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We propose and analyse an human immunodeficiency virus (HIV) infection model with spatial diffusion and delay in the immune
response activation. In the proposedmodel, the immune response is presented by the cytotoxic T lymphocytes (CTL) cells. We first
prove that the model is well-posed by showing the global existence, positivity, and boundedness of solutions. The model has three
equilibria, namely, the free-infection equilibrium, the immune-free infection equilibrium, and the chronic infection equilibrium.
The global stability of the first two equilibria is fully characterized by two threshold parameters that are the basic reproduction
number 𝑅0 and the CTL immune response reproduction number 𝑅1. The stability of the last equilibrium depends on 𝑅0 and 𝑅1 as
well as time delay 𝜏 in the CTL activation. We prove that the chronic infection equilibrium is locally asymptotically stable when
the time delay is sufficiently small, while it loses its stability and a Hopf bifurcation occurs when 𝜏 passes through a certain critical
value.

1. Introduction

HIV is a virus that attacks the CD4+ T cells and reduces their
number in the body. It is known that when the number of
these cells is less than 200 cells per 𝜇l, the patient enters the
phase of acquired immunodeficiency syndrome (AIDS).This
phase is characterized by the appearance of opportunistic
infections caused by bacteria, viruses, or fungi or by the
appearance of certain types of cancer. From the world health
organization (WHO) [1], HIV continues to be a major global
public health issue, having claimed more than 35 million
lives so far. In 2016, 1 million people died from HIV-related
causes globally. Also, there were approximately 36.7 million
people living with HIV at the end of 2016 with 1.8 million
people becoming newly infected in 2016 globally. Therefore,
many mathematical models have been developed to better
understand the dynamics ofHIV infection.One of the earliest
of these models was presented by Nowak and Bangham
[2] that considers three populations: uninfected target cells,
productive infected cells, and free viral particles. Rong et al.
[3] extended the model of [2] by including the infected cells
in eclipse stage (unproductive infected cells) and considered
that a portion of these cells returns to the uninfected state.

In 2014, Hu et al. [4] replaced the bilinear incidence rate in
[3] by a saturated infection rate and they studied the global
stability of equilibria. In 2015, Maziane et al. [5] improved the
model of [4] by considering the Hattaf ’s incidence rate [6]
that includes the common types such as the bilinear incidence
rate, the saturated incidence rate, the Beddington-DeAngelis
functional response [7, 8] and the Crowley-Martin functional
response [9].

Cytotoxic T lymphocytes (CTL) cells are responsible for
cellular immunity and they play an important role in antiviral
defense by killing the productive infected cells. For this, Lv et
al. [10] proposed an HIV model with Beddington-DeAngelis
functional response and CTL immune response. In 2016,
Maziane et al. [11] generalized and extended the model of Lv
et al. [10] by considering the mobility of cells and virus. They
assumed that themotion of virus follows the Fickian diffusion
and proposed the following model:𝜕𝑇𝜕𝑡 = 𝜆 − 𝜇𝑇𝑇 (𝑥, 𝑡) − 𝑓 (𝑇 (𝑥, 𝑡) , 𝑉 (𝑥, 𝑡)) 𝑉 (𝑥, 𝑡)+ 𝜌𝐸 (𝑥, 𝑡) ,𝜕𝐸𝜕𝑡 = 𝑓 (𝑇 (𝑥, 𝑡) , 𝑉 (𝑥, 𝑡)) 𝑉 (𝑥, 𝑡)
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− (𝜇𝐸 + 𝜌 + 𝛾) 𝐸 (𝑥, 𝑡) ,𝜕𝐼𝜕𝑡 = 𝛾𝐸 (𝑥, 𝑡) − 𝜇𝐼𝐼 (𝑥, 𝑡) − 𝑝𝐼 (𝑥, 𝑡) 𝐶 (𝑥, 𝑡) ,𝜕𝑉𝜕𝑡 = 𝑑Δ𝑉 (𝑥, 𝑡) + 𝑘𝐼 (𝑥, 𝑡) − 𝜇𝑉𝑉 (𝑥, 𝑡) ,𝜕𝐶𝜕𝑡 = 𝑎𝐼 (𝑥, 𝑡) 𝐶 (𝑥, 𝑡) − 𝜇𝐶𝐶 (𝑥, 𝑡) ,
(1)

where𝑇(𝑥, 𝑡),𝐸(𝑥, 𝑡), 𝐼(𝑥, 𝑡),𝑉(𝑥, 𝑡), and𝐶(𝑥, 𝑡) represent the
densities of uninfected CD4+ T cells, unproductive infected
cells, productive infected cells, and free virus particles and
CTL cells at location 𝑥 and time 𝑡, respectively. The positive
parameters𝜆, 𝛾, 𝑘, and 𝑎 are the production rate of uninfected
cells, the rate at which infected cells in the eclipse stage
become productive infected cells, the production rate of
virions by infected cells, and the proliferation rate of CTL
cells, respectively. The positive constants 𝜇𝑇, 𝜇𝐸, 𝜇𝐼, 𝜇𝑉, and𝜇𝐶 are, respectively, the death rates of uninfected CD4+ T
cells, unproductive infected cells, productive infected cells,
free virus, and CTL cells. The unproductive infected cells
return to the uninfected cells at rate 𝜌 while the productive
infected cells are killed by CTL at rate 𝑝. In model (1),
the infection transmission process is modeled by Hattaf ’s
incidence rate [6] of the form 𝑓(𝑇, 𝑉) = 𝛽𝑇/(1 + 𝛼1𝑇 +𝛼2𝑉 + 𝛼3𝑇𝑉), where 𝛼1, 𝛼2, and 𝛼3 ≥ 0 are the saturation
factors measuring the psychological or inhibitory effect and𝛽 > 0 is the infection coefficient.HereΔ = ∑𝑛𝑖=1(𝜕2/𝜕𝑥2𝑖 ) is the
Laplacian operator and 𝑑 is the diffusion coefficient of virus.

In the reality, the activation of the immune response is
not instantaneous. When the virus invades the body, the
immune system takes time to recognize and react to the virus.
Therefore, system (1) becomes𝜕𝑇𝜕𝑡 = 𝜆 − 𝜇𝑇𝑇 (𝑥, 𝑡)− 𝑓 (𝑇 (𝑥, 𝑡) , 𝑉 (𝑥, 𝑡)) 𝑉 (𝑥, 𝑡)+𝜌𝐸 (𝑥, 𝑡) ,𝜕𝐸𝜕𝑡 = 𝑓 (𝑇 (𝑥, 𝑡) , 𝑉 (𝑥, 𝑡)) 𝑉 (𝑥, 𝑡)− (𝜇𝐸 + 𝜌 + 𝛾) 𝐸 (𝑥, 𝑡) ,𝜕𝐼𝜕𝑡 = 𝛾𝐸 (𝑥, 𝑡) − 𝜇𝐼𝐼 (𝑥, 𝑡) − 𝑝𝐼 (𝑥, 𝑡) 𝐶 (𝑥, 𝑡) ,𝜕𝑉𝜕𝑡 = 𝑑Δ𝑉 (𝑥, 𝑡) + 𝑘𝐼 (𝑥, 𝑡) − 𝜇𝑉𝑉 (𝑥, 𝑡) ,𝜕𝐶𝜕𝑡 = 𝑎𝐼 (𝑥, 𝑡 − 𝜏) 𝐶 (𝑥, 𝑡 − 𝜏) − 𝜇𝐶𝐶 (𝑥, 𝑡) ,

(2)

where 𝜏 denotes the time needed for the activation of the CTL
immune response, namely, the immunological delay. The
other parameters have the same biological meaning as system
(1). In addition, we consider our model (2) with homogenous
Neumann boundary condition𝜕𝑉𝜕] = 0 on 𝜕Ω × (0, +∞) , (3)

and initial conditions𝑇 (𝑥, 𝜃) = 𝜙1 (𝑥, 𝜃) ≥ 0,𝐸 (𝑥, 𝜃) = 𝜙2 (𝑥, 𝜃) ≥ 0,

𝐼 (𝑥, 𝜃) = 𝜙3 (𝑥, 𝜃) ≥ 0,𝑉 (𝑥, 𝜃) = 𝜙4 (𝑥, 𝜃) ≥ 0,𝐶 (𝑥, 𝜃) = 𝜙5 (𝑥, 𝜃) ≥ 0,
𝑥 ∈ Ω, 𝜃 ∈ [−𝜏, 0] ,

(4)

where Ω is a bounded domain in R𝑛 with smooth boundary𝜕Ω, 𝜙𝑖(𝑥, 𝜃) (𝑖 = 1, 2, 3, 4, 5) is Hölder continuous in Ω ×[−𝜏, 0], and 𝜕𝑉/𝜕] is the outward normal derivative on 𝜕Ω.
The rest of the paper is outlined as follows. In the next

section we investigate the well-posedness and equilibria for
system (2)–(4). The stability analysis and the existence of
Hopf bifurcation are studied in Section 3. Finally, a brief
conclusion is given in Section 4.

2. Well-Posedness and Equilibria

In this section, we establish the existence, positivity, and
boundedness of solutions of problem (2)–(4) because this
model describes the evolution of a cell population. Hence the
densities of cells should remain nonnegative and bounded. In
addition, we determine the basic reproduction number, the
CTL immune response reproduction number, and equilibria
of the model (2)–(4).

Before proceeding, we shall set some notations and
terminology. 𝑋 will denote a Banach space over a real or
complex field.𝐶 = 𝐶([−𝜏, 0], 𝑋)will denote the Banach space
of 𝑋-valued functions on [−𝜏, 0], with supremum norm,
where 𝜏 > 0. Here, 𝑋 = 𝐶(Ω,R5). If 𝑢 is a continuous
function from [−𝜏, 𝑏] to 𝑋 and 𝑡 ∈ [0, 𝑏], then 𝑢𝑡 denotes the
element of 𝐶 given by 𝑢𝑡(𝜃) = 𝑢(𝑡 + 𝜃), −𝜏 ≤ 𝜃 ≤ 0.
Proposition 1. For any initial conditions satisfying (4), there
exists a unique solution of problem (2)–(4) defined on [0, +∞)
and this solution remains nonnegative and bounded for all 𝑡 ≥0.
Proof. Let 𝜙 = (𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5)𝑇 ∈ 𝐶 and 𝑥 ∈ Ω. We define𝐹 = (𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5) by𝐹1 (𝜙) (𝑥) = 𝜆 − 𝜇𝑇𝜙1 (𝑥, 0)− 𝑓 (𝜙1 (𝑥, 0) , 𝜙4 (𝑥, 0)) 𝜙4 (𝑥, 0)+ 𝜌𝜙2 (𝑥, 0) ,𝐹2 (𝜙) (𝑥) = 𝑓 (𝜙1 (𝑥, 0) , 𝜙4𝑥, 0) 𝜙4 (𝑥, 0)− (𝜌 + 𝜇𝐸 + 𝛾) 𝜙2 (𝑥, 0) ,𝐹3 (𝜙) (𝑥) = 𝛾𝜙2 (𝑥, 0) − 𝜇𝐼𝜙3 (𝑥, 0)− 𝑝𝜙3 (𝑥, 0) 𝜙5 (𝑥, 0) ,𝐹4 (𝜙) (𝑥) = 𝑘𝜙3 (𝑥, 0) − 𝜇𝑉𝜙4 (𝑥, 0) ,𝐹5 (𝜙) (𝑥) = 𝑎𝜙3 (𝑥, −𝜏) 𝜙5 (𝑥, −𝜏) − 𝜇𝐶𝜙5 (𝑥, 0) .

(5)
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Hence, system (2)–(4) can be written of the form𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝐹 (𝑢𝑡 (𝑡)) , 𝑡 > 0𝑢 (0) = 𝜙 ∈ 𝑋, (6)

where 𝑢 = (𝑇, 𝐸, 𝐼, 𝑉, 𝐶)𝑇 and 𝐴𝑢(𝑡) = (0, 0, 0, 𝑑Δ𝑉, 0)𝑇.
Obviously, 𝐹 is locally Lipschitz in 𝑋. By [12–16], we deduce
that system (2) admits a unique local solution on [0, 𝑇max),
where 𝑇max is the maximal existence time for solution of
system (2). In addition, (0, 0, 0, 0, 0) is a lower solution of
each solution of system (2); then we deduce that 𝑇(𝑥, 𝑡) ≥ 0,𝐸(𝑥, 𝑡) ≥ 0, 𝐼(𝑥, 𝑡) ≥ 0, 𝑉(𝑥, 𝑡) ≥ 0 and 𝐶(𝑥, 𝑡) ≥ 0.

Next, we prove the boundedness of solutions by consid-
ering the following function:

𝑆 (𝑥, 𝑡) = 𝑇 (𝑥, 𝑡) + 𝐸 (𝑥, 𝑡) + 𝐼 (𝑥, 𝑡) + 𝑝𝑎𝐶 (𝑥, 𝑡 + 𝜏) . (7)

From system (2), we obtain𝜕𝑆 (𝑥, 𝑡)𝜕𝑡 = 𝜆 − 𝜇𝑇𝑇 (𝑥, 𝑡) − 𝜇𝐸𝐸 (𝑥, 𝑡) − 𝜇𝐼𝐼 (𝑥, 𝑡)
− 𝜇𝐶𝑝𝑎𝐶 (𝑥, 𝑡 + 𝜏) ≤ 𝜆 − 𝜇𝑆 (𝑥, 𝑡) , (8)

where 𝜇 = min{𝜇𝑇, 𝜇𝐸, 𝜇𝐼, 𝜇𝐶}. Thus,

𝑆 (𝑥, 𝑡) ≤ max{𝜆𝜇 ,max
𝑥∈Ω

{𝜙1 (𝑥, 0) + 𝜙2 (𝑥, 0) + 𝜙3 (𝑥, 0)
+ 𝑝𝑎𝜙5 (𝑥, −𝜏)}} . (9)

Then, 𝑇, 𝐸, 𝐼, and 𝐶 are bounded.
To prove the boundedness of 𝑉, from system (2), we get𝜕𝑉 (𝑥, 𝑡)𝜕𝑡 − 𝑑𝑉Δ𝑉 ≤ 𝑘𝛿 − 𝜇𝑉𝑉,𝜕𝑉 (𝑥, 𝑡)𝜕] = 0,

𝑉 (𝑥, 0) = max
𝑥∈Ω

𝜙4 (𝑥, 0) ,
(10)

where 𝛿 = max{𝜆/𝜇,max𝑥∈Ω{𝜙1(𝑥, 0) + 𝜙2(𝑥, 0) + 𝜙3(𝑥, 0) +(𝑝/𝑎)𝜙5(𝑥, −𝜏)}}.
Using the comparison principle [17], we have 𝑉(𝑥, 𝑡) ≤𝑉(𝑡), where 𝑉(𝑡) = 𝜙4(𝑥)𝑒−𝜇𝑉𝑡 + (𝑘𝛿/𝜇𝑉)(1 − 𝑒−𝜇𝑉𝑡) is the

solution of the problem𝑑𝑉𝑑𝑡 = 𝑘𝛿 − 𝜇𝑉𝑉𝑉 (0) = max
𝑥∈Ω

𝜙4 (𝑥, 0) . (11)

Since 𝑉(𝑡) ≤ max{𝑘𝛿/𝜇𝑉,max𝑥∈Ω𝜙4(𝑥, 0)}, ∀(𝑥, 𝑡) ∈ Ω ×[0, 𝑇max), we have that 𝑉 is bounded.
Therefore, we have proved that 𝑇(𝑥, 𝑡), 𝐸(𝑥, 𝑡), 𝐼(𝑥, 𝑡),𝑉(𝑥, 𝑡), and 𝐶(𝑥, 𝑡) are bounded on Ω × [0, 𝑇max). Hence,

it follows from the standard theory for semilinear parabolic
systems [18] that 𝑇max = +∞.

As in [11], the basic reproduction number of virus in the
absence of spatial dependence is given by𝑅0 = 𝜆𝛽𝑘𝛾𝜇𝐼𝜇𝑉 (𝜆𝛼1 + 𝜇𝑇) (𝜇𝐸 + 𝛾) . (12)

In addition to 𝑅0, we define the CTL immune response
reproduction number 𝑅1 of our model by𝑅1 = 𝑎𝐼1𝜇𝐶 , (13)

which represents the threshold level to activate the CTL cells
response.

Theorem 2.
(i) If 𝑅0 ≤ 1, system (2) has always an infection-free

equilibrium of the form 𝑄0(𝜆/𝜇𝑇, 0, 0, 0, 0).
(ii) If 𝑅0 > 1, system (2) has an immune-free equilibrium

of the form 𝑄1(𝑇1, 𝐸1, 𝐼1, 𝑉1, 0) with 𝑇1 ∈ (0, 𝜆/𝜇𝑇),𝐸1 ≥ 0, 𝐼1 ≥ 0, and 𝑉1 ≥ 0.
(iii) If𝑅1 > 1, system (2) has a chronic infection equilibrium

of the form 𝑄2(𝑇2, 𝐸2, 𝐼2, 𝑉2, 𝐶2) with 𝑇2 ∈ (0, 𝜆/𝜇𝑇 −𝜇𝐼𝜇𝐶(𝜇𝐸 + 𝛾)/𝑎𝛾𝜇𝑇), 𝐸2 ≥ 0, 𝐼2 ≥ 0, 𝑉2 ≥ 0, and𝐶2 ≥ 0.
3. Stability Analysis and Hopf Bifurcation

First, we discuss the global stability of the infection-free
equilibrium 𝑄0 and the immune-free equilibrium 𝑄1.
Theorem 3.

(i) The infection-free equilibrium 𝑄0 is globally asymptot-
ically stable if 𝑅0 ≤ 1.

(ii) The immune-free equilibrium 𝑄1 is globally asymptot-
ically stable if 𝑅1 ≤ 1 < 𝑅0 and𝑅0 ≤ 1

+ [𝜇𝑇𝜇𝐼𝜇𝑉 (𝜇𝐸 + 𝛾) + 𝛼2𝜇𝑇𝜆𝑘𝛾] (𝜇𝐸 + 𝜌 + 𝛾) + 𝜌𝛼3𝑘𝛾𝜆2𝜌𝜇𝐼𝜇𝑉 (𝜇𝐸 + 𝜌 + 𝛾) (𝜇𝑇 + 𝛼1𝜆) . (14)

Proof. By using the method proposed by Hattaf and Yousfi
[19], we propose the following Lyapunov functional for
system (2)–(4) at 𝑄0:

𝑊0 = ∫
Ω
[𝑇 (𝑥, 𝑡) − 𝑇0 − ∫𝑇(𝑥,𝑡)

𝑇0

𝑓 (𝑇0, 0)𝑓 (𝑆, 0) 𝑑𝑆
+ 𝜌 (𝑇 (𝑥, 𝑡) − 𝑇0 + 𝐸 (𝑥, 𝑡))22 (1 + 𝛼1𝑇0) (𝜇𝑇 + 𝜇𝐸 + 𝛾) 𝑇0 + 𝜌 + 𝜇𝐸 + 𝛾𝛾
⋅ 𝐼 (𝑥, 𝑡) + 𝐸 (𝑥, 𝑡) + 𝜇𝐼 (𝜌 + 𝜇𝐸 + 𝛾)𝑘𝛾 𝑉 (𝑥, 𝑡)
+ 𝑝 (𝜌 + 𝜇𝐸 + 𝛾)𝑎𝛾 𝐶 (𝑥, 𝑡) + 𝑝 (𝜌 + 𝜇𝐸 + 𝛾)𝛾
⋅ ∫𝑡
𝑡−𝜏

𝐼 (𝑥, 𝜃) 𝐶 (𝑥, 𝜃) 𝑑𝜃] 𝑑𝑥,

(15)
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where 𝑇0 = 𝜆/𝜇𝑇. For convenience, we let 𝜓(𝑥, 𝑡) = 𝜓 and𝜓(𝑥, 𝑡 − 𝜏) = 𝜓𝜏, for any 𝜓 ∈ {𝑇, 𝐸, 𝐼, 𝑉, 𝐶}. By calculation, we
have 𝑑𝑊0𝑑𝑡 = ∫

Ω
[(1 − 𝑓 (𝑇0, 0)𝑓 (𝑇, 0) ) 𝜕𝑇𝜕𝑡

+ 𝜌 (𝑇 − 𝑇0 + 𝐸) (𝜕𝑇/𝜕𝑡 + 𝜕𝐸/𝜕𝑡)(1 + 𝛼1𝑇0) (𝜇𝑇 + 𝜇𝐸 + 𝛾) 𝑇0
+ 𝜌 + 𝜇𝐸 + 𝛾𝛾 𝜕𝐼𝜕𝑡 + 𝜕𝐸𝜕𝑡 + 𝜇𝐼 (𝜌 + 𝜇𝐸 + 𝛾)𝑘𝛾 𝜕𝑉𝜕𝑡
+ 𝑝 (𝜌 + 𝜇𝐸 + 𝛾)𝑎𝛾 𝜕𝐶𝜕𝑡
+ 𝑝 (𝜌 + 𝜇𝐸 + 𝛾)𝛾 𝜕𝜕𝑡 ∫𝑡𝑡−𝜏 𝐼𝜃𝐶𝜃 𝑑𝜃] 𝑑𝑥.

(16)

Noting that 𝜆 = 𝜇𝑇𝑇0, the time derivative of 𝑊0 along the
positive solutions of system (2) satisfies

𝑑𝑊0𝑑𝑡 = ∫
Ω
[(1 − 𝑓 (𝑇0, 0)𝑓 (𝑇, 0) ) 𝜇𝑇 (𝑇0 − 𝑇)

+ 𝑓 (𝑇0, 0) 𝑓 (𝑇, 𝑉)𝑓 (𝑇, 0) 𝑉 + 𝜌(1 − 𝑓 (𝑇0, 0)𝑓 (𝑇, 0) )𝐸
− 𝜌𝜇𝑇 (𝑇 − 𝑇0)2(1 + 𝛼1𝑇0) (𝜇𝑇 + 𝜇𝐸 + 𝛾) 𝑇0
− 𝜌 (𝜇𝐸 + 𝛾) 𝐸2(1 + 𝛼1𝑇0) (𝜇𝑇 + 𝜇𝐸 + 𝛾) 𝑇0
+ 𝜌𝐸(1 + 𝛼1𝑇0) 𝑇0 (𝑇0 − 𝑇) − 𝑝 (𝜌 + 𝜇𝐸 + 𝛾)𝛾 𝐼𝐶
− 𝜇𝐼𝜇𝑉 (𝜌 + 𝜇𝐸 + 𝛾)𝑘𝛾 𝑉 + 𝑝 (𝜌 + 𝜇𝐸 + 𝛾)𝛾 𝐼𝜏𝐶𝜏
− 𝜇𝐶𝑝 (𝜌 + 𝜇𝐸 + 𝛾)𝑎𝛾 𝐶
+ 𝑝 (𝜌 + 𝜇𝐸 + 𝛾)𝛾 [𝐼𝐶 − 𝐼𝜏𝐶𝜏]
+ 𝑑𝜇𝐼 (𝜌 + 𝜇𝐸 + 𝛾)𝑘𝛾 Δ𝑉]𝑑𝑥
= −∫
Ω
[( 1𝑇 + 𝜌(𝜇𝑇 + 𝜇𝐸 + 𝛾) 𝑇0) 𝜇𝑇 (𝑇 − 𝑇0)21 + 𝛼1𝑇0

+ 𝜌 (𝜇𝐸 + 𝛾) 𝐸2(1 + 𝛼1𝑇0) (𝜇𝑇 + 𝜇𝐸 + 𝛾) 𝑇0 + 𝜌 (𝑇 − 𝑇0)2 𝐸(1 + 𝛼1𝑇0) 𝑇𝑇0
− 𝜇𝐼𝜇𝑉 (𝜌 + 𝜇𝐸 + 𝛾)𝑘𝛾 (𝑅0 − 1)𝑉

+ (𝛼2 + 𝛼3𝑇)𝑉21 + 𝛼1𝑇 + 𝛼2𝑉 + 𝛼3𝑇𝑉𝑓 (𝑇0, 0)
+ 𝜇𝐶𝑝 (𝜌 + 𝜇𝐸 + 𝛾)𝑎𝛾 𝐶]𝑑𝑥.

(17)

Therefore, 𝑑𝑊0/𝑑𝑡 ≤ 0 if 𝑅0 ≤ 1. In addition, it is
not hard to verify that the largest compact invariant set in{(𝑇, 𝐸, 𝐼, 𝑉, 𝐶) | 𝑑𝑊0/𝑑𝑡 = 0} is just the singleton {𝑄0}.
From LaSalle invariance principle [20], we deduce that 𝑄0 is
globally asymptotically stable.

Next, we construct the Lyapunov functional for system
(2)–(4) at 𝑄1:
𝑊1 = ∫

Ω
[𝑇 − 𝑇1 − ∫𝑇

𝑇1

𝑓 (𝑇1, 𝑉1)𝑓 (𝑆, 𝑉1) 𝑑𝑆
+ 𝜌 (1 + 𝛼2𝑉1) (𝑇 − 𝑇1 + 𝐸 − 𝐸1)22 (1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) (𝜇𝑇 + 𝜇𝐸 + 𝛾) 𝑇1
+ 𝑓 (𝑇1, 𝑉1) 𝑉1𝛾𝐸1 𝐼1Φ( 𝐼𝐼1) + 𝐸1Φ( 𝐸𝐸1)
+ 𝜇𝐼𝑓 (𝑇1, 𝑉1) 𝑉1𝑘𝛾𝐸1 𝑉1Φ( 𝑉𝑉1) + 𝑝𝑓 (𝑇1, 𝑉1) 𝑉1𝑎𝛾𝐸1 𝐶
+ 𝑝𝑓 (𝑇1, 𝑉1) 𝑉1𝛾𝐸1 ∫𝑡

𝑡−𝜏
𝐼𝜃𝐶𝜃 𝑑𝜃]𝑑𝑥,

(18)

where Φ(𝑥) = 𝑥 − 1 − ln(𝑥). Obviously, the function Φ has a
global minimum at 1 and satisfies Φ(1) = 0. Calculating the
time derivative of 𝑊1 along the positive solutions of system
(2) and applying 𝜆 = 𝜇𝑇𝑇1 + 𝑓(𝑇1, 𝑉1)𝑉1 − 𝜌𝐸1, we obtain
𝑑𝑊1𝑑𝑡 = ∫

Ω
[(1 − 𝑓 (𝑇1, 𝑉1)𝑓 (𝑇, 𝑉1) ) 𝜇𝑇 (𝑇1 − 𝑇)

+ 𝑓 (𝑇1, 𝑉1) 𝑓 (𝑇, 𝑉)𝑓 (𝑇, 𝑉1) 𝑉 + 𝜌(1 − 𝑓 (𝑇1, 𝑉1)𝑓 (𝑇, 𝑉1) )𝐸
− 𝜇𝑇𝜌 (1 + 𝛼2𝑉1)(1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) (𝜇𝑇 + 𝜇𝐸 + 𝛾) 𝑇1 (𝑇 − 𝑇1)2
− 𝜌 (1 + 𝛼2𝑉1) (𝜇𝐸 + 𝛾)(1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) (𝜇𝑇 + 𝜇𝐸 + 𝛾) 𝑇1 (𝐸 − 𝐸1)2
− 𝜌 (1 + 𝛼2𝑉1) (𝐸 − 𝐸1) (𝑇 − 𝑇1)2(1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) 𝑇1𝑇 − (𝑓 (𝑇1, 𝑉1))2𝑓 (𝑇, 𝑉1) 𝑉1
+ 4𝑓 (𝑇1, 𝑉1) 𝑉1 − 𝑓 (𝑇1, 𝑉1) 𝑉 − 𝑓 (𝑇1, 𝑉1) 𝑉1 𝐼1𝐸𝐼𝐸1
− 𝑓 (𝑇, 𝑉)𝑉𝐸1𝐸 − 𝑓 (𝑇1, 𝑉1) 𝑉1𝑉1𝐼𝐼1𝑉 + 𝑝𝑓 (𝑇1, 𝑉1) 𝑉1𝛾𝐸1 (𝐼1
− 𝜇𝐶𝑎 )𝐶]𝑑𝑥 + 𝑑𝜇𝐼𝑓 (𝑇1, 𝑉1) 𝑉1𝑘𝛾𝐸1 ∫

Ω
(1 − 𝑉1𝑉 )Δ𝑉𝑑𝑥



International Journal of Differential Equations 5

= −∫
Ω
[ (1 + 𝛼2𝑉1) (𝑇 − 𝑇1)2𝑇𝑇1 (1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) ((𝜇𝑇𝑇1 − 𝜌𝐸1)

+ 𝜌𝜇𝑇𝑇𝜇𝑇 + 𝜇𝐸 + 𝛾 + 𝜌𝐸)
+ 𝜌 (𝐸 − 𝐸1)2 (1 + 𝛼2𝑉1) (𝜇𝐸 + 𝛾)𝑇1 (1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) (𝜇𝑇 + 𝜇𝐸 + 𝛾) − 𝑓 (𝑇1, 𝑉1)
⋅ 𝑉1 (5 − 𝑓 (𝑇1, 𝑉1)𝑓 (𝑇, 𝑉1) − 𝐼1𝐸𝐸1𝐼 − 𝑓 (𝑇, 𝑉)𝑓 (𝑇1, 𝑉1) 𝑉𝐸1𝑉1𝐸 − 𝑉1𝐼𝑉𝐼1
− 𝑓 (𝑇, 𝑉1)𝑓 (𝑇, 𝑉) )
+ 𝑓 (𝑇1, 𝑉1) (1 + 𝛼1𝑇) (𝛼2 + 𝛼3𝑇) (𝑉 − 𝑉1)2(1 + 𝛼1𝑇 + 𝛼2𝑉1 + 𝛼3𝑇𝑉1) (1 + 𝛼1𝑇 + 𝛼2𝑉 + 𝛼3𝑇𝑉)
− 𝑝𝜇𝐶𝑓 (𝑇1, 𝑉1) 𝑉1𝑎𝛾𝐸1 (𝑅1 − 1)𝐶]𝑑𝑥
− 𝑑𝜇𝐼𝑓 (𝑇1, 𝑉1) 𝑉21𝑘𝛾𝐸1 ∫

Ω

‖∇𝑉‖2𝑉2 𝑑𝑥.
(19)

Using the arithmetic-geometric inequality, we get

5 − 𝑓 (𝑇1, 𝑉1)𝑓 (𝑇, 𝑉1) − 𝐼1𝐸𝐸1𝐼 − 𝑓 (𝑇, 𝑉)𝑓 (𝑇1, 𝑉1) 𝑉𝐸1𝑉1𝐸 − 𝑉1𝐼𝑉𝐼1
− 𝑓 (𝑇, 𝑉1)𝑓 (𝑇, 𝑉) ≤ 0. (20)

Therefore, 𝑑𝑊1/𝑑𝑡 ≤ 0 if 𝑅1 ≤ 1 and 𝜌𝐸1 ⩽ 𝜇𝑇𝑇1.
Obviously, the condition 𝜌𝐸1 ⩽ 𝜇𝑇𝑇1 is equivalent to

𝑅0 ≤ 1
+ [𝜇𝑇𝜇𝐼𝜇𝑉 (𝜇𝐸 + 𝛾) + 𝛼2𝜇𝑇𝜆𝑘𝛾] (𝜇𝐸 + 𝜌 + 𝛾) + 𝜌𝛼3𝑘𝛾𝜆2𝜌𝜇𝐼𝜇𝑉 (𝜇𝐸 + 𝜌 + 𝛾) (𝜇𝑇 + 𝛼1𝜆) . (21)

In addition, 𝑑𝑊1/𝑑𝑡 = 0 if and only if 𝑇 = 𝑇1, 𝐸 = 𝐸1, 𝐼 = 𝐼1,𝑉 = 𝑉1, and 𝐶 = 0. Hence, the largest compact invariant set
in {(𝑇, 𝐸, 𝐼, 𝑉, 𝐶) | 𝑑𝑊1/𝑑𝑡 = 0} is the singleton {𝑄1}. This
proves the global stability of 𝑄1 by using LaSalle’s invariance
principle [20].

From the above theorem, we deduce that the time delay
in the activation of CTL immune response has no effect on
the stability of 𝑄0 and 𝑄1. Next we investigate the stability
and existence of Hopf bifurcation at the chronic infection
equilibrium 𝑄2.

When 𝜏 = 0, system (2) becomes system (1). ByTheorem3
(iii) [11], we deduce the following result.

Theorem 4. When 𝜏 = 0, the chronic infection equilibrium
with immune response 𝑄2 is globally asymptotically stable if𝑅1 > 1 and𝑘𝛽𝜇𝐶𝜌 ≤ 𝛼1𝜆𝜌𝑎𝜇𝑉 + 𝜇𝑇 (𝜌 + 𝜇𝐸 + 𝛾) (𝛼2𝑘𝜇𝐶 + 𝑎𝜇𝑉)+ 𝛼3𝜌𝜆𝑘𝜇𝐶. (22)

Now, we study the existence of Hopf bifurcation by
regarding time delay 𝜏 as the bifurcation parameter.

Let 0 = 𝜇0 < 𝜇1 < ⋅ ⋅ ⋅ < 𝜇𝑛 < ⋅ ⋅ ⋅ be
the eigenvalues of −Δ on Ω with homogeneous Neumann
boundary conditions, and for = 0, 1, 2, . . ., let 𝐸(𝜇𝑖) be the
space of eigenfunctions corresponding to 𝜇𝑖 in 𝐶1(Ω). Let{𝜙𝑖𝑗 : 𝑗 = 1, 2, . . . , dim𝐸(𝜇𝑖)} be an orthonormal basis of𝐸(𝜇𝑖), 𝑋 = [𝐶1(Ω)]5 and 𝑋𝑖𝑗 = {𝑐𝜙𝑖𝑗 : 𝑐 ∈ R5}. Then,𝑋 = ⨁∞𝑖=1𝑋𝑖,𝑋𝑖 = ⨁dim[𝑆(𝜇𝑖)]

𝑗=1 𝑋𝑖𝑗.
The linearization of system (2) at the constant solution𝑄2(𝑇2, 𝐸2, 𝐼2, 𝑉2, 𝐶2) can be expressed by𝜕𝑍𝜕𝑡 = 𝐷Δ𝑍 + 𝐽𝑍 + 𝐽∗𝑍𝜏, (23)

where 𝑍 = (𝑇, 𝐸, 𝐼, 𝑉, 𝐶), 𝑍𝜏 = (𝑇𝜏, 𝐸𝜏, 𝐼𝜏, 𝑉𝜏, 𝐶𝜏), and 𝐷 =(0, 0, 0, 𝑑, 0),

𝐽 = ((((((
(

−𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2 − 𝜇𝑇 𝜌 −𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2 − 𝑓 (𝑇2, 𝑉2) 0 0𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2 − (𝜇𝐸 + 𝜌 + 𝛾) 0 𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2 + 𝑓 (𝑇2, 𝑉2) 00 𝛾 𝜇𝐼 − 𝑝𝐶2 0 −𝑝𝐼20 0 𝑘 −𝜇𝑉 00 0 0 0 −𝜇𝐶

))))))
)

,

𝐽∗ = (((
(

0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 𝑎𝐶2 0 𝑎𝐼2
)))
)

.
(24)
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Let L𝑍 = 𝐷Δ𝑍 + 𝐽𝑍(𝑥, 𝑡) + 𝐽∗𝑍(𝑥, 𝑡 − 𝜏). For each 𝑖 =0, 1, 2, . . ., 𝑋𝑖 is invariant under the operator L, and 𝜉 is an
eigenvalue ofL if and only if it is satisfying the characteristic
equation

det (−𝜉𝐼 − 𝜇𝑖𝐷 + 𝐽 + 𝑒−𝜉𝜏𝐽∗) = 0. (25)

Then, at 𝑄2, the associated characteristic equation of system
(2) is given by

𝜉5 + 𝑎1𝜉4 + 𝑎2𝜉3 + 𝑎3𝜉2 + 𝑎4𝜉 + 𝑎5+ 𝑒−𝜉𝜏 (𝑏1𝜉4 + 𝑏2𝜉3 + 𝑏3𝜉2 + 𝑏4𝜉 + 𝑏5) = 0, (26)

where

𝑎1 = 𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2 + 𝜇𝑇 + 𝜇𝐼 + 𝜇𝑉 + 𝜇𝐶 + 𝑝𝐶2 + 𝜇𝐸
+ 𝜌 + 𝛾 + 𝜇𝑖𝑑,

𝑎2 = (𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2 + 𝜇𝑇) [(𝜇𝐸 + 𝜌 + 𝛾)
+ (𝜇𝑉 + 𝜇𝑖𝑑) + 𝜇𝐼 + 𝜇𝐶 + 𝑝𝐶2] + (𝜇𝐸 + 𝜌 + 𝛾) (𝜇𝑉+ 𝜇𝑖𝑑 + 𝜇𝐼 + 𝜇𝐶 + 𝑝𝐶2) + (𝜇𝐼 + 𝑝𝐶2) (𝜇𝑉 + 𝜇𝑖𝑑+ 𝜇𝐶) + (𝜇𝑉 + 𝜇𝑖𝑑) 𝜇𝐶 + 𝜇𝑇𝜌,

𝑎3 = (𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2 + 𝜇𝑇) [(𝜇𝑉 + 𝜇𝑖𝑑 + 𝜇𝐶)
⋅ (𝜇𝐼 + 𝑝𝐶2) + (𝜇𝑉 + 𝜇𝑖𝑑) 𝜇𝐶] + (𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2
+ 𝜇𝑇) (𝜇𝐸 + 𝛾) (𝜇𝐼 + 𝜇𝑉 + 𝜇𝑖𝑑 + 𝜇𝐶 + 𝑝𝐶2)
+ 𝜇𝐶 (𝜇𝑉 + 𝜇𝑖𝑑) (𝜇𝐼 + 𝑝𝐶2 + 𝜇𝐸 + 𝜌 + 𝛾)
− 𝑘𝛾𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2 + 𝜇𝑇𝜌 (𝜇𝑉 + 𝜇𝑖𝑑 + 𝜇𝐼 + 𝜇𝐶
+ 𝑝𝐶2) ,

𝑎4 = (𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2 + 𝜇𝑇)[(𝜇𝑉 + 𝜇𝑖𝑑)
⋅ 𝜇𝐶 (𝜇𝐼 + 𝑝𝐶2) + (𝜇𝐸 + 𝛾) (𝜇𝑉 + 𝜇𝑖𝑑 + 𝜇𝐼 + 𝑝𝐶2)
⋅ 𝜇𝐶 − 𝑘𝛾𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2] − 𝑘𝛾𝜇𝐶𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2
+ 𝜌𝜇𝑇 ((𝜇𝐼 + 𝑝𝐶2) (𝜇𝐶 + 𝜇𝑉 + 𝜇𝑖𝑑) + (𝜇𝑉 + 𝜇𝑖𝑑)

⋅ 𝜇𝐶) + 𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2 [𝑘𝛾𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2
+ (𝜇𝑉 + 𝜇𝑖𝑑) (𝜇𝐸 + 𝛾) (𝜇𝐼 + 𝑝𝐶2)] ,

𝑎5 = −(𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2 + 𝜇𝑇)𝑘𝛾𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2𝜇𝐶
− 𝑘𝛾𝜇𝑇 (𝜇𝑉 + 𝜇𝑖𝑑) 𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2
+ 𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2𝜇𝐶(𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2 + 𝑓 (𝑇2, 𝑉2)) ,

𝑏1 = −𝜇𝐶,
𝑏2 = −𝜇𝐶 [𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2 + 𝜇𝑇 + 𝜇𝐼 + 𝜇𝑉 + 𝜇𝑖𝑑 + 𝜇𝐸

+ 𝜌 + 𝛾] ,
𝑏3 = −𝜇𝐶 [(𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2 + 𝜇𝑇)

⋅ (𝜇𝐼 + 𝜇𝑉 + 𝜇𝑖𝑑 + 𝜇𝐸 + 𝛾) + 𝜇𝐼 (𝜇𝑉 + 𝜇𝑖𝑑)
+ (𝜇𝐼 + 𝜇𝑉 + 𝜇𝑖𝑑) (𝜇𝐸 + 𝜌 + 𝛾) + 𝜌𝜇𝑇] ,

𝑏4 = −𝜇𝐶 [(𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2 + 𝜇𝑇)
⋅ (𝜇𝐼 (𝜇𝑉 + 𝜇𝑖𝑑) + (𝜇𝐸 + 𝛾) (𝜇𝐼 + 𝜇𝑉 + 𝜇𝑖𝑑))
− 𝑘𝛾(𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2 + 𝑓 (𝑇2, 𝑉2))
+ 𝜇𝑇𝜌 (𝜇𝐼 + 𝜇𝑉 + 𝜇𝑖𝑑)] ,

𝑏5 = −𝜇𝐶 [(𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑇 𝑉2 + 𝜇𝑇)𝜇𝐼 (𝜇𝑉 + 𝜇𝑖𝑑)
⋅ (𝜇𝐸 + 𝛾) − 𝑘𝛾𝜇𝑇(𝜕𝑓 (𝑇2, 𝑉2)𝜕𝑉 𝑉2 + 𝑓 (𝑇2, 𝑉2))
+ 𝜌𝜇𝑇𝜇𝐼 (𝜇𝑉 + 𝜇𝑖𝑑)] .

(27)

For 𝜏 ̸= 0, we suppose that (26) has a purely imaginary
root 𝜉 = 𝑖𝜔 with 𝜔 > 0. Substituting 𝜉 = 𝑖𝜔 in (26) and
separating the real and the imaginary parts, we get

𝑤5 − 𝑎2𝑤3 + 𝑎4𝑤 = (𝑏1𝑤4 − 𝑏3𝑤2 + 𝑏5) sin𝜔𝜏+ (𝑏2𝑤3 − 𝑏4𝑤) cos𝜔𝜏,
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𝑎1𝑤4 − 𝑎3𝑤2 + 𝑎5 = − (𝑏1𝑤4 − 𝑏3𝑤2 + 𝑏5) cos𝜔𝜏+ (𝑏2𝑤3 − 𝑏4𝑤) sin𝜔𝜏.
(28)

Squaring and adding the two equations of (28), we have

𝜔10 + 𝑐1𝜔8 + 𝑐2𝜔6 + 𝑐3𝜔4 + 𝑐4𝜔2 + 𝑐5 = 0, (29)

where

𝑐1 = 𝑎21 − 2𝑎2 − 𝑏21 ,𝑐2 = 𝑎22 + 2𝑎4 − 2𝑎1𝑎3 + 2𝑏1𝑏3 − 𝑏22 ,𝑐3 = 𝑎23 − 2𝑎2𝑎4 − 𝑏23 + 2𝑏2𝑏4 + 2𝑎1𝑎5 − 2𝑏1𝑏5,𝑐4 = 𝑎24 − 𝑏24 − 2𝑎3𝑎5 + 2𝑏3𝑏5,𝑐5 = 𝑎25 − 𝑏25 .
(30)

Letting 𝑧 = 𝜔2 we obtain
ℎ (𝑧) = 𝑧5 + 𝑐1𝑧4 + 𝑐2𝑧3 + 𝑐3𝑧2 + 𝑐4𝑧 + 𝑐5 = 0. (31)

Denote

𝑝1 = − 625𝑐21 + 35𝑐2,𝑞1 = 8125𝑐31 + 625𝑐1𝑐2 + 25𝑐3,𝑟1 = − 3625𝑐41 + 3125𝑐21 𝑐2 − 225𝑐1𝑐3 + 15𝑐4,𝑝2 = −13𝑝21 − 4𝑟1,
𝑞2 = − 227𝑝31 + 83𝑝1𝑟2 − 𝑞21,
Δ 1 = 127𝑝32 + 14𝑞22,
𝑠∗ = 3√−𝑞22 + √Δ 1 + 3√−𝑞22 − √Δ 1 + 13𝑝1,Δ 2 = −𝑠∗ − 𝑝1 + 2𝑞1√𝑠∗ − 𝑝1 ,Δ 3 = −𝑠∗ − 𝑝1 − 2𝑞1√𝑠∗ − 𝑝1 ,𝑧 = 𝑞12 (𝑝1 − 𝑠∗) − 15𝑝.

(32)

Suppose that (31) has positive roots 𝑧𝑘, 𝑘 = 1, 2, 3, 4, 5,
where 𝑤𝑘 = √𝑧𝑘. From (28), we have

cos𝜔𝑘𝜏 = (𝑤5 − 𝑎2𝑤3 + 𝑎4𝑤) (𝑏2𝑤3 − 𝑏4𝑤) − (𝑎1𝑤4 − 𝑎3𝑤2 + 𝑎5) (𝑏1𝑤4 − 𝑏3𝑤2 + 𝑏5)(𝑏2𝑤3 − 𝑏4𝑤)2 + (𝑏1𝑤4 − 𝑏3𝑤2 + 𝑏5)2 = 𝐿 (𝜔𝑘) . (33)

Therefore𝜏𝑘𝑗 = 1𝜔𝑘 [arccos 𝐿 (𝜔𝑘) + 2𝑗𝜋] ,
𝑘 = 1, 2, 3, 4, 5, 𝑗 = 0, 1, 2, . . . . (34)

Then ±𝑖𝑤𝑘 are a pair of purely imaginary roots of (26) with𝜏 = 𝜏𝑘𝑗 .
Define 𝜏0 = 𝜏𝑘0𝑗0 = min

1≤𝑘≤5,𝑗≥1
{𝜏𝑘𝑗 } ,

𝑤0 = 𝑤𝑘0 . (35)

FromTheorem 4 and by a similar argument as that in [21,
22], we have the following results.

Lemma 5. Suppose that 𝑅1 > 1 and (22) hold.
(i) If one of the following holds: (a) 𝑐5 < 0; (b) 𝑐5 ≥ 0,𝑞1 = 0, Δ 0 ≥ 0, and 𝑝1 < 0 or 𝑟1 ≤ 0 and there exist𝑧∗ ∈ {𝑧1, 𝑧2, 𝑧3, 𝑧4} such that 𝑧∗ > 0 and ℎ(𝑧∗) ≤ 0;

(c) 𝑐5 ≥ 0, 𝑞1 ̸= 0, 𝑠∗ > 𝑝1, Δ 2 ≥ 0, or Δ 3 ≥ 0
and there exist 𝑧∗ ∈ {𝑧1, 𝑧2, 𝑧3, 𝑧4} such that 𝑧∗ > 0
and ℎ(𝑧∗) ≤ 0; (d) 𝑐5 ≥ 0, 𝑞1 ̸= 0, 𝑠∗ < 𝑝1,𝑞21/4(𝑝1 − 𝑠∗)2 + (1/2)𝑠∗ = 0, 𝑧 > 0, and ℎ(𝑧) ≤ 0,
then all the roots of (26) have negative real parts when𝜏 ∈ [0, 𝜏0).

(ii) If all the conditions (a)–(d) of (i) are not satisfied,
then all roots of (26) have negative real parts for all𝜏 ≥ 0.

We consider 𝜉(𝜏) = 𝜉(𝜏) + 𝑖𝜔(𝜏) to be a root of (26)
satisfying 𝜉(𝜏) = 0 and 𝜔(𝜏) = 𝜔0. Differentiating the two
sides of (26) with respect to 𝜏 and noticing that 𝜉 is a function
of 𝜏, then

(𝑑𝜉𝑑𝜏)−1 = − 5𝜉4 + 4𝑎1𝜉3 + 3𝑎2𝜉2 + 2𝑎3𝜉 + 𝑎4𝜉 (𝜉5 + 𝑎1𝜉4 + 𝑎2𝜉3 + 𝑎3𝜉2 + 𝑎4𝜉 + 𝑎5)
+ 4𝑏1𝜉3 + 3𝑏2𝜉2 + 2𝑏3𝜉1 + 𝑏4𝜉 (𝑏1𝜉4 + 𝑏2𝜉3 + 𝑏3𝜉2 + 𝑏4𝜉 + 𝑏5) − 𝜏𝜉 .

(36)
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From (28) we obtain

[𝑑Re (𝜉 (𝜏))𝑑𝜏 ]−1
𝜏=𝜏
𝑗

𝑘

= − (5𝜔4𝑘 − 3𝑎2𝜔2𝑘 + 𝑎4) (−𝜔6𝑘 + 𝑎2𝜔4𝑘 − 𝑎4𝜔2𝑘)(−𝜔6𝑘 + 𝑎2𝜔4𝑘 − 𝑎4𝜔2𝑘)2 + (𝑎1𝜔5𝑘 − 𝑎3𝜔3𝑘 + 𝑎5𝜔𝑘)2
+ (4𝑎1𝜔3𝑘 − 2𝑎3𝜔𝑘) (𝑎1𝜔5𝑘 − 𝑎3𝜔3𝑘 + 𝑎5𝜔𝑘)(−𝜔6𝑘 + 𝑎2𝜔4𝑘 − 𝑎4𝜔2𝑘)2 + (𝑎1𝜔5𝑘 − 𝑎3𝜔3𝑘 + 𝑎5𝜔𝑘)2
+ (−3𝑏2𝜔2𝑘 + 𝑏4) (𝑏2𝜔4𝑘 − 𝑏4𝜔2𝑘)(𝑏2𝜔4𝑘 − 𝑏4𝜔2𝑘)2 + (𝑏1𝜔5𝑘 − 𝑏3𝜔3𝑘 + 𝑏5𝜔𝑘)2
+ (−4𝑏1𝜔3𝑘 + 2𝑏3𝜔𝑘) (𝑏1𝜔5𝑘 − 𝑏3𝜔3𝑘 + 𝑏5𝜔𝑘)(𝑏2𝜔4𝑘 − 𝑏4𝜔2𝑘)2 + (𝑏1𝜔5𝑘 − 𝑏3𝜔3𝑘 + 𝑏5𝜔𝑘)2 .

(37)

By (26) we get(𝜔5 − 𝑎2𝜔3 + 𝑎4𝜔)2 + (𝑎1𝜔4 − 𝑎3𝜔2 + 𝑎5)2= (𝑏2𝜔3 − 𝑏4𝜔)2 + (𝑏1𝜔4 − 𝑏3𝜔2 + 𝑏5) . (38)

Then

[𝑑Re (𝜉 (𝜏))𝑑𝜏 ]−1
𝜏=𝜏
𝑗

𝑘

= 5𝑧4𝑘 + 4𝑐1𝑧3𝑘 + 3𝑐2𝑧2𝑘 + 2𝑐3𝑧𝑘 + 𝑎4(𝑏1𝜔4𝑘 − 𝑏3𝜔2𝑘 + 𝑏5)2 + (𝑏2𝜔2𝑘 − 𝑏4)2
= ℎ (𝑧𝑘)(𝑏1𝜔4𝑘 − 𝑏3𝜔2𝑘 + 𝑏5)2 + (𝑏2𝜔2𝑘 − 𝑏4)2 .

(39)

Therefore, it follows that

sign [𝑑Re (𝜉 (𝜏))𝑑𝜏 ]
𝜏=𝜏
𝑗

𝑘

= sign [𝑑Re (𝜉 (𝜏))𝑑𝜏 ]−1
𝜏=𝜏
𝑗

𝑘= sign [ℎ (𝑧𝑘)] . (40)

Since 𝑧𝑘 > 0, then Re[𝑑𝜉𝑘(𝜏)/𝑑𝜏]𝜏=𝜏𝑗
𝑘

and ℎ(𝑧𝑘) have the
same sign.

From the above analysis and the Hopf bifurcation the-
orem for functional differential equation [20], we have the
following result.

Theorem 6. Suppose that 𝑅1 > 1 and (22) hold.
(i) If the conditions (a)–(d) of Lemma 5 are all not

satisfied, then the chronic infection equilibrium 𝑄2 is
locally asymptotically stable for all time delay 𝜏 ≥ 0.

(ii) If one of the conditions (a)–(d) of Lemma 5 is satisfied,
then the chronic infection equilibrium 𝑄2 is locally
asymptotically stable for 𝜏 ∈ [0, 𝜏0).

(iii) If the condition of (ii) is satisfied and ℎ(𝑧𝑘) ̸= 0, then
system (2) undergoes aHopf bifurcation at𝑄2 when 𝜏 =𝜏0.

4. Conclusion

In this paper, we have studied anHIV infectionmodel includ-
ing infected cells in eclipse stage and delay in the activation
of CTL immune response.Themodel is governed by reaction
diffusion equations and the transmission process is modeled
by a specific nonlinear incidence rate that includes many
types of special incidence functions as special cases. First,
we discussed the nonnegativity and boundedness of solutions
and the existence of equilibria of system (2). The global
stability of the infection-free equilibrium 𝑄0 has been given
by the Lyapunov’s direct method and LaSalle’s invariance
principal when the basic reproductive number 𝑅0 ≤ 1, which
means that the infection is cleared and the virus dies out. We
also obtained the global asymptotic stability of the immune-
free infection equilibrium when 𝑅0 > 1 and condition (14) is
satisfied, which means that the infection will become chronic
without persistent CTL immune response. If 𝑅0 > 1 and𝑅1 > 1, there exists a chronic infection equilibrium with
CTL immune response 𝑄2. We have shown that the chronic
infection equilibrium𝑄2 is locally asymptotically stable when
the delay is sufficiently small, but with the increase of the time
delay, the stability of 𝑄2 may destabilize and lead to Hopf
bifurcation.

The results of this paper reflect the fact that the immuno-
logical delay in (2) do not affect the positivity and bounded-
ness of solutions and the global stability of the infection-free
equilibrium and immune-free equilibrium. For the chronic
infection equilibrium, in the absence of delay, the globally
stability is obtained, a small delay does not affect the local
stability, andHopf bifurcationmay occurwhen the time delay
is large enough.

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding the publication of this paper.

References

[1] WHO, “HIV/AIDS, July 2017,” http://www.who.int/%20media-
centre/factsheets/fs360/en/.

[2] M. A. Nowak and C. R. M. Bangham, “Population dynamics of
immune responses to persistent viruses,” Science, vol. 272, no.
5258, pp. 74–79, 1996.

[3] L. Rong, M. A. Gilchrist, Z. Feng, and A. S. Perelson, “Mod-
eling within-host HIV-1 dynamics and the evolution of drug
resistance: trade-offs between viral enzyme function and drug
susceptibility,” Journal of Theoretical Biology, vol. 247, no. 4, pp.
804–818, 2007.

[4] Z. Hu, W. Pang, F. Liao, and W. Ma, “Analysis of a cd4+ t cell
viral infection model with a class of saturated infection rate,”
Discrete and Continuous Dynamical Systems - Series B, vol. 19,
no. 3, pp. 735–745, 2014.

[5] M. Maziane, E. M. Lotfi, K. Hattaf, and N. Yousfi, “Dynamics
of a Class of HIV Infection Models with Cure of Infected Cells
in Eclipse Stage,” Acta Biotheoretica, vol. 63, no. 4, pp. 363–380,
2015.

[6] K. Hattaf, N. Yousfi, and A. Tridane, “Stability analysis of a virus
dynamics model with general incidence rate and two delays,”

http://www.who.int/%20mediacentre/factsheets/fs360/en/
http://www.who.int/%20mediacentre/factsheets/fs360/en/


International Journal of Differential Equations 9

Applied Mathematics and Computation, vol. 221, pp. 514–521,
2013.

[7] J. R. Beddington, “Mutual interference between parasites or
predat ors and its effect on searching efficiency,” Journal of
Animal Ecology, vol. 44, pp. 331–340, 1975.

[8] D. L. DeAngelis, A. H. Goldstein, and R. V. O’Neill, “A model
for trophic interaction,” Ecology, vol. 56, pp. 881–892, 1975.

[9] P. Crowley and E. Martin, “Functional responses and interfer-
ence within and between year classes of a dragonfly population,”
Journal of the North American Benthological Society, vol. 8, pp.
211–221, 1989.

[10] C. Lv, L. Huang, and Z. Yuan, “Global stability for an HIV-1
infectionmodel with Beddington-DeAngelis incidence rate and
CTL immune response,” Communications in Nonlinear Science
and Numerical Simulation, vol. 19, no. 1, pp. 121–127, 2014.

[11] M. Maziane, K. Hattaf, and N. Yousfi, “Global stability for a
class of HIV infection models with cure of infected cells in
eclipse stage and CTL immune response,” International Journal
of Dynamics and Control, 2016.

[12] C. C. Travis and G. F. Webb, “Existence and stability for partial
functional differential equations,” Transactions of the American
Mathematical Society, vol. 200, pp. 395–418, 1974.

[13] J. Wu,Theory and Applications of Partial Functional-Differential
Equations, Springer, New York, NY, USA, 1996.

[14] W. E. Fitzgibbon, “Semilinear functional differential equations
in Banach space,” Journal of Differential Equations, vol. 29, no. 1,
pp. 1–14, 1978.

[15] J. Martin and H. L. Smith, “Abstract functional-differential
equations and reaction-diffusion systems,” Transactions of the
American Mathematical Society, vol. 321, no. 1, pp. 1–44, 1990.

[16] R. H.Martin and H. L. Smith, “Reaction-diffusion systems with
time delays: Monotonicity, invariance, comparison and conver-
gence,” Journal für die reine und Angewandte Mathematik, vol.
1991, no. 413, pp. 1–35, 1991.

[17] M. H. Protter and H. F. Weinberger, Maximum Principles
in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ,
USA, 1967.

[18] D. Henry, Geometric Theory of Semilinear Parabolic Equations,
vol. 840 of Lecture Notes in Mathematics, Springer, New York,
NY, USA, 1993.

[19] K. Hattaf and N. Yousfi, “Global stability for reaction-diffusion
equations in biology,” Computers & Mathematics with Applica-
tions, vol. 66, no. 8, pp. 1488–1497, 2013.

[20] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-
Differential Equations, Springer, Berlin, Germany, 1993.

[21] M. Maziane, E. Lotfi, K. Hattaf, and N. Yousfi, “Impact of Delay
in Immune Response Activation on HIV Infection Dynamics,”
British Journal of Mathematics & Computer Science, vol. 21, no.
4, pp. 1–15, 2017.

[22] T. Zhang,H. Jiang, andZ. Teng, “On the distribution of the roots
of a fifth degree exponential polynomial with application to a
delayed neural network model,”Neurocomputing, vol. 72, no. 4-
6, pp. 1098–1104, 2009.


