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In this article, the linearization problem of fifth-order ordinary differential equation is presented by using the generalized Sundman
transformation. The necessary and sufficient conditions which allow the nonlinear fifth-order ordinary differential equation to be
transformed to the simplest linear equation are found. There is only one case in the part of sufficient conditions which is surprisingly
less than the number of cases in the same part for order 2, 3, and 4. Moreover, the derivations of the explicit forms for the linearizing
transformation are exhibited. Examples for the main results are included.

1. Introduction

Nonlinear problems are of interest to engineers, physicists,
mathematicians and many other scientists since most equa-
tions are inherently nonlinear in nature. Although linear
ordinary differential equations can be solved by a large num-
ber of methods but this situation does not hold for nonlinear
equations. One common method to solve nonlinear ordinary
differential equations is to change their unknowns by suitable
variables so as to get linear ordinary differential equations.

The main tools used to solve the linearization problem
are transformations such as point, contact, tangent, and
generalized Sundman transformations.

It was recognized that Lie [1] is the first person who solved
linearization problem for ordinary differential equations in
1883. He discovered the linearization of second-order ordi-
nary differential equations by point transformations. Later,
Liouville [2] and Tresse [3] attacked the equivalence problems
for second-order ordinary differential equations via group of
point transformations. Moreover, Cartan [4] approached the
second-order ordinary differential equations by geometric
structure of a certain form.

Mahomed and Leach [5] indicated that the nth-order
(n > 3)linear ordinary differential equation has exactly one of

n+1,n+2, or n+4 point symmetries. They suggested that the
necessary and sufficient conditions for the nth-order (n > 3)
to be linearizable by a point transformation must admit the n
dimensional Abelian algebra.

The linearization problem of third-order ordinary differ-
ential equations under point transformations was solved by
Bocharov et al. [6], Grebot [7], and Ibragimov and Meleshko
[8]. Fourth-order ordinary differential equation was studied
by Ibragimov et al. [9]. They found the necessary and suf-
ficient conditions for a complete linearization problem. The
linearization problem of a fifth-order ordinary differential
equation with respect to fiber preserving transformations was
considered by Suksern and Pinyo [10].

In the series of articles [8, 11-14] the linearization problem
of a third-order ordinary differential equation via the contact
transformations was solved. For a fourth-order ordinary
differential equation, this problem was studied in [15, 16]. The
criteria of the linearization problem of fifth-order ordinary
differential equations were discovered by Suksern [17].

The linearization problems of third-order and fourth-
order ordinary differential equations by the tangent trans-
formations are examined in [18, 19]. These are the first
application of tangent (essentially) transformations to the lin-
earization problems of third-order and fourth-order ordinary
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differential equations. Necessary and sufficient conditions for
third-order and fourth-order ordinary differential equations
to be linearizable are obtained there.

Sundman introduced the generalized Sundman trans-
formations in 1992. Later on Duarte et al. [20] applied
this method to transform second-order ordinary differential
equations into free particle equations. In addition, Muriel
and Romero [21] characterized the equations that can be lin-
earized by means of generalized Sundman transformations in
terms of first integral. A new characterization of linearizable
equations in terms of the coefficients of ordinary differential
equation and one auxiliary function was given by Mustafa et
al. [22]. Moreover, Nakpim and Meleshko [23] pointed out
that the solution given by Duarte et al. using the Laguerre
form is not complete.

For the third-order ordinary differential equations, the
linearization by the generalized Sundman transformation
was investigated by [24] for the form X"'(T) = 0 and [25]
for the Laguerre form. Some applications of the generalized
Sundman transformation to ordinary differential equations
can be found in [26]. More information of the generalized
Sundman transformation are collected in the book [27].

The linearization problem of a fourth-order ordinary
differential equation with respect to generalized Sundman
transformations was studied in [28]. They found the nec-
essary and sufficient conditions which allow the fourth-
order ordinary differential equation to be transformed to the
simplest linear equation.

In this article, we intend to use the generalized Sundman
transformations to linearize the fifth-order ordinary differen-
tial equations in some particular cases. We use computer alge-
bra system Reduce to compute the necessary and sufficient
conditions of the linearization. We provide some examples to
illustrate the conditions that we have found and also obtain
the linearizing transformations.

2. Necessary Conditions

We now concentrate on finding the fifth-order ordinary
differential equations

x® = f (t, X, x',x",x"',x(4)) , (1)
which can be transformed to the linear equation
X =0, ()
under the generalized Sundman transformation
X =F(t,x),
©)
dT = G (t, x) dt.

It turns out that those equations must be in the form of the
following theorem.

Theorem 1. Any linearizable fifth-order ordinary differential
equations that can be transformed by a generalized Sundman
transformation has to be in the form
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£+ (Alx’ + AO) x®
+ (B3x” + Bzx'2 + le' + BO) X"
+ (Clx' + CO) X" (4)
+ (D3x'3 + szl2 + Dlx' + Do) P H5x'5
+ H4x'4 + H3x'3 + Hzx'2 +Hx' + H, =0.
Here A; = A,(t,x), B; = B,(t, x), C; = C;(t, x), D; = Dy(t, x),

and H; = H,(t, x) are some functions of t and x. Expressions of
these coefficients are presented in the appendix.

Proof. By ageneralized Sundman transformation (3), we have

D,F (t,x)
D, [ G (t,x)dt G

_ Ft+x’Fx =P(t,x,x'),

X' (T) =

D.P(t,x.x')  p+x'P +x"P,

Ty = _
X @ D, [G(t,x)dt G

1
= 5 [ZthG_x’ + FttG — Fth — FthX, + Fxxlez

- Fthx' - FxGxx'2 + FxGx”] =Q (t, x X, x") ,

D,Q

mepy— Tt
X7 D, [G(t,x)dt

! " n
+x +x X " 1
— Qt Qx GQX Qx — _5 [(FxGZ)x/II

+G(3F G -4F.G, ) x'x"
+G(3F, G- F,G, -3F,G)x" +-]
- R (t, X, xl’ x//, xm) i

D,R

XY= —————
) D, [G(t,x)dt

! ! !
_ Rt + X Rx + X ’er + X ”qu + x(4)Rxm
G

= é [(F.G")x" + G (4F,,G - 7F,G,) x'x"
+G (4F,,G - F,G, - 6F,G,) x"" + ']

! " n 4
= S(t,x,x , X, X ,x( )),

D,S

® () =
() D, [ G(t,x)dt

_ St + X,Sx + X”er + .XI”SxH + x(4)Sme + x(s)sxm)
- G

- é [(F.G*) x® + G (5F,,G - 11E,G,) x'x
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+G’ (5F,G - F,F, - 10F,G,) x“ + -]

-V (t, X, xr’ x//’ xm’ x(4)’ x(s)) ,
(5)

where D, = 0/0t + x'(0/0x) + x"(9/9x") + x""(3/ox") +
x®(3/0x")+x®(9/0x™)+- - - isa total derivative. Replacing
GN(T) in (2), we get that

x(s) + << 5FxxG - llFxGx > x/ + (5thG — Fth —
F.G F.G

10F,, G* — 45F, .G, G — 14F,G .G + -

10F, G, )) MO (( 5(2F,,G - 3F,G,) > N
F.G

_40FxthG+"') ! ) nm
X+ )x

(6)

XXXX XXX

X7+

"
.)x

+

X7+ =0.

+ xxTx x’Z
E.G
. 20F,,G* - 50F,,G,G - 4F,G,.,G + 15F,G>
E.G?
N 15F,,,G* - 60F,,G,G - 18F,G,,G + 70F,G> x,
F,G>
15F,,,.G* - 30F,,G,G - 3F,G,G + 10F,G - 30F,,G,G + - -- "
pe
E.G
10F,,,, G’ - 70F,,,G,G* - 45F,G,.G* + 195F_ GG + - s
E.G?
( 10F, .,,G,G” -

F.G*

Denoting A;, B;, C;, D;, and H; as (A.1)-(A.18), we obtain the
necessary form (4). This proves the theorem. O

3. Sufficient Conditions and
Linearizing Transformation

To get the sufficient conditions, we consider (A.1)-(A.18)
appearing in the previous section. After using the compatibil-
ity theory to those equations, we derive the following results.

(7A,S, +49S, +235})

10F,,,G, G’ + 45F, . .G'G* + ) 5

Theorem 2. Equation (4) can be linearizable by the gener-
alized Sundman transformation if its coefficients satisfy the
following equations:

_ 7)

4" 280 ’
Sg; = (277205288 — 8520858, + 625,S, + 4928S., — 115S§) (2772008,) ", (8)
Ssx = (21A,8,85 + 1475, S + 739208,8; — 2272088, — 405, + 69575, ) (840S,) ™", )

By, = (~2195200B,,A, + 823200B,,S, — 5488008, — 6448408, A, + 82320S,,S, + 10633A3S, — 10633A3S,

+1519A%S; + 891804, B,S, + 72716A,S,S, + 2604A,S, — 548800B; — 260680B,S, + 11760B,S; + 54880000H;  (10)

+43218S; + 11768, + 5585} ) (5488000) ",

Sy, = (~78400B,, — 637A3S, — 156804, B, — 5635A,S, + 105A,5; + 2940B,S, + 78400D; + 2945, S, + 30S; )

-(5880)7",

(1)
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Cox = (—5488560A ,,S] — 38419920S,,S, + 25347840S,S, + 75600S,,S, — 18627840A,C,S, — 61372084,5,S,
+6337320A,5,Ss + 169294 8,5, + 6573A 5,5 + 23950080C, S5 + 46569600D,S, + 27941768, S, — 51888485, Ss
~ 120968, S5 — 62375, Sg — 52076643, + 20802885785 + 36825;S, + 59258, (931392005,) ",

Ay, = (—133056A,S,S, + 1682404, 5,S; + 576A,S,Ss — 231A,5,S5 + 443520C,S; + 258725, S; + 2315, Sq
— 1330568, + 214248285 + 144525 — 215828, ) (133056082)

Sy, = (135878408, S, + 40320S,,S, — 18627844, 5,8, + 26624644 5,85 + 7056A,5,S¢ + 2541A,8,S; + 6209280C,S;
+ 18627848, S, — 32350088, S5 — 8064, Sg — 25418, S, — 18627848, + 4833925;S; + 504555, + 21655;5; )

- (186278408,) ",
Ss = (= ((246400 (144 (3 (308B, + 491S;) S, + 58¢,) S; — (33785, + Sey) (11255 + Sg))
— (70209254408 + 33795200858 — 2623280858, + 61440S; — 416245, + 2776064S, + 5278553 ) S, ) S,
— 77 (1490227208, — 232064003 — 627208585 — 22568085Ss — 224585 + 215048, — 76553 ) S, + 443520 (325,

+ 238 +2734485) 8,S; + 77 (9497608 + 8960S5Ss — 1000085 S + 416855 + 215048, — 765S; + 1490227208553 )

-AS,)) (6556999680052)_1 ,

Ssy = (—155232A,5,85 — 1617A,S,S; + 3622085, S5 + 16178, Sy — 6800645,S; — 698565755 — 136535, — 1449835 )
-(10348808,) ",

S7 = (7761600084,S; — 6468084,8,Ss + 1617A 5,88 + 206976 A,S,S; + 204906240008, + 113195, 5,5
+ 14488328, S, + 47190528008,5;S5 + 2069760S,5,Ss + 170016008,S,S; + 182552832008, — 37861376008,S-
— 1808576088555 — 52256008;55S; — 3052085, — 388755455 — 10223368, ) (41395208,) ",

(9A,S, +60B, + 38, +5;)

C = >
! 40
and (A.19), (A.20), (A.21), (A.22), (A.23), (A.24), (A.25) Sg = —41580B, + 55440C, — 83165, + 917655
(moved to the appendix in order to avoid the huge expressions), +278
where ¢

S, = -10A,, - 2A% + 5B,,

(12)

(13)

(14)

(15)

(16)

17)

(18)

(19)

Proof. We start with the coeflicients A;, B;, C;, D;, and H; in

(20)

S, = —20A,, —4A,A, + 5B, Theorem 1 through the unknown functions F and G. From
(A.1) and (A.2), we have the derivatives
_ 2
S3 = IOAOt + 2A0 - SBO, ~ (Fx (11Gx + AIG))
xx = >
Sy =-2A,+B;, (5G)
B (F.G, + 10F,G, + F,A,G)

S5 = —80S,, +2A,S, +7S,,

tx (SG)

Se = —462A,S, + 231S, — 337S:,
6 074 2 > From (A.4), one obtains the derivative

S, = ~13860S5,S, + 1386S,S5 + 8316S,S; — 202S: (63G2 + G,A,G + G°S,)
X x4l 1
G = >
xx (40G)

+ 8556

(1)

(22)
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where where
S, = —10A,, - 2A° +5B,. (23)
S, = —20A,, —4A,A, + 5B,. (25)
From (A.5), one gets the derivative
Gy, From (A.6), one finds the derivative
(-9F,G% + 135F,G,G, + F,G (2G,A, +GS,)) (24)
- (80F,G) ’
o (9F}G2 + 225F,F,G,G, + F,F,G (14G,A, — GS,) + 400F.G,,G — 600F.G; + 8F.G’S, ) 26)
” (120F,G,G) ’
where + 113198, S, — 165138, S, — 495, S¢ — 11558,5>
S; = 104, + 2A% — 5B, (27) ~ 77518385 - 2353, (64680S,) ",
From (A.3), one obtains the derivative S, = (88968085t84 +2640S,,S, + 609840B,S.
o - (GS) (28) +70224S,S; + 2315,S, + 1219688, 5% — 1024485
X - b
7
~ 6418555 - ;) (609840S,) " .
where
(34)
Ss=-2A, +B;. 29
4 ! ’ 29) From (A.8), we have
We note that, for the case G, = 0, the generalized Sundman (GSy)
transformations are indeed the point transformations. We = (35)
then suppose G, # 0, which also implies S, # 0. (61608,)
The relations (G,), = G,, and (G,), = G,, provide h
condition (7) and the derivative where
Sy = —41580B, + 55440C, — 83168, + 91765
P (385F,G,S, + 7F,GS;) (30) (36)
t- (9GS?) > +278s.
where The relations (G,), = G,, and (G,), = G,, provide conditions
(8) and (9). From (A.18), (A.15), (A.17), (A.13), and (A.11), we
Sy = —80S,; + 2A,S, + 7S,. (31) obtain conditions (A.19)-(A.21), (10), (A.22). Substituting the

The relation (F,), = F,, gives the derivative

(~2156000G;S;, + 385G,GS, S + 4GS, ) (32)
o= (1386000GS?) ’

where
Se = —462A,S, + 2318, — 337,
S, = —13860S5,S, + 13865,S; + 83165,S2 — 2028>  (33)
+ 8556.
Substituting A, into A, and A ,, one obtains the conditions
Sy = (9436085, S, + 28085, S, — 113194,,5,

+16513A,S,S; + 49A,S,S¢ + 32340B, S,

relation C, into C,,, one obtains condition (A.23). Equations
(A.9), (A.10), and (A.12) provide conditions (11), (12), (A.24).
Comparing the mixed derivatives (F,,), = (F,,),, (G,,); =
(G (B = (Fo)p (F), = F,, we obtain conditions
(13)-(16). Substituting the relation Ss, into Ss,,, one obtains
condition (A.25). Comparing the mixed derivative (G,,), =
(G,y);» one arrives at condition (17). From (A.7), one obtains
condition (18). This proves the theorem. O

Corollary 3. Under the sufficient conditions in Theorem 2, the
transformation (3) mapping equation (4) to a linear equation
(2) can be solved by the compatible system of (20), (28), (30),
and (35).

Remark 4. In the part of sufficient conditions for second-
order, there are 2 cases in [20] and 3 cases in [23]. For the
third-order, there are 3 cases in [24] and 4 cases in [25]. For
the fourth-order, there are 2 cases in [28]. But for the fifth-
order there is only one case.



4. Examples

Example 1. For the fifth-order ordinary differential equation

x(s)x4 - 11x'x(4)x3 —15x" %" 5 + 60x"2x"" x*

(37)

+70x x"x* - 210x"x" x + 105x"” = 0,

we can verify that this equation cannot be linearized by
a point transformation [10] or contact transformation [17].
However, (37) is in fact the form (4) in Theorem 1 with the
coefhicients

-11
A = —,
! X
A, =0,
-15
By= —,
X
60
B, = —,
2 xz
B, =0,
B, =0,
70
C =,
1 X2
C, =0,
-210
D, = R
3 x3
D, =0,
D, =0,
D, =0,
105
Hs = —,
5 X4
H, =0,
H, =0,
H, =0,
H, =0,
H, =0,
=52
S =—-
1 x2
S, =0,
S, =0,
7
Si= -,
X
S, =0,
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Se =0,
S, =0,
Sg=0

(38)

Moreover, these coefficients also satisfy the conditions in
Theorem 2. We now conclude that (37) is linearizable by
a generalized Sundman transformation. Corollary 3 yields
the linearizing transformation by solving the following equa-
tions:

F,. =0, (39)
G
G, = " (40)
G, =0, (41)
L= 0. (42)
Considering (40), one arrives at
G = xK, (t). (43)
Considering (41), one obtains
G =K, (x). (44)

From (43) and (44), one can choose K (¢) = 1 and K, (x) = x;
then we have

G =x. (45)
Considering (39), one gets
F=K,(t)x+K,(t). (46)
Considering (42), one arrives at
F =K;(x). (47)

From (46) and (47), one can choose K;(t) = 1, K,(t) = 0, and
Ks(x) = x; then we obtain

F=x. (48)

So the linearizing transformation is

X =x,
(49)
dT = xdt.
Hence, by (49), (37) becomes
x® =o. (50)
The general solution of (50) is
¢ ) G
X = iT‘* + ET3 + ETZ +¢,T +cs, (51)
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where ¢, ,, 63, ¢, and ¢; are arbitrary constants. Substituting
(49) into (51), the general solution of (37) is

c c

x(M= 260 + oW1+ 26 +ep O+ (52)
where the function T = ¢(t) is a solution of the equation

ar _ Qe Sy e, T +cs. (53)

dt 24 6 2

Example 2. For the fifth-order ordinary differential equation

x(s)tx4 - 22x'x(4)tx3 + 336(4)x4 —30x"x"tx*

+212x" 5"t — 48x' X" 5% + 244x X"t

nm 3 13 N 122 1 2 (54)
—26x “x” —1180x "x tx + 320x “x x

+880x"°t — 320x"*x =0

we can verify that this equation cannot be linearized by
a point transformation [10] or contact transformation [17].
However, (54) is in fact the form (4) in Theorem 1 with the
coeficients

=22
A= —,
X
3
AO = ;,
-30
By = —,
3 X
212
B, ===,
2 .X'2
—48
B = —,
tx
B, =0,
244
C =,
1 xz
-26
Co=—,
0 tx
-1180
D, = R
3 x3
320
b=t
D, =0,
D, =0,
880
Hy= —-,
5 x4
-320

7
H; =0,
H, =0,
H, =0,
H, =0,
-128
S, = PER
24
S, =—,
27 ix
-12
83 = t—z,
14
S, = —,
4 X
252
S = —,
> tx
-98784
S¢ = ,
tx
S, =0,
SS = 0
(55)

Moreover, these coefficients also satisfy the conditions in
Theorem 2. We now conclude that (54) is linearizable by
a generalized Sundman transformation. Corollary 3 yields
the linearizing transformation by solving the following equa-
tions:

F., =0, (56)

G, =29 (57)
X

G, =0, (58)

r, = & (59)

Considering (57), one arrives at
G=K, (t)x*. (60)
Considering (58), one obtains
G=K,(x). (61)

From (60) and (61), one can choose K; () = 1 and K,(x) = X%
then we obtain

G=x" (62)
Equation (59) becomes
tF, - xF, =0, (63)
and by Cauchy method, one arrives at

F = tx. (64)



This solution satisfies (56), so the linearizing transformation
is

X =tx,
(65)
dT = x*dt.

Hence, by (65), (54) becomes
x® =o. (66)

The general solution of (66) is

Qrd Qg3 G2

XziT +ET +53T +¢,T +cs, (67)

where ¢}, ¢,, ¢;, ¢, and ¢; are arbitrary constants. Substituting
(65) into (67), the general solution of (54) is
x (t)

(@29 + (c/6)$ (1 + (6/2) $WF +p (1) + ) (©8)

- t

>

where the function T = ¢(¢) is a solution of the equation

ar
dt
4 3 2 2 (69)
B (c1/24) T + (02/6) T + (c3/2) T +¢,T + ¢
- . .
Appendix
Equations for Theorem 1 in Section 2
5F,,G - 11F,G
Al — ( XX X X)’ (A.l)
(F.G)
5F,,G - F,G, - 10F,G
Ao — ( tx t~x X t)’ (AZ)
(F.G)
5(2F,,G-3F.G,
= S@FG-3RG,) (A3)
(FG)
(10F,,,G* - 45F,,G,G - 14F,G,,G + 60F,G?.)
B, = , (A4)
(F.G?)
B, = (20F,,,G* - 50F,,G,G - 4F,G,,G + 15F,G,
L (A5)
- 40F,,G,G - 24F,G,,G + 105F,G,G, ) (E,G*) ",
B, = (-40F,,G,G + 10F,,,G’ - 5F,G,G - 4F,G,,G
(A.6)

+15F,G,G, - 10F,G,G +45F,G?) (F,G*)
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G

(15F,,,G* - 60F,,G,G - 18F,G,,G + 70F,G?) (A7)

XXX
= bl

(F.G?)

Co = (15F,,G* - 30F,,G,G - 3F,G,,.G + 10F,G.

txx

L (a9
- 30F,,G,G - 15F,G,,G + 60F,G,G, ) (F,G*) ",

G’ - 70F

XXX

D, = (10F

XXXX

2 2
G,G* - 45F_G,.G

+195F,,G>G - 11F,G,,,G’ + 125F,G,.G.G (A.9)

X T XXX XXX X
-210E,G}) (RG)

2 2
G,G* - 60F,.G,,G

txxx txx

D, = (30F,,,, G’ - 150F,

+255F, G>G - 6F,G

tx ™ x

G* + 65F,G,.G.G

XXX XXX

~105F,G> - 60F,,.G,G* - 75F,,G,,G (A.10)

+330F,,G,G,G - 27F,G,,.G* + 205F,G,.G,G

txx txx

+105F,G,G,,G - 525F,G,G) (F,G*)

D, = (~120F

txx

G,G* - 90F,.G,,G" + 390F,.G,G,G

+30F,,, G - 90F,, .G, G* - 15F,,G_ G

ttxx ttx ™~ x

+ 60F,G>G ~ 12F,G,,,G" + 85F,G,,G,G

(A11)
+45F,G,G,G - 210F,G,G> - 30F,,G, G’

+135F,G.G + 165F,G,,G,G - 21F,G,,,G’
+80F,G,G,G - 420F,G’G,) (F,G*) ",
_ 2 2 3
Dy = (-30F,,G,G’ + 135F,,G,G + 10F,;,G
- 10F,;,G,G* - 60F,,,G,G* - 15F,,G,,.G"
+ 60F,G,G,G + 45F,G,,G,G - 6F,G,,, G (A.12)
+20F,G,,G,G - 105F,G.G,. - 5F,G,;,G’
+60F,G,G,G - 105F,G) (F,G*) ",

G'-10F,. GG -10F, G. G

HS = (F XXXX X XXX XX

XXXXX

+ 45F,

xxGoG” = 5F,, GG + 60F,.G,.G,G

XXX

- 105F, .G°G - F.G

XXX X T XXXX

G’ + 15F,G,,.G.G* (A13)

X TTXXX T X

+10F,G2,G’ - 105F,G,,G.G + 105F,G})

(R,

H, = (5F; 30, G* — 40F,,,,G,G’ - 30F,,, G, .G’
+135F,,G-G* - 10F,,G,,G" + 120F,,G,,G.G’
~210F,,G.G ~ F,G,G" + 15F,G,,,G,G’
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+10F,G>,G” - 105F,G,,G-G + 105F,G. H, = (-10F,,G,,G’ + 120F,.G,G,G* - 210F,,G,G
- 10F,,,G,G* - 20F,,G,.G* + 90F,,G,G, G + 5F,14,G* - 10F,,,,G,G’ - 40F,,,,G,G’
-15F_G,, G + 120F,_ G, GG + 60F_G,G, .G - 20F,,,G,,G’ + 90F,,,G,G,G* - 30F,,,G,,G’

— 315F,,G,G2G — 4F, Gy, G* + 45F,G,,,.G,G* +135F,,,G,G" + 120F,,G,,G,G" - 15F,,G,,,G’

2
+40F.G, G, G* - 210F,G,, GG + 15F,G,G, G +60F,G,,G,G” - 315F,G/G,G + 40F,G,G,G*  (A.17)

tx ™~ xx tx ™ x XXX

- 210F,G,,G.G - 4F,G,,,,G’ + 15F,G,,G,G

XXX

~210F,G,G,,G,G +420F,G,G) (F.G*) ",

(A.14) +45F,G,,G,G* - 210F,G,,G,G,G + 420F,G.G,
H, = (-40F,,,G,G’ - 60F,,G,,G’ + 270F,,,G,G,G" ~FGuG +15F,GGG" + 10F,G, G’
- 30F,,G,,,G* + 240F,,G,,G,G" + 120F,,G,G, G* - 105F,G4GG + 105F,G! ) (F,G*)
— 630F,,G,G>G + 10F,;,,G" - 60F,,,G,G Hy = (FyuG" = 10F,,,,G,G’ - 10F,,,G,, G’
~30F,, GG + 135F,,G2G” - 5F,,G,,,G’ +45F,,G; G* - 5F,G,,G’ + 60F,,G,,G,G* a1s)
+60F,G,,G,G* - 105F,G G — 4F,G, ., G’ ~105F,G;G ~ F,G,G* + 15F,G,G,G’ ‘
+45F,G,,,G,G’ + 40F,G,,G,..G* - 210F,G,,G*G +10F,GLG? - 105F,G,G?G + 105F,G?) (F,G') .

+15F,G,G,xG* = 210F,G,G,,G,G + 420F,G,G,  (A15)  Equations for Theorem 2 in Section 3

3 2 ~2 2
= 10F Gy Q™ + 45F, G G™ + 120F, GGG Ssexe = (238560040857600000008 1,555

- 15F,,G,,,G’ + 60F,,G,,G,G* - 315F,,G;G,G
wx Tt F O B +85200014592000000S,;,,S. S

+45F,G,,,G,G” + 40F,G, G* - 420F,G,,G,G,G

txx

~ 451818259200000008;,55S5

- 6F,G,,,,G” + 45F,G,,,G,G" + 20F,G,,G,,.G"

ttxx

~ 1226363846400008.,S,S5
- 105F,G,G%G - 105F,G.G,.G + 630F,G; G )

1 — 81792014008320000008,;,S.
(re)”,

+121461140802355200000000H,S;
H, = (-30F,

txx

GG’ + 135F,

txx

G/G’ + 240F,,G,,G,G’ .
+12882242206310400008,S5;S,S¢
- 30F,,G,,,G” + 120F,,G,,G,G* - 630F,,G;G,G ,
+3334332692275200008,52S,
+10F,,,,,G* - 40F,,,,G.G’ - 10F,,,G,. G’
L , , +202242458880000S;S5S;
+45F,,G>G” - 60F,,,,G,G’ - 60F,,,G,.G

ttxx

+12476331141120008255S¢Ss

+270F,,G,G,G* - 15F,G,,,G* + 120F,,G,,G,G’

txx

— 39878622933811200052S,S,

+ 60F,,G,G,,G” - 315F,,G,G G + 45F,G,,,G,G’

+40F,G2. G* - 420F,G,,G,G,G - 6F,G,,,,G* (A.16) +21422947392008,5¢S5
+45F,G,,,G,G” + 20F,G,,G,,G" - 105F,G,,G>G — 1699574317056008;S5S,

- 105F,G/G,,G + 630F,G.G> - 5F,,G,,,G’ ~ 1775000304000S28,S2
+60F,,G,G,G* - 105F,G,G + 40F,G,,G,G’ ~ 1475324928000005.S, S,

- 210F,G,,G/G - 4F,Gy,,G’ + 15F,G,,,G, G’ + 4876539017011200008,8, 52555,
+45F,G,,,G,G” - 210F,G,G,G,G + 420F,G/G, ) +25818186240000008,S55;S:

-1
(EG") ", +39476006760960008,55575Sg
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~ 10043067901870080008,S,S2S,
~ 3325546312704000008,SS;

~ 14291403033600008,S2S;

~ 12335121469440008,525Ss
+3534379287183360008,S2S,

~ 28314316800008,S5S;

- 66063146688008S,55S:S;
+11763248910336008,55S,S,

+24896108160005,S5S5S:
+ 1496046182400008,S5S, S

- 10866683520S,S.S,
+26073973094408,S.S,

+43542576008,S:5;
+ 1302352128008, 5¢S,Ss

~ 35904330008,5S;

+ 1765382750208008,S>

~ 5122656000008,S,S2

+ 1598286554726400000008,5;S:
+21846724791091200008;5,52S¢
+6722951380992000008;5;52S;
+107085863808000008;5,S5S:
+104296903603200085,S 555455
+3375843865067520005, 555,
+52496978688000008,5; 5552

+ 148836441600008;S,S,
+44090234496008; 57525

— 740940963840008,5:SS,
+47563860960008,5,54S2
+2916374630400008,5S,S;
+216798120000008,S.S;

— 5524941176832000008;

+ 682894773657600008;86

International Journal of Differential Equations

~ 7047118848000000S 1S,
+291110400000S:S;
+2269611955200825, S,

~ 402813609984000525,S,
~ 517887216000S28,S2

~ 5715609600000052S,S;

~ 27738480000008S:S,
— 10494400008;S;

+627932448085S.S;
- 650224460800S5S.S,

- 970726680085S.S;

—~ 6378262272008554S,Ss
+ 1182380100085SS;
— 1767282442240085S>
+505169280000S5S,S2

~ 219549000008;S;

+ 493743285, Sg + 896097408S,S,
~ 14788620S.S;

~ 1103392000S.S,S; — 1631850825,
+151872430080S,S>
- 5366592008,S,S;
+3217087554S; — 1290956800082 S,
+ 848760000S,S; — 621843758,

+ 7683984000 (155232000828586

+ 5544008,S,S5 — 170311680S,S,

2
— 8382528008,5.S,

— 357952008:S4 + 112000855,
— 164800855455 + 4876288085,

— 2728285 — 9600058,
+ 11558,S; + 640008,S; ) B,S;

+ 17740800 (2766234240008,

— 829870272008 + 69144768000S,S5
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— 592099208,S + 554400008, S,
+2646084672008;S;

— 491748416008 — 232872800855,

— 1724000855,

— 5143148’ — 11608,S; — 497548808,
+ 14437553 ) $;,S,

+ 2581818624000 (41580005,

— 4158008,S + 1096381440852

~ 129382400S;

— 74188085Ss — 268800555,

~ 12808, — 684SS;

— 49928, — 8258; ) Sy,
+1022400175104000000 (77Ss + 2084
+ 23968S5) S3,,S;

— 619636469760000 (242135,

+ 48808, + 4866176S5) S3S;

+ 768000 ( (4173869358,

+ 4226824825;) S,

— 88 (12528444648, + 24438755 ) ) S
— 511200087552000 (S¢S

~ 3848, +280855;) S;

— 8520001459200000 (S¢Sg

~ 1928, + 28085S;) By.S,
+19670999040000 (32755 — 1258,

+ 2608085 + 249480S,) S,,,S:

— 76839840000 (332640 ((280S;
+85) S, — 25208;57)

+ 5479040082 + 380800555

+ 158720855 + 688545,

— 1128968, + 11555} ) S,,S:

— 277200 (6147187200 (3 (5B,S;

SGtx

1

— 53) (2808 + Sg)
~ 165,,S,) — (54385228800008]
+3028345600085: S,

+ 180868224005, + 96768000S5S;

+ 9912688085545

+ 6218168320858, + 3603600S5S;
+2115368.S;

—2915136084S, + 1201208,S;

+ 108102408,S; + 1295258 )
+93139200 (3160S, + 13975,

+ 879840S;) S5S;

+ 55440 (810880002 — 56560085,
+ 32656085, — 844S.S, + 4677128,

— 11558; + 8382528008557 ) S, ) S6:S4 )

-1
- (566818657077657600000008S;)
(A.19)

((2(40320 (2 (99 (25995285
— 436299S,S; — 19404000H,
+ 1724800C; ) S,

+24736S,, — 2859595208,
+ 6723486008 ,,S,

+ 1280664000C,,, S,

~ 3841992008, S,

+ 960498004 ,,,5;) S,

~ 1334025 (11285 + Sg) Sy, )
— (4842856192082

+ 6546096005, S,

+ 6003713605, Sg

+ 19296808 + 9171338545,

+ 55280217685,

~ 10786905S; ) S
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— 1890 (8196249605,
— 22093209608, S5

— 70963208, S

+ 1626240S,S;
+2049062408,S;

+ 1478702080S>
+9564160S5Sg

— 2372480555,

+ 153608, — 10274SS;
~ 2069768, + 577553 ) B, )
+189 (131139993605,

~ 357134131208, S,
— 1135411208,

+227673608,S;
+ 1434343680S;,S;

+24190668800S;
+ 154603520855

~ 33214720855,

+ 2457608, — 95326545,
+ 2069768, — 577583 ) A
— 42 (295064985605,

~ 795355545608, S,
— 2554675208,
+ 1051142408, S,

~ 101056032000S;S;

+31943598080S;

+ 2539616008, S,

— 6048032085S; + 5529608,
— 70036255

— 150447368, + 9760153 ) S,
~ 663896217600 (218,

— 118]) ByS;

International Journal of Differential Equations

+41309097984000 (A,

- 84) CuS;

+ 838252800 (674, + 6S,) S¢;S:
— 34927200 (8624A S5 + 77A,S,
— 487872S,S, + 265760S,S;

+ 21128, — 32985,S5) Sy;

— 73920 (1765768, + 44998,

+ 519802728;) 5,53 S,

— 582120 (18627840S,S;

+ 63616082 + 112055,
+ 568085S; + 52845

+2688S, — 758,

— 18480 (11255 +S5) S, ) Sy

— 3725568000 (485, — 115,

+ 14944S; — 11088S,) Cy,S;

+ 698544000 (1925, — 115,

+ 634728, — 44352S,) B,,S.

+ 4300800 (1755584 — 26938,

+ 441760885 — 55800368, S5..S;

+ 13440 (183608, — 26575,

+ 379780085

— 42411608, S4,S.

+ 8870400 (1617 ( (11285
+S5) S, — 17285,S;)
+(8064S, — 48418,

+ 1852816S5) S3) CyS,
— 3 (4851 (18627840S,S;

~ 476761608,

— 142240855, — 425680555,
— 122888, + 2688, — 75S;
+ 277200 (11285 + S) S, ) S,

— (3098182348800B,S;
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+1910545781760S;
— 24365276812808, S5
—~ 111208204808, S,

+29704197608,Sq
+4109618177280S,S;

+ 3946502336008

+ 602640976055 S

~ 4658100400855

+ 123379208,

~ 16712320545,

~ 5883037448,

+ 4150685S; ) S;

— 186278400 (64S, — 1184

+ 2033685 — 14784S,) CyS3) A,

~ 1663200 (1617 (192 (80C, — 575,) S;

+ (11285 +55) S, )
+ (493925, — 94518,

+ 15674288S5) S5
+ 42 (153684 — 7784 + 509008S;

— 3548168,) A,S,) A1,S,)

: (16765056000082)_1 ,

Syt = (852000145920000000B,,S;

— 8520001459200000008;,,S;
+2151515520000008,,5;S5
+307359360000S;,5S5

+ 85200014592000000BS;

— 1704000291840000000H, S}
+ 55537787289600008,555;S5
— 186464678400008,S,52S;

+ 36883123200008,5,52S,

- 176177971200008282

~ 36717542400008,52S¢
~ 4719052800008, 25,

~ 1724800008, S5S;
— 117185376008, 55545,

+43678007296008,55S,
~ 25502400008,S5S;

~ 18098080S,S:S;

+ 2566502408, 5,S,

+469854008,5S;

+ 28483840008, S,S;

— 785400008,S;
+3996655229952000085S;

- 102956816793600008,5:S:

—~ 716426726400008;5,S5Sq

~ 193144089600008,5.S5S;

~ 1094385600008,5,S.

~ 549920448008;5;5,Ss

+ 112482349056008,5.S,

— 488980800008, S:S;
+24367472640000S;
+3398088960000S.S;
+717050880000S.Ss + 86176 Sq
- 29701056S.S, — 56120S.S;
+43961608,S,Sg — 26707584,
~ 188676096052 — 15064000S,S;
+ 6281258,

— 277200 (86240000855
+2525608,S5 — 13970880008, S,

+72800000S? + 672000855

— 56160SS,

+ 87685Ss — 276864, — 45553 ) S¢iS,
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+ 6400 ((29099oos6 +1186419Sg) S,

— (4406010568, - 11000253 ) ) Sz

+ 170755200

- (418485 — 228488, + S, + 140008554 ) S5
~ 737662464000000 (337S5 — 231S,) B,,S,

+ 18441561600000
- (518, + 4Sg + 1631285 — 8008S,) S5,S.
+ 17740800 (23738, — 5008,

+ 15232085 + 1681680S,) S,
+40 (2 (2 (2248758, + 349638, S.
75 (5201928, - 2909553 ) S; )
— (304667776, + 268903553 ) S¢ ) S5
— 30735936000 (S,S; — 6725,

2 2
+ 700858 + 22176008,S; ) B,S; )

-1
+(103272744960000S3)

(A.21)

Cor = (—((332640 (4 (4585,
~ 27720B,S; - 92400D, S,
— 5544S; +201108,S;) S,
— 385 (11285 + Sg) )
— (71209433608
+ 389134408,

— 10308880855 + 604808

— 64408548 — 7691528,
+ 578558;) S,
— 9(819624960S;

— 22093209608, S5
— 70963208, S,
+ 16262408, S,

+2049062408,S;

+ 147870208082
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+ 9564160855

~ 2372480855, + 153608
— 10274S,S; — 2069768,
+57758;) A,

+ 55440 (82854 — 658

+ 33083255)S,5,) S,

— 693 (186278408,S;

+ 636160S:

+ 1120858, + 568055 S
+528,S, + 26888,

— 758 — 18480 (11285 + 55) S,) S,
— 4435200 (48S5 — 115,

+ 1494485 — 11088S,) C,S;

+ 1663200 (1925, — 118,

+ 634725, — 443528,) A,S; ) )

- (245887488000S])
(A22)

Sere = (= ((36960 (15 (3049200 (672 (10 (D,

- 3H2) _3BOtS4) Si

= (A4S +7S1y,) (11285 + S5)) Sy
+(86240A,S,S; +2387A,S,S;

+ 15092008, S5

+ 53908, S, + 33264008, .

— 34376808;S5 — 1440085,

+ 76045385 Sg;

+ 1848 (7284 + 91, + 104944S;) S5,
—24(330129S, — 205518,

+ 94386224S;) S5,

+231 (23833608 + 7840855,

+ 21280855, + 28545, — 26888,

+75S; — 18627840S,53 ) Sy, )
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— (35444416008 + 1509724085, + 15367968000 (77 (192 (10C, - 35,) S

+70312085Sg + (11285 +54) S;)

2
+ 172808 + 3970545 + (1208 + 178 + 6027285) S2 ) B, S?

+3094464S, + 13785S; 5
— 91476000 (3696 (5040 (4B, + S5) S

— 34379009280S,5.) S,S
55)S:54 + (11285 +5;)S,)

— 19958400 (2695, — 7099S:

— (60390452 + 1792855,
+ 385A,5,) S;,S:

+ 5392558, — 26545
— 2880 (26958, — 31835} — 5394,5,) S,

— 26888, +755;)) Ay,S;
+5940 (8968, — 255,
+11 (11176704000 (24S,
+ 14855 + 20697608557 ) C,S,4

— 118, + 68568
— 5544000 (24S, — 115,

— 55448,) B,S;
+ 685655 — 5544S,) D,S?) 2) BoSs

+214518205440008, 5755
+ (160 (46268858, — 4733737S5) S

, + 716240448008,5S;
+ 2932591368, +5053935S; ) Ss

— 206769024008,5:S;
+ 13742136217600S;

) ~ 40040448008,
+ 1505984192008 S

, + 1335936008: S
~ 6398944640088,

\ , ~ 10725120082 S,
+ 13824008, — 828024S.S;

, ~ 39200855, + 49007280S855,S5
+190854144S,S, — 269731585,
+ 31401574408, S,

— 2141580808,S; + 5466300S;) S, ) S, , ,
— 81867600555 + 188188575,

— 385 (776160 (S¢S, — 1928, .
+ 12348672548, — 4769555S:

+ 2805:56) S — 106220808, S,

2
— (13415025254408,5S; + 24990083 — 55440 (84754,

2
+ 32598720008, S + 591368, — 11258, + 7840855,

2
+ 3520661760555, +279417600S55;) S, ) A;S,) )

~ 40040448000S; — 183456000825, -l
- (55324684800008;)

~ 371804160S:Ss — 43120085S; (A.23)

— 27417685885 + 19726336555, By — (36883123200008, 5
ot — 3tY4

2 2
— 32659208,S; — 364S2S; 620928000845,
t

2
+ 182784SS, — 441545, + 277200845455

3
+ 10393688, — 112208;)) S, + 37255680085,
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S6xx =

— 1106493696000B,S,S.
+1614235392000B, 5,55
+4790016000B,S,S,

+ 11064936960000D, S,

+ 4425974784008,8;S,

+ 620928008, 55,

— 277208,S84S5 — 745113608, S,

~ 826011648000S,S,S5
~ 2567980800855,

~ 1197504008,S: S,

+ 5720064008

— 1908480082 S,

+ 1532160082Sg + 5600855,

+ 3876085S4Sg
+ 36305920858, + 82800S5S;
+ 512878, + 4972858,

— 19358,S; — 34880S,S;
+25508; )

-1
+(1106493696000083)

(7(33 (240 (108662400H,

~ 778447S,S;
+2199120D,S,

~ 18110400D,,

— 1164240B,,S,) S;

~ 136171 (11285 + Sg) S
— 53760 (48518,

— 218857) C,S3)
+2(4303031040B,5,

— 22836352008, S5
— 186278408, S,

(A.24)

International Journal of Differential Equations

+20913200B, g

~ 1434343680C,S;
~ 143434368000,
+ 12909093128, S,
~ 10527920488, S
~ 55883528, S,

+ 68523078, S,
+2189453112S,S;

~ 3051480855

+ 24691685,

— 409773053S5) A, S,

— 388080 (484, — 79S,) S6,5;)
— (16666080S + 979694875,
+9031282208S;) S;

+ 1764 (752805285

— 271608, + 995158,

+ 158789408,) $,S;

+ 258720 (29784 + 145,
+77780S5 — 1413728, B,S;

— 3018400 (43254

— 4858, + 529608

- 99792S,) (B,, — D;) S,

- 3773 (691254 — 131835,

+ 81944085 — 15966728,) A3}S;)

2\~1
(16299360083 .
(A.25)
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