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Copyright © 2018 U. Al Khawaja andQasemM. Al-Mdallal.This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

It is known that power series expansion of certain functions such as sech(𝑥) diverges beyond a finite radius of convergence. We
present here an iterative power series expansion (IPS) to obtain a power series representation of sech(𝑥) that is convergent for all 𝑥.
The convergent series is a sum of the Taylor series of sech(𝑥) and a complementary series that cancels the divergence of the Taylor
series for 𝑥 ≥ 𝜋/2. The method is general and can be applied to other functions known to have finite radius of convergence, such
as 1/(1 + 𝑥2). A straightforward application of this method is to solve analytically nonlinear differential equations, which we also
illustrate here.Themethod provides also a robust and very efficient numerical algorithm for solving nonlinear differential equations
numerically. A detailed comparison with the fourth-order Runge-Kutta method and extensive analysis of the behavior of the error
and CPU time are performed.

1. Introduction

It is well-known that the Taylor series of some functions
diverge beyond a finite radius of convergence [1]. For
instance, by way of example not exhaustive enumeration,
the Taylor series of sech(𝑥) and 1/(1 + 𝑥2) diverge for𝑥 ≥ 𝜋/2 and 𝑥 ≥ 1, respectively. Increasing the number
of terms in the power series does not increase the radius
of convergence; it only makes the divergence sharper. The
radius of convergence can be increased only slightly via
some functional transforms [2]. Among the many different
methods of solving nonlinear differential equations [3–9],
the power series is the most straightforward and efficient
[10]. It has been used as a powerful numerical scheme for
many problems [11–19] including chaotic systems [20–23].
Many numerical algorithms and codes have been developed
based on this method [10–12, 20–24]. However, the above-
mentioned finiteness of radius of convergence is a serious
problem that hinders the use of this method to wide class of
differential equations, in particular the nonlinear ones. For
instance, the nonlinear Schrödinger equation (NLSE) with
cubic nonlinearity has the sech(𝑥) as a solution. Using the

power series method to solve this equation produces the
power series of a sech(𝑥), which is valid only for 𝑥 < 𝜋/2.

A review of the literature reveals that the power series
expansionwas exploited by several researchers [10–12, 20–24]
to develop powerful numericalmethods for solving nonlinear
differential equations. Therefore, this paper is motivated by
a desire to extend these attempts to a develop a numerical
scheme with systematic control on the accuracy and error.
Specifically, two main advances are presented in this paper:(1) a method of constructing a convergent power series rep-
resentation of a given functionwith an arbitrarily large radius
of convergence and (2) a method of obtaining analytic power
series solution of a given nonlinear differential equation that
is free from the finite radius of convergence. Through this
paper, we show robustness and efficiency of the method via
a number of examples including the chaotic Lorenz system
[25] and the NLSE. Therefore, solving the problem of finite
radius of convergence will open the door wide for applying
the power series method to much larger class of differential
equations, particularly the nonlinear ones.

It is worth mentioning that the literature includes several
semianalytical methods for solving nonlinear differential
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equations; such as homotopy analysismethod (HAM), homo-
topy perturbation method (HPM), and Adomian decom-
position method (ADM); for more details see [26–29] and
the references therein. Essentially, these methods generate
iteratively a series solution for the nonlinear systems where
we have to solve a linear differential equation at each iteration.
Although these methods prove to be effective in solving
most of nonlinear differential equations and in obtaining a
convergent series solution, they have few disadvantages such
as the large number of terms in the solution as the number of
iterations increases. One of the most important advantages
of the present technique is the simplicity in transforming the
nonlinear differential equation into a set of simple algebraic
difference equations which can be easily solved.

The paper is thus divided into two, seemingly separated,
but actually connected main parts. In the first (Section 2),
we show, for a given function, how a convergent power
series is constructed out of the nonconverging one. In the
second part (Section 3.1), we essentially use this idea to solve
nonlinear differential equations. In Section 3.2, we investigate
the robustness and efficiency of the method by studying the
behavior of its error and CPU time versus the parameters of
the method. We summarise our results in Section 4.

2. Iterative Power Series Method

This section describes how to obtain a convergent power
series for a given function that is otherwise not converging
for all 𝑥. In brief, the method is described as follows. We
expand the function 𝑓(𝑥) in a power series as usual, say
around 𝑥 = 0. Then we reexpress the coefficients, 𝑓(𝑛)(𝑥), in
terms of 𝑓(𝑥). This establishes a recursion relation between
the higher-order coefficients, 𝑓(𝑛)(0), and the lowest order
ones, 𝑓(0)(0) and 𝑓(1)(0), and thus the power series is written
in terms of only these two coefficients. Then the series and
its derivative are calculated at 𝑥 = Δ, where Δ is much less
than the radius of convergence of the power series. A new
power series expansion of 𝑓(𝑥) is then performed at 𝑥 =Δ. Similarly, the higher-order coefficients are reexpressed in
terms of the lowest order coefficients 𝑓(0)(Δ) and𝑓(1)(Δ).The
value of the previous series and its derivative calculated at𝑥 = Δ are then given to𝑓(0)(Δ) and𝑓(1)(Δ), respectively.Then
a new expansion around 2Δ is performed with the lowest
order coefficients being taken from the previous series, and so
on.This iterative process is repeated 𝑁 times. The final series
will correspond to a convergent series at 𝑥 = 𝑁Δ.

Here is a detailed description of themethod.The function𝑓(𝑥) is expanded in a Taylor series, 𝑇0(𝑥), around 𝑥 = 0.
The infinite Taylor series is an exact representation of 𝑓(𝑥)
for 𝑥 < 𝑅 where 𝑅 is the radius of convergence. For 𝑥 ≥ 𝑅
the series diverges. We assume that 𝑥 is divided into 𝑁 small
intervals Δ = 𝑥/𝑁 such that Δ < 𝑅. Expanding 𝑓(𝑥) around
the beginning of each interval we obtain 𝑁 convergent Taylor
series representing 𝑓(𝑥) in each interval

𝑇𝑗 (𝑦) = ∞∑
𝑛=0

1𝑛! 𝑓(𝑛) (𝑗Δ) (𝑦 − 𝑗Δ)𝑛 ,
𝑗Δ ≤ 𝑦 < (𝑗 + 1) Δ, 𝑗 = 0, 1, 2, . . . , 𝑁, (1)

where 𝑇𝑗(𝑦) denotes the Taylor series expansion of 𝑓(𝑦)
around 𝑦 = 𝑗Δ and 𝑓(𝑛)(𝑗Δ) is the 𝑛th derivative of 𝑓(𝑦)
calculated at 𝑦 = 𝑗Δ. It is noted that we use 𝑦 ∈ [(𝑗 −1)Δ, 𝑗Δ] as the independent variable for the 𝑛th Taylor series
expansion to distinguish it from 𝑥 = 𝑁Δ. However, these
series can not be combined in a single series since their ranges
of applicability are different and do not overlap. To obtain a
single convergent power series out of the set of series 𝑇𝑗, we
put forward two new ideas, which constitute the basis of our
method; namely:(1) Reexpress 𝑓(𝑛)(𝑦) in terms of 𝑓(𝑦) as 𝑓(𝑛)(𝑦) =𝐹𝑛[𝑓(𝑦)], where the functional 𝐹𝑛[𝑓(𝑦)] is determined by
direct differentiation of 𝑓(𝑦) for 𝑛 times and then reexpress-
ing the result in terms of 𝑓(𝑦) only. We conjecture that this is
possible for a wide class of functions if not all. At least for the
two specific functions considered here, this turned out to be
possible. Equation (1) then takes the form

𝑇𝑗 (𝑦) = ∞∑
𝑛=0

𝑎𝑛 (𝑎𝑗0) (𝑦 − 𝑗Δ)𝑛 , (2)

where we have renamed 𝑓(𝑗Δ) by 𝑎𝑗0 and 𝐹𝑛[𝑓(𝑗Δ)]/𝑛! by𝑎𝑛(𝑎𝑗0) for a reason to be obvious in the next section. Thus,
the coefficients 𝑎𝑛 for all 𝑛 are determined only by 𝑎𝑗0.(2) Calculate 𝑎𝑗0 from 𝑇𝑗−1 at 𝑗Δ

𝑎𝑗0 = 𝑇𝑗−1 (𝑗Δ) = ∞∑
𝑛=0

𝑎𝑛 (𝑎𝑗−10 ) Δ𝑛, 𝑗 = 1, 2, . . . , 𝑁, (3)

which amounts to assigning the value of the Taylor series
at the end of an interval to 𝑎𝑗0 of the consecutive one.
Equation (3) captures the essence of the recursive feature of
our method; 𝑎𝑁0 is calculated recursively from 𝑎00 by repeated
action of the right-hand-side on 𝑎00 . While 𝑇𝑗 represents the
function 𝑓 within an interval of width Δ, the sequence 𝑎𝑗0
corresponds to the values of the function at the end of the
intervals. In the limit 𝑁 → ∞, or equivalently Δ → 0,
the discrete set of 𝑎𝑗0 values and 𝑗Δ render to the continuous
function 𝑓(𝑥) and its independent variable 𝑥, respectively.
Formally, the convergent power series expansion of 𝑓(𝑥)
around 𝑥 = 0 will thus be given by

𝑓 (𝑥) = lim
𝑁→∞

𝑆𝑁, (4)

where 𝑆𝑁 denotes the 𝑁tℎ iteration of

𝑆 [𝑓 (0)] = ∞∑
𝑛=0

𝑎𝑛 (𝑓 (0)) ( 𝑥𝑁 )𝑛 . (5)

As an illustrative example, we apply themethod to𝑓(𝑥) =
sech(𝑥). The infinite Taylor series expansion of this function
diverges sharply to infinity at 𝑥 = 𝜋/2. The first step is to
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determine the coefficients 𝑎𝑗𝑛, which are the coefficients of the𝑇𝑗 series𝑇𝑗 (𝑦) = sech (𝑦)󵄨󵄨󵄨󵄨𝑦=𝑗Δ + [− sech (𝑦) tanh (𝑦)]𝑦=𝑗Δ (𝑦
− 𝑗Δ) + 12! [−sech3 (𝑦) + sech (𝑦) tanh2 (𝑦)]

𝑦=𝑗Δ

⋅ (𝑦 − 𝑗Δ)2 + 13! [(5sech2 (𝑦) − tanh2 (𝑦))
⋅ sech (𝑦) tanh (𝑦)]

𝑦=𝑗Δ
(𝑦 − 𝑗Δ)3 + 14! [5sech5 (𝑦)

− 18sech3 (𝑦) tanh2 (𝑦) + sech (𝑦) tanh4 (𝑦)]
𝑦=𝑗Δ⋅ (𝑦 − 𝑗Δ)4 + ⋅ ⋅ ⋅ .

(6)

The next step is to reexpress the higher-order coefficients, 𝑎𝑗𝑛,
in terms of the zeroth-order coefficient 𝑎𝑗0 = sech(𝑦)|𝑦=𝑗Δ.
The property sech2(𝑦) + tanh2(𝑦) = 1 is used to that
end. It is noticed, however, that while it is possible to
express the even-𝑛 coefficients in terms of 𝑎𝑗0 only, the odd-𝑛 coefficients can only be expressed terms of both 𝑎𝑗0 and 𝑎𝑗1 =− sech(𝑦) tanh(𝑦)|𝑦=𝑗Δ. In the context of solving differential
equations using the power series method, this reflects the fact
that the solution is expressed in terms of two independent
parameters (initial conditions). The sech function is indeed
a solution of a second-order differential equation, which is
solved using this method in the next section. Equation (6)
then takes the form

𝑇𝑗 (𝑦) = 𝑎𝑗0 + 𝑎𝑗1 (𝑦 − 𝑗Δ) + 12! [1 − 2 (𝑎𝑗0)2]
⋅ 𝑎𝑗0 (𝑦 − 𝑗Δ)2 + 13! [1 − 6 (𝑎𝑗0)2]
⋅ 𝑎𝑗1 (𝑦 − 𝑗Δ)3

+ 14! [1 − 8 (𝑎𝑗0)2 + 8 (𝑎𝑗0)4 − 12 (𝑎𝑗1)2]
⋅ 𝑎𝑗0 (𝑦 − 𝑗Δ)4 + ⋅ ⋅ ⋅ .

(7)

Calculating 𝑇𝑗(𝑦) series at the end of its interval of applica-
bility, 𝑦 = (𝑗 + 1)Δ, we get

𝑇𝑗 ((𝑗 + 1) Δ) = 𝑎𝑗0 + 𝑎𝑗1Δ + 𝑎𝑗2 (𝑎𝑗0) Δ2 + 𝑎𝑗3 (𝑎𝑗0, 𝑎𝑗1) Δ3
+ 𝑎𝑗4 (𝑎𝑗0) Δ4 + ⋅ ⋅ ⋅ , (8)

where the “recursion” coefficients are given by

𝑎𝑗2 (𝑎𝑗0) = 12! [1 − 2 (𝑎𝑗0)2] 𝑎𝑗0,
𝑎𝑗3 (𝑎𝑗0, 𝑎𝑗1) = 13! [1 − 6 (𝑎𝑗0)2] 𝑎𝑗1,

𝑎𝑗4 (𝑎𝑗0) = 14! [1 − 8 (𝑎𝑗0)2 + 8 (𝑎𝑗0)4 − 12 (𝑎𝑗1)2] 𝑎𝑗0.
(9)

Finally, we assign 𝑇𝑗((𝑗 + 1)Δ) to 𝑎𝑗+10
𝑎𝑗+10 = 𝑎𝑗0 + 𝑎𝑗1Δ + 𝑎𝑗2 (𝑎𝑗0) Δ2 + 𝑎𝑗3 (𝑎𝑗0, 𝑎𝑗1) Δ3

+ 𝑎𝑗4 (𝑎𝑗0) Δ4 + ⋅ ⋅ ⋅ . (10)

The second independent coefficient 𝑎𝑗+11 is determined by the
derivative of 𝑇𝑗(𝑦) calculated at 𝑦 = (𝑗 + 1)Δ

𝑎𝑗+11 = 𝑎𝑗1 + 2𝑎𝑗2 (𝑎𝑗0) Δ + 3𝑎𝑗3 (𝑎𝑗0, 𝑎𝑗1) Δ2 + 4𝑎𝑗4 (𝑎𝑗0) Δ3
+ ⋅ ⋅ ⋅ . (11)

While, in the limit 𝑁 → ∞, 𝑎𝑗0 corresponds to the function𝑓(𝑥), the sequence 𝑎𝑗1 corresponds to 𝑓󸀠(𝑥). Therefore, the
power series expansion of sech(𝑥) and its first derivative are
given by

( 𝑓 (𝑥)𝑓󸀠 (𝑥)) = lim
𝑁→∞

(𝑎0 + 𝑎1 ( 𝑥𝑁 ) + 𝑎2 (𝑎0) ( 𝑥𝑁 )2 + 𝑎3 (𝑎0, 𝑎1) ( 𝑥𝑁 )3 + 𝑎4 (𝑎0) ( 𝑥𝑁 )4 + ⋅ ⋅ ⋅
𝑎1 + 2𝑎2 (𝑎0) ( 𝑥𝑁 ) + 3𝑎3 (𝑎0, 𝑎1) ( 𝑥𝑁 )2 + 4𝑎4 (𝑎0) ( 𝑥𝑁 )3 + ⋅ ⋅ ⋅ )

𝑁

, (12)

where the superscript of the matrix on the right-hand-side,𝑁, denotes the 𝑁th iteration of the matrix. The superscript 𝑗
has been removed since the functional form of the recursion
coefficients does not depend on 𝑗. The procedure of calcu-
lating the power series recursively is described as follows.
First, 𝑎0 = sech(0) = 1 and 𝑎1 = sech󸀠(0) = 0 are
substituted in the right-hand-side of the last equation. Then

the result of the upper element is taken as the updated value
of 𝑎0, and, similarly, the lower element updates 𝑎1. The two
updated values are then resubstituted back in the right-hand-
side. The process is repeated 𝑁 times. To obtain an explicit
form of the series we truncate the Taylor series at 𝑛max = 4
and use 𝑁 = 4 iterations. The resulting expansion takes the
form
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sech (𝑥) = 1 − 12 𝑥2 + 524 𝑥4 − 0.0806681𝑥6
+ 0.0302048𝑥8 + ⋅ ⋅ ⋅ + 1.4434798× 10−461𝑥624.

(13)

It is noted that the higher-order coefficients, which corre-
spond to ratios of large integers, are represented in real
numbers for convenience. Already with such a small number
of iterations, 𝑁 = 4, the number of terms equals 313. By
inspection, we find that the number of terms equals ((𝑛max +1)𝑁 + 1)/2. Here, 𝑛max is even due to the fact that sech(𝑥) is
an even function.

It is also noted that the series (13) is composed of the
Taylor expansion of sech(𝑥) around zero, represented by the
first three terms, and a series of higher-order terms generated
from the nonlinearity in the recursion relations of 𝑎𝑛. In fact,
we prove in the next section that this property holds for any𝑛max, 𝑁, and function 𝑓(𝑥), provided that the Taylor series
of the later exists. Therefore, the power series expansion of
sech(𝑥), given by (12), can be put in the suggestive form

sech (𝑥) = 𝑇 + lim
𝑁→∞

𝐶 (𝑁) , (14)

where 𝑇 is the infinite Taylor series of 𝑓(𝑥) about 𝑥 = 0
and 𝐶(𝑁) is a complementary series. It turns out that the
complementary series increases the radius of convergence of𝑇 for 𝑥 ≥ 𝜋/2. For finite 𝑁, the effect of 𝐶(𝑁) is to shift the
radius of convergence, 𝑅, to a larger value such that 𝑅 → ∞
for 𝑁 → ∞. In Figure 1 we plot the convergent power series
obtained by the present method as given by (12) using 𝑛max =4 and 𝑁 = 100. The curve is indistinguishable from the
plot of sech(𝑥). Both the Taylor series expansion, 𝑇, and the
complementary series, 𝐶, diverge sharply at 𝑥 = 𝜋/2. Since 𝐶
is essentially zero for 𝑥 < 𝜋/2, it will not affect the sum 𝑇 + 𝐶.
However, its major role is to cancel the divergency for 𝑥 ≥𝜋/2. In the limit 𝑁 → ∞, 𝑇 will be an exact representative of
sech(𝑥) for𝑥 < 𝜋/2 and𝐶will equal zero in the same interval.
For 𝑥 ≥ 𝜋/2, the divergences in 𝑇 and 𝐶 cancel each other
with a remainder that is an exact representative of sech(𝑥). In
this manner, 𝑇 + 𝐶 will represent sech(𝑥) for all 𝑥.

For finite values of 𝑛max and 𝑁, the series 𝑇 + 𝐶 is an
approximate representative of sech(𝑥). Truncating the Taylor
series at 𝑛max introduces an error of order Δ𝑛max+1. This error
will bemagnified𝑁 times due the recursive substitutions.The
total error is then estimated by

error = ( 𝑥𝑁 )𝑛max+1𝑁. (15)

For the parameters used in Figure 1, this error is of order 10−6
at 𝑥 = 5. This can be reduced to extremely small values such
as 10−131 with 𝑛max = 100. However, the number of terms in
the series 𝑇 + 𝐶 will be of order 10200 which is extremely large
and hinders any analytical manipulations.

As another example, we consider 𝑓(𝑥) = 1/(1 + 𝑥2) with
Taylor series diverging at 𝑥 = 1. Much of the formulation we
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Figure 1: The solid curve corresponds to the convergent power
series obtained by the presentmethod as given by (12) using 𝑛max = 4
and 𝑁 = 100. It is indistinguishable from the solid curve of 𝑓(𝑥) =
sech(𝑥). Dashed curve corresponds to the Taylor series expansion,𝑇, and the dotted curve corresponds to the complementary series,𝐶.
followed for the previous case holds here and the specifics of
the function alter only the recursion relations, (9):

𝑎𝑗2 (𝑎𝑗0) = [3 − 4𝑎𝑗0] (𝑎𝑗0)2 , (16)

𝑎𝑗3 (𝑎𝑗0, 𝑎𝑗1) = 2 [1 − 2𝑎𝑗0] 𝑎𝑗0𝑎𝑗1, (17)

𝑎𝑗4 (𝑎𝑗0)= [16 − 64𝑎𝑗0 + 85 (𝑎𝑗0)2 − 52 (𝑎𝑗0)3 + 16 (𝑎𝑗0)4] 𝑎𝑗0. (18)

The convergent power series is obtained by using these
recursion relations in (12). Plots similar to those of Figure 1
are obtained.

We present now a proof that the convergent power series
produced by the recursive procedure always regenerates the
Taylor series in addition to a complementary one.

Proposition 1. If we expand 𝑓(𝑥) in a Taylor series, 𝑇, around𝑥 = 0 truncated at 𝑛max and use the recursive procedure, as
described above, the resulting convergent power series always
takes the form 𝑇 + 𝐶 where 𝐶 is a power series of orders
larger than 𝑛max. This is true for any number of iterations, 𝑁,
maximumpower of the Taylor series, 𝑛max, and for all functions
that satisfy the general differential equation𝑓󸀠󸀠 (𝑥) = 𝐹 [𝑓 (𝑥)] , (19)

where 𝐹[⋅] is an analytic real functional that does not contain
derivatives.

Proof. It is trivial to prove this for a specific case, such as
sech(𝑥). For the general case, we prove this only for 𝑛max = 4
and 𝑁 = 2. The Taylor series expansion of sech(𝑥) around𝑥 = 0 is

sech (𝑥) = 1 − 12 𝑥2 + 524 𝑥4 + ⋅ ⋅ ⋅ . (20)
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In our recursive procedure, this is put in the equivalent form

( sech (Δ)
sech󸀠 (Δ)) ≃ (𝑎0 + 𝑎1Δ + 1 − 2𝑎202 Δ2 + 13! 𝑎1 (1 − 6𝑎20) Δ3 + 14! 𝑎0 (1 − 8𝑎20 + 12𝑎40 − 12𝑎21) Δ4(1 − 2𝑎20) Δ + 12 𝑎1 (1 − 6𝑎20) Δ2 + 16 𝑎0 (1 − 8𝑎20 + 12𝑎40 − 12𝑎21) Δ3 )

𝑁

, (21)

where the approximation stems from using finite 𝑁 and𝑛max, and Δ = 𝑥/𝑁. For 𝑁 = 1, 𝑎0 = 1, and 𝑎1 = 0,
(20) is regenerated. However, in our recursive procedure 𝑎0
and 𝑎1 are kept as variables since they will be substituted

for at each recursive step. Only at the last step are their
numerical values inserted. For 𝑁 = 2, we resubstitute in the
last equation for 𝑎0 and 𝑎1 by their updated expressions, as
follows:

(𝑎0𝑎1) 󳨀→ (𝑎0 + 𝑎1Δ + 1 − 2𝑎202 Δ2 + 13! 𝑎1 (1 − 6𝑎20) Δ3 + 14! 𝑎0 (1 − 8𝑎20 + 12𝑎40 − 12𝑎21) Δ4(1 − 2𝑎20) Δ + 12 𝑎1 (1 − 6𝑎20) Δ2 + 16 𝑎0 (1 − 8𝑎20 + 12𝑎40 − 12𝑎21) Δ3 ) . (22)

Substituting the updated expressions for 𝑎0 and 𝑎1 in (21), we
get

sech (𝑥) ≃ 𝑎0 + 𝑎1 ( 𝑥𝑁 ) + 2𝑎0 (1 − 2𝑎20) ( 𝑥𝑁 )2
+ 43 𝑎1 (1 − 6𝑎20) ( 𝑥𝑁 )3
+ 23 𝑎0 (1 − 8𝑎20 + 12𝑎40 − 12𝑎21) ( 𝑥𝑁 )4 .

(23)

Clearly for 𝑁 = 2, the last equation gives the Taylor
expansion, that is, (21) with𝑁 = 1.The complimentary series,𝐶, is absent here since we have terminated the expansions at𝑛 = 𝑛max = 4. For 𝑁 = 3, another step of resubstituting
updated expressions is needed, and so on.

Now, we present the proof for the more general case,
namely, when 𝑓(𝑥) is unspecified but is a solution to (19). We
start with the following Taylor series expansion of 𝑓(𝑥) and
its derivative

( 𝑓 (Δ)𝑓󸀠 (Δ))
= (𝑎0 + 𝑎1Δ + 𝑎2 (𝑎0, 𝑎1) Δ2 + 𝑎3 (𝑎0, 𝑎1) Δ3 + 𝑎4 (𝑎0, 𝑎1) Δ4𝑎1 + 2𝑎2 (𝑎0, 𝑎1) Δ + 3𝑎3 (𝑎0, 𝑎1) Δ2 + 4𝑎4 (𝑎0, 𝑎1) Δ3 ) . (24)

Substituting on the right-hand-side for 𝑎0 and 𝑎1 by 𝑓(Δ) and𝑓󸀠(Δ), respectively, we get
𝑓 (Δ) = 𝑎0 + 𝑎1Δ + 4𝑎2Δ2 + (5𝑎3 + 2𝑎2 𝜕𝑎2𝜕𝑎1

+ 𝑎1 𝜕𝑎2𝜕𝑎0) Δ3 + (6𝑎4 + 3𝑎3 𝜕𝑎2𝜕𝑎1 + 2𝑎2 𝜕𝑎3𝜕𝑎1

+ 2𝑎22 𝜕2𝑎2𝜕𝑎21 + 𝑎2 𝜕𝑎2𝜕𝑎0 + 𝑎1 𝜕𝑎3𝜕𝑎0 + 2𝑎1𝑎2 𝜕2𝑎2𝜕𝑎1𝜕𝑎0
+ 12 𝑎21 𝜕2𝑎2𝜕𝑎20 ) Δ4.

(25)

The partial derivatives can not be calculated unless the
functional forms of the recursion coefficients are known. One
possibility is to specify the function being expanded, 𝑓(𝑥),
as we did at the start of this proof. The other possibility is
to exploit the differential equation that 𝑓(𝑥) is a solution for,
namely, (19). Substituting the Taylor expansion of 𝑓(Δ), from
(24) in (19) and expanding up to the fourth power in Δ, we
obtain the following relations:

𝑎2 = − 𝐹2 ,
𝑎3 = − 𝑎1𝐹󸀠6 ,
𝑎4 = − 𝑎2𝐹󸀠12 − 𝑎21𝐹󸀠󸀠24 ,

(26)

which lead to 𝜕𝑎2𝜕𝑎0 = − 𝐹󸀠2 ,
𝜕𝑎2𝜕𝑎1 = − Δ𝐹󸀠2 ,

𝜕2𝑎2𝜕𝑎20 = − 𝐹󸀠󸀠2 ,
𝜕2𝑎2𝜕𝑎21 = − Δ2𝐹󸀠󸀠2 ,
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Figure 2: Error defined by the difference between the numerical and exact soliton solution of the NLSE, (29). (a) Dashed line corresponds
to RK4 and dotted line corresponds to IPS4. (b) IPS12. Parameters used: 𝑁 = 1000, number of digits 𝑁𝑑 = 50, 𝑓(0) = 1, and 𝑓󸀠(0) = 0.

𝜕2𝑎2𝜕𝑎0𝜕𝑎1 = − Δ𝐹󸀠󸀠2 ,
𝜕𝑎3𝜕𝑎1 = − 𝐹󸀠6 .

(27)

Using these equations in (28), we obtain𝑓 (Δ) = 𝑎0 + 𝑎1Δ + 4𝑎2Δ2 + 8𝑎3 (𝑎0, 𝑎1) Δ3+ 16𝑎4 (𝑎0, 𝑎1) Δ4. (28)

For 𝑁 = 2, the last equation regenerates the Taylor series of𝑓(𝑥), namely, (24) with 𝑁 = 1, and this completes the proof.

3. Application to Nonlinear
Differential Equations

The method described in the previous section can be used
as a powerful solver and integrator of nonlinear differential
equations both analytically and numerically. In Section 3.1,
we apply the method on a number of well-known problems.
In Section 3.2, we show the power of the method in terms of
detailed analysis of the error and CPU time.

3.1. Examples. For the sake of demonstration, we consider the
following nonlinear differential equation:12 𝑓 (𝑥) − 12 𝑓󸀠󸀠 (𝑥) − 𝑓3 (𝑥) = 0. (29)

The reason for selecting this equation is that 𝑓(𝑥) = sech(𝑥)
is one of its exact solutions. Substituting the power series
expansion 𝑓(𝑥) = ∑∞𝑛=0 𝑎𝑛𝑥𝑛, we obtain, as usual, the
recursion relations𝑎2 (𝑎0) = 12! [1 − 2 (𝑎0)2] 𝑎0,

𝑎3 (𝑎0, 𝑎1) = 13! [1 − 6 (𝑎0)2] 𝑎1,

𝑎4 (𝑎0) = 14! [1 − 8𝑎20 + 12𝑎40 − 12𝑎21] 𝑎0,
(30)

where 𝑎0 and 𝑎1 turn out to be independent parameters which
in the present case correspond to the initial conditions on the
solution and its first derivative. It is not surprising that these
recursion relations are identical with those we found for the
sech(𝑥) in the previous section, (9). Therefore, substituting
the above recursion relations in 𝑓(𝑥) = ∑∞𝑛=0 𝑎𝑛𝑥𝑛 we obtain
the Taylor series expansion, 𝑇, of 𝑓(𝑥) = sech(𝑥). Removing
the divergency in 𝑇 follows exactly the same steps as in
the previous section, and thus an exact solution in terms
of a convergent power series is obtained, as also plotted in
Figure 1.

For 𝑓(𝑥) = 1/(1 + 𝑥2), the relevant differential equation
is 𝑓󸀠󸀠 (𝑥) + 𝑓3 (𝑥) − 6𝑓2 (𝑥) = 0. (31)

Substituting the power series expansion in this equation, the
recursion relations will be given by (16)–(18). Similarly, the
convergent series solution will be obtained, as in the previous
section.

3.2. Numerical Method. As a numerical method, the power
series is very powerful and efficient [10]. The power series
method with 𝑁max = 4, denoted by IPS4, is used to solve
the NLSE, (29) and the error is calculated as the difference
between the numerical solution and the exact solution,
namely, sech(𝑥). The equation is then resolved using the
fourth-order Runge-Kutta (RK4) method. In Figure 2, we
plot the error of both methods which turn out to be of the
same order. Using the iterative power series method with𝑁max = 12, (IPS12), the error drops to infinitesimally low
values. Neither the CPU time nor the memory requirements
for IPS12 are much larger than those for IPS4; it is straight
forward upgrade to higher orders which leads to ultrahigh
efficiency.This is verified by the set of tables, Tables 1–4,where
we compute sech(1) using both the RK4 and the iterative
power series method and show the corresponding CPU time.
For the same 𝑁, Tables 1 and 3 show that both RK4 and
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Table 1: RK4 sech(𝑥) solution of the NLSE, (29), computed at 𝑥 = 1.
RK4𝑁 sech(1) CPU time1000 0.6480542736639463753683598987682775440961395993015 0.0872572000 0.6480542736638892102461002212645001242748400651983 0.1665343000 0.6480542736638861522791729310382098086291071707752 0.2290164000 0.6480542736638856377319630763886301512099763161750 0.3144805000 0.6480542736638854971232600221160524143929321411426 0.427610

Exact 0.6480542736638853995749773532261503231084893120719

Table 2: IPS4 sech(𝑥) solution of the NLSE, (29), computed at 𝑥 = 1.
IPS4𝑁 sech(1) CPU time1000 0.6480542736639323955233350367786700400715255548373 0.0567932000 0.6480542736638883277492809223389308596155602276884 0.1379413000 0.6480542736638859773823119964459740185046024606302 0.2153954000 0.6480542736638855823023023050565759829475356280281 0.3045015000 0.6480542736638854743968579026604641270130595226186 0.372284

Exact 0.6480542736638853995749773532261503231084893120719

Table 3: IPS12 sech(𝑥) solution of the NLSE, (29), computed at 𝑥 = 1.
IPS12𝑁 sech(1) CPU time1000 0.6480542736638853995749773532261503231079594354079 0.2806172000 0.6480542736638853995749773532261503231084891816361 0.5956393000 0.6480542736638853995749773532261503231084893110634 0.8913704000 0.6480542736638853995749773532261503231084893120400 1.0803575000 0.6480542736638853995749773532261503231084893120697 1.366386

Exact 0.6480542736638853995749773532261503231084893120719

Table 4: IPS12 sech(𝑥) solution of the NLSE, (29), computed at 𝑥 = 1, but with much less number of iterations than in Table 3.

IPS12𝑁 sech(1) CPU time3 0.6480542794079665629469114154348980055814088430953 0.0007826 0.6480542736643770346283969779587807646256058100135 0.0014299 0.6480542736638872007452856567074697922787489590238 0.00212312 0.6480542736638854259793573015747954030451932565027 0.00276815 0.6480542736638854001495023257702479909741369016589 0.003594
Exact 0.6480542736638853995749773532261503231084893120719

IPS4 produce the first 16 digits of the exact value (underlined
numbers in the last raw) and consume almost the same CPU
time. Table 3 shows that, for the same 𝑁, IPS12, reproduces
the first 49 digits of the exact value. The CPU time needed
for such ultrahigh accuracy is just about 3 times that of the
RK4 and IPS4. Of course the accuracy can be arbitrarily
increased by increasing 𝑁 or more efficiently 𝑁max. For IPS12
to produce only the first 16 digits, as in RK4 and IPS4,
only very small number of iterations is needed, as shown in
Table 4.TheCPU time in this case is about 100 times less than
that of RK4 and IPS4, highlighting the high efficiency of the
power series method.

Amore challenging test on the power seriesmethod is the
chaotic Lorenz system [25] given by𝑧̇1 = −𝜎𝑧1 + 𝜎𝑧2,𝑧̇2 = −𝑧1𝑧3 + 𝑟𝑧1 − 𝑧2,𝑧̇3 = 𝑧1𝑧2 − 𝑏𝑧3, (32)

where we take the usual values 𝜎 = 10, 𝑏 = −8/3, and𝑅 = 28 with initial conditions 𝑧1(0) = 𝑧2(0) = 1 and𝑧3(0) = 20. It is straight forward to generalise the method
to three differential equations; therefore we do not show the
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details of the calculation. In Figure 3, the results of solving
the Lorenz system using RK4 and IPS12 are shown. For the
sameparameters, namely discretization, RK4 reaches stability
at about 𝑥 = 30; that is, the curve for 𝑥 < 30 is unchanged by
increasing 𝑁, but for 𝑥 > 30, the curve keeps changing by
increasing 𝑁. In comparison, IPS12 reaches stability at about𝑥 = 50. In chaotic systems, it is quite challenging to go that
deep in the chaotic region. Hence, the need for such high
accuracy methods.

Achieving higher accuracy requires larger CPU time
usage. Therefore, it is important to investigate how the CPU
time, denoted here by 𝑇, depends on the main parameters
of the method, namely 𝑁 and 𝑁max. A typical plot is shown
in Figure 4, where we plot on a log-log scale the CPU time
versus the error.The linear relationship indicates 𝑇 ∝ error𝑝,
where 𝑝 is the slope of the line joining the points in Figure 4.
The error can be calculated in two ways: (i) the difference
between the numerical solution and (ii) theoretical estimate,
(15). Bothways are shown in the figure and they have the same
slope. However, as expected, error defined by (15), which is
actually an upper limit on the error, is always larger than
the first one. To find how the CPU time depends explicitly
on 𝑁 and 𝑁max, we argue that the dependence should be of

the form 𝑇 ∝ 𝑁𝑁3max. This is justified by the fact that CPU
time should be linearly proportional to the number of terms
computed.The number of terms computed increases linearly
with the number of iterations 𝑁. The number of terms in
the power series is linearly proportional to 𝑁max. When
substituted in the NLSE with cubic nonlinearity, the resulting
number of terms, and thus 𝑇, will be proportional to 𝑁3max. In
Figure 5, it is shown indeed that the ratio 𝑇/𝑁𝑁3max saturates
asymptotically to a constant for large 𝑁 and 𝑁max since the
scaling behaviorsmentioned here apply for large𝑁 and𝑁max.
The proportionality constant, 𝑐, is very small and corresponds
to the CPU time of calculating one term. It is dependent on
the machine, the programming optimization [10], and the
number of digits used, 𝑁𝑑. In terms of the number of digits,
the CPU time increases, as shown in Figure 6, where it is
noticed that CPU time is almost constant for number of digits𝑁𝑑 < 500.
4. Conclusions

We have presented an iterative power series method that
solves the problem of finite radius of convergence. We have
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proved that the iterative power series is always composed of
a sum of the typical power series of the function and a com-
plementary series that cancels the divergency. The method is
divided into two schemes where in the first we find a con-
vergent power series for a given function and in the second
we solve a given nonlinear differential equation.The result of
the iterative power series expansion of sech(𝑥) is remarkably
convergent for arbitrary radius of convergence and accuracy,
as shown by Figures 1 and 2 and Tables 1–4. Extremely high
accuracy can be obtained by using higher-order iterative
power series via increasing𝑁max with relatively lowCPU time
usage. Robustness and efficiency of the method have been
shown by solving the chaotic Lorenz system and the NLSE.
Extensive analysis of the error and CPU time characterising
the method is performed. Although we have focused on the
localised sech(𝑥) solution of the NLSE, all other solitary
wave solutions (conoidal waves) can be obtained using the
present method, just by choosing the appropriate initial
conditions.

The method can be generalised to partial and fractional
differential equationsmaking its domain of applicability even
wider.
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