(€ - 11)2) then changing & = 5y, we obtain

nlsctpt
13<¢m<3 1+t |y| (E-7)

<ct' r W e
= 3 2 = n :
s 1+l (y - 1)

Thus we get ll]'*Lilli2 < Ce'2 Iyl /(@) 2|2 < Ct'°. To
estimate the integral I, we integrate by parts via identity (24),
to get

L= cel? JR e—itS(E,rl)EaE ((X1 (&1_1) _e (&1—1))

-Hyq (t,€,1)) dE.

(49)

(50)

We find the estimates |£a£((xl (Eqil)—®(’q’11’1))H2q(t, En)l <
ClyI™/(1 + t|€|7?), then we obtain

) dE
wecopp [
1. b lel<sigl 1+t €]

s (51)

<Ct1/2J Y o ="
< — < f .
o 1+tlyly

Thus as above we get [||7|'/* L. < Ct"/® forall t > 1if» >
—1/2. To estimate I; we integrate by parts via identity (24)

13 _ Ct1/2 JR e_itS(E’n)EaE (H2X2 (E;/I—l) q (t, Ea 77)) dE (52)

We find the estimates IEag(HZXZ(fﬂ_l)q(t, &Em)l < Clnyl +
[ED(1+t|E]?) in the domain €| > (3/2)|1l, and then we obtain

1/2J' dg
el (] +€]) (1 + ¢ &)

|I;| < Ct

G2 dy

< Ctl/zj
3/2 (1+y) (1 +t |11|3 y3) (53)

L OV () J £3dE
3/2)(n)

< GOl Gy e )

if 0 < y < 1. Thus we find

[l 1

<ct'”? |||n|1/2 RGO

+Ct? “(11)_5/2

L L2

< Ct's

L

forallt > 1. Lemma 7 is proved. O
In the next lemma we estimate the commutator [#, 7/, ].

Define the norm [|¢lly = llye + ¢/l 2.

Lemma 8. Let j > 0, v € (0,1). Then the estimate

WP my "t 7,08l < CECllly is true for all

t>1.

Proof. For i #+ 0 we integrate by parts

il @) e 71 =l @)
H —itS(E,1) n-§ -1
Vo (G e

f%@)&=JWLeWW%@am

2



Ogp (§) dE + J W[ e6g, (8m)

3O -$0)
E

Jﬂj g, (1,8n) d,

2

d& + ¢ (0)

(55)

where g, (t,&,1) = {7l (- §)/i0gS(8,
ME @, 8 n) = §0:ay(t8 ), and gs(t.&,n) =
9:q;(t,§,n). Since 9:S(§, ;) = &l§l — niyl and (n - &)/
0eS(E, 1) = (IE] + 7))/ (> + 1 + [Ellnl + nE), we have

a (En) =l ) ()
=o(fa’ ")
and similarly g,(t,&,%) = &0gq,(§,n) = O}’ (7)) for

all £,n € R in the domain [§] < 3|y|. Hence we have

|3, a(t. &l < CY ()~ forall &,y € R, k = 0,1,2,
and [ = 1,2, where » € (0, 1), and by Lemma 14

6 j -1

Hlnl”z J T a8 o @

L (57)
<C o).
and by the Hardy inequality and Lemma 14
o - (&) —¢(0)
u| |1/2 | | tS(nf,i’])q2 (t, E’ ’7) ¢ E £ (/) dg
L (58)
<C ‘ = T <ol
20 < clpgl,
Also we have
as (&)

=" (@} () as( e '1| ) Exl(fn )) (59)

=o((nl + D™ (™)

for all £,# € R, in the domain [§|] < 3|y|. Hence

we get |(£0) qs(,Em| < Cnl + [ED7" for all &1 €
R, k = 0,1. Therefore applying Lemma 7 we obtain

lnl el 2 fR e SED g (1, &, n)dE|l 2 < CV°. Lemma 8 is
proved. O

In the next lemma we estimate the operator 7/,.

Lemma 9. Let j = 0,1,2, v € (0,1). Then the estimate
Mgl HGy @)tV L€ Bl < CE\lly is true for all £ > 1.

International Journal of Differential Equations

Proof. We integrate by parts

Gy a7 e =y @)

W —itS(&,) § X2 (f’? )
'Jﬁke "a<¢us)wa 4
_ \/ % JR oS

|t]
R

n \]% J e—itS(E,r])q2 (t, g’ 17) (/5 (E)

(t.&,1) 0c¢ (§) dE (60)

~$(0)
g%

+$(0) J i j SN g (1,8 5) dE,

where q,(t,&7) = ({7 @ P [i0eSE m)x,En ),
22(5) £> }/I) = fag% (t’ E’ 11)’ and %(t; f) ’7) = afql (t’ E’ ’7) We
n

a (tEm) =0 (@ @7 7 &)
=o(fa" ™),

and q,(t,&n) = O({fY" (™) for all £,y € R, in the
domain [] > (3/2)Iy] if j = 0, 1,2. Then I(na,l)kql(t,ﬁ, n)| <
C{iy" ()" forall§,n €e R,k =0,1,2,and [ = 1,2. Hence by
Lemma 14 we find

(61)

H s J W[ e q, () o @

L2 (62)
< Cloee|,. -
and by the Hardy inequality
“I e |t| sy, o) 2000
¥(63)

-CHM% e

Also we have g (t, &, 1) = O((|n]+|E]) ") forall £, 17 € R, in the
domain |&] > (3/2)Ix, if j = 0,1, 2. Hence |(Eag)kq3(t, &l <
C(lnl + |ED! for all , n € R,k =0,1,and by Lemma 7

nwl/z \j%J- e—its(f,’?)cb (t,E,n)df gCtl/é, (64)
R

LZ
Lemma 9 is proved. O

In the next lemma, we estimate the derivative B,I%.

Lemma 10. Let j = 0,1, v € (0,1). Then the estimate
Mgl >y @) 70,7 E¢llye < CH/CNBlly is true for all t > 1.
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Proof. Since o, 7" = i with o, = A, + i,
o, = (1/2t|11|)8,7, then we obtain the commutator 87]7 =
2tinllin, 7']. Also 7" = 7', + 7",. Hence

|l a3y @)~ 9,7%
< Ct |l 17} w>[m%Jé¢
(65)
vt @y @ v
+Ct |ln 4 () %v“

By Lemma 8 we find |||5I**7 {7} ) "t %l]efqﬁnLZ <
Ct'®lplly for all t > 1,if j = 0, v € (0,1).
Also by Lemma 9 we get ||Inls/zfj{ﬁ}”(ﬁ)fyt"yzquﬁlly +
Mgl 2@y ) "t 7 8 bl < CEYCiglly for all £ > 1, if
j =0,1,v € (0,1). Hence the result of the lemma follows.
Lemma 10 is proved. O

4. A Priori Estimates

Local existence and uniqueness of solutions to Cauchy
problem (1) were shown in [19, 20] when u, € H'. By using
the local existence result, we have the following.

Theorem 11. Assume that the initial data u, € H' n H"'.
Then there exists a unique local solution u of Cauchy problem
(1) such that %(-t)u € C([0, T]; H' n H*Y).

We can take T > 1 if the data are small in H' n H*! and
we may assume that ||u||X e. To get the desired results, we
prove a priori estimates of solutions uniformly in time. Define
the following norm

lullx, = sup ([¢ O+t 170 @)l
te[1,T) (66)
A PTOT Y B

where # = U(t)xU(-t), $(t) = FU(-t)u(t), and p > 4.
First we obtain the large time asymptotic behavior of the
nonlinearity 9‘“2[(—t)ax(|u|2u).

Lemma 12. The asymptotics t?%(—t)ax(lulzu) =
iEIEP ) °191°P + OUENEY NI is true for all t > 1
and & € R, where §(t) = FU(-t)u(t) and v > 0 is small.

Proof. In view of factorization formula (11) we find
tFUO(ulPw) = &7 Olyl'y = 77O, Olyly,
where v = 7°¢. Then by Lemma 5 with = 1/2 + v, f = 2,
and v > 0 small, we get

tFU ()0, (ul*u) = &7 () [y v = i€A” |y[*y
o) (t—1/2+v/3§(l||17|1/2+v <ﬁ>—2v aﬂ (|1/’|2 1//) )

[l @ Wl v,,)

(67)

9
in the case of |€] < 7'/* and
tFU ()0, (lulu) = 7o, y|" v = Ao [y['y
+0 (tv/3—1/6 <g>—21’
(68)

. (|||;1|1/2+v <ﬁ>—2v 3,75271 (|1/f|2 1//) .

o e O (7% W)

in the case of |&] > t /3. Via identity |y|” = tiy/3{ﬁ}v(ﬁ)1', we
consider the remainder terms

|t @y 3, (jw w).

< C“lrlll/ZJrv <ﬁ>721/ |'l//|2 an‘l// i

ROMTE "

) o,

< C|nl" {7}
i (7
g [

WPmem%ﬂxmwoy

1+1/

, <P gl

(69)

<Cln™ @ @
Mﬂ”%m%@”@%L
+C Il 7 v o
|y @ o

(Il + lvwalle)

,=<Ct P gl

L

where y; = 7/i®. By Lemma 10 with j = 0, 1, we have

|l @™ g, + |l 47 @) o

<t Igl,.

(70)

Using Lemma 13 we get |y| < C(tl/zlrll(ﬁ)*y2 +
tem T Dlely < @V Igly and fyyl <
CE P + 5@ Aglly < Cnl'? + V9118l
Hence [y < Ct1/3||¢||§ and [yl + lyy e <
Clgl:. Also we find |y @ P wlPyle <
PG 2 @ e < CE*P)gl; and
M= @y st (yPw)lle < CEPIBl =2 Gy =221 e
Ctl/ﬁ_v/a'll(ﬁ”;. Therefore we obtain t?%(—t)ax(lulzu)
iEA" [Py + O(EHE IgIR) for ] < 7 and
tFUD(ulPu) =  A'd\lylPy + OUEE IgI3)
for [§] > t°. Next by Lemma 13 we have v;t.&) =
(t2IE1GEY V2IENGE) + O IEE gy for
j = 0,1. Then we get iEA*|yl*y = EEP(€)°|pI*p +

IN
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O(EHE) "Iplly) and A" ilyly = &P 1pPp +

O({E}(E)_”H@H;). Lemma 12 is proved. O
Next we estimate the solutions in the norm X;.

Lemma 13. Assume that IIMIIXl < ¢ holds. Then there exists
& > 0 such that the estimate IIuIIXT < Ceis true forall T > 1.

Proof. By continuity of the norm [ullx,_ with respect to T,
arguing by the contradiction we can find the first time T > 0
such that IIuIIXT = Ce. To prove the estimate for the norm
SUP;e(1T) @l < Ce we use (11). Then in view of Lemma 12,
we get

3,p = AFU (~1)0, (|ul* u)
=i GG () "ol g+ 0 (S {E(®))

1/3

(71)

For the case of €| < t/” we can integrate |§(t, &)| < (1, &)|+
CIEIII@II; _[f 34y < e+ CEt'Pe® < & + C&. For the
case of |§] > t /> multiplying by ¢ and taking the real part

of the result we obtain 3,(I¢(t, &)%) = O {EHE) II).
Integrating in time we obtain

96 < |p(e7%8)

~ ! _Vd
“Clo [, 1 @) T o

(113
<& +Cé J (y) " Tdy <&+ Ce.

1
Therefore |F%(—t)u(t)lli» < Ce. Applying estimate of
Lemma 4 we find [0/u(t,x)| < Ce(xt™/)i2-14713700,
[u(t, x)0,u(t, x)| < Ce*t™!, and

-1/3 —1/3\"1/4
Il < CE2 ully, ([ (7

L (73)
< Cst_(1/3)(1_l/P)

if p > 4. Consider a priori estimates for || Zu(t)| 2. Using
the identity 8;19"’14 - Ju = 3ta;1$u, we get | Fullz <
cna;lgsuuLZ +Ct||u||i6 < cua;‘géuan +Ce Ve, Applying the
operator 8;19 to (1), in view of the commutators [ £, ] =
3%, [P,0,] = -0, we get L0 Pu = 0/(P +3)Lu =
10, (2 + 3)0, (|lul*u) = M(P + 2)(|ul*u). Then by the energy
method we obtain

% ||a;lgvu iz <C ||uux||Loo ||a;lgvu

2
L2

+ ||u||i6 8;19’14

v (74)

<Ce't! "8;19’14 iz

+CeE° Ha;ﬂ%

LZ
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from which it follows that [3]'Pul. < ™ + Ce't'/S.
Therefore || full,: < Clla;lg’uIILz + CtIIuIIis < Ce¥Y/° for
all t € [1,T]. Thus we obtain ||u||XT < Ce. Lemma 13 is
proved. O

5. Proof of Theorem 1

By Lemma 13 we see that a priori estimate ||U||xT < Ceis
true for all T > 0. Therefore the global existence of solutions
of Cauchy problem (1) satistying the estimate ||U||xm <
Ce follows by a standard continuation argument by local
existence Theorem 11.

6. Proof of Theorem 2

In this section we prove the existence of a unique self-
similar solution v,,(t,x) = t £, (xt™/*) for (1), which
is uniquely determined by the total mass condition m =
(1//27) _[R v, (t, x)dx # 0. Define the operators

= [ isen
To= [ s @ .

7= \/ % JR ¢*0 () In| dn.

Then for the self-similar solutions v,,(t, x) =
3 (et D,BMYV G, where @, (t,§)
FU(-t)v,,(t), we find that ¢, have a self-similar form,
that is, @,(t,€) = ¢,,(E) with € = &'/, Using the relation
0,p,,(t,8) = (1/3)t_1r]¢,'ﬂ(11) by factorization formula (11)
we get (1/3)10,8,,(n) = iMT*\ T, T $,,. Therefore
0,bn(n) = 3NV |7 $,,7¢,, = F(¢,). Note that F(¢,,)
is not in L*. Therefore we need the approximate equation.
Define ©() = 1 for || < 1 and O(y) = 0 for |y > 2,
and denote Oy(1) = ©O(yn/R). Also define the approximate
equation

Yt oyl 2 =
0y PR (n) = 3iIA7" O |%®R¢m,R| 7 Orpmr

= Fp (‘/’m,R (1))

Let us show a priori estimate |¢,,pll; = l¢,rllie +
10, $mrllLz < 3lm| uniformly in R. Applying Lemma 12 with
t =1 we get

(76)

By b (1) = 3iA 1" (1) ° | @ ()] O i (1)

+O (M) |bmally) -

Integrating with respect to 7, we obtain [d,¢,,plli> <
C||q5m’R||%. Also multiplying by M and integrating with
respect to n7 we get |, ()| = m + O(J‘:(ﬂ>7lfy||¢m,}z||3zd’1)-
Hence [|$,,, glly~ < |m] +C||q,’>m’R||%. Thus we obtain ||, zllz <

2\m| + C||¢m)RII; < 3|m| for some small m. Taking the
limit R — 00, we find that there exists a unique solution
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¢, of equation 0,¢,,(n) = 3IAT T ¢,,I*T ¢, in Z. By the

7010, ¢ll2 <
Clmltl/6 and [, Iy~ < 3|m]. In the same way as in the proof
of (73) we have L? estimate of v,, for p > 4.

definition of ¢,,(17), we obtain [[0:p,,ll;> =

7. Proof of Theorem 3

Define the norm |lully, = sup,c, 1 7 ullpeo + 7] Futll2)
with a small y > 0.

Lemma 14. Suppose that |lu;llx, < Ce j = 1,2, where ¢ is
sufficiently small. Let ¢;(t,0) = @,(¢,0) for j = 1,2,t > 1,
where §;(t,E) = FU(~t)u,(t). Let uy = 7 f(xt77) be a
self-similar solution. Then the estimate ||u, — ”2||YT < Ceis
true for all T > 1.

Proof. By the continuity of the norm [lu; —u,|ly, with respect
to T, arguing by the contradiction we can find for the first
time T > 0 such that [lu; —u, IIYT = Ce. We denote w = ¢, -,

and y = u; — u,. Applying estimate of Lemma 4 we find
Iy (& 0)] < G (PO g (1, 21|
cer (o) ol 09
<ct ' |o.m , .

Thus we need to estimate the norm [|0;@|ly> = [l.7 |- For the
difference y we get from (1) 36;19’)/ =MP + 2)(|L¢1|2u1 -
|lu,|*u,). Hence by the energy method

2 a7
dt >

= 4ReI 8;19)/(|u1|2 Puy — |uy|” .@uz)dx
R

(79)

+2Re L 5, Py (w2 Pu; - 1P dx
+4Re La;l—@y(wlf wy — | wy) dx.
Next we get
4Re Lax—l—gsyqulf Puy — |u | Puy) dx
- 4Re jR |, [ 3T Py Py dx
+4Re L (s - |ia]) P07 Py
—aRe | o[ [o' 2 ax

+4Re J (|u1|2 - |u2|2) Pu,0.' Py dx
R

1

< C | s,y 05 25

L (l”llz - |”2|2) 9”2“Lz .

(80)

In the same manner

2Re J 0! Py (ufg’ul - u%@uz) dx
R
=2Re J WPy Py dx
R

+2ReJ ( f—uz)@uza 1Py dx
R

=2Re J axufaglg’yz dx (81)
R

+2ReJ (“1 —uz)géuza 'Pydx
R

<C ||u1u1x

+ Ol 2yl (v - ) P,

Note that Pu, = 0, xt ' f(xt ™) + 3t0,t 7 f(xt™/%) = 0
for the case of self-similar solution u, = 13 f (xt™'3). Hence

d .
el

< C juy| var (82)

~ ol 11

By (78) we have (MY 2148, x)| < Cet 3. To estimate

24 |2u1 - |u2|2u2||Lz we use the above estimates to get
2
[
16\ 172 -1
<CZ "(I 2e0) |l(| 2 (83)
< Cet2? 'l<|x|1/2 ti
In view of Lemma 4
| (1 e
<cil3 <|x|1/2 —1/6> 32 __ (t x1/2t—1/2)
= ] L (84)
~7/4
Lo <|x|1/2t—1/6> /
Since w(0) = 0, we get by the Hardy inequality
Il 271 P, £ ) < Cllogly: and by a

12y 1/6) 7/4II < CtY°. Hence

direct calculation ||{|x|
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127yl Ct™?||0¢ ] 2. Therefore by (83)

Vil EWI|L Yy

ey Puy = Pl < Ce2t7 0wl . < Ce’t™*7. Thus we
1 21 Ul WL

obtain from (82) (d/dt)lla;lg’yIILz < Ce*t™ 1 which implies

IIB;IQ’;VIILZ < Cé&t. Therefore 17yl < IIB;lgyIILz +

Ctlllullzu1 - |u2|2M2||L2 < Ce’t’. Lemma 14 is proved. O

A A

Now we turn to the proof of asymptotic formula (7)
for the solutions u of Cauchy problem (1). Let v,,(t, x) be
the self-similar solution with the total mass condition m =
(1/V2m) [ uo(x)dx = (1/N27) [ v,y (¢, x)dx # 0. Note that
"Vm"xm < Ce by Theorem 2 and ﬁullxoo < Ce by Theorem 1.
Alsom = ¢(t,0) = v,,(t,0) for t > 1. Then by Lemma 14
we find u(t, x) = v,,(t, x) + O(et™Y?*7). Thus asymptotics (7)
follows. Theorem 3 is proved.
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