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An analytical-approximate method is proposed for a type of nonlinear Volterra partial integro-differential equations with a weakly
singular kernel. This method is based on the fractional differential transformmethod (FDTM).The approximate solutions of these
equations are calculated in the form of a finite series with easily computable terms.The analytic solution is represented by an infinite
series.We state and prove a theorem regarding an integral equation with a weak kernel by using the fractional differential transform
method. The result of the theorem will be used to solve a weakly singular Volterra integral equation later on.

1. Introduction

Many engineering and physical problems result in the
analysis of the nonlinear weakly singular Volterra integral
equations (WSVIEs). These equations are applied in many
areas [1] such as reaction-diffusion problems in small cells
[2], theory of elasticity, heat conductions, hydrodynamics,
stereology [3], the radiation of heat from semi-infinite solids
[4], and other applications. Such equations have been studied
by several authors [5–14].

The aim of this paper is applying the fractional differ-
ential transform method (FDTM) for solving WSVIE. The
fractional differential transform method has recently been
developed for solving the differential and integral equations.
For example, in [15], FDTM is applied for fractional differ-
ential equations and in [16] it is used for fractional integro-
differential equations. This method is applied to nonlinear
fractional partial differential equations in [17]. The use of
the differential transform method (DTM) in electric circuit
analysis was first proposed by Zhou [18].

The main challenge of partial integro-differential equa-
tions (PIDEs) with a weakly singular kernel is faced when

we are looking for an analytical solution. By applying the
differential transform method, the result mostly obtained
is an analytical solution in the form of a polynomial. The
differential transformmethod is different from the traditional
high order Taylor series method, which requires symbolic
competition of the necessary derivatives of the data functions.
Making use of this method enables us to obtain highly accu-
rate results or exact solutions for a partial integro-differential
equation. The use of application of DTM and FDTM does
not require linearization, discretization, or perturbation in
contrast to the methods discussed in the literature [8, 9, 19].

The form of WSVIE that we will consider in this paper
with FDTM is

𝜙𝑡 = 𝜙 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡)
+ ∫𝑡
0
∫𝑥
0
(𝑥 − 𝜉)𝑝−1𝑁[𝜙 (𝜉, 𝜂)] 𝑑𝜉 𝑑𝜂, (1)

where 0 < 𝑝 < 1, 0 ≤ 𝜉 ≤ 𝑥, 0 ≤ 𝜂 ≤ 𝑡, and (𝑥, 𝑡) ∈ [0, 1] ×[0, 1] with the initial condition

𝜙 (𝑥, 0) = 𝜙0 (𝑥) , (2)
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where 𝜙 is an unknown function in Λ(= [0, 1] × [0, 1]) which
should be determined and𝑓(𝑥, 𝑡), 𝜙0(𝑥) are known functions
and 𝑁 is a nonlinear operator. The given functions 𝑓(𝑥, 𝑡)
and 𝜙(𝑥, 𝑡) are assumed to be sufficiently smooth in order
to guarantee the existence and uniqueness of a solution 𝜙 ∈𝐶(Λ). It is assumed that the nonlinear term𝑁[𝜙] satisfies the
Lipschitz condition in 𝐿2(Λ).

The numerical treatment of (1) is not simple because the
solutions ofWSVIEs usually have a weak singularity at 𝑥 = 0.
Different numerical techniques have been developed for the
solution of PIDEs [8, 10, 20–25]. In this article, FDTM is
applied to solve (1) and the main theorem is proved on the
two-dimensional FDTM, while the one-dimensional FDTM
has been applied in [26].

The paper is organized as follows: In Section 2, Caputo
and Riemann-Liouville fractional derivatives are introduced.
In Section 3, the theorems of the fractional differential trans-
form method, preliminaries, and notations are explained. In
Section 4, we have proposed the main theorem, for which
a WSVIE can be considered as a series of FDT. Further,
some examples of the application of FDTMare demonstrated,
which show the accuracy of the method, in Section 5. We
conclude our discussion in Section 6.

2. Riemann-Liouville and Caputo
Fractional Derivatives

There are different kinds of definitions for the fractional
derivative of order 𝑞 > 0; among various definitions
of fractional derivatives of order 𝑞 > 0, the Riemann-
Liouville and Caputo formulas are the most common [27].
The Riemann-Liouville fractional integration of order 𝑞 is
defined as

𝐽𝑞𝑥0𝑓 (𝑥) = 1Γ (𝑞) ∫
𝑥

𝑥0

(𝑥 − 𝑡)𝑞−1 𝑓 (𝑡) 𝑑𝑡,
𝑞 > 0, 𝑥 > 𝑥0.

(3)

The following equations define Riemann-Liouville and
Caputo fractional derivatives of order 𝑞, respectively:

𝐷𝑞𝑥0𝑓 (𝑥) = 𝑑𝑚𝑑𝑥𝑚 [𝐽𝑚−𝑞𝑥0 𝑓 (𝑥)] , (4)

𝐷𝑞∗𝑥0𝑓 (𝑥) = 𝐽𝑚−𝑞𝑥0 [ 𝑑𝑚𝑑𝑥𝑚𝑓 (𝑥)] , (5)

where𝑚 − 1 ≤ 𝑞 < 𝑚 and𝑚 ∈ 𝑁. From (4) and (5), we have

𝐷𝑞𝑥0𝑓 (𝑥) = 1Γ (𝑚 − 𝑞) 𝑑𝑚𝑑𝑥𝑚 ∫
𝑥

𝑥0

(𝑥 − 𝑡)𝑚−𝑞−1 𝑓 (𝑡) 𝑑𝑡,
𝑥 > 𝑥0.

(6)

3. The Fractional Differential Transform
Method (FDTM)

There are some approaches to the generalization of the
notion of differentiation to fractional orders. According to the

Riemann-Liouville formula, the fractional differentiation is
defined by (6). The analytical and continuous function 𝑓(𝑥)
is expended in terms of a fractional power series as follows:

𝑓 (𝑥) = ∞∑
𝑘=0

𝐹 (𝑘) (𝑥 − 𝑥0)𝑘/𝛼 , (7)

where 𝛼 is the order of fraction and 𝐹(𝑘) is the fractional
differential transform of 𝑓(𝑥) [15, 28–30]. In Caputo sense
[31], (6) is modified to handle integer-order initial conditions
as follows:

𝐷𝑞𝑥0 [𝑓 (𝑥) − 𝑚−1∑
𝑘=0

1𝑘! (𝑥 − 𝑥0)𝑘 𝑓(𝑘) (𝑥0)] = 1Γ (𝑚 − 𝑞)
⋅ 𝑑𝑚𝑑𝑥𝑚 {∫

𝑥

0
[𝑓 (𝑡) − ∑𝑚−1𝑘=0 (1/𝑘!) (𝑡 − 𝑥0)𝑘 𝑓(𝑘) (𝑥0)(𝑥 − 𝑡)1+𝑞−𝑚 ]𝑑𝑡} .

(8)

Since the initial conditions are implemented to the integer-
order derivatives, the transformation of the initial conditions
also can be represented as follows:

𝐹 (𝑘) =
{{{{{{{

1(𝑘/𝛼)! [
𝑑𝑘/𝛼𝑓 (𝑥)
𝑑𝑥𝑘/𝛼 ]

𝑥=𝑥0

if 𝑘𝛼 ∈ 𝑁,
0 if 𝑘𝛼 ∉ 𝑁,

, (9)

for 𝑘 = 0, 1, 2, . . . , (𝑛𝛼 − 1), where 𝑛 is the order of FDE that
is considered.

Consider a function 𝑢(𝑥, 𝑡) of two variables, and assume
that it can be expressed as a product of two single-variable
functions as𝑢(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡).The expansion of the function𝑢(𝑥, 𝑡) in a Taylor series around a point (𝑥0, 𝑡0) is as follows:

𝑢 (𝑥, 𝑡) = ∞∑
𝑘=0

∞∑
ℎ=0

𝑈 (𝑘, ℎ) (𝑥 − 𝑥0)𝑘/𝛽 (𝑡 − 𝑡0)ℎ/𝛼 . (10)

If we take (𝑥0, 𝑡0) as (0, 0), then (10) can be illustrated as

𝑢 (𝑥, 𝑡) = ∞∑
𝑘=0

∞∑
ℎ=0

𝑈 (𝑘, ℎ) (𝑥)𝑘/𝛽 (𝑡)ℎ/𝛼 , (11)

where 𝛼, 𝛽 are the order of the fractions, 𝛼, 𝛽 ∈ 𝑁, and𝑈(𝑘, ℎ) = 𝐹(𝑘)𝐺(ℎ) is called the spectrum of 𝑢(𝑥, 𝑡) and
defined by

𝑈 (𝑘, ℎ)
= 1Γ (𝑘/𝛽 + 1) Γ (ℎ/𝛼 + 1) [𝐷𝑘/𝛽𝐷ℎ/𝛼𝑢 (𝑥, 𝑡)](𝑥0 ,𝑡0) .

(12)

If we choose 𝛼 = 1 and 𝛽 = 1, the fractional two-
dimensional differential transform reduces to the classical
two-dimensional differential transform. Using (11) and (12),
the theorems of FDTM are introduced as follows. The proofs
of these theorems can be found in [15, 17].

Theorem 1. Suppose that 𝑊(𝑘, ℎ), 𝑈(𝑘, ℎ), and 𝑉(𝑘, ℎ) are
the differential transformations of the functions𝑤(𝑥, 𝑡), 𝑢(𝑥, 𝑡),
and V(𝑥, 𝑡), respectively, with order of fraction 𝛼 and 𝛽; then
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(1) if 𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) ± V(𝑥, 𝑡), then𝑊(𝑘, ℎ) = 𝑈(𝑘, ℎ) ±𝑉(𝑘, ℎ);
(2) if 𝑤(𝑥, 𝑡) = 𝜆𝑢(𝑥, 𝑡), then𝑊(𝑘, ℎ) = 𝜆𝑈(𝑘, ℎ);
(3) if 𝑤(𝑥, 𝑡) = (𝑥 − 𝑥0)𝑝(𝑡 − 𝑡0)𝑞, then

𝑊(𝑘, ℎ) = 𝛿 (𝑘 − 𝛽𝑝) 𝛿 (ℎ − 𝛼𝑞)
= {{{

1 𝑘 = 𝛽𝑝, ℎ = 𝛼𝑞,
0 otherwise;

(13)

(4) if 𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)V(𝑥, 𝑡), then
𝑊(𝑘, ℎ) = 𝑈 (𝑘, ℎ) 𝑉 (𝑘, ℎ)

= 𝑘∑
𝑟=0

ℎ∑
𝑠=0

𝑈 (𝑟, ℎ − 𝑠) 𝑉 (𝑘 − 𝑟, 𝑠) ; (14)

(5) if 𝑤(𝑥, 𝑡) = 𝑥𝑝sin(𝑎𝑡 + 𝑏), then
𝑊(𝑘, ℎ) = 𝑎ℎℎ! 𝛿 (𝑘 − 𝑝) sin(ℎ𝜋2 + 𝑏) ; (15)

(6) if 𝑤(𝑥, 𝑡) = 𝑥𝑝cos(𝑎𝑡 + 𝑏), then
𝑊(𝑘, ℎ) = 𝑎ℎℎ! 𝛿 (𝑘 − 𝑝) cos(ℎ𝜋2 + 𝑏) ; (16)

(7) if 𝑤(𝑥, 𝑡) = 𝑥𝑝 exp(𝜆𝑡), then
𝑊(𝑘, ℎ) = 𝛿 (𝑘 − 𝑝) (𝜆ℎ)

ℎ! , (17)

where 𝑝 and 𝑞 are positive and 𝜆, 𝑎, 𝑏 are scalars.
Theorem 2. If 𝑢(𝑥, 𝑡) = 𝐷𝑞𝑥V(𝑥, 𝑡) and 𝛽 ∈ 𝑁 is order of
fractional, then

𝑈 (𝑘, ℎ) = Γ (𝑞 + 1 + 𝑘/𝛽)
Γ (1 + 𝑘/𝛽) 𝑉 (𝑘 + 𝛽𝑞, ℎ) . (18)

Definition 3. The Beta function 𝐵(𝑎, 𝑏) of two variables is
defined by

𝐵 (𝑎, 𝑏) = ∫1
0
(1 − 𝑥)𝑎−1 𝑥𝑏−1𝑑𝑥. (19)

The following is proved easily:

𝐵 (𝑎, 𝑏) = Γ (𝑎) Γ (𝑏)Γ (𝑎 + 𝑏) . (20)

Definition 4. The Kronecker delta function is given by

𝛿 (𝑘 − 𝑚) = {{{
1, 𝑘 = 𝑚,
0, 𝑘 ̸= 𝑚. (21)

4. Main Theorem

Now, we represent the main theorem of this study, through
which a weakly singular Volterra integral equation can be
expressed as a series of fractional differential transform for𝑤(𝑥, 𝑡) = ∫𝑡

0
∫𝑥
0
(𝑥 − 𝜉)𝑝−1𝑁[𝜙(𝜉, 𝜂)]𝑑𝜉 𝑑𝜂, 0 < 𝑝 < 1, 𝑝 ∈ 𝑄.

Theorem 5. Suppose that Φ(𝑘, ℎ) and 𝑊(𝑘, ℎ) are the frac-
tional differential transforms of the functions 𝜙(𝑥, 𝑡) and𝑤(𝑥, 𝑡), respectively, such that
𝑤 (𝑥, 𝑡) = ∫𝑡

0
∫𝑥
0
(𝑥 − 𝜉)𝑝−1𝑁[𝜙 (𝜉, 𝜂)] 𝑑𝜉 𝑑𝜂,

0 < 𝑝 < 1, 𝑝 ∈ 𝑄.
(22)

Then, by choosing a suitable 𝛽 ∈ 𝑧+ such that 𝛽𝑝 ∈ 𝑧+, we have
𝑊(𝑘, ℎ) = 1((ℎ − 𝑞) /𝛼) + 1

𝑘∑
𝑙=0

𝛿 (𝑙 − 𝛽𝑝)

⋅ ℎ∑
𝑞=0

𝛿 (𝑞 − 𝛼) 𝐵(𝑘 − 𝑙𝛽 + 1, 𝑝)
⋅ Φ (𝑘 − 𝑙, ℎ − 𝑞) ,

(23)

where 𝐵(⋅, ⋅) is the Beta function and 𝛿 is the Kronecker delta
function.

Proof. By putting 𝑁[𝜙(𝑥, 𝑡)] = ∑∞𝑘=0∑∞ℎ=0Φ(𝑘, ℎ)𝑥𝑘/𝛽𝑡ℎ/𝛼 in
(22), it will change into

𝑤 (𝑥, 𝑡) = ∫𝑡
0
∫𝑥
0
(𝑥 − 𝜉)𝑝−1𝑁[𝜙 (𝜉, 𝜂)] 𝑑𝜉 𝑑𝜂

= ∫𝑡
0
(∫𝑥
0
(𝑥 − 𝜉)𝑝−1 ∞∑

𝑘=0

∞∑
ℎ=0

Φ (𝑘, ℎ) 𝜉𝑘/𝛽𝜂ℎ/𝛼𝑑𝜉)𝑑𝜂

= ∞∑
𝑘=0

∞∑
ℎ=0

Φ (𝑘, ℎ) ∫𝑡
0
(∫𝑥
0
(𝑥 − 𝜉)𝑝−1 𝜉𝑘/𝛽𝑑𝜉) 𝜂ℎ/𝛼𝑑𝜂.

(24)

To calculate ∫𝑥
0
(𝑥 − 𝜉)𝑝−1𝜉𝑘/𝛽𝑑𝜉, we change variable 𝑥/𝜉 = V

and according to Definition 3 we get

∫𝑥
0
(𝑥 − 𝜉)𝑝−1 𝜉𝑘/𝛽𝑑𝜉 = 𝐵(𝑘𝛽 + 1, 𝑝) 𝑥𝑝+𝑘/𝛽. (25)

The following equation is obtained by using Theorem 1 and
replacing (25) into (24):

𝑤 (𝑥, 𝑡)
= ∞∑
𝑘=0

∞∑
ℎ=0

Φ (𝑘, ℎ) 𝐵(𝑘𝛽 + 1, 𝑝) 𝑥𝑝+𝑘/𝛽 ∫𝑡
0
𝜂ℎ/𝛼𝑑𝜂. (26)

Hence

𝑤 (𝑥, 𝑡) = 1(ℎ/𝛼) + 1𝑥𝑝
∞∑
𝑘=0

∞∑
ℎ=0

𝐵(𝑘𝛽 + 1, 𝑝)Φ (𝑘, ℎ)

⋅ 𝑥𝑘/𝛽𝑡ℎ/𝛼+1 = 1(ℎ/𝛼) + 1
∞∑
𝑙=0

𝛿 (𝑙 − 𝛽𝑝)



4 International Journal of Differential Equations

⋅ 𝑥𝑙/𝛽 ∞∑
𝑞=0

𝛿 (𝑞 − 𝛼) 𝑡𝑞/𝛼

⋅ ∞∑
𝑘=0

∞∑
ℎ=0

𝐵(𝑘𝛽 + 1, 𝑝)Φ (𝑘, ℎ) 𝑥𝑘/𝛽𝑡ℎ/𝛼

= 1(ℎ/𝛼) + 1
⋅ ∞∑
𝑘=0

∞∑
ℎ=0

∞∑
𝑙=0

𝛿 (𝑙 − 𝛽𝑝) ∞∑
𝑞=0

𝛿 (𝑞 − 𝛼) 𝐵(𝑘𝛽 + 1, 𝑝)
⋅ Φ (𝑘, ℎ) 𝑥(𝑘+𝑙)/𝛽𝑡(ℎ+𝑞)/𝛼 = 1((ℎ − 𝑞) /𝛼) + 1
⋅ ∞∑
𝑘=0

∞∑
ℎ=0

𝑘∑
𝑙=0

𝛿 (𝑙 − 𝛽𝑝) ℎ∑
𝑞=0

𝛿 (𝑞 − 𝛼) 𝐵(𝑘 − 𝑙𝛽 + 1, 𝑝)
⋅ Φ (𝑘 − 𝑙, ℎ − 𝑞) 𝑥𝑘/𝛽𝑡ℎ/𝛼.

(27)

According to 𝑤(𝑥, 𝑡) = ∑∞𝑘=0∑∞ℎ=0𝑊(𝑘, ℎ)𝑥𝑘/𝛽𝑡ℎ/𝛼, one can
conclude that

𝑊(𝑘, ℎ) = 1((ℎ − 𝑞) /𝛼) + 1
𝑘∑
𝑙=0

𝛿 (𝑙 − 𝛽𝑝)

⋅ ℎ∑
𝑞=0

𝛿 (𝑞 − 𝛼) 𝐵(𝑘 − 𝑙𝛽 + 1, 𝑝)Φ (𝑘 − 𝑙, ℎ − 𝑞) .
(28)

The proof is completed.

5. Description of Method

In this section, we try to describe the FDTM for (1) and initial
condition (2). Based on Theorems 1, 2, and 5, FDTM for (1)
and (2) would result as follows:

(1 + ℎ)Φ (𝑘, ℎ + 1) = Φ (𝑘, ℎ) + 𝐹 (𝑘, ℎ)
+ 1((ℎ − 𝑞) /𝛼) + 1

𝑘∑
𝑙=0

𝛿 (𝑙 − 𝛽𝑝)

⋅ ℎ∑
𝑞=0

𝛿 (𝑞 − 𝛼) 𝐵(𝑘 − 𝑙𝛽 + 1, 𝑝)Φ (𝑘 − 𝑙, ℎ − 𝑞) .
Φ (𝑘, ℎ) = Φ (𝑘, 0) , 𝑘 = 0, 1, 2, 3, . . . ,

(29)

in which Φ(𝑘, ℎ) and 𝐹(𝑘, ℎ) are the FDTM of 𝜙(𝑥, 𝑡)
and 𝑓(𝑥, 𝑡), respectively. Then according to the recurrence
relation (11) the unknown function would result.

6. Applications

In this section, we take some examples to clarify the advan-
tages and the accuracy of the fractional differential transform
method (FDTM) for solving a kind of nonlinear partial
integro-differential equation with a weakly singular kernel.

For each of these examples, we obtain a recurrence relation.
In all of the examples, we choose 𝛼 = 1 and 𝛽 is chosen in a
way where 𝛽𝑝 ∈ 𝑧+.
Example 1. Consider the following nonlinear partial integro-
differential equation with a weakly singular kernel with 𝑝 =1/2 [23]:

𝜙𝑡 = 𝜙 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡)
+ ∫𝑡
0
∫𝑥
0
(𝑥 − 𝜉)𝑝−1 [𝜙 (𝜉, 𝜂)]2 𝑑𝜉 𝑑𝜂, (30)

with the initial condition 𝜙(𝑥, 0) = 𝑥2 and 𝑓(𝑥, 𝑡) = 2𝑡 − 𝑥2 −𝑡2 − (2/315)𝑥1/2𝑡(128𝑥4 + 112𝑥2𝑡2 + 63𝑡4).
For solving (30), we employ the FDTM, to get

(1 + ℎ)Φ (𝑘, ℎ + 1) = Φ (𝑘, ℎ) + 2𝛿 (ℎ − 1) 𝛿 (𝑘)
− 𝛿 (ℎ) 𝛿 (𝑘 − 4) − 𝛿 (ℎ − 2) 𝛿 (𝑘) − 256315𝛿 (ℎ − 1)
⋅ 𝛿 (𝑘 − 9) − 224315𝛿 (ℎ − 3) 𝛿 (𝑘 − 5) − 126315𝛿 (ℎ − 5)
⋅ 𝛿 (𝑘 − 1) + 1ℎ𝐵(𝑘 − 𝑙2 + 1, 12)

⋅ 𝑘−1∑
𝑠=0

ℎ−1∑
𝑟=0

Φ (s, ℎ − 1 − 𝑟)Φ (𝑘 − 1 − 𝑠, 𝑟) ,

(31)

where ℎ, 𝑘 ≥ 1 in the upper bound of the sigmas and the
differential transform of initial condition is as follows:

Φ (𝑘, 0) = 𝛿 (𝑘 − 4) = {{{
1 𝑘 = 4
0 𝑘 ̸= 4 󳨀→

Φ (4, 0) = 1.
(32)

Also we have

𝜙 (𝑥, 𝑡) = ∞∑
𝑘=0

∞∑
ℎ=0

Φ (𝑘, ℎ) 𝑥𝑘/2𝑡ℎ

= Φ (0, 0) + Φ (0, 1) 𝑡 + Φ (0, 2) 𝑡2 + ⋅ ⋅ ⋅
+ Φ (1, 0) 𝑥1/2 + Φ (1, 1) 𝑥1/2𝑡
+ Φ (1, 2) 𝑥1/2𝑡2 + Φ (1, 3) 𝑥1/2𝑡3 + ⋅ ⋅ ⋅
+ Φ (2, 0) 𝑥 + Φ (2, 1) 𝑥𝑡 + Φ (2, 2) 𝑥𝑡2
+ Φ (2, 3) 𝑥𝑡3 + ⋅ ⋅ ⋅ + Φ (3, 0) 𝑥3/2
+ Φ (3, 1) 𝑥3/2𝑡 + Φ (3, 2) 𝑥3/2𝑡2
+ Φ (3, 3) 𝑥3/2𝑡3 + ⋅ ⋅ ⋅ + Φ (4, 0) 𝑥2
+ Φ (4, 1) 𝑥2𝑡 + Φ (4, 2) 𝑥2𝑡2 + Φ (4, 3) 𝑥𝑡3
+ ⋅ ⋅ ⋅ .

(33)



International Journal of Differential Equations 5

By using the recurrence relation (31) and the transform
initial condition (32), we get the following:

𝑘 = 0
ℎ = 0
↓

Φ (0, 1) = Φ (0, 0) + 0
↓

Φ (0, 1) = 0;
𝑘 = 1
ℎ = 0
↓

Φ (1, 1) = Φ (1, 0) + 0
↓

Φ (1, 1) = 0;
𝑘 = 2
ℎ = 0
↓

Φ (2, 1) = Φ (2, 0) + 0
↓

Φ (2, 1) = 0;
𝑘 = 3
ℎ = 0
↓

Φ (3, 1) = Φ (3, 0) + 0
↓

Φ (3, 1) = 0;
𝑘 = 4
ℎ = 0
↓

Φ (4, 1) = Φ (4, 0) − 1
↓

Φ (4, 1) = 0,

(34)

and by applying the same calculations, the following can be
concluded:

Φ (𝑘, 1) = 0 𝑘 ≥ 5. (35)

Also we put
𝑘 = 0
ℎ = 1
↓
2Φ (0, 2) = Φ (0, 1) + 2
↓
Φ (0, 2) = 1;
𝑘 = 1
ℎ = 1
↓
2Φ (1, 2) = Φ (1, 1) + 0
↓
Φ (1, 2) = 0;
𝑘 = 2
ℎ = 1
↓
2Φ (2, 2) = Φ (2, 1) + 0
↓
Φ (2, 2) = 0
...

𝑘 = 9
ℎ = 1
↓
2Φ (9, 2) = Φ (9, 1) − 2 × 128315

+ 𝐵(4 + 1, 12)
9−1∑
𝑠=0

0∑
𝑟=0

Φ (𝑠, 0)Φ (8 − 𝑠, 0) .

(36)

By Definition 3, we have

𝐵(5, 12) = 2 × 128315 . (37)

So Φ(9, 2) = 0.
And by applying the same calculations, we can conclude

that
Φ (𝑘, 2) = 0 𝑘 > 9. (38)

By continuing this process, we can also conclude the follow-
ing:

Φ (𝑘, ℎ) = 0 𝑘 ≥ 0, ℎ ≥ 3. (39)
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Therefore, by substituting the above values into (33), the exact
solution is obtained in the following form:

𝜙 (𝑥, 𝑡) = 𝑥2 + 𝑡2 (40)

which is the particular solution obtained in [23].

Example 2. Consider the following nonlinear partial integro-
differential equation with a weakly singular kernel:

𝜙𝑡 = 𝜙 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡)
+ ∫𝑡
0
∫𝑥
0
(𝑥 − 𝜉)−1/4 [𝜙 (𝜉, 𝜂)]2 𝑑𝜉 𝑑𝜂 (41)

with the initial condition 𝜙(𝑥, 0) = 𝑥 and 𝑓(𝑥, 𝑡) = −𝑥 sin 𝑡 −𝑥 cos 𝑡 − (64/231)𝑥11/4𝑡 − (32/231)𝑥11/4 sin 2𝑡.
Taking into consideration the two-dimensional trans-

form for (41) and the related theorems, we have

(ℎ + 1)Φ (𝑘, ℎ + 1) = Φ (𝑘, ℎ) − 𝛿 (𝑘 − 4) 1ℎ! sin ℎ𝜋2
− 𝛿 (𝑘 − 4) 1ℎ! cos ℎ𝜋2 − 64231𝛿 (𝑘 − 11) 𝛿 (ℎ − 1)
− 32231 (2ℎℎ! ) sin ℎ𝜋2 𝛿 (𝑘 − 11) + 1ℎ
⋅ 𝐵 (𝑘 − 34 + 1, 34)

⋅ 𝑘−3∑
𝑠=0

ℎ−1∑
𝑟=0

Φ (𝑠, ℎ − 1 − 𝑟)Φ (𝑘 − 3 − 𝑠, 𝑟) .

(42)

Thedifferential transformof the initial condition is as follows:

Φ (𝑘, 0) = 𝛿 (𝑘 − 4) = {{{
1 𝑘 = 4
0 𝑘 ̸= 4 󳨀→ Φ (4, 0) = 1. (43)

Also we have

𝜙 (𝑥, 𝑡) = ∞∑
𝑘=0

∞∑
ℎ=0

Φ (𝑘, ℎ) 𝑥𝑘/4𝑡ℎ

= Φ (0, 0) + Φ (0, 1) 𝑡 + Φ (0, 2) 𝑡2 + ⋅ ⋅ ⋅
+ Φ (1, 0) 𝑥1/4 + Φ (1, 1) 𝑥1/4𝑡
+ Φ (1, 2) 𝑥1/4𝑡2 + Φ (1, 3) 𝑥1/4𝑡3 + ⋅ ⋅ ⋅
+ Φ (2, 0) 𝑥2/4 + Φ (2, 1) 𝑥2/4𝑡
+ Φ (2, 2) 𝑥2/4𝑡2 + Φ (2, 3) 𝑥2/4𝑡3 + ⋅ ⋅ ⋅
+ Φ (3, 0) 𝑥3/4 + Φ (3, 1) 𝑥3/4𝑡
+ Φ (3, 2) 𝑥3/4𝑡2 + Φ (3, 3) 𝑥3/4𝑡3 + ⋅ ⋅ ⋅
+ Φ (4, 0) 𝑥 + Φ (4, 1) 𝑥𝑡 + Φ (4, 2) 𝑥𝑡2
+ Φ (4, 3) 𝑥𝑡3 + ⋅ ⋅ ⋅ .

(44)

By using the recurrence relation (42) and the differential
transform of initial condition (43), we get

𝑘 = 0
ℎ = 0
↓

Φ (0, 1) = Φ (0, 0) − 0
↓

Φ (0, 1) = 0;
𝑘 = 1
ℎ = 0
↓

Φ (1, 1) = Φ (1, 0) − 0
↓

Φ (1, 1) = 0;
𝑘 = 2
ℎ = 0
↓

Φ (2, 1) = Φ (2, 0) − 0
↓

Φ (2, 1) = 0;
𝑘 = 3
ℎ = 0
↓

Φ (3, 1) = Φ (3, 0) − 0
↓

Φ (3, 1) = 0;
𝑘 = 4
ℎ = 0
↓

Φ (4, 1) = Φ (4, 0) − 1
↓

Φ (4, 1) = 0

(45)

and by applying the same calculations, it can be concluded
that

Φ (𝑘, 1) = 0 𝑘 ≥ 5;
𝑘 = 0
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ℎ = 1
↓
2Φ (0, 2) = Φ (0, 1) − 0
↓
Φ (0, 2) = 0;
𝑘 = 1
ℎ = 1
↓
2Φ (1, 2) = Φ (1, 1) − 0
↓
Φ (1, 2) = 0;
𝑘 = 2
ℎ = 1
↓
2Φ (2, 2) = Φ (2, 1) − 0
↓
Φ (2, 2) = 0;
𝑘 = 3
ℎ = 1
↓
2Φ (3, 2) = Φ (3, 1) − 0
↓
Φ (3, 2) = 0;
𝑘 = 4
ℎ = 1
↓
2Φ (4, 2) = Φ (4, 1) − 1
↓
Φ (4, 2) = −12
...

𝑘 = 11
ℎ = 1
↓
2Φ (11, 2) = Φ (11, 1) − 64231 − 64231

+ 𝐵(34 , 3)
8∑
𝑆=0

Φ (𝑠, 0)Φ (8 − 𝑠, 0)
↓
Φ (11, 2) = 0;
𝑘 = 0
ℎ = 2
↓
3Φ (0, 3) = Φ (0, 2) − 0
↓
Φ (0, 3) = 0;
𝑘 = 1
ℎ = 2
↓
3Φ (1, 3) = Φ (1, 2) − 0
↓
Φ (1, 3) = 0;
𝑘 = 2
ℎ = 2
↓
3Φ (2, 3) = Φ (2, 2) − 0
↓
Φ (2, 3) = 0;
𝑘 = 3
ℎ = 2
↓
3Φ (3, 3) = Φ (3, 2) − 0
↓
Φ (3, 3) = 0;
𝑘 = 4
ℎ = 2
↓
3Φ (4, 3) = Φ (4, 2) + 12!
↓
Φ (4, 3) = − 12! + 12! = 0,

(46)
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and by applying the same calculations, we conclude the
following:

Φ (𝑘, 3) = 0 𝑘 ≥ 5;
𝑘 = 0
ℎ = 3
↓

4Φ (0, 4) = Φ (0, 3) − 0
↓

Φ (0, 4) = 0;
𝑘 = 1
ℎ = 3
↓

4Φ (1, 4) = Φ (1, 3) − 0
↓

Φ (1, 4) = 0;
𝑘 = 2
ℎ = 3
↓

4Φ (2, 4) = Φ (2, 3) − 0
↓

Φ (2, 4) = 0;
𝑘 = 3
ℎ = 3
↓

4Φ (3, 4) = Φ (3, 3) − 0
↓

Φ (3, 4) = 0;
𝑘 = 4
ℎ = 3
↓

4Φ (4, 4) = Φ (4, 3) + 13!
↓

Φ (4, 4) = 14! ;
Φ (𝑘, 4) = 0 𝑘 ≥ 5.

(47)

Therefore, by substituting the above values into (44), the exact
solution is obtained in the following form:

𝜙 (𝑥, 𝑡) = Φ (4, 0) 𝑥 + Φ (4, 1) 𝑥𝑡 + Φ (4, 2) 𝑥𝑡2
+ Φ (4, 3) 𝑥𝑡3 + ⋅ ⋅ ⋅

= 𝑥 − 12!𝑥𝑡2 + 14!𝑥𝑡4 + ⋅ ⋅ ⋅ = 𝑥 cos 𝑡.
(48)

Example 3. Consider the following nonlinear partial integro-
differential equation with a weakly singular kernel:

𝜙𝑡 = 𝜙 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡)
+ ∫𝑡
0
∫𝑥
0
(𝑥 − 𝜉)−3/5 [𝜙 (𝜉, 𝜂)]2 𝑑𝜉 𝑑𝜂 (49)

with the initial condition 𝜙(𝑥, 0) = 𝑥 and 𝑓(𝑥, 𝑡) =(125/168)𝑥12/5𝑒2𝑡.
To solve (49), by applying FDTM, we have

(ℎ + 1)Φ (𝑘, ℎ + 1) = Φ (𝑘, ℎ) − 125168𝛿 (𝑘 − 12) 2ℎℎ!
+ 1ℎ𝐵(𝑘 − 25 + 1, 25)

⋅ 𝑘−2∑
𝑠=0

ℎ−1∑
𝑟=0

Φ (𝑠, ℎ − 1 − 𝑟)Φ (𝑘 − 2 − 𝑠, 𝑟) ,
(50)

where 𝑘 ≥ 2, ℎ ≥ 1 in the upper bound of the sigmas and
differential transform of initial condition is as follows:

Φ (𝑘, 0) = 𝛿 (𝑘 − 5) = {{{
1 𝑘 = 5
0 𝑘 ̸= 5 󳨀→ Φ (5, 0) = 1. (51)

Also we have

𝜙 (𝑥, 𝑡) = ∞∑
𝑘=0

∞∑
ℎ=0

Φ (𝑘, ℎ) 𝑥𝑘/5𝑡ℎ

= Φ (0, 0) + Φ (0, 1) 𝑡 + Φ (0, 2) 𝑡2 + ⋅ ⋅ ⋅
+ Φ (1, 0) 𝑥1/5 + Φ (1, 1) 𝑥1/5𝑡
+ Φ (1, 2) 𝑥1/5𝑡2 + Φ (1, 3) 𝑥1/5𝑡3 + ⋅ ⋅ ⋅
+ Φ (2, 0) 𝑥2/5 + Φ (2, 1) 𝑥2/5𝑡
+ Φ (2, 2) 𝑥2/5𝑡2 + Φ (2, 3) 𝑥2/5𝑡3 + ⋅ ⋅ ⋅
+ Φ (3, 0) 𝑥3/5 + Φ (3, 1) 𝑥3/5𝑡
+ Φ (3, 2) 𝑥3/5𝑡2 + Φ (3, 3) 𝑥3/5𝑡3 + ⋅ ⋅ ⋅
+ Φ (4, 0) 𝑥4/5 + Φ (4, 1) 𝑥4/5𝑡
+ Φ (4, 2) 𝑥4/5𝑡2 + Φ (4, 3) 𝑥4/5𝑡3 + ⋅ ⋅ ⋅
+ Φ (5, 0) 𝑥 + Φ (5, 1) 𝑥𝑡 + Φ (5, 2) 𝑥𝑡2
+ Φ (5, 3) 𝑥𝑡3 + ⋅ ⋅ ⋅ .

(52)
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By using the recurrence relation (50), the differential trans-
form of initial condition (51), and the same calculations of
the above-mentioned examples, it is concluded that

𝜙 (𝑥, 𝑡) = 𝑥 + 𝑥𝑡 + 12!𝑥𝑡2 + 13!𝑥𝑡3 + ⋅ ⋅ ⋅
− 125168𝑥12/5 (𝑡 + 𝑡22! + 𝑡33! + ⋅ ⋅ ⋅) .

(53)

Of course this solution is an analytical solution.

7. Conclusion

In this paper, we have described the definition and oper-
ation of two-dimensional fractional differential transform;
fractional derivatives have been considered in the Caputo
and Riemann-Liouville sense and the main theorem on
fractional differential transformmethod. Using the fractional
differential transform method, a kind of nonlinear partial
integro-differential equation with a singular kernel was
solved approximately and analytically. We have used FDTM
in this paper to solve (30) which was solved by operational
matrices in [23]. The advantages of this method are that one
obtains satisfactory results in less time, there is no need to
calculate any repeated integral, and there is no discretization.
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